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Abstract 
 

The material components of 39 cosmetic foundation powders, 23 being mineral-based and 17 

traditional-based formulations, have been studied by X-ray Fluorescence (XRF), X-ray 

powder Diffraction (XRD) and spectroscopic analysis in the visible region, and mid and near-

infrared regions.  Chemometric applications including Principal Component Analysis (PCA), 

2D correlation and multivariate curve resolution techniques have been applied to data to aid 

in interpretation and classify samples based on similarities and differences in formulations. 

The composition of mineral and traditional-based foundation powders was found to be quite 

different.  Traditional formulations comprised of talc and, in some cases, calcium carbonate, 

while mineral-based samples contained larger amounts of mica.  Some samples, denoted by 

their producers as mineral samples, were subsequently classified as traditional as they 

contained talc in their formulations. 

2D correlation applied across two spectroscopic methods highlights positive correlating 

spectral features between techniques.  Elemental concentrations produced through XRF 

analysis, were correlated with XRD data.  In this manner XRF data successfully aided the 

interpretation of XRD data and confirmed components that could be represented by a single 

element in their component phases, in particular, zinc oxide, bismuth oxychloride and 

titanium dioxide.  

FTIR (Fourier Transform Infrared Spectroscopy) analysis of samples in the mid and near 

infrared regions provided information on the structural and chemical composition of 

foundation samples.  Correlation of XRD data and spectral data in the mid-infrared region 

confirmed the presence of talc, kaolin, calcium carbonate and mica in samples.     
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In general, mineral-based samples could be discriminated based on manufacturer, but 

traditional-based samples could not.  The techniques and data analysis methods developed 

and applied here could be of benefit to the analysis of other complex, solid samples.  
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Chapter 1: Introduction 
 

1.1 History of Cosmetics 

Cosmetics have been used since mankind’s earliest days.  There has long been a desire by 

individuals to improve their appearance and artificially enhance their sexual attraction and the 

cosmetics trade and industry have a long history [1].  Make-up has been used to enhance 

facial colour since before 4000BC.  The Ancient Egyptians led the way in cosmetic 

production, developing innovative formulations for their beauty needs.  They decorated their 

eyes with green, white and black make-up.  The use of black eye liners, known as kohls, was 

very popular, and was used to emphasise the eyes [2].  Kohl was generally made of galena or 

lead sulphide.  It was believed that eye make-up could ward off bad spirits and improve eye- 

sight [3].  One of the first known eye shadows was the green ore malachite (CuCO3.Cu(OH)2) 

but Egyptians also used a finely ground form of antimony trisulfide to darken their eye-lids 

and give lustre to their eyes [4].  Other studies have identified two natural lead-based 

compounds: crushed ore of galena (PbS) and cerrussite (PbCO3) present in Egyptian powders 

dating from between 2000 and 1200BC.  Other components were laurionite (PbOHCl) and 

phosgenite (Pb2Cl2CO3).  Since neither is naturally occurring, it is assumed that the Egyptians 

synthesised these compounds using wet chemistry [5].  In prehistoric times, colour was used 

by man in cave paintings.  The skin was coloured either as a camouflage or to provoke fear in 

an enemy.  Various civilisations throughout history have used cosmetics in their customs, in 

particular body paints.  The Australian aborigines daubed their faces with white clay and wore 

wreaths made of flowers and feathers.  The North American Indians, decorated their bodies 

with brightly coloured war paints [6].  Make-up was not for common use amongst the public 
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in Ancient times.  In ancient Greece and Rome, only the political elite and wealthy used such 

products [1].  Among the many things that the Romans used were white lead and chalk to 

whiten their skin.   

Like the Ancient Egyptians, kohl was used as make-up for the eyes.  Hair dye was popular 

and ranged from blonde to dark brown, according to the prevailing trends [6].   

 

By the nineteenth century, the use of cosmetics was widespread throughout Europe.  The 

church condoned its use, as it was primarily used by prostitutes and only acceptable for 

theatre.  A pale face was desired as it defined an individual’s place in society.  Those with pale 

skin were associated with the upper class and differed from those in the working class that 

were more exposed to the European sun.  Thus, the higher class women of European society, 

attempted to lighten their skin to emphasise their delicacy and femininity.  White lead paint 

was used, which also may have contained arsenic.  Cheeks were stained with rouge comprised 

of red ochre and vermilion, a naturally occurring mercuric oxide.  The trend of using toxic 

chemicals to promote beauty, continued throughout the nineteenth century.  Eventually, lead 

was replaced with zinc oxide for the whitening effect.  The absence of regulations of the use 

and manufacture of cosmetics led to many negative side effects.  The whitening of the skin 

through lead-based cosmetics caused deformities, blindness and even death [3].  

          

1.2 Typical modern formulations 

Today, cosmetic preparations are commonplace consumer products and are used to help 

correct flaws and improve the appearance of human skin [1].  Cosmetic ingredients are listed 

in the International Cosmetic Ingredient Dictionary and Handbook, with over 10,000 

individual chemicals that are, or have been, used in cosmetic production [7].   
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The cosmetic, toilet and fragrance industry can be divided into five main categories: skin care, 

hair care, make-up, fragrances and personal hygiene.  Make-up products have global sales of 

around $22.5 billion annually and can be categorised into four groups as illustrated in Figure 

1.1 [8].   Make-up preparations generally refer to products used on various parts of the face 

[1].  Applied to the skin's surface, to hide blemishes and give the skin an overall smooth 

finish, foundations (in the form of liquid, mousse, cream, loose or pressed powder) are used in 

conjunction with concealers, bronzers and blushes.  The eye area focuses on contouring 

products to emphasise and highlight features with coloured eye shadows (cream, powder or 

pencil), varying shades of eye-liners and mascara to highlight lashes [1].  Finally, a variety of 

colours of lipsticks, lip-liners, glosses and lip balm conditioners can be applied to the lips.   

 

 

Figure 1.1 Classification of Make-up Products and global market figures based on sales in 2001 [8]. 

 

Laws and legislation concerning regulations for consumer products vary worldwide.  In 

Australia, cosmetic products must meet the definition of cosmetic in Australia under the 

Industrial Chemicals (Notification and Assessment) Act 1989, which states that a cosmetic is 

‘any substance or preparation intended for placement in contact with any external part of the 

human body’.  Ingredients used in cosmetic production are monitored by the NICNAS 
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(National Industrial Chemicals Notification and Assessment Scheme) as they are classed as 

industrial chemicals, even those that are described as naturally occurring. This act ensures that 

products do not contain chemicals prohibited for use and meet restrictions specified for 

chemicals used in cosmetics.  Ingredients must comply with changed legislative requirements 

and new cosmetic ingredients are subjected to notification and assessment (NICNAS 

Cosmetic Guidelines 2007).   All cosmetic products must follow trade practice regulations 

(Consumer Product Information Standards- Cosmetics Regulations 1991) that require the 

product ingredients to be listed on the container or the product itself, in descending order 

calculated by either mass or volume [9].  There are also allowed processes in which certain 

methods are only to be used when producing both organic and non-organic ingredients for 

cosmetic formulations.   

 

One of the most widely used class of cosmetic products is foundation powder.  In 2001, the 

Global Cosmetics reports indicated that make up products constituted roughly 18% of the 

total global market for cosmetics, with $7.9billion of sales for face make-up alone [8].  

Foundation powders consist of a mixture of inorganic oxides (typically iron, titanium and 

zinc) in a base of clay minerals (usually kaolinite with mica and occasionally talc) that serve 

several important functions necessary to produce a quality consumer product [1].  The various 

properties that a foundation powder must have to be considered a good product include; 

ability to cover the skin, hide shine and blemishes, readily spread over the skin, adhere to the 

face, absorb oils and perspiration and give a smooth finish [10].  The ability of face powders 

to display these properties lies in the materials used and their physical properties (particle size 

and shape, surface area, texture, colour and brightness) and chemical properties (surface 

chemistry and charge) [11].  Table 1.1 shows the composition of loose and pressed foundation 

powders.  Loose and pressed powder samples have similar raw materials; however, pressed 
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powders contain organic binders.  Binders can consists of a combination of various 

components such as fats, waxes and polymer powders to aid in ingredient compression and 

adhesion [12].   

 

Table 1.1 Typical composition of foundation powders [6&12]. 

Raw Materials Loose Powder Pressed Powder 

Talc quantum satis quantum satis 

Mica (%) 10 10 

Texture Agents (%) 15-35 15-35 

Mineral Pigments (%) <2 <10 

Pearls (%) <5 <5 

Binder (%) None 3 to 8 

 

 

Traditionally, these cosmetics are made from clay materials such as talc and kaolin.  Talc 

(hydrated magnesium silicate (Mg3Si4O10(OH)2)), aids in skin adhesion and provides water 

repellency, as well as absorbing and holding fragrances.  It is odourless and can be easily 

milled, becoming a bright white powder.   A good grade of talc, should be white and free of 

potential impurities such as carbonates, water soluble iron and asbestos.  Variations in the 

shape and particle morphology of talc affect properties such as, covering powder and 

wettability [11].  Generally, the smaller the particle size the smoother it will be, but if talc is 

ground too fine, it begins to have a gritty feel [6].   

Kaolin (hydrated aluminium silicate (Al2Si2O5(OH)4)) imparts and maintains a smooth, matte 

appearance, preventing the product from caking.  There are three different groups of clays that 

are classified as kaolin, kaolinite, nacrite and dickite, all having similar chemical formulae.  
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Kaolin is added for its grease resistant and perspiration absorbent properties.  Kaolin has a 

moderate covering power and the grade used (white colour to a pale creamy colour) 

contributes to the face powder tint [13].  It has a characteristic earthy taste and clay like odour 

when wet.  It has a relatively low surface area but has the ability to absorb small molecular 

substances [11].  Kaolinite and talc are extensively used in the formulation of various 

cosmetic products.  They serve as a base or excipient, and must comply with a number of 

textural and compositional requirements and have specific technical properties.  Lopez-

Galindo et al. have reviewed the technical and safety specifications of clays used in 

pharmaceutical and cosmetic products [11].  Sericite, a naturally fine-grained form of mica 

(KAl2(AlSi3O10)) is used to impart a shine within the powder [12].   

 

Inorganic pigments used include zinc oxide and titanium dioxide for whiteness and iron 

oxides for red, brown and other earth tones.  There are three basic shades of iron oxides: 

yellow (hydrated ferrous oxide, FeO·nH2O), red (ferric oxide, Fe2O3) and black (which is a 

mixture of both yellow and red iron oxides) [14].  Zinc oxide is present in moderately low 

levels and is often incorporated into products due to its astringent health benefits such as 

soothing properties to the skin as well as sun protection, by filtering and reflecting UV rays 

[6].  Titanium dioxide also acts as a natural sunblock and is three times a better covering agent 

than zinc oxide [13].  Other ingredients used, such as calcium carbonate, give a matte finish, 

zinc and magnesium stearates for binding and water proofing properties may be included and 

boron nitride which attributes application properties such as skin feel and texture [10, 12]. 

   

So-called mineral foundations are relatively new products to the cosmetic industry and are 

becoming increasingly popular as an alternative to traditional formulations.  They have wide 

appeal due to their use of so-called ‘natural’ ingredients and associated health benefits to the 
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skin.  There are many claims with these new mineral based formulations.  Manufacturers 

claim that they contain anti-inflammatory properties to calm irritated skin.  They are oil-free, 

causing no pore blockages and give a light weight feel, making them suitable for individuals 

with sensitive and allergy-prone skin.  Mineral foundation powders essentially use many of 

the same chemicals found in traditional formulas, but it is the ingredients they do not contain 

that contributes to their skin-friendly benefits.  Cosmetics are expected to do more than add 

colour and cover skin imperfections, but should also contain ingredients such as sunscreens 

and emollients to nourish and protect their skin [8].  Today most makeup preparations have 

new and improved ingredients that include sunscreens.  As public environmental awareness 

has increased, items seen as safe for the environment are perceived as healthy for users.  This 

philosophy has driven a trend toward increased use of natural products.   

 

Mineral foundations are often referred to as being ‘chemical free’ as they purport to contain 

no potential skin irritants such as fragrances, talcs, dyes or preservatives [1].  However, 

formulations vary considerably and there is often little and confusing information regarding 

what constitutes a ‘mineral’ foundation.  Although the safety and effectiveness of cosmetic 

products are regulated worldwide, laws and regulations vary greatly between countries, often 

making it impossible for a global industry to be selling the same product [14].  Concerns lie 

with those manufacturers who do not specify whether they solely contain natural, pure 

minerals.  According to the Australian Trade Practices, ‘naturally occurring’ ingredients are 

those that are unprocessed in their natural state or only extracted by manual, mechanical, 

gravitational means, dissolution in water, or heating to remove uncombined water, without 

any chemical change.  For example, bismuth oxychloride is a known skin irritant but is often 

incorporated into mineral formulations as it is classed as a mineral even though it is not a 

natural mineral but is a by-product of lead processing.  Bismuth oxychloride was originally 
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developed in cosmetics as a non-toxic alternative to lead carbonate and is in common use 

[15].   

 

There is no requirement for listing the proportion of each ingredient within a product.  The 

exact composition is not easily determinable from the product labelling and may only be 

known by the manufacturer [8].  The Australian Government ensures that all ingredients in 

cosmetic products are classed as industrial chemicals, even those described as ‘naturally 

occurring’.  To ensure that all products are safe for workers, the environment and use by 

consumers, the Australian Government assess the ingredients used in the manufacture and 

importation of cosmetics in Australia. 

  

1.3 Analytical Methods 

It has only been in the last century that science has been applied to the characterization of 

cosmetic products.  Cosmetic preparations typically consist of complex mixtures of many 

components, and a wide variety of analytical methods must be employed to identify and fully 

characterise an unknown material.  The analysis of ancient cosmetics is extensive [16-19].  

Ancient Egyptian burial tombs have been found to have cosmetic powders, preserved in stone 

vases, reeds and wooden containers [20]. In most cases, the chemical analysis of ancient 

cosmetic remains is essential in understanding the customs of everyday life in those times and 

the chemical processes involved in the production.  One method that has been extensively 

used for the characterisation of cosmetics found in ancient civilisations is infra-red 

spectroscopy.  Diffuse reflectance FT-IR is highly effective in providing information 

concerning the chemical composition and structure of cosmetic foundation powders.  It is a 

fast, non-destructive technique with simple sample preparation.  Vibrational spectroscopic 

techniques, FT-IR and Raman spectroscopy, have been used as complementary methods for 
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the identification of clay minerals and inorganic pigments.  Cosmetic containers frequently 

found in Ancient Egypt burial sites, have been analysed using FT-IR, not only for its high 

detectivity of both organic and mineral components, but also due to the non-destructive nature 

of the technique when dealing with such delicate samples.  Chemical analysis of these 

samples is undertaken to give a greater understanding of their production process, and, in 

general, for the chemical knowledge and practices in antiquity [21].  The use of FT-IR and 

near-infrared (NIR) are also effective in the quality control of cosmetic mixtures.  In 

particular, the determination of components in cosmetic mixtures, combined with multivariate 

spectral processing chemometric techniques to ensure acceptable levels of each component 

have been used in cosmetic preparations [22].   

X-ray diffraction is another non-destructive technique used to investigate the composition of 

cosmetic formulas.  Analysis of cosmetics using XRD is not extensive but because certain 

ingredients used in cosmetics are highly crystalline it is an ideal method for identification.  

Ancient Egyptian makeup has been analysed using X-ray powder diffraction not only to 

identify galena (PbS) as a major ingredient but also identify structural parameters to help in 

the interpretation of the manufacturing process applied by ancient Egyptians to produce eye 

makeup [20].   

Although there are relatively few published reports on the elemental analysis of cosmetic 

powders, neutron activation and X-ray methods are most commonly referenced due to their 

non-destructive nature and their ability to examine the sample without prior dissolution. Thus 

Kanias has reported the analysis for iron and zinc in cosmetic products including eye shadows 

and face powders using instrumental neutron activation (INAA) [23].  This author has also 

applied the technique to trace element analysis, including determination of the lanthanide 

elements, in cosmetic powders [24].  Using INAA the trace elemental analysis of nail polishes 
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as a potential source of contamination in analysing nail clippings has been examined by 

Favaro et al. [25].  

Kawauchi et al, reported the measurement of titanium dioxide in cosmetic products with XRF 

spectrometry [26].  Cosmetic traces are sometimes found as evidence on clothing, crime scene 

surfaces, etc.  They can be successfully analysed using XRF techniques [27] and the 

elemental profile may be useful in identifying samples made by different manufacturers.  

Misra et al. successfully applied EDXRF (Energy Dispersive XRF) to the analysis of cosmetic 

evidence in nail polishes [28].  The evidential value of cosmetic foundation powder smears in 

forensic casework was reviewed by Gordon and Coulson.  Fifty-three different foundation 

samples from 15 manufacturers were collected with the aim of determining the most 

discriminating method for the comparison of transferred foundation with samples obtained 

from a known source in forensic casework [29].  The authors employed statistical analysis of 

multidimensional, continuously variable elemental data from the SEM-EDX (Scanning 

Electron Microscope-Energy Dispersive X-ray Spectroscopy) results.  Common elements 

found in foundations included Al, Si, S, Cl, K, Ti and Fe.  The forensic analysis of cosmetic 

face powders was examined by Greenhough, who used a range of analytical techniques 

including FTIR, SEM and mass spectrometry to characterize 27 samples [30]. 

Various cosmetic products have been used as evidence in forensic cases.  Lipstick smears are 

often encountered in forensic laboratories 

 

1.4 Project Aims 

The aim of this project is to investigate some appropriate analytical techniques, and develop 

new analysis methodologies, to characterise the inorganic composition of cosmetic 

foundations.  To date, there are few reports in the public domain regarding the chemical 

analysis of mineral cosmetic foundations and, hence, little background information for 
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consumers relating to product authenticity and techniques for classification.  There is little 

information for consumers regarding the nature and purpose of materials used in the 

production process.  In addition, characterisation and classification of such samples produces 

reference work which may be useful for chemists in understanding the science involved in 

developing new products [31].    Cosmetic foundations are composed of a combination of 

inorganic oxides and clay minerals.  The most common analytical techniques employed for 

the analysis of such materials are spectroscopic methods.   The techniques employed in this 

work for analysis, included; X-Ray Fluorescence for quantitative multi-elemental analysis, X-

Ray Powder Diffraction to investigate the structural information on the crystalline content and 

vibrational spectroscopy mid-infrared and near-infrared methods to confirm chemical 

composition and structure of cosmetic foundations.   

Interpretation of data is aided by the application of appropriate chemometric analysis 

techniques, such as principal component analysis, discriminant and cluster analysis, and 2D 

correlation to identify similarities and differences between samples.   

 

Combining the information provided by the different analytical instruments and with the aid 

of chemometric interpretation we can essentially answer the following research questions: 

1. To what extent can we quantitatively describe the composition of cosmetic 

foundations and can we identify a single substrate from its chemical composition, and 

hence, identify the manufacturer? 

2. What classification techniques can be applied for successful comparison of two 

samples to see whether they come from the same or similar source? 

 

Various analytical techniques were selected to investigate the composition of cosmetic 

powders.  Full characterisation was required; therefore techniques had to provide a range of 
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qualitative and quantitative analysis methods.  Due to the complexity of analysis and size of 

samples, techniques were carefully chosen as to their non-destructive nature.  This was an 

important factor, as no change could be made to chemical composition of the sample.  

Crystalline structure may be damaged in the sample preparation and presentation process, and 

the sample had to be maintained for analysis over all analytical methods.  The analytical 

techniques selected provide elemental analysis, phase analysis, chemical composition and 

colour determination. 
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Chapter 2: The Cosmetic Foundation 
Samples: Their appearance and Visible 
Spectra 
 

2.1 Introduction 

For cosmetic technicians, control of colour plays a vital role in producing quality face 

powders for consumers.  Colourimetry, in the visible range (400nm-700nm) is employed to 

monitor colour, expressed in terms of red, green, yellow and blue values [1].  Currently, the 

US Food and Drug Administration (FDA) has approved the use of 64 colorants, inorganic or 

organic, dyes or pigments for use in cosmetic applications [2,3].  Foundation powder 

manufacturers, employ inorganic pigments in formulations to produce the variety of colours 

and shades available in the consumer market.  Properties used to define the colour of 

cosmetics include, the hue, saturation or chroma and brightness.  The hue defines the pure 

colour in terms of red, green, yellow or blue, and saturation is the amount of white that is 

mixed with the hue, providing a range of colour from 0-100%.  A pure colour is considered to 

be fully saturated.  Brightnes is a measure of the intensity of colour [4].       

 

Visible spectroscopy is widely used in the analysis and identification of cosmetic products.  

Lipstick smears are often encountered as evidence in criminal forensic cases and the 

comparison of smears was reviewed by Ehara and Marumo using fluorescence spectrometry 

to discriminate between 174 lipstick samples [5].  Rodger et al. reported the UV-Vis analysis 

using resonance Raman spectroscopy to discriminate lipstick smears based on individual 

pigments present, as well as reviewing the techniques use for quality control applications [6]. 
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Other UV-Vis studies in cosmetic analysis include the analysis of UV absorbent materials 

such as TiO2.  Jaroenwaoraluck et al. employed UV-Vis spectroscopy to study the differences 

and effectiveness of nanosized titanium dioxide as a sunscreen in cosmetics based on its UV 

absorption characteristics [7].  

The amount of visible light reflected and absorbed is directly related to a material’s colour [8] 

and Hoffman and Beussman reviewed reflectance spectroscopy in paint analysis, and the 

pigmentation required to give paint specific colours and demonstrated the use of visible 

reflectance spectroscopy to compare visually similar samples [9].  In a different field, visible 

spectroscopy is in widespread use for soil colour analysis and Rossel and Behrens use diffuse 

reflectance spectroscopy to identify soil samples based on absorptions associated with iron 

oxides present in minerals, such as goethite and hematite, in the visible region [10]. 

 

In this chapter, Visible Spectroscopy has been employed to characterize cosmetic foundation 

samples based on colour.  This represents a preliminary analysis to introduce the cosmetic 

foundation samples that will be discussed throughout this thesis.  Principal component 

analysis (PCA) has been applied to the spectral data giving separation of samples based on 

colour, indicating the range of samples examined. 

      

2.2 Experimental 

2.2.1 Sample Collection  

Thirty-nine different loose and pressed powder foundation samples were purchased for 

analysis.  These included 23 samples claimed to be mineral and 16 traditional-based 

formulations, in varying shades of colour, from 8 commercial manufacturers and suppliers in 
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the Australian market. Each sample was assigned a code comprising its type, ‘M’ or ‘T’ 

depending on whether it is marketed as a ‘mineral’ or ‘traditional’ face powder, a number, 1- 

8, identifying the manufacturer, and a second number indicating the product number in that 

set of manufacturers samples. The samples, with description and coding employed, are listed 

in Table 2.1 and 2.2. 

All samples were fine, apparently homogenous powders.  The pressed powders, were not as 

uniform as the loose, and exhibited a tendency to clump in their containers due to the presence 

of binders, that keep the powder in a compact form.  The varying shades of colour, 

representative of the samples are displayed in Figure 2.1 and vary between manufacturers as 

well as within the same brand.  The variation of colour from a single manufacturer, T3.1, T3.2 

and T3.3, light, medium and dark tones, is evident in Figure 2.2.   

 

 

Figure 2.1 Cosmetic Foundation samples M1.1, M6.4 and T8.2. 
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Table 2.1 Mineral-based foundation samples. 

Number Code Manufacturer’s Description Foundation Type 

1 M1.1 Translucent Fair  Loose Powder 

2 M1.2 Translucent Medium  Loose Powder 

3 M2.1 Ivory Loose Powder 

4 M2.2 Beige Loose Powder 

5 M2.3 Natural Loose Powder 

6 M2.4 Tan Loose Powder 

7 M3.1 Nude Loose Powder 

8 M3.2 Natural Fawn Loose Powder 

9 M3.3 Natural Tan Loose Powder 

10 M4.1 Natural Ivory Loose Powder 

11 M4.2 Natural Beige Loose Powder 

12 M4.3 Natural Honey Loose Powder 

13 M4.4 Natural Tan Loose Powder 

14 M5.1 Blushing Beige  Loose Powder 

15 M5.2 Natural  Loose Powder 

16 M5.3 Golden  Loose Powder 

17 M6.1 Classic Ivory  Loose Powder 

18 M6.2 Nude  Loose Powder 

19 M6.3 Pure Beige  Loose Powder 

20 M6.4 Tan Loose Powder 

21 M7.1 Soft Beige  Loose Powder 

22 M7.2 True Nude  Loose Powder 

23 M7.3 Natural Beige  Loose Powder 
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Table 2.2 Traditional foundation samples. 

Number Code Manufacturer’s Description Foundation type 

24 T6.1 Light Loose Powder 

25 T1.1 Creamy Natural Pressed Powder 

26 T1.2 Creamy Beige Pressed Powder 

27 T3.1 Medium Loose Powder 

28 T8.1 Ivory  Loose Powder 

29 T8.2 Tan Loose Powder 

30 T2.1 Cream Beige Pressed Powder 

31 T2.2 Dark Pressed Powder 

32 T4.1 Outback Tan Pressed Powder 

33 T4.2 Outback Bisque Pressed Powder 

34 T1.3 Medium Translucent  Loose Powder 

35 T6.2 Medium  Loose Powder 

36 T2.3 Natural Loose Powder 

37 T3.2 Dark  Loose Powder 

38 T3.3 Fair  Loose Powder 

39 T4.3 Outback Beige Pressed Powder 
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Figure 2.2 Cosmetic foundation samples of manufacturer T3.x showing colour shade varying from 

light to dark. 

 

2.2.2 Sample Analysis 

The reflectance spectra of the cosmetic powders were recorded using a portable 

Spectroradiometer (Model FieldSpec3, Analytical Spectral Devices Inc, Colorado, USA), 

providing a spectral range from 350nm to 2500nm at 1nm intervals and a spot size of 10mm.  

Measurements were recorded with a high intensity contact probe attachment (Analytical 

Spectral Devices Inc., Colorado, USA), designed for contact measurements with solid 

materials.  The thickness of the samples was at least 0.5cm and was recorded against a non-

reflective white background with a spectral resolution of 3nm.  The instrument uses a modular 

silicon array detector and was calibrated using a Spectralon white panel, a 

polytetrafluoroethylene polymer resin compressed into a hard porous white material, 
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providing high diffuse reflectance over the UV-VIS-NIR region [11&12].   The wavelength 

range (400-800nm), covering the visible region, was used for data analysis.  Extensive scatter 

and noise were apparent beyond these limits with this instrument. 

 

2.2.3 Data Preprocessing 

In visible spectroscopy, measurements were recorded using diffuse reflectance, and light 

scattering effects arise dependent on particle size and particle roughness.  Generally, these 

effects are removed using preprocessing techniques, so that the spectra can be better 

interpreted in term of their chemical information [13].  Variations in data can occur between 

samples caused by sample particle size and will result in ineffective use of data analysis 

performed by multivariate techniques [14].    

Normalization is a common technique for infra-red, UV-Vis absorption, fluorescence and 

reflectance spectroscopies to reduce the interference of scattering effects prior to data 

analysis.  Normalizing involves setting each variable (an absorbance at each wavelength 

recorded) to constant area to give each variable an equal effect [15 &16].   

The visible spectral data was preprocessed and examined with the aid of principal component 

analysis using MATLAB software (Ver. 7.10, Mathworks Inc., NSW, Australia) and the PLS 

toolbox (Eigenvector Research Inc., WA, USA). 

 

2.3 Results and Discussion 

2.3.1 Colour Classification 

The 39 cosmetic foundation powders were initially classified subjectively into groups based 

on the colour shade of each sample.  Each sample was categorized into one of 3 groups, light, 
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medium or dark, based on a visual comparison and manufacturer description.  From Table 

2.3, it is clear that there is a variety of shades across the samples and each manufacturer 

supplies a variety of foundation colours for consumers.  Categorizing the foundations was 

undertaken to examine correlation between the observed colour and the results from visible 

spectral data. 

Table 2.3 Colour classification of 39 cosmetic foundation samples, categorized into shades, Light, 

Medium or Dark. 

Colour/ Shade Samples 

Light M1.1, M2.1, M2.3, M3.1, M4.1, 

M4.2, M5.1, M6.1, M7.1,  T6.1, 

T1.1, T1.2,  T2.1, T3.3,  T4.3, 

T8.1  

Medium M1.2, M2.2, M3.2, M4.3, M5.2, 

M6.2, M6.3, M7.2, T1.3, T2.3, 

T2.2, T3.1, T4.2, T6.2 

Dark M2.4, M3.3, M4.4, M5.3,  

M6.4, M7.3, T3.2, T4.1, T8.2 

 

 

Raw spectral data were preprocessed, using the normalization function (norm-1) in the PLS 

Toolbox (Eigenvector Research Inc., WA, USA).  Normalisation is conducted using the 

following equation 

𝒙�𝒊 =  𝒙𝒊.𝒘𝒊
−1           (Equation 2.1) 

𝒙�𝒊 is the normalized form of sample i and wi is the normalization weight for sample i.   
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The normalized weight, wi is calculated by summing all variables for any given sample 

according to equation 2.2 

𝒘𝒊 =  ∑ �𝑥𝑖,𝑗�
𝐽
𝑗=1           (Equation 2.2) 

Normalisation gives the area equal to 1 under the curve where xi,j is the observed spectral 

values for sample i, j is the variable number (wavelength) and J is the total number of 

variables. 

Visible reflectance values were transformed into absorbance, 

Absorbance, X = log10(1/R)          (Equation 2.3) 

where R is the normalized visible reflectance data matrix for data analysis.  

The visible spectra of foundation samples are presented in Figure 2.3 which shows (a) the 

visible reflectance raw data and (b) absorbance spectra after normalization.  It is clear that 

normalization was successful in reducing scattering effects, and hence emphasizes the minor 

absorbance features of the samples.  The samples exhibit absorbance bands in the blue and the 

green regions (400-570nm).  The visible spectra appear similar and are not easily 

distinguishable.   

Principal component analysis provides a means of summarizing such data whilst extracting 

maximum information, giving a better interpretation of the similarities and differences in 

spectral data based on the variance in absorbance of each sample [15].  
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Figure 2.3 UV-Vis spectra of foundation powder samples, (a) non-processed raw data and (b) data 

after normalization and conversion to absorbance. 
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2.3.2 Principal Component Analysis 

Principal component analysis (PCA) aims to reduce the dimensionality of multivariate data 

while revealing those variables that describe some inherent structure in the data and retaining 

as much of the data variation as possible [17,18].  The method generates a new set of 

variables, called principal components or scores, with each principal component being a linear 

combination of the original variables defined by the PC loadings.  Principal component 

analysis finds the linear combination describing the largest variance, the first principal 

component, and then determines other linear combinations that have most of the remaining 

variance, giving further PC's, which are uncorrelated with the first principal component.  

Generally, a plot of the first two or three principal components provides sufficient information 

about the data to indicate any inherent pattern. 

Principal component analysis transforms the absorbance data matrix X, of dimensions I x J 

whose rows represent samples and columns represent variables (eg. an absorbance at each 

wavelength recorded), into a scores, T, and loadings, P, matrices, denoted by the equation, 

X = TP          (Equation 2.4) 

T, the scores matrix, has as many rows as the original data matrix of dimension, I x J and P, 

the loadings matrix is of dimensions, J x J, which can be seen in Figure 2.4.  The loadings 

express the magnitude (large or small) and manner (positive or negative) in which the original 

variables contribute to the principal components [17].  
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Figure 2.4 PCA method applied to original data matrix X, to produce, Scores T and Loading P 

matrices [19]. 

Principal component analysis was applied to the spectra and the result is summarized in 

Figure 2.5.  Figure 2.5(a) displays a score plot of the 39 foundation powder samples projected 

on PC1 and PC2.  The first two principal components account for 98% of the total variance 

contained in the spectral data.  It is evident that samples are not grouping according to 

manufacturer and there is no distinct pattern in the data based on the foundation type, 

‘mineral’ or ‘traditional’.  The samples are evenly distributed about the origin, confirming the 
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samples contain no visible outliers.  Principal component analysis resolves prominent features 

in the visible spectral data and PC1 and PC2 can be interpreted in the loadings plot of Figure 

2.5(b).  The separation along the two principal components is defined by the wavelength 

absorption of the samples.  Principal component 1 gives absorbance bands in the blue-green 

400-500nm region, indicating reflectance in the orange-red visible region.  Principal 

component 2 produced positive absorbance bands in the green-yellow 500-570nm region, 

indicating reflectance in the blue and red visible region.  Based on the colour differences of 

the foundation samples, samples are grouping in accordance to the wavelength region of the 

absorbed colour.  When a visual comparison of the colour of the samples is made with the 

scores plot (Figure 2.5(a)), it seems that samples that are light in colour are grouping along 

the positive region of the PC2 axis and those that have a darker colour shade have been 

projected along the PC1 axis.  It can be assumed that samples of a lighter shade recorded 

absorbance in the green region and those darker in colour are exhibiting absorbance in the 

blue region.  It can be assumed that the colour of foundation powders is due to the addition of 

yellow and red iron oxides, or a combination of both and light is absorbed depending on the 

iron oxide present.  However, the type cannot be distinguished by qualitative visible 

spectroscopy. 
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Figure 2.5 Scores plot (a) and the loadings plot (b) associated with PC1 and PC2 from principal 

component analysis of first derivative UV-Vis spectra of the 39 foundation samples. 

(a)

(b)
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2.3.3 Conclusion 

The visible spectrum of foundation powders samples represents a preliminary analysis.  

Samples could not be grouped based on manufacturer or foundation type, but only by colour.  

The results indicate that the samples selected for this research are of a variety of differing 

colour and shades.  Principal component analysis was successful in summarizing the data and 

resolving absorption features of the spectral data.  The use of preprocessing was vital to the 

analysis, and normalization highlighted small difference in the spectral data that was not 

previously obvious. Visible spectroscopy was used to introduce the foundation sample set to 

this research.  Further investigation of foundation powders was undertaken by XRF, XRD and 

IR spectroscopies for full chemical characterization and discrimination of samples.  In the 

remaining chapters of the thesis, these analytical techniques will be discussed, with the aid of 

multivariate data analysis methods.     
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Chapter 3: Elemental Analysis using    
X-ray Fluorescence 
 

3.1 Introduction  

X-ray Fluorescence is a rapid, qualitative and quantitative method for elemental analysis of, 

principally, solid or powder samples. It requires minimal sample preparation and samples are 

rarely destroyed or changed by exposure to X-rays.  This is an important advantage for XRF 

analysis, as samples can be saved for future reference or other testing methods that are 

destructive [1] or when sample size is small.  X-ray Fluorescence is based on the 

measurement of energy, or wavelengths, and intensities of X-rays emitted by a sample, when 

excited by a primary X-ray source [2].   

The electrons of an atom are considered to be arranged in shells and when an absorbed X-ray 

photon has sufficient energy to displace an inner (usually K-shell) electron from the target 

atom, an unstable ion is produced.  This leads to an electron from an outer shell dropping into 

the vacant position [3] resulting in the fluorescence radiations, Figure 3.1.   If the vacancy is 

filled by an M electron then the X-ray produced is called a Kβ X-ray.  If the vacancy is filled 

by an L electron then a Kα X-ray is produced.  These emitted X-rays are characteristic of the 

atoms present in the sample, and elements are identified from the wavelengths or energies of 

this characteristic radiation [2]. 
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Figure 3.1 Electron shell transition to produce fluorescence radiation [4]. 

 

3.1.1 Wavelength-dispersive X-ray Fluorescence 

A wavelength-dispersive XRF instrument, as shown in Figure 3.2, uses a primary X-ray 

source to excite the atoms of a sample.  The resulting fluorescent radiation is collimated by a 

series of slits to an analysing crystal [1].  The crystal is mounted on a turntable which rotates 

through an angle θ.  For each element being determined, an appropriate crystal is selected 

according to the Bragg Equation [2]; 

n λ = 2d sin θ          (Equation 3.1) 

where d is the inter-planar spacing in the atomic lattice of the crystal, λ is the X-ray 

wavelength, θ is the angle between the radiation and planes, and n is an integer representing 

the order of diffraction.  Whenever the Bragg Equation is satisfied for a particular 
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wavelength, it is diffracted towards the detector [2].  The detector rotates through a 2θ angle 

to ensure it is in the correct position to receive any rays reflected from the crystal.   The 2θ 

position of the detector corresponds to the diffracted characteristic line of the element being 

studied [3]. 

 

 

Figure 3.2  Schematic diagram WDXRF instrument [1]. 

 

3.1.2 Energy Dispersive X-ray Fluorescence 

Energy Dispersive X-ray Fluorescence (EDXRF) is an alternative technique to the wavelength 

dispersive method.  Figure 3.3 shows the instrumental features of an EDXRF spectrometer.  

Energy Dispersive X-ray Fluorescence uses a lithium-drifted silicon detector to determine 

characteristic X-rays based on their photon energies rather than on their wavelengths [2].  The 

Si-Li detector converts X-ray photons to a charge.  Each time a pulse is produced, a number is 

generated that represents a channel, each channel representing a small range of energy. The 

data is interpreted through a multi-channel analyser and an entire energy spectrum is 

produced, consisting of a series of peaks (intensity versus energy).  Peak height is determined 
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by the number of electrons per pulse and is directly proportional to the energy of the photon 

[5].  Each analyte line has a specific energy (keV), much like the 2θ to line values used to 

identify peaks in WDXRF. 

Energy Dispersive X-ray Fluorescence methods are becoming increasingly popular and while 

instrumentation precision has improved, WDXRF is the preferred method for multi-elemental 

analysis.  Energy Dispersive X-ray Fluorescence is a cheaper and more compact system 

because of the absence of an analysing crystal.  Hence, qualitative analysis is more rapid and 

convenient than with wavelength dispersion.  In comparison, the scanning WDXRF technique 

allows only one wavelength to enter the detector at a time, but this results in better elemental 

concentration detection limits than EDXRF and is thus the preferred method for quantitative 

analysis [1]. 

 

Figure 3.3  Sections of an EDXRF instrument [6]. 

 

In this study, wavelength-dispersive X-Ray Fluorescence (WDXRF) spectrometry has been 
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cosmetic powders (described in Chapter 2).  Cosmetic foundation powders are comprised of 

various inorganic materials and XRF provides relative elemental concentrations.  Powder 

samples are easily analysed by XRF with little sample preparation, making it an ideal method 

of elemental analysis.   

3.2 Experimental  

Thirty-nine different foundation samples were purchased for analysis.  These included 23 

mineral-based samples and 16 traditional-based formulations of loose and pressed powders, 

representing varying shades of colour, from 8 commercial manufacturers and suppliers in the 

Australian market. Each sample was assigned a code comprising its type, ‘M’ or ‘T’ 

depending on whether it is marketed as a mineral or traditional face powder, a number, 1- 8, 

identifying the manufacturer, and a second number indicating the sample number in that set of 

manufacturers samples. The samples, with description and coding employed, are listed in 

Table 2.1, Chapter 2. 

3.2.1 Sample Analysis 

Samples were prepared and presented to the XRF spectrometer as pressed pellets. A 2g 

portion of each sample was mixed with 8g of boric acid in a ceramic (ZrO) ring mill (Model 

1A, Rocklabs Ltd., Auckland, N.Z.) and mixed thoroughly by grinding for 30 seconds before 

compacting at 300kPa into 40mm diameter discs. 

Standard materials were examined to determine relative concentrations of elements present in 

ingredients of the type used in the production of the 39 foundation samples.   Nine standards 

of readily available cosmetic grade raw materials were analysed, including titanium dioxide, 

zinc oxide, iron oxide and bismuth oxychloride (The Ponte Vedra Soap Shoppe Inc., Florida, 

USA).  Other standards were prepared using magnesium oxide, silicon dioxide, aluminium 

oxide, calcium carbonate and dipotassium carbonate.  In each case, standards were prepared 
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as pressed pellets using a 0.5g portion of each standard material and 9.5g of boric acid. The 

mixtures were ground in the ceramic mill for 30s to thoroughly mix prior to compacting into 

40mm discs.   

All samples and standards were examined using a wavelength dispersive XRF spectrometer 

(Model S4 Pioneer, Bruker AXS Gmbh, Karlsruhe, Germany).  To cover the range of 

elements of interest, three dispersing crystals were employed, LiF200, PET, and OVO-55.  

Nine elements (magnesium, aluminium, silica, potassium, calcium, titanium, iron, zinc, 

bismuth) were selected for sample characterization, and the instrument operating details are 

summarised in Table 3.1.  The concentration of each element was estimated by direct 

comparison of its background-corrected peak emission intensity with that from one of the 

appropriate standards, and then converted to percentage composition of the foundation 

sample. With the exception of magnesium, all elements’ emission signals were recorded using 

two dispersing crystals and comparison of results obtained with different crystals indicated no 

significant differences in calculated concentrations.  

 

Table 3.1 Instrumental conditions for WDXRF analysis of the cosmetic powders. 

Crystal 2d 
Value 

2θ 
Range 

Rh Source 
voltage (kV) 

Rh Source 
current 

(mA) 

Detector Collimator Elements Monitored 

LiF200 4.026 15-145° 50 81 Flow 
detector 

0.46 Bi(Lα1), Zn(Kα1), 
Fe(Kα1),Ti(Kα1), 
Ca(Kα1), K(Kα1) 

PET 8.7522 20-148° 27 150 Flow 
detector 

0.46 Zn(Kα1),Fe(Kα1), 
Ti(Kα1),Ca(Kα1), 
K(Kα1),Bi(Lα1), 
Si(Kα1), Al(Kα1) 

OVO-55 55.6 15-50° 27 150 Flow 
detector 

0.46 Al(Kα1),Mg(Kα1) 
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3.3 Results and discussion  

The elemental concentrations, as percentage by weight of sample, along with the mean, 

standard deviation and relative standard deviation, for the mineral and traditional foundation 

powders examined are presented in Table 3.2.  From these results, the composition of the 

samples can be seen to vary quite considerably as reflected in the relative standard deviation 

(%) values.    
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Table 3.2 Results of the selected elemental analysis of the 39 cosmetic powders, with mean, standard 

deviation (STD) and relative standard deviation (RSD%). 

Sample Bi% Zn % Fe % Ti % Ca % K % Si % Al % Mg % 
M1.1 0 1.47 3.71 1.63 1.05 1.11 21.1 4.88 15.77 
M1.2 0 1.45 4.83 1.59 1.04 1.13 17.05 3.41 15.49 
M2.1 0 0 4.1 0.41 0 5.41 20.64 29.75 1.93 
M2.2 0 0 6.48 0.41 0 5.41 20.34 29.82 1.51 
M2.3 0 0 5.74 0.42 0 5.44 20.79 30.73 1.55 
M2.4 0 0 5.01 0.42 0 5.63 21.5 31.95 1.66 
M3.1 12.41 11.89 3.75 0.46 0 2.87 12.98 20.48 0.07 
M3.2 12.86 8.32 5.88 0.42 0 2.95 12.9 20.12 0.09 
M3.3 12.25 7.41 9.7 0.46 0 2.69 11.18 17.55 0.08 
M4.1 0 15.02 6.14 0.22 0 5.75 16.62 25.24 0.28 
M4.2 0 14.99 7.16 0.23 0 5.74 17.41 26.79 0.32 
M4.3 0 14.86 8.28 0.25 0 5.8 16.87 25.23 0.34 
M4.4 0 13.9 10.78 0.24 0 5.45 16.82 24.97 0.47 
M5.1 0 1.57 3.86 1.59 1.07 1.05 21.01 5.59 15.85 
M5.2 0 1.51 6.29 1.63 1.06 1.08 20.62 5.53 15.92 
M5.3 0 1.39 6.75 1.61 1.07 1.03 19.79 5.12 14.44 
M6.1 5.57 15.86 3.62 9.04 0.03 1.93 8.11 9.54 0.76 
M6.2 5.47 15.2 8.61 6.76 0 2.01 7.44 9.56 0.42 
M6.3 5.25 14.77 8.23 7.31 0 1.93 7.66 10.13 0.4 
M6.4 5.05 14.22 19.01 2.34 0 1.94 7.49 9.7 0.42 
M7.1 0 0 8.58 0.92 0 6.76 20.47 34.3 0.25 
M7.2 0 0 9.51 0.93 0 6.73 19.31 32.2 0.26 
M7.3 0 0 14.34 0.61 0 6.43 19.61 33.57 0.3 
T6.1 0 0 2.15 0.02 0.24 0.5 22.02 3.45 18.38 
T1.1 0 2.79 2.09 0.77 0.18 0.11 20.45 2.81 18.34 
T1.2 0 2.68 3.73 0.77 0.17 0.11 19.05 2.66 15.86 
T3.1 0 0.93 2.38 1.87 0.42 0 22.95 0.62 22.39 
T8.1 0 1.07 1.93 0 0.6 0 23.5 0.32 21.77 
T8.2 0 0.76 3.32 2.84 10.99 0.03 11.62 2.75 8.9 
T2.1 0 0 3.45 0.09 0.62 0.79 20.13 3.83 23.37 
T2.2 0 0 3.49 0.07 0.71 0.81 19.6 3.75 23.17 
T4.1 0 0.79 4.02 3.43 11.03 0.04 11.12 3.36 8.95 
T4.2 0 0.82 1.8 2.48 11.07 0.02 12.63 2.83 10.76 
T1.3 0 1.54 3.4 0.05 0.99 2.22 19.61 9.81 12.02 
T6.2 0 0 3.07 0.03 0.27 0.51 24.58 3.8 22.28 
T2.3 0 1.12 3.07 0.09 7.19 1.51 15 9.46 10.13 
T3.2 0 0.85 5.41 2.06 0.29 0.06 24.14 0.91 24.31 
T3.3 0 0.95 1.35 1.87 0.73 0.02 24.55 0.43 24.15 
T4.3 0 0.83 2.16 2.14 11.67 0.04 13.71 2.95 11.14 

Mean 1.51 4.33 5.57 1.50 1.60 2.39 17.49 12.82 9.35 
STD 3.61 5.93 3.63 2.04 3.49 2.37 4.99 11.71 9.05 
%RSD 239.05 136.90 65.14 136.07 217.51 99.44 28.54 91.39 96.78 
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3.3.1 Cluster analysis 

Cluster analysis identifies groups within data by classifying objects with respect to their 

similarity.  It aims to ensure similar objects are clustered together with minimal separation 

between objects in a cluster, while maximizing separation between different clusters [7].  

However, it does not assume that an object belongs to only one group, but it may be part of 

two or even more.  Cluster analysis usually uses a distance measure to assign objects to a 

particular cluster, grouping objects closest together in the pattern space to the same cluster.  

The most commonly referred to function for distance measure is the Euclidean distance, and 

for each variable and each cluster g, a mean is calculated over all samples in the cluster to 

give a centroid xg.    The Euclidean distance is defined by, 

d2
ig = ( xi – xg ) ( xi – xg )T          (Equation 3.2) 

where d2
ig is the squared Euclidean distance between each sample i (represented by row 

vector xi) and the centroid of each cluster.  The sample is assigned to the cluster with the 

lowest distance [8].  

Hierarchial cluster analysis is a common method for partitioning object groups, graphically 

displayed in a tree-like dendrogram.  The standard hierarchial clustering algorithms produce a 

set of cluster solutions, partitioning the objects into k=1,..., n clusters [9].  There are two 

methods for ordering objects hierarchially; the agglomerative method and the divisive 

method.  The agglomerative method is more commonly used.  In the first level of hierarchy, 

all n objects form a separate cluster, resulting in n clusters.  In the next level the two closest 

clusters are merged, and so on until all objects are in one single cluster.  Essentially, 

agglomerative clustering methods use distance measures to calculate a similarity or distance 

matrix between objects, resulting in a dendrogram.  There are various agglomerative methods, 

to calculate the distance matrix of a set of objects.   
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The Ward’s method uses the incremental within-cluster sum of squares as a result of joining 

two clusters denoted by r and s to calculate the distance measure d(r,s) defined by, 

                                                    𝑑(𝑟, 𝑠) =  � 2𝑛𝑟𝑛𝑠
(𝑛𝑟+𝑛𝑠)

 . ‖𝑥𝑟��� − 𝑥𝑠� ‖2          (Equation 3.3) 

Where 𝑥̅𝑟 and 𝑥̅𝑠 are the centroids of clusters r and s, nr and ns are the number of objects 

within each cluster and II II2 is the Euclidean distance.  The within cluster sum of squares is 

defined as the sum of squares of the distances between all objects in the cluster and the 

centroid of the cluster [10]. 

Hierarchial cluster analysis of the XRF data, using Ward's method, i.e. joining clusters to 

minimize within-cluster variance, produces the dendrogram illustrated in Figure 3.4.  The 

dendrogram represents a significant reduction in dimensionality of the multi-elemental data 

describing the samples and distinct groups are evident.  At the highest separation level there is 

clear distinction between the majority of mineral-type samples and the more traditional 

cosmetics, although mineral samples from manufacturer 1, M1.x, and manufacturer 5, M5.x, 

appear in the wrong group and cluster tightly with traditional types.   At finer levels of 

separation, particularly with the mineral samples, there is good agreement between the cluster 

contents and individual manufacturers, M2.x, M3.x, M4.x, M6.x and M7.x all cluster in their 

own groups.   

Although cluster analysis provides a clear illustration of the samples grouping according to 

elemental composition, the technique provides no information as to the relative significance 

on the role of each element in defining the nature of the observed clusters.  A more 

informative picture and better interpretation can be achieved by employing principal 

components analysis, PCA [5, 9]. 
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Figure 3.4 Dendrogram produced from cluster analysis, using Ward’s method, of the elemental 

composition of the 39 foundation powders. 



Chapter 3: Elemental Analysis using X-ray Fluorescence 

46 

3.3.2 Principal Component Analysis 

Principal component analysis was undertaken on the covariance data matrix of elemental 

concentrations, and the results are summarised in Figures 3.5 and 3.6.  In Figure 3.5(a) a 

scores plot of the 39 samples projected on to PC1 and PC2 is shown. Together, these factors 

account for over 87% of the total variance contained in the analytical data.  There is clear 

distinction between the traditional type of foundation powders and the majority of the mineral 

type, although once again samples M1.x and M5.x group with the traditional style of product. 

The separation is mainly along the axis defined by PC1 and, as seen in the factor loadings plot 

of Figure 3.5(b), this is defined largely by the relative concentrations of aluminium and 

magnesium.  

Both elements are likely to be associated with clay minerals commonly used in cosmetic 

powders, including kaolin (Al2Si2O5(OH)4), used in foundation powders for its good covering 

power and adhesion as well as grease-resistance  and perspiration-absorbent properties [12], 

mica (KAl2(AlSi3O10)), added to impart shine through the product [13], and talc 

(Mg3Si4O10(OH)2) employed for its ease of spreading over the skin.  From examination of 

Figure 3.5 and Table 3.2 it is clear that the concentration of magnesium, and hence possibly 

talc, in a sample is a key factor in identifying a product as being of a mineral or traditional 

type of cosmetic.  Talc is a common additive in traditional foundation formulations, but it is a 

known skin irritant and according to most manufacturer claims for mineral cosmetics, the new 

formulations should not contain additives that may be harmful to the skin [13].   

Another easily identifiable difference between many samples is indicated by the concentration 

of calcium, with high amounts of calcium found in a number of traditional samples.  This is 

illustrated in a plot of PC1 vs PC3, Figure 3.6.  Like talc, calcium, as calcium carbonate or 

chalk, is an ingredient mainly used in traditional formulations.  It is included in cosmetic  
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Figure 3.5 The scores plot (a) and the loadings plot (b) associated with PC1 and PC2 from principal 

components analysis of the elemental composition of the 39 foundation samples. 
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grade products for its covering power, absorption of perfume and ability to reduce the shine of 

talc [14].  Hence, it is used in conjunction with talc and is seen here in group T4.x, and 

samples T8.2 and T2.3. 

Separation between manufacturers of mineral products is evident in Figure 3.5, with most 

samples falling into distinct groups according to manufacturer.  This classification occurs 

mainly along the axis defined by PC2 which is strongly influenced by the relative 

concentration of clays (i.e. aluminium, magnesium, silica) and the heavier metals, zinc, 

bismuth and titanium, Figure 3.4(b).  The clusters defined by M6.x and M3.x, both relatively 

high in zinc and bismuth, are particularly evident. Bismuth is associated with the additive 

bismuth oxychloride (BiOCl).  This is a known skin irritant and it is surprising that it is 

incorporated into so-called ‘chemical-free’, mineral-based formulations.  In Figure 3.7(a) the 

samples identified as belonging to the mineral-type, 18 in total excluding samples M1.x and 

M5.x, have been examined by PCA and the differences between manufacturers is clear, with 

the associated loadings plot of Figure 3.7(b) confirming the separation is due to relative 

concentrations of zinc, bismuth and aluminium in the samples. 

Principal component analysis was applied to 21 foundation samples classified as traditional-

based formulations.  The scores and loadings plot associated with PC1 versus PC2 is shown in 

Figure 3.8.  The main separation of samples is along the PC1 axis due to elemental 

concentrations of calcium, magnesium and silica.  Samples T4.x and T8.2 are forming a 

cluster in the negative PC1 region due to the high calcium content present in these samples.  

Not all samples are clustering according to manufacturer type.  Samples T8.x do not group 

together. Sample T8.2 contains a large amount of calcium, whereas sample T6.1 contains a 

very minimal amount.   This was also found with samples T2.x, where sample T2.3 is not 

forming a cluster with T2.1 and T2.2.  Sample T2.3 has varying amounts of calcium and 

aluminium in comparison to the other samples from the same manufacturer.  Bismuth has had  
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Figure 3.6 The scores plot (a) and the loadings plot (b) associated with PC1 and PC3 from principal 

components analysis of the elemental composition of the 39 foundation samples. 
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Figure 3.7 The scores plot (a) and the loadings plot (b) from principal component analysis of the 

elemental composition of the 18 foundation powers classified as mineral cosmetics. 
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Figure 3.8 The scores plot (a) and loadings (b) from principal component analysis of elemental 

composition of the 21 foundation powders classified as traditional cosmetics. 
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no effect on the spread of samples in PC1 and PC2, as it is not present in any of the samples 

classified as traditional.         

3.3.3 Discriminant Analysis 

Discriminant analysis, also known as classification analysis, is a supervised pattern 

recognition technique in which samples are assigned to pre-determined groups according to 

multivariate data [7,9&15].  

Discriminant analysis of cosmetic foundations was employed to classify formally samples 

into two groups; traditional or mineral formulations.  Linear discriminant analysis was applied 

to the PC1 and PC2 scores of the relative elemental concentrations using XRF analysis.  The 

results are plotted in Figure 3.9, in which there is a clear distinction and separation between 

the mineral-based and traditional formulations.   

 

Figure 3.9 Linear Discriminant analysis using PC's scores obtained from XRF elemental 

concentrations of foundation samples. 
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However, 5 mineral-based formulations have been misclassified as traditional formulations 

with samples M1.x and M5.x grouped with traditional samples.   

The results are best described in a confusion matrix, displayed in Table 3.3.  The confusion 

matrix displays the errors made in the discriminant process, in which the known variables are 

placed into predicted groups.  Of the 16 traditional-based formulations, all have been 

classified as traditional.  However, of the 23 mineral-based formulations, 5 have been 

classified as traditional and 18 as mineral.   

 

Table 3.3 Confusion Matrix of actual and predicted classification of Linear Discriminant analysis 

data using PC’s scores obtained from XRF elemental concentrations of 39 foundation samples. 

    Predicted 

    Traditional Mineral 

Actual 

Traditional 16 0 

Mineral 5 18 
 

3.3.4 Covariance and 2D Correlation 

Cluster analysis, PCA and discriminant analysis were introduced in this chapter using discrete 

element, target, concentrations as variables.  Whilst providing for efficient data analysis, 

much can be learned or confirmed by analysing the complete spectral profiles.  The remainder 

of this chapter examines some techniques appropriate to full spectral analysis.  These 

techniques are further developed in subsequent chapters.   

Boxcar averaging using 3-point binning was employed to reduce and smooth data before 

spectral multivariate analysis.  Covariance and correlation analysis was undertaken on XRF 

spectral data across all dispersing crystals.  It is introduced in this chapter to highlight the 
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advantages of covariance and correlation techniques in identifying chemical information of 

samples in analytical methods.  It was applied to XRF data, to aid in elemental analysis of 

cosmetic foundation samples as an alternative quantitative method to the use of internal 

standards.  It is also valuable as an aid in identification of raw material components of 

cosmetic foundations using more than one spectral technique, for example XRF and XRD, 

which will be demonstrated in the next chapter.   

Two-dimensional (2D) correlation spectroscopy seeks to highlight the similarity between 

variables, in this case, each elemental peak emission line.  Spectral features with high 

correlation may arise from the same source, and hence a study of correlation can aid in 

interpreting data and provide insight into patterns within data.   

Correlation, or interaction, between variables, x1 and x2, is given by their covariance, Cov. 

𝐶𝑜𝑣 =  ∑(𝑥1𝑖−𝑥̅1)(𝑥2𝑖−𝑥̅2)
𝑛−1

          (Equation 3.4) 

It can be represented as a simple rows cross-product of the, usually, mean-centered 

experimental matrix, X. 

Ф = XT .X          (Equation 3.5) 

Ф is the resulting matrix of J x J (J is the number of data points, spectral variables), X is the 

variable mean-centred experimental matrix of i x j (i=1..I is the number of samples) and T 

refers to the matrix transpose.  In this study, each column of XT corresponds to a mean-

centred spectrum.  Thus, Ф shows the correlation between the spectra according to the 

emission intensity changes. 

The linear correlation coefficient, rjk, between two variables j and k is defined by [7]: 

rjk = Cov / σj.σk  , -1 ˂ 0 ˂ + 1          (Equation 3.6) 
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where σj and σk are the standard deviations associated with variables j and k respectively. 

Generalized 2D correlation analysis gives a visual representation of the elemental 

compositional similarities and difference in the samples examined by XRF analysis.  Two-

dimensional correlation has proved useful for various kinds of spectroscopies such as NMR, 

IR, Raman, near-infrared and fluorescence spectroscopies [16].  The technique displays 

spectral data over two-dimensions, not only considering the specific individual spectra 

themselves but also the dynamics and changes associated with the spectral features across a 

set of samples [17].  The covariance matrix is sometimes referred to as a synchronous matrix 

that shows simultaneous spectral changes at any pair of spectral coordinates, eg. 2θ values or 

wavelength [18].  The 2D correlation maps will visually indicate correlated, positive and 

negative, and uncorrelated data features [17]. 

To examine all variable interactions, the XRF spectral data recorded using all dispersing 

crystals was combined to give an overall ‘complete’ spectrum of the elemental content present 

in foundation powders.  The 2θ values of the LiF200, PET and OVO-55 crystal data were 

converted to wavelength using Braggs equation, λ = 2d sinθ, and 2d values from Table 3.1.  

The result was a single spectral matrix of 4398 wavelength values in the range 0.05 to 1.07nm 

for the 39 samples.  Figure 3.10 shows the crystal overlay of the average of XRF spectra of 

the foundation samples analysed using the three diffracting crystals.  Note that Rhodium is 

indicated as being present due to the Rhodium primary lamp source.  Figure 3.11 shows the 

average of XRF data when the 3 dispersing crystals have been combined to create a 

completed spectra, displayed as a function of recorded data points, that are not related to 2θ.  

The spectral width of the emission peaks are more similar in the latter format, and this is used 

in subsequent data analysis. 
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Figure 3.10 Plot of the average of the XRF spectra crystal overlay of LiF200, PET and OVO-55 dispersing crystal data, with α and β peak assignments. 
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Figure 3.11 Plot of the average of XRF spectra of combined dispersing crystal data, displayed as data points (not related to 2θ), with α and β peak 

assignments. 
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Figure 3.12 shows the synchronous matrix, Ф, constructed from XRF data.  The covariance 

plot gives a visual display of the positive (denoted by red) and negative (denoted by blue) 

correlations between elemental emission lines.  A positive correlation indicates that elemental 

emission peak intensities are changing simultaneously.  To aid with interpretation, correlation 

slices were produced for each element used in XRF analysis.  Correlation slices of each 

element can be taken from the data at its particular Kα emission line across all samples.  This 

is then cross-correlated with the entire XRF spectral data.  As expected, each such slice has a 

high correlation between its α and β emission lines.  In addition there is a strong positive 

correlation (0.99) between the Bi Lα and Cl Kα emission lines.  This is probably due to the 

presence of bismuth oxychloride (BiOCl).  There is also a significant positive correlation 

coefficient (0.98) between the Al Kα and K Kα emission lines, possibly due to the presence of 

mica, KAl2(AlSi3O10).  For each element analysed in this study, a vertical slice was taken 

from the correlation matrix (Ф) to help interpret the relevant information that may be difficult 

to see within the 2D synchronous plot.  The ‘slices’ through Φ corresponding to bismuth and 

to aluminium are illustrated in Figure 3.13.  The correlation coefficients between these 

elements and other peaks of significant covariance are labelled.  For example, in Figure 

3.13(b), the covariance slice for bismuth displays a large covariance value for the Zn Kα 

emission line, however, the correlation coefficient is 0.5, indicating poor correlation between 

bismuth and zinc.  It should be noted that large covariance values do not imply a high 

correlation coefficient.  Two-dimensional correlation maps source to highlight correlations 

between variables and can indicate potential relationships between variables.  Its application 

in XRF elemental analysis is trivial, but is more useful when two sources of data are 

compared, and this is discussed in Chapter 4 when XRF data is shown to be useful in 

interpreting XRD patterns. 
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Figure 3.12 The synchronous matrix plot of XRF spectra.  An average spectrum is presented along 

each axis to aid in identification correlating XRF elemental peaks.  A positive correlation is 

represented in red and a negative correlation is represented by blue. 
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Figure 3.13 Elemental covariance slices of XRF spectral data for Al (a) and Bi (b) with correlation 

coefficients for corresponding β and α emission lines and correlation coefficients to other emission 

lines present. 
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3.3.5 Principal Component Analysis of Whole XRF Spectra 

As well as performing PCA on the discrete elemental concentration data (sec.3.3.2), factor 

analysis was also applied to the matrix of full spectra, obtained as described in section 3.3.4.  

To ensure that scaling differences did not influence the PCA results, the XRF data were first 

standardized.  For each variable (wavelength) the mean was subtracted and divided by its 

standard deviation, resulting in variables all having a standard deviation equal to one and a 

mean of zero [19]. 

Principal component analysis was undertaken on the standardized XRF spectral data for all 

foundation powder samples and the results are summarized in Figure 3.14.  Principal 

component 1 and principal component 2 account for 53% of the total variance contained in 

the XRF data and, as before, there is a separation between the mineral-based and traditional-

based foundation formulations.  However, it is not as easily identified in comparison to the 

PCA results shown in Figure 3.5 using the relative target element concentrations.  Once again 

samples M1.x and M5.x group with the traditional-based samples but unlike, results in Figure 

3.5, samples M2.x are grouping more closely with the traditional samples.  The main 

separation is along the PC1 axis, with mineral samples M2.x grouping to the left of the PC1 

axis with the traditional samples.  This is displayed in loadings plot of Figure 3.14(b) and 

shows that the separation is mainly due to magnesium and silica.  A majority of the traditional 

samples group very closely in the positive PC1 region and it is difficult to see any clear 

separation between them.  In the positive PC2 region, another group of traditional samples is 

clustered based on their high calcium content, samples T4.x, T2.3 and T8.2.  These results 

were shown in the PCA of relative elemental concentrations.   
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Figure 3.14 PCA of standardized XRF spectra, scores plot (a) and loadings plot associated with PC1 

and PC2 of 39 foundation samples. 
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3.3.6 Simplisma 

Simplisma (simple-to-use interactive self-modelling analysis) was applied to the XRF spectral 

data to seek to establish quantitative relationships between the XRF spectral data and the 

elemental concentrations, without the use of internal standards.  Simplisma is introduced here, 

to demonstrate its use in resolving spectral mixture data, and is employed in later chapters 

using other characterization techniques.  The simplisma method uses a so-called pure variable 

approach to resolve spectral mixtures into pure components.  A pure variable is defined as a 

variable (e.g. an emission wavelength) that has contributions from only one of the 

components within the mixtures, i.e. a single element’s emission with no overlap or 

interference from other species present in the sample [20].  The technique aims to estimate the 

pure component spectra and calculate the relative contribution of the pure components in the 

mixture spectra.  As the pure variable intensities are directly proportional to the 

concentrations, they can be used to resolve spectra from the original data set [21].  However, 

for the pure variable approach to be successful in resolving a mixture data set, pure variables 

must be present.  This is of the utmost importance, as if variables are not pure, results will not 

represent pure components but rather linear combinations of them [20].  In such cases, second 

derivative spectra can be used and have been proposed and are recommended for spectral data 

with highly overlapping components or baseline interferences [22]. 

The basis of the pure variable approach described by Windig et al., is graphically displayed in 

Figure 3.15 [21].  In Figure 3.15, vector A represents the pure variable for component A and 

vector B represents the pure variable for component B.  Variables that are not pure will have 

contributions from component A and component B, and vectors that represent these non-pure 

variables will lie in between vectors A and B.  The mean of all variables within data is used as 

a reference lying in the middle of all variables.  The mean vector is represented by 𝜇̅ in Figure 

3.15.  The first pure variable is defined as the variable vector that is furthest from the mean 



Chapter 3: Elemental Analysis using X-ray Fluorescence 

64 

vector and can be measured by the angle between the mean vector and the vector under 

consideration, denoted by γ [21].   

 

Figure 3.15 Graphical interpretation of the pure variable approach according to Windig et al. [21]. 

 

The angle, γ, is derived from the relation of the mean, 𝝁�, standard deviation (deviation of a 

variable from the mean), σ, and the length, l, of the vector of which the purity needs to be 

determined, from the following equation 

𝑙2 =  𝜇̅2 +  𝜎2          (Equation 3.7) 

This relation is visually interpreted in Figure 3.16, as a right angle triangle with sides σ, 𝝁� and 

l.  The angle γ represents the purity, by which the larger the angle, the higher the purity.  

Hence, purity is defined as the standard deviation divided by the mean, which is the tangent of 

angle γ. 
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Figure 3.16 Vector representation by which the angle of purity, γ, is derived from the relation between 

the standard deviation, the length and the mean of the variable in which purity needs to be determined 

[21]. 

 

The pure variable approach seeks to identify pure variables as those exhibiting the maximum 

ratio of standard deviation to the mean of the data set [23].  The first pure variable identified 

will have the maximum ratio and once this is determined, the component with which it is 

associated is eliminated from the mixture.  The second pure variable is the variable with the 

maximum ratio after elimination of the first pure variable.   

The maximum ratio of standard deviation to the mean is referred to as the purity, and is given 

by 

𝑝𝑖𝑗= 
𝜎𝑗

𝜇𝑗+ 𝛼
           (Equation 3.8) 

where pij is the purity of the variable j for the ith pure variable.  μj and σj represent the mean 

and standard deviation of variable j and α is an offset for noise correction factor so that 

division by zero, or near zero, is not encountered.  Typically, α is set to 1-3% of the largest 

variable value [24].  Once the first pure variable is determined the second is the one which is 
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the most independent of the first pure variable [25].  The offset is a constant value that 

reduces the effects of noise in the baseline [26].   

Identification of the pure variables, from Eq. 3.8, provides the relative concentrations of each 

component in each sample mixture, and leads to resolution of the component spectra.  This is 

undertaken as follows,  

X = C.S          (Equation 3.9) 

 X is the original data row matrix (I x J), with C (I x K) matrix of contributions or 

‘concentrations’ with k= 1...K representing the number of components present in the mixture.  

S is the (K x J) matrix with rows corresponding to the, K, pure component spectra.  At this 

stage, X is recorded and known; however, C and S are not.  An initial estimate of C is 

provided by the relative intensities of the sample at the pure variables determined in Eq. 3.8, 

and these are denoted by Ĉ. 

The pure component spectra, Ŝ, can be estimated from Eq. 3.9 by least squares method using 

Ĉ according to, 

Ŝ = (ĈT.Ĉ) -1 ĈTX          (Equation 3.10) 

Spectra in Ŝ are normalized to ensure that similar amounts of a component give spectra with 

similar total intensities, as given by Eq. 3.11 below:   

𝑤𝑖 =  ∑ �𝑠̂𝑖,𝑗�
𝐽
𝑗=1           (Equation 3.11) 

and Ŝ is normalized to S, 

S = w-1 Ŝ          (Equation 3.12) 
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 The final step is to re-calculate the contributions to S from the components according to the 

following least squares estimate: 

CT = (S.ST) -1 SXT          (Equation 3.13) 

Simplisma was applied to 18 XRF spectra obtained with a LiF200 dispersing crystal.  The 18 

true mineral foundations were chosen, which excluded samples M1.x and M5.x.  The spectral 

data were arranged in the matrix X, (18 x 1586), (I x J) where I is the number of spectra and J 

is the number of variables (2 theta angles).  Calculations were carried out in MATLAB using a 

program developed in-house, based on the algorithm described by Windig [27].  From 

previous XRF quantitative analysis, 5 major elemental components should be resolved from 

the LiF200 data.  Figure 3.17 shows the successive purity spectra for each of the pure 

variables identified using the simplisma approach.  The plot of the purity spectrum is the 

purity value, Pij, at each variable (j=1..J) from equation 3.7 [28].  Each plot, (a) to (e) 

represents the individual pure variables ranked from 1(a) to 5 (e) based on standard deviation.  

The variable with the largest standard deviation is the first pure variable and so forth.  The 

simplisma function, using an offset (α) value of 3%, determined (a) as the first pure 

component.  The green markers on each plot indicate the maximum ratio peak corresponding 

to the pure variable.  As each pure variable is identified, it is eliminated from the purity 

spectrum [24].  In plot (b) the peak identified as the first pure variable is no longer present in 

the second pure variable purity spectrum.  To identify the components present in the XRF 

spectra, simplisma calculates the resolved spectrum of each pure variable identified.   

 

Figure 3.18 displays the resulting resolved spectra from the 18 mineral sample data matrix 

obtained using the LiF200 crystal data.  The 5 resolved spectra, correspond to pure variables 

identified at 86.3°, 33.17°, 41.81°, 57.53° and 136.67° 2θ angles.  From prior knowledge, 

these pure variables can be equated with Ti, Bi, Zn, Fe and K respectively.  All variables are 
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true pure variables as each resolved spectrum is representative of an elemental component that 

has no contributions from any of the other pure components.  Each resolved spectrum 

represents a Kα elemental line and its corresponding Kβ elemental peak.   

 

 

Figure 3.17 The successive series of purity spectra (a)-(e) resulting from simplisma function with the 

LiF200 crystal XRF spectra of true mineral foundation samples. 
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Figure 3.19 corresponds to the contribution or 'concentration' profiles of the pure variables 

calculated using simplisma.  In comparison, Figure 3.19 also shows the relative 

concentrations of the major components as determined from quantitative analysis (Table 3.2).  

It is clear that the relative elemental concentrations of each sample, match the contribution 

profiles of the pure variables.  This serves to validate the simplisma approach as an 

appropriate technique for curve resolution of XRF data sets. 

 

 

Figure 3.18 Resolved spectra of the LiF200 XRF data set, components (a)-(e), corresponding to the 

purity spectra shown in Figure 3.17. 

 

 

 



Chapter 3: Elemental Analysis using X-ray Fluorescence 

70 

 

 

Figure 3.19 shows the ‘concentration’ or contribution profiles of the resolved Simplisma spectra from 

Figure 3.16 components (a) Ti (b) Bi (c) Zn (d) Fe and (e) K with the concentration profiles from 

quantitative analysis (Table 3.2) shown for comparison. 
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3.4 Conclusion 

X-ray Fluorescence is an effective, efficient and rapid method of elemental analysis of 

cosmetic powder formulations.  Quantitative measurements were obtained for aluminium, 

bismuth, calcium, iron, potassium, magnesium, silica, titanium and zinc. Using cluster 

analysis, discriminant analysis and principal components analysis the samples could be 

clearly identified as being of traditional or mineral formulation, and in the case of the mineral 

samples specific manufacturers could be distinguished. Of the samples examined, samples 

from two suppliers marketed as mineral-based were determined as being more appropriately 

described as traditional formulations.  

Principal component analysis of the elemental concentration data could distinguish and 

discriminate between modern mineral foundation powders and the more traditional 

formulations, according to the magnesium and calcium concentrations in the samples 

(probably representative of talc and chalk respectively).   In addition we could also distinguish 

between manufacturers of mineral samples according to levels of pigmentation, bismuth, and 

clays as indicated by aluminium content.  This affords the opportunity to employ the 

methodology in forensic science for the identification of cosmetic powder that could be easily 

transferred to, and between, fabrics in a potential crime scene. 

The major difference between the mineral and traditional foundation powders examined was 

that all traditional based samples contained varying amounts of talc and calcium carbonate.  

However, a small number of mineral-based samples (from two manufacturers) also appeared 

to contain these ingredients.    This is of concern as these products should not contain any 

potential skin irritants and talc should not be used in their production. The presence of 

bismuth oxychloride in a significant number of the mineral samples from two suppliers could 

also be of concern.  
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Since mineral cosmetics command a premium price, due to them being marketed as ‘chemical 

free’ and not containing irritants, it is important that consumers have recourse to independent 

analytical data. 

Principal component analysis and linear discriminant analysis, proved effective in 

highlighting and separating foundation samples according to type and the elemental content 

within each sample. 

Generalized 2D correlation was effective in highlighting the positively and negatively 

correlated elemental emission lines within XRF data. It gave an insight into the relationship 

between the elemental content of the raw materials within foundation powders.  

Simplisma can be utilized to decompose XRF mixture spectra for variable selection.  It is 

ideal for XRF spectra as peak intensities are clean, with no overlap of peaks and with little 

background noise. 

Elemental analysis of cosmetic foundation powders provided significant information into the 

ingredients used in their production.  However, for full identification and characterization of 

these samples, further analysis is required.  The next chapter will look at the mineral phases 

present using X-ray Diffraction analysis.  This will give a better understanding of the raw 

materials used.  The knowledge determined through XRF analysis will aid in the XRD 

interpretation of results and chemometric data analysis techniques will be applied to XRD 

data in conjunction with XRF data to further characterize foundation powder samples. 
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Chapter 4:  X-ray Diffraction 
 

4.1 Introduction 

The main application of X-ray Diffraction (XRD) is the elucidation and identification of the 

crystal structure of materials [1].  XRD measures the position (in terms of diffraction angle) 

and intensity of a monochromatic X-ray beam diffracted by a crystalline solid.   

Crystals consist of regular three dimensional array of atoms, ions and molecules.  The 

smallest repeating unit is referred to as the unit cell, each with 3 sides (a, b & c) and 3 angles 

(α, β & γ).  Planes are the repeating array of atoms within the crystal, each plane is identical to 

the next.  The repeat distance (d) between each plane is called the interplanar spacing which 

contains all atoms in the structure [2]. Crystals have the ability to reflect an X-ray beam when  

the Bragg equation is satisfied [2] 

 

2d sinθ = nλ        (Equation 4.1) 

The Bragg equation was developed by W.L Bragg in 1912 and gives the relationship between 

the diffraction angle θ, crystal plane dimensions, d, the wavelength of incident radiation, λ, 

and n is an integer specifying the order of reflection [2].  The Bragg equation can only be 

obeyed for a particular family of planes and it is unlikely that a particular plane will be at the 

correct angle to satisfy the Bragg equation.  The crystals must be rotated until they are 

positioned at the right angle or powdered to produce millions of small crystals with planes in 

all possible directions, making it easier to satisfy the Bragg law.  Figure 4.1 shows a beam of 

X-rays incident on the surface of a crystal sample at an angle θ.   A, B and C represent the 

family of planes of regular arrays of atoms within a crystal with d spacings between them.   1, 



Chapter 4: X-ray Diffraction 

 
77 

 

1a, 2, 2a and 3 represent the incident rays and 1', 1a', 2', 2a' and 3' the corresponding scattered 

rays from striking a crystal.  The diffraction angle is always represented as 2θ, which is the 

angle between the diffracted and transmitted X-ray beam [3]. 

 

 

Figure 4.1 Diffraction of X-rays by a crystalline substance according to the Bragg equation [3]. 

 

4.1.2 Powder X-ray Diffraction 

The ideal powder sample consists of a large number of small crystals with random orientation 

[4].  Powder diffraction uses a monochromatic beam of X-rays directed at the powdered 

sample and a diffracted ray is observed when the Bragg law is satisfied.  The diffracted rays 

are reflected to the detector, situated on a table that rotates through 2θ degrees, to ensure that 

the detector is always in the correct position to attain all possible diffraction directions of the 

lattice [2].    

Every crystalline substance has a unique X-ray powder pattern with diffraction line position 

dependent upon the unit cell size, and line intensity dependent on the type of atoms present 

and their arrangement within the crystal.  In 1936, Hanawalt devised a system of classifying 
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powder patterns so that unknown patterns could be identified [2].  This method used the d 

values (interplanar spacings) and relative intensities to identify unknowns [2].  Today, 

component identification is still undertaken using Hanawalt's method, based on a 

search/matching technique using Powder Diffraction Files (PDF) produced by the Joint 

committee on Powder Diffraction Standards (JCPDS) [5].  PDF's consist of a collection of 

single phase reference patterns that are compared against the unknown diffraction pattern to 

find potential matches [6].  If the unknown powder diffraction is of a single phase, 

identification can be simple, however, when the diffraction pattern is a mixture of two or more 

phases, identification becomes more difficult.  Hanawalt developed the method of utilizing 

the three strongest lines in the diffraction pattern (d1, d2, d3) to search the PDF database, in 

order of their decreasing peak intensities.  When an appropriate match of d-spacings and 

relative intensities of a standard PDF is found, identification is considered complete [7].  

Quantitative XRD analysis utilizes this approach measuring the phase or phases of an 

unknown sample and estimating relative proportions of different phases in multiphase 

samples by comparing peak positions and intensities to JCPDS standards [2].   

There are various methods currently used for quantitative analysis of diffraction patterns 

based on peak intensities, such as the reference intensity ratio (RIR) method.  The RIR 

method scales all diffraction data to the diffraction pattern of standard reference materials [8].  

The unknown sample diffraction pattern is ratioed to the standard reference and set to a 

constant.  Ratios to the standard reference and measure of peak areas are used to determine 

the concentration of phases in the unknown sample.  The RIR method has previously been 

exploited for quantitative analysis of unknown geological samples with the use of XRF and 

XRD [9].   The Bruker corporation, have developed a method of combining XRF and XRD 

for quantitative analysis of unknown geological samples.  Using the DIFFRAC plus EVA 

software, a search-match algorithm is applied to XRD data, and semi-quantitative analysis 
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determined by the reference-intensity-ratio (RIR) for the XRD and XRF data simultaneously.  

Crude elemental concentrations (present or absent) obtained through XRF are used to confirm 

the presence or absence of minerals in geological samples and highlight the correctness of the 

XRD phase identification results [9].       

      

Powder XRD is employed in this chapter to investigate structural information relating to the 

crystalline content (mineral and inorganic components) of the foundation cosmetic samples.  

Analysis of cosmetics using XRD has received little attention in the scientific press but 

because the ingredients used in foundations are highly crystalline, it is an ideal method for 

identification.  Here, the technique is employed with multivariate data analysis, including 

generalized 2D correlation, Principal Component Analysis (PCA) and Simplisma to aid in 

diffraction pattern interpretation.   

XRD is considered an accurate analytical method for determining the presence of mineral and 

clay phases in samples.  When the sample chemistry and/or origin are unknown, ambiguous 

results can be obtained and phase identification can be difficult [9].  Elemental concentrations 

obtained by XRF analysis (from Chapter 3: X-Ray Fluorescence) can be correlated with XRD 

data to further aid in peak identification.  Generalized 2D correlation analysis was used to 

represent the magnitude of correlation between the two analysis techniques based on changes 

in component intensities.  In this study, XRF and XRD were used as complementary methods 

in investigating the raw material composition and quantitative analysis of cosmetic foundation 

powders. 

Generalized 2D correlation has been widely used across various techniques, such as NMR, 

IR, Raman, near-infrared and fluorescence spectroscopies [10].  In this study, the use of 

generalized 2D correlation aims to establish a relationship between different spectroscopic 

techniques, in this case, XRF and XRD.  However, in the case of comparing two different 
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spectroscopies, 2D correlation has been studied to establish relations between near-IR and 

near-IR-FT (Fourier transform) Raman spectroscopy.  According to Windig et al., the so-

called correlation maps can be quite complex and he proposed to resolve original 2D maps 

into sub-2D maps for a simper interpretation [11].   

 Difficulties can occur with XRD.  The major problems encountered during the experiments, 

described here are due to the multiplicity of lines in diffraction patterns arising from the 

numerous components present in samples.  In addition, poorly defined diffraction patterns, 

where components cannot be easily identified are problematic [12]. 

 

4.2 Experimental 

As with the XRF studies (Chapter 3), thirty-nine different foundation samples were analysed.  

These included 23 labelled as being mineral-based samples and 16 traditional-based 

formulations of loose and pressed powders, representing varying shades of colour, from 8 

commercial manufacturers and suppliers in the Australian market.  As before, each sample 

was assigned a code comprising its type, ‘M’ or ‘T’ depending on whether it is marketed as a 

mineral or traditional face powder, a number, 1- 8, identifying the manufacturer, and a second 

number indicating the sample number in that set of manufacturers samples. The samples, with 

description and coding employed, are listed in Table 1 (Chapter 2: The Cosmetic Foundation 

Samples: Their appearance and Visible Spectra). 

 

 

4.2.1 Raw Component Analysis 

Cosmetic foundations contain a variety of raw materials, each possessing their own properties 

and desired characteristics that contribute to the final formulation product.  As the mixture of 



Chapter 4: X-ray Diffraction 

 
81 

 

materials is complex, cosmetic grade raw materials were examined independently to aid in the 

characterization of cosmetic foundation samples by XRD.   

Raw materials were purchased from various cosmetic suppliers to ensure they were of 

cosmetic grade.  Of these cosmetic suppliers, two were Australian-owned, All Colour Supplies 

Pty. Ltd. and Big Tree Supplies, Brisbane Queensland and the remaining materials were 

obtained from The Ponte Vedra Soap Shoppe Inc, Florida USA.  Talc and kaolin certified 

standards were purchased from Graham B. Jackson Pty. Ltd., Dandenong Victoria.  There was 

a wide variety of cosmetic grade ingredients, differing in particle size, colour and chemical 

properties to produce specific functions of cosmetic products.  Other materials (all A.R Grade) 

were readily avaliable from a range of manufacturers.  Various forms of each material were 

obtained and are described in Table 4.1 and 4.2.  

 

Table 4.1 Cosmetic grade iron oxides purchased for analysis of foundation powder samples. (PVSS)- 

Ponte Vedra Soap Shoppe, (ACS)- All Colour Supplies. 

Iron Oxide/ Description Supplier CAS number(s) 

Sienna Brown Iron Oxide PVSS 1309-37-1, 1317-61-9, 51274-00-1 

Medium Brown Iron Oxide PVSS 1309-37-1, 1317-61-9, 51274-00-1 

Deep Red Iron Oxide PVSS 1309-37-1 

Ochre Brown Iron Oxide PVSS 1332-37-2 

Orange Iron Oxide PVSS 51274-001, 1332-37-1 

Brown Iron Oxide PVSS 12227-89-3, 1332-37-2, 51274-00-1 

Oxide- Brown ACS 12227-98-3 

Oxide- Red ACS 1332-37-2 

Oxide- Yellow ACS 51274-00-1 
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Table 4.2 Cosmetic grade raw materials purchased for analysis of cosmetic foundation powders.  

(PVSS)- Ponte Vedra Soap Shoppe, (GBJ) Graham B. Jackson. 

Raw Material/ Description Supplier CAS number(s) 

Titanium Dioxide (Rutile) PVSS 13463-67-7 

Titanium Dioxide (Micronized- 

15nm particle size) 

PVSS 13463-67-7 

Zinc Oxide (Low-Micron- 0.12 

microns particle size) 

PVSS 1314-13-2 

Mica (Pearl Flake)- blended with 

titanium dioxide 

PVSS 1200-26-2 

13463-67-7 

Sericite Mica PVSS 1200-1-26-1 

Magnesium Stearate PVSS 557-04-0 

Bismuth Oxychloride PVSS 7787-59-9 

Talc- DC60131 GBJ 14807-96-6 

Talc- DC60132 GBJ 14807-96-6 

Kaolin- DC60122 GBJ 1332-58-7 

Kaolin- DC60123 GBJ 332-58-7 

Zinc Oxide Ajax 1314-13-2 

Kaolin CNAC 1332-58-7 

Titanium Dioxide Austiox 13463-67-7 

 

Each cosmetic material has specifications on the grade and quality required to be incorporated 

into cosmetic products. 
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4.2.2 Sample Analysis 

All cosmetic foundation samples and raw materials were analysed using a powder XRD 

diffractometer (Model Bruker D8 Advance, Bruker AXS Gmbh, Karlsruhe, Germany) with 

Cu Kα (λ= 1.5406 Å) radiation at 40kV and 35mA.  Minimal sample preparation was required 

for analysis.  Samples were packed into sample holders and placed into the instrument.  

Foundation powders were scanned over a 2θ range from 3-50°.  Data was collected in raw file 

form (.raw) and converted to UXD file format using the File Exchange Program XCH (Ver. 

5.0.10, 2004, Bruker AXS, Socabim, Karlsruhe, Germany) before data analysis.  Each 

diffraction pattern consisted of 2351 data points in which intensity was recorded every 0.02°.   

 

4.2.3 Data Processing 

To identify the components present in cosmetic foundation samples, Bruker Diffrac plus 2005 

Evaluation (EVA) software (Ver. 11.0, Bruker AXS Gmbh, Karlsruhe, Germany) was 

employed to perform a search/match analysis by comparing sample patterns to reference 

patterns from a ICDD Powder Diffraction Files (PDF) database.  For the search/match method 

to obtain greater accuracy, pre-treatment of foundation sample scans was required.  

Background subtraction was undertaken to “flatten” diffraction patterns and to define the 

level of noise, allowing the search algorithm to identify which part of the diffraction pattern is 

significant signal, and which part is noise [13].  The algorithm uses Euclidean distances to 

match reference diffraction patterns to unknowns, based on diffraction angles and peak 

intensities.  Background subtraction is vital for the search algorithm to successfully match 

patterns as it eliminates the background noise under the diffraction pattern that the algorithm 

would otherwise consider as diffraction peaks. 

The search is conducted based on user-selected criteria.  As the foundation samples are multi-
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phases mixtures, the components present may have only a few or many diffraction lines in the 

same 2θ range.  The search criteria aim to give the user a greater chance of identification by 

searching based on the complexity or the simplicity of their sample patterns.  Typical criteria 

are:  (a) favour simple patterns (patterns sharing few lines), (b) favour complex patterns 

(patterns sharing many lines) and (c) neutral (giving equal chances to all patterns that may be 

present) [13].  For the analysis of cosmetic foundation samples, the “favour simple patterns” 

was found to give the best matches to known cosmetic grade ingredients.     

  

4.3 Results and Discussion 

Alignment of XRD data was required before data analysis.  A shift array function using 

MATLAB was used to correct alignment for samples that exhibited visible peak shifts and the 

data were circularly shifted, left or right, by <+10 readings.  A negative shift size value 

indicates the sample data arrays were shifted to the left [14].  Once aligned visually, 5-point 

binning was employed to smooth data and reduce the number of variables considered.  

   

4.3.1 Comparison of Diffraction patterns using EVA 

The DIFFRAC search and match method was carried out for all foundation powder samples.  

The resulting PDF’s matched for each sample are presented in Tables 4.3 and 4.4 for mineral 

foundations and traditional samples, respectively.  In general, the search and match procedure 

returned results that were expected, however many results did not comply with known 

compounds found in foundation formulas and many ‘hits’ could be disregarded.  Talc was 

matched with all traditional-based samples, and as expected matched with samples M1.x and 

M5.x which have been classified with traditional samples.  The search produced duplicate 

patterns of Talc-2M, different diffraction patterns corresponding to the same chemical phase 
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for matches to diffraction patterns of samples.  The EVA search matched potassium 

magnesium aluminium silicate hydroxide to the diffraction pattern of sample M1.1.  This is an 

unlikely component, as the other samples from the same manufacturer, matched results of 

Talc-2M and it could be assumed that the manufacturer would use similar raw materials 

across all their products.  This indicates that component phase matches were not always of 

cosmetic grade.   

The diffraction patterns of the mineral-based samples matched well with differing diffraction 

patterns and forms of muscovite.  Muscovite is a common form of mica and is similar to 

sericite mica, the form often used in cosmetic production.  Sericite mica was not found in the 

EVA PDF database and the closest match was found to be muscovite.  As expected, bismuth 

oxychloride was easily identified in samples M3.x and M6.x in the form of synthetic 

bismoclite.  The search matched diffraction patterns of zinc oxide, titanium dioxide and 

calcium carbonate to sample diffraction pattern in the forms of, zincite, anatase/rutile and 

calcite, respectively.  These results were compared to the relative elemental concentrations of 

zinc, titanium and calcium obtained by XRF analysis.  For zinc oxide, EVA matched zincite to 

samples M3.x, M4.x and M6.x.  This agreed with elemental concentration profiles produced 

from XRF.  However, XRF found zinc to be in samples M1.x and T1.x, although in smaller 

concentrations, and the EVA search was unable to match zinc oxide to their diffraction 

patterns.  This was also the case with titanium dioxide.  Samples M3.x, M4.x and M6.x were 

matched with either anatase or rutile, but EVA failed to match sample T8.2 which also 

contained titanium according to XRF results.  Calcite (CaCO3) was found to be present in 

samples T4.x but according to XRF results, samples T8.2 is high in calcium and T2.3 

contained smaller amounts of calcium.  Individual, expected, components, such as kaolin and 

iron oxides, were then searched, to find the best fit.  Kaolin was matched to various traditional 
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Table 4.3 EVA search matches for foundation samples classified as mineral-based formulation

Component Name/ 

Sample 

M
2.

1 

M
2.

2 

M
2.

3 

M
2.

4 

M
3.

1 

M
3.

2 

M
3.

3 

M
4.

1 

M
4.

2 

M
4.

3 

M
4.

4 

M
6.

1 

M
6.

2 

M
6.

3 

M
6.

4 

M
7.

1 

M
7.

2 

M
7.

3 

Muscovite-2M1 

(K2(SiAl)O10(OH,F)2 

 × × × × × × × × × × × × × × × × × 

Muscovite H2KAl3(SiO4)3 ×                  

Kaolinite (Al2(Si2O5)(OH)4) ×  × ×               

Kaolinite 1A 

(Al2(Si2O5)(OH)4) 

 ×      ×  × ×        

Bismoclite  

(BiOCl) 

    × × ×     × × × ×    

Zincite  

(ZnO) 

    × × × × × × × × × × ×    

Zinc Hydroxide (Zn(OH)2)       ×            

Anatase  

(TiO2) 

           × × × ×    
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Table 4.4 EVA search matches for foundations classified as traditional-based formulas. 

Component Name/ 

Sample M
1.

1 

M
1.

2 

M
5.

1 

M
5.

2 

M
5.

3 

T
6.

1 

T
1.

1 

T
1.

2 

T
3.

1 

T
8.

1 

T
8.

2 

T
2.

1 

T
2.

2 

T
4.

1 

T
4.

2 

T
1.

3 

T
6.

2 

T
2.

3 

T
3.

2 

T
3.

3 

T
4.

3 

Talc-2M 

(Mg3Si4O10(OH)2 

 × × × × × × × × × × × × × × × × × × × × 

Muscovite 

H2KAl3(SiO4)3 

     ×           ×     

Muscovite 3T Si-rich             ×     ×    

Kaolinite 

(Al2(Si2O5)(OH)4) 

         × ×           

Kaolinite 1A 

(Al2(Si2O5)(OH)4) 

      × ×      × × ×     × 

Potassium Magnesium 

Aluminium Silicate 

×                     

Hydrogen Aluminium 

Silicate 

     ×                

Calcite (CaCO3)              × ×      × 

Rutile (TiO2)       ×  ×  ×     ×   × ×  

Anatase (TiO2)              ×       × 
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and mineral-based samples in differing diffraction patterns of kaolinite.  Iron oxides could not 

be matched in the diffraction patterns of foundation samples.  This was unfortunate but 

expected because of the fluorescence of iron by the Cu Kα radiation [2].  Overall, many 

cosmetic grade ingredients used for foundation powders were not found in the EVA database, 

leaving unidentified peaks in the data. X-ray Fluorescence provided prior knowledge to the 

expected components present in samples and aided in the EVA search by limiting the results 

produced.  The EVA search/match method, was useful in providing some information 

regarding the phase analysis of cosmetic foundation powders and could be used as a 

preliminary analysis.    However, it did not provide a full characterization of foundation 

samples and the use of cosmetic raw material diffraction pattern data was considered to be a 

more appropriate method of component identification.  There is difficulty in identifying 

components of multi-phase mixtures due to overlapping peaks and phases that appear in low 

concentrations as only few of their diffraction peaks will be seen.  This problem was 

encountered for both peak identification methods.  To help with overlapping peaks and to 

validate whether particular components are present or not, 2D Generalized correlation was 

employed with elemental concentrations obtained through XRF analysis.  The simplisma 

method was also applied to XRD data to resolve sample ‘mixtures’ and reduce the problem of 

overlapping peaks.  

4.3.2 Comparison of Diffraction patterns using cosmetic raw materials 

The diffraction patterns of the 39 cosmetic foundation samples analysed by XRD varied 

greatly.  Differences in diffraction patterns were found between the mineral and traditional 

foundation types, as well as by manufacturer.  The diffraction patterns of M3.3, M4.4 and T4 

are shown in Figure 4.2 and give an example of the differences in diffraction patterns between 

mineral and traditional formulas and those samples that contain bismuth.  Diffraction peaks 
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appear at differing 2θ angles and there are defined differences in the peak intensities of each 

type of sample.  Further investigation was required to interpret the diffraction patterns and 

understand the differences between patterns and the analysis of cosmetic raw materials was 

employed to aid interpretation. 

 

Figure 4.2 Diffraction patterns produced through XRD analysis of samples M3.3, M4.4 and T3.1. 

 

Reference Materials 

To aid in peak identification of foundation powder diffraction patterns, the diffraction patterns 

of common raw materials were recorded, Figure 4.3.  Those can be compared to those from 

foundation samples and most of the sample peaks can be identified.  The raw material 

diffraction patterns can be used to determine the differences in the diffraction patterns 

displayed in Figure 4.2.  The noticeable difference between the diffraction pattern of T3.1 and 

samples M3.3 and T4.4 is the presence of talc in the traditional sample diffraction pattern.  It 

seems that talc is the dominant ingredient in this sample type.  The other raw material visibly 

present is kaolin, with diffraction peaks at 2θ angles 12.3° and 24.8°.   The talc peaks are so  

T3.1

M4.4

M3.3



Chapter 4: X-ray Diffraction 

 
90 

 

 

Figure 4.3 Cosmetic grade raw material diffraction patterns analysed by XRD. 

 

intense, that no other diffraction peaks are visible in comparison. 

Sample M4.4, does not contain talc but instead mica peaks at 2θ angles 8.9°, 17.8°, 26.7° and 

45.6°.  From the relative elemental concentrations produced from XRF analysis, sample M3.3 

is known to contain bismuth and this is evident in the diffraction pattern as diffraction peaks 

match those of bismuth oxychloride at 2θ angles 12.02°, 24.16°, 25.9°, 32.5° and 33.5°.  Mica 

5 10 15 20 25 30 35 40 45 50
2 theta (θ)

Calcium Carbonate

Pearl Mica

Sericite Mica

Bismuth Oxychloride

Titanium Dioxide

Zinc Oxide
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peaks are also visible in M3.3, however, the peak intensities are much lower in comparison to 

the diffraction peaks identified in M4.4.   

The information gained by comparing the raw material XRD patterns with the sample XRD 

patterns was used essentially as a database for peak assignment as the EVA software did not 

produce accurate ‘hits’ for cosmetic grade ingredients. 

Based on the peak intensities found through XRD analysis of raw materials and of the 

samples, the most prominent components found in samples were mica and talc.  These were 

the most easily identifiable components by eye.  Bismuth oxychloride and kaolin were also 

clearly observed in samples.  However, ingredients such as titanium dioxide, zinc oxide and 

calcium carbonate produced XRD patterns with lower intensity peaks in comparison to other 

ingredients and were often lost in the diffraction patterns. 

The diffraction patterns of yellow, red and brown iron oxides are displayed in Figure 4.4.  The 

intensities obtained by XRD are significantly lower than the other raw materials.  There is 

clear difference in the diffraction patterns of the iron oxides, and one would assume that the 

type of iron oxide used in each foundation sample would be easily determined; however this 

is not the case.  Significant problems occurred due to the inability to measure iron with the 

use of a Cu Kα source.  If a copper source is used to analyse iron, fluorescent radiation is 

emitted, resulting in iron diffraction peaks being reduced in intensity and not properly 

measured.  Generally, Co Kα radiation can be used for samples containing iron, to overcome 

the problem of fluorescence.  However, a Co Kα radiation source was not readily available for 

these experiments.   



Chapter 4: X-ray Diffraction 

 
92 

 

 

Figure 4.4 Diffraction patterns of various iron oxides used in cosmetic foundation production; yellow 

iron oxide (hydrated ferrous oxide- Fe(OH3)), red iron oxide (ferric oxide- Fe2O3) and brown iron 

oxide (combination of both yellow and red iron oxides). 

 

Due to the complex nature of the samples, extensive overlapping of component peaks is 

observed in their diffraction patterns, and not all peaks could be identified by eye.   

 

4.3.3 Principal Component Analysis 

Principal component analysis was applied to the, 39 (samples) x 783 (2 theta angle range) 

aligned and binned matrix produced by XRD analysis.  The first two principal components 

account for 89% of the total variance in the dataset.  A score plot of the first two PCs and 

loadings vectors of the cosmetic foundation powder samples is shown in Figure 4.5.  There is 

a distinct split between the mineral and traditional samples; with all but 5 mineral samples 

3 13 23 33 43
2 theta  (θ)

Iron Oxide Yellow 

Iron Oxide Red 

Iron Oxide Brown 
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separated along the positive PC1 axis and all traditional samples distributed across the 

negative PC1 axis. 

Once again samples M1.1, M1.2, M5.1, M5.2 and M5.3 are clearly aligned with the 

traditional foundation class.  The diffraction patterns of cosmetic grade raw materials, 

previously discussed were used to assign peaks in the loadings plots.  The loadings plot, 

Figure 4.5(b), show the components present in and describes the spread of the foundation 

samples in the PC scores.  Results indicate that the main components responsible for the 

spread along the PC1 axis are talc (negative weighting) and mica (positive weighting).  

Samples M4.x are separated to the far right of the PC1 axis, indicating that they may contain 

larger amounts of mica than samples M7.x and M2.x.  The traditional samples contain 

relatively the same components, whereas the mineral samples are clearly separated into two 

distinct groups along the PC2 axis.  The separation of samples M3.x and M6.x from the other 

mineral-based formulations, are grouping in the negative region of the PC2 axis which is 

defined by the presence of bismuth oxychloride in these samples (c.f. Table 3.2).  Ingredients 

such as, titanium dioxide and zinc oxide seem to have little effect on the variance reflected on 

PC1 and PC2.  The effect of zinc oxide is better illustrated in PC1 and PC3, shown in scores 

and loadings plot of Figure 4.6.  The separation of mineral manufacturer type is more evident 

in PC1 vs PC3 than in comparison to PC1 vs PC2 from Figure 4.5(a).  PC1 vs PC3 shows the 

separation of samples M4.x with M2.x and M7.x along the PC3 axis due to zinc oxide.  There 

is also an identifiable difference and separation of the traditional-based formulas and the 

mineral foundations classified as traditional along the PC3 axis.  Samples M5.1, T4.x and 

T2.3 are grouping separately from the other traditional-based samples due to their high 

content of calcium carbonate (c.f. calcium concentrations in Table 3.2). 
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Figure 4.5 The scores plot (a) and the loadings plot (b) associated with PC1 and PC2 from principal 

components analysis of phase data obtained through XRD analysis of the 39 foundation samples. 

(a)

(b)
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Figure 4.6 The scores plot (a) and the loadings plot (b) associated with PC1 and PC3 from principal 

components analysis of phase data obtained through XRD analysis of the 39 foundation samples. 

(a)

(b)
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In Figure 4.7(a) the samples identified as belonging to the mineral-type have been examined 

by PCA and the differences between manufacturers is clear, with the associated loadings plot 

of Figure 4.7(b) confirming the separation is due to the presence of bismuth oxychloride, zinc 

oxide, kaolin and mica in the samples.  Kaolin has separated samples M2.x along the negative 

region of PC2. 

The PCA results of XRD data, complement and agree with the results of the PCA applied to 

relative elemental concentrations produced through XRF analysis.  Samples group similarly 

based on the components present in each sample.  However, PCA results for XRD data show 

samples M2.x and M7.x grouping separately.  This separation is due to the differences in the 

amount of kaolin present between samples.  XRF analysis could not distinguish between these 

differences regarding the amount of kaolin, as XRF could not confirm the concentration of 

kaolin from elemental analysis.  

Similarly, PCA has been employed for samples classified as traditional-based formulas and 

the scores and loadings plot is shown in Figure 4.8.   Separation of samples has occurred 

along the PC1 axis due to calcium carbonate and talc.  Samples T4.x and M5.1 have grouped 

in the negative PC1 region due to their calcium carbonate content.  Sample T6.2 is not 

clustering with any of samples.  The loadings plot indicates that this sample has higher mica 

content in comparison to the other foundation samples. 



Chapter 4: X-ray Diffraction 

 
97 

 

 

Figure 4.7 The scores plot (a) and the loadings plot (b) associated with PC1 and PC2 from principal 

components analysis of phase data obtained through XRD analysis of the 18 mineral based foundation 

samples 

(a)

(b)
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Figure 4.8 The scores plot (a) and the loadings plot (b) associated with PC1 and PC2 from principal 

components analysis of phase data obtained through XRD analysis of the 23 traditional-based 

foundation sample.

(a)

(b)
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4.3.4 Covariance and Correlation  

To further aid in XRD interpretation, and identification of components in diffraction patterns, 

XRF elemental data was correlated with XRD data.  This was done to highlight visually any 

relationship between relative elemental concentrations and the phase analysis of materials in 

samples.  As there are unidentified peaks in the recorded sample diffraction patterns, it is 

possible that XRF elemental lines will correlate with diffraction peaks and hence help identify 

the component producing that diffraction peak.  This method uses the correlation coefficient 

to estimate the degree of similarity between variables, in this case, XRF spectra as being 

indicative of elemental concentrations and XRD peak intensities as indicating phase 

composition.  The theory of covariance and correlation was previously mentioned in Chapter 

3: X-Ray Fluorescence.   

A 2D covariance matrix using both data sets for all samples was constructed to produce,  

 
Φ = XRDT.XRF          (Equation 4.2) 

 
where XRD and XRF are the mean-centred data matrices obtained from diffraction data (39x 

469) and XRF spectra (39 x 942) respectively.  Figure 4.9 shows a 2D covariance contour 

map of XRD vs. XRF, in which only positive correlations are displayed.  The red colour 

indicates a positive correlation of XRF α or β elemental emission lines with diffraction peaks 

of the XRD data.  Although it is visibly clear that there are numerous positive correlations 

between the XRF and XRD, the 2D covariance map can be difficult to interpret by eye and 

2D correlation slicing was employed to aid in the interpretation of the 2D map.  

 A correlation slice of each element was taken from the XRF data at its particular Kα emission 

line across all samples.  This was then cross-correlated with the entire XRD data set to 

determine correlation coefficients of elemental emission lines correlated with the diffraction 

peaks.  The correlation method worked more successfully with the mineral components such 
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as bismuth oxychloride, zinc oxide, titanium dioxide and mica.  The mineral-based 

formulations use fewer ingredients in their production than in comparison to the traditional-

based formulations.  The mineral samples seem to contain similar components between 

manufacturers, differing in the ratios in the amounts in which each ingredient is used.  The 

heavy metals associated with bismuth oxychloride, zinc oxide and titanium oxide materials 

are less likely to differ worldwide.  The traditional samples seem to use a wider variety of 

ingredients and the form of talcs and kaolin employed can differ between manufacturers, 

making their classification and characterization more difficult.  Kaolin (Al2Si2O5(OH)4) could 

not be represented by one single element in XRF analysis as its chemical formula consists of 

aluminium and silica and these elements are also present in mica and talc.  Thus aluminium 

and silica produce poor correlation coefficients values between XRF intensities and XRD 

diffraction pattern data.  Bismuth oxychloride, zinc oxide, titanium dioxide and mica returned 

correlation coefficients values close to 1.  This was not unexpected as the bismuth, zinc, 

titanium and potassium XRF emission lines best represent the mineral phases present.  The 

correlation coefficients for mineral-based samples, of bismuth oxychloride, titanium dioxide 

and zinc oxide are shown in Figure 4.10 projected on the covariance slice of each component.  

We can see that the 2θ peak positions that have highly correlated data, match with the 

diffraction peaks of the raw materials XRD patterns.  Titanium dioxide was not as prominent 

in the covariance slices but this may be due to the peak intensities of its diffraction peaks in 

comparison to other components.  If we refer back to the relative elemental concentration of 

titanium in the samples, they are lower in comparison to the relative elemental concentrations 

of bismuth and zinc.  Iron oxides did not produce a high correlation with the Fe Kα emission 

line, even though XRF analysis determined large amounts of iron are present in samples.  This 

could be due to the poor diffraction patterns produced from XRD analysis and the many 

phases containing iron.  The correlation of silica produced correlation coefficient values of 
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around 0.3 with the XRD data.  Silica is present in talc, mica and kaolin.  It is difficult to 

assign a relationship with one particular component or their diffraction peaks.  This was an 

expected outcome.  Aluminium matched consistently with most of the diffraction peaks of 

mica, with correlation coefficients ranging from 0.88 to 0.91.  However, aluminium is also 

present in kaolin so it cannot be assumed that all these peaks are mica.  Talc is a hydrated 

magnesium silicate, and it was assumed that the diffraction peaks of talc within sample 

mixtures would have a very high correlation with the Mg Kα emission line.     

 

Figure 4.9 The covariance contour plot of XRD vs. XRF.  An average spectrum of each technique is 

presented along each axis to aid in identification, showing the positive correlation of XRF elemental 

emission lines with XRD diffraction peaks. 
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Figure 4.10 Covariance slices obtained from correlation of XRF and XRD data.  The correlation 

coefficients projected on the covariance slices of BiOCl, ZnO and TiO2 are displayed. 
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Correlation coefficient values of around 0.8 were calculated, which were lower than expected.   

This may be due to the high levels of talc present in the traditional samples, causing high peak 

intensities of talc in the XRD diffraction patterns.  The peak intensities of talc are so high, 

meaning the peak intensities of the other components are very small in comparison, change 

between samples is insignificant and therefore, correlation of peaks with changing elemental 

concentration does not occur.     

 

In summary, 2D generalized correlation of XRF elemental data and XRD phases data was 

successful in finding relationships between the two techniques.  XRF data was able to provide 

a link between the elemental information and the phase components that were present in 

powder foundation samples and XRF elemental data can aid in peak identification of 

foundation sample diffraction patterns.  However, its use is limited and is only successful for 

components that may have a single element that can be represented by a crystal phase.  It was 

not successful with all components present in cosmetic foundations, because they consist of a 

mixture of crystalline substances, and not all could be identified using 2D correlation. 

 

4.3.5 Simplisma analysis of XRD data 

 Simplisma was applied to the XRD data to attempt resolve the mixture of phases found in 

cosmetic powders.  It was used to examine and differentiate between diffraction peaks 

broadened due to overlapping component peaks.  Simplisma was discussed in Chapter 3: X-

Ray Fluorescence and the same technique was applied to XRD data.  Because the samples 

consist of a complex mixture of mineral and clay materials, the simplisma approach, seems 

like an appropriate method to aid in XRD interpretation.  It has the ability to separate 

components from spectral mixtures, or in this case, diffraction pattern mixtures, using the 

pure variable approach (refer to Chapter 3: X-Ray Fluorescence).  It is useful for XRD, 
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because as each pure variable is calculated it is eliminated from the data set, and therefore 

cannot influence the calculation of the next pure variable and its contributions.  The aim in 

using this method was to determine whether the pure variables in the XRD data can be 

successfully resolved, overcoming the issue of overlapping diffraction peaks.   

 

X-ray Diffraction data was separated into two groups of 18 mineral foundations (which 

excluded samples M1.x and M5.x) and 21 traditional foundations (which included samples 

M1.x and M5.x).  This was done to aid in a better separation of components using simplisma 

as the groups contained differing ingredients.  A program (purespec.m) was created in-house 

from the algorithm described in Windig’s et al. paper (refer to Chapter 3) in MATLAB to 

perform the simplisma function and produce the pure spectra and their ‘concentration’ 

contributions.  The program calculated the purity of each component based on the highest 

standard deviation and gave the 2θ angle position of the diffraction peak.  Once a component 

is identified, it is eliminated from the dataset.  Based on the knowledge gained from the XRD 

analysis of cosmetic raw materials, the diffraction peaks could be matched to the known 

ingredients in the samples.  A 18 x 496 matrix, with XRD data of mineral-based samples only, 

in rows was applied to the purespec.m function with an offset, α, value of 3%.  The simplisma 

function determined 6 components to be present in the mineral foundation samples.  One of 

the forms of mica was determined as the first pure component, as it is a major ingredient in 

the mineral-based foundations.  Due to the slight difference in the diffraction peaks of the 

sericite and pearl mica diffraction patterns simplisma has separated the two forms of mica.  

Bismuth oxychloride had a high variance value due to samples M3.x and M6.x being the only 

samples to contain traces of bismuth oxychloride and is identified as a component.  Iron 

oxides were not found as pure components.  As mentioned before, this is due to the 

fluorescence of iron in XRD analysis. 
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To have a better understanding of the pure components, the resolved pure spectra need to be 

investigated. Figure 4.11 shows the resolved spectra calculated by simplisma and the 

corresponding diffraction patterns of the raw components best matching each spectrum.  Not 

all the resolved spectra match well to those of the raw materials analysed previously, Figure 

4.3.  Some of the resolved spectra seem to be linear combinations of components, rather than 

pure components.  The resolved spectra resemble mixtures of diffraction patterns of known 

materials, which could be caused by overlapping peaks.  But pure components will be 

assigned based on the standard deviation values and the corresponding 2θ angle peak position 

produced by Simplisma.  Pure component 1 matched the diffraction peaks of sericite mica 

more closely than pearl mica.  Sericite mica diffraction pattern has a peak at 12.32° that was 

not present in the resolved spectra (Figure 4.11(a)).  X-ray Diffraction analysis of kaolin 

determined similarly a diffraction peak at 12.42°.  We can assume due to peak overlap, it was 

not resolved for sericite and as the peak intensity is greater for kaolin, it would be resolved 

with that component.  The second pure component was determined as bismuth oxychloride 

and the resolved spectra reflect the original XRD pattern of bismuth oxychloride.  The 

resolved spectra for component 6, shows the major diffraction peaks for zinc oxide, however 

the relative contributions do not agree with those found from the simplisma application to 

XRF data studied in Chapter 3.  The relative contributions of each pure component is shown 

in Figure 4.12.  The ‘concentration’ contributions do not seem correct because the spectra that 

are resolved are not the ‘pure’ spectra of the components present.  This may be due to the 

overlapping of component diffraction peaks.  To explain why peak overlap is causing 

incorrect ‘concentration’ contributions we will look at bismuth oxychloride.  The resolved 

spectra Figure 4.11(b) resembles that of the original bismuth oxychloride XRD pattern.  We 

know from the XRF elemental analysis results from the previous chapter, that only samples 

M3.x and M6.x contain traces of bismuth.  However, this is not represented in the bismuth  
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Figure 4.11 Resolved spectra from Simplisma analysis of XRD data from mineral samples, components 

with the ‘real’ diffraction pattern of each component (dotted lines),(a) Sericite mica (b) Bismuth 

oxychloride (c) Pearl mica (d) Kaolin (e) TiO2 & (f) ZnO.  
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Figure 4.12 Relative contribution profiles of the Simplisma resolved spectra from Figure 4.11 

Components (a)-(f) with true concentration profiles of Bi, Ti and Zn (dotted lines) from Table 3.2 for 

comparison. 
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oxychloride  contribution profile.  The contribution profile indicates that all mineral samples 

but one, have bismuth oxychloride contributions.  To understand why this is occurring we 

must look at the diffraction pattern of the mineral foundation samples.  Figure 4.13 shows the 

overlap of a bismuth oxychloride diffraction peak with a kaolin diffraction peak.  The 

simplisma method estimates the concentration   contributions based on the peak intensities.  

Figure 4.13 clearly shows a distinction between samples that contain bismuth oxychloride as 

the peak intensity at that 2θ position is not equal to zero.  Other components such as zinc 

oxide, also incur this problem. Zinc oxide  has overlapping diffraction peaks with bismuth 

oxychloride in the 30° 2θ angle region. 

 

 

Figure 4.13 Overlap of bismuth oxychloride and kaolin diffraction peaks. 
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The 21 x496 XRD matrix of traditional sample data was also examined.  Simplisma identified 

pure components with diffraction peak positions that did not match diffraction patterns of the 

cosmetic raw materials analysed previously.  The EVA database was searched to find any 

appropriate peak matches for the diffraction peaks at 29.42°, 31.02° and 32.62° and the results 

indicate the presence of an iron oxide, aluminium trioxide and calcium carbonate respectively. 

These matched mineral phases have similar chemical structures of materials found in 

cosmetic foundations and were expected hits.  Iron oxides are present in the samples, and 

looking back at the raw material XRD patterns, it was found that the cosmetic grade brown 

iron oxide had a diffraction peak at 29.42°.  Calcium carbonate is a known ingredient in the 

traditional foundation formulas but may be found in a differing chemical form than the one 

analysed in this study. 

The resolved ‘pure’ spectra for the traditional sample data are displayed in Figure 4.14 and the 

corresponding contribution profiles in Figure 4.15.  The simplisma application to traditional 

samples does not seem as successful in resolving XRD mixture data as with the mineral 

samples.  Not all resolved spectra were related to the diffraction patterns of raw materials 

shown in Figure 4.3.  The first pure component gave resolved spectra which matched with the 

diffraction peaks of the talc diffraction pattern.  It was assumed that the magnesium 

concentration found through XRF analysis would be representative of the concentration of 

talc in samples.  Comparing the relative magnesium concentration (from XRF results Table 

3.2) with the concentration contribution of talc (Figure 4.15(a)) the results do not correlate.  

Magnesium stearates can be incorporated into traditional foundation formulas as a binder or 

for water proofing properties [15].  It is more likely to be present in traditional samples that 

are in pressed powder form.  It can be assumed that magnesium stearate may be present in 

samples and may contribute to the magnesium concentration that was determined by XRF 

analysis.  Magnesium stearate from a cosmetic supplier was analysed by XRD.  The     
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Figure 4.14 Resolved spectra from Simplisma analysis of XRD data from traditional samples, 

components, with the ‘real’ diffraction pattern of each component (dotted lines). (a) Talc (b) Brown 

Iron Oxide (c) Sericite mica (d) Calcium carbonate (e) Sericite mica (f) Pearl mica & (g) TiO2,  
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Figure 4.15 Relative contribution of the Simplisma resolved spectra from Figure 4.14.  Components 

(a)-(g) with true concentration profiles of Mg, Fe, Ca & Ti.  
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diffraction pattern was quite simple and was found to have a major diffraction peak at 21.3°.  

However, this peak was not clearly visible in the sample diffraction patterns, due to overlap 

and poor peak intensity, and could not be determined by XRD analysis.  It is anticipated that 

infrared analysis will determine whether magnesium stearate is present in foundation samples. 

4.3.6 Simplisma using Combined XRF and XRD data 

Resolving the XRD patterns can be assisted and improved by using known XRF data.  The 

correlation matrix of two different spectroscopies applied to the same samples provides a 

useful interpretation tool to establish relationships between two spectroscopies [11].  The 

correlation matrix describing the relationship between the XRF and XRD data is given by, 

 

Ф= XRDT.XRF           (Equation 4.2) 

 

where XRD and XRF are the mean-centred data matrices obtained from diffraction data (39 x 

469) and XRF spectra (39 x 942) respectively.   

XRF LiF200 crystal data were used in conjunction with XRD data, to help with identification 

of the resolved spectra produced using the simplisma approach.  The method produced 

resolved spectra and concentration profiles for both the XRF and XRD data.  An 18 x 942 

XRF matrix and 18 x 469 XRD matrix were examined using an in-house program created 

from the algorithm described in Windig’s et al. paper [11],  copurespec.m with 5 components 

and an offset, α, value of 3%.  The procedure is an extension of the single matrix simplisma 

program discussed above (Chapter 3).  The cross-product data matrix is analysed to produce a 

purity matrix, as defined by Eq. 3.8 that results in sets of pure variables for both XRF and 

XRD. Variables considered to have high co-purity may be assumed to describe the same 

component.  As before, relative intensities of the pure variables are considered as reflecting 

relative contributions of each component and are used to calculate estimated pure component 
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spectra (Eq. 3.10) and subsequently relative concentrations (Eq. 3.13).   

The program was restricted to 5 components as the XRF LiF200 data used contained only 5 

elements and including more than 5 components would have no effect on the copurespec 

function.  Figure 4.16 displays resolved spectra for XRF using LiF200 crystal data and 

corresponds to pure variables identified at 33.17°, 136.67°, 86.3°, 41.81° and 57.53° 2θ 

angles.  From prior knowledge, these pure variables can be equated with bismuth, potassium, 

titanium, zinc and iron respectively.  All pure variables are true pure variables as each 

resolved spectrum is representative of an elemental component that has no contributions from 

any other pure component.  Each resolved spectrum represents a Kα elemental line and its 

corresponding Kβ elemental peak.  As XRF data has resolved pure component, it is assumed 

there will be a correlation between resolved spectra of XRD data and XRF results will aid in 

the interpretation.    

 

  

Figure 4.16 Resolved XRF spectra from Simplisma using combined XRF and XRD data, components 

(a)-(e). 
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The resolved spectra of XRD data by copurespec method are displayed in Figure 4.17.  

Resolved diffraction patterns were investigated using the raw material diffraction data that 

corresponds to the pure components resolved by XRF data.  For example, in Figure 4.16, 

bismuth was the first pure component resolved, therefore it is assumed that the first 

component to be resolved in Figure 4.17(a) will resemble bismuth oxychloride.  Not all 

components were completely resolved and resembled combinations of more than one pure 

component.  Components (a) (b) and (c) were relatively similar to diffraction patterns of 

bismuth oxychloride, mica and titanium dioxide. 

The concentration profiles of the XRF and XRD techniques were converted to relative 

concentrations (%) and are displayed in Figure 4.18 showing a comparison of results for each 

method.   Results are not as accurate as those produced through quantitative XRF analysis but 

give a rough indication the proportions of each element present in the mineral-based samples.  

The concentration profiles produced using the copurespec function show which samples 

contain significant amounts of bismuth, iron, titanium and zinc and comply with relative 

concentrations previously determined in Chapter 3.  
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Figure 4.17 Resolved spectra of XRD from Simplisma using combined XRF and XRD data with ‘real’ 

diffraction pattern of each component (dotted lines), components (a) Bismuth Oxychloride (b) Mica 

(c)Titanium Dioxide (d) Zinc Oxide & (e) Iron Oxide. 
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Figure 4.18 Relative concentrations (%) profiles of XRD data and elemental XRF data, resolved by 

SIMPLISMA method. 

The application of the copurespec function to mineral sample XRD data produced 

concentration profiles with some negative values.  This indicates that peak intensities in the 

diffraction patterns of the components within the samples did not correspond with the peak 

intensities of the elemental emission lines produced from XRF analysis.  For example, the 

diffraction peaks for zinc oxide are not as clearly visible in the diffraction patterns of samples 

-10

10

30

50

70
XRD BiOCl
XRF Bi

M
2.

1
M

2.
2

M
2.

3
M

2.
4

M
3.

1
M

3.
2

M
3.

3
M

4.
1

M
4.

2

M
4.

3
M

4.
4

M
6.

1
M

6.
2

M
6.

3
M

6.
4

M
7.

1
M

7.
2

M
7.

3 0

20

40

60

80

100

120
XRD Mica

XRF K

M
2.

1
M

2.
2

M
2.

3
M

2.
4

M
3.

1
M

3.
2

M
3.

3
M

4.
1

M
4.

2

M
4.

3
M

4.
4

M
6.

1
M

6.
2

M
6.

3
M

6.
4

M
7.

1
M

7.
2

M
7.

3

-5

5

15

25
XRD TiO2
XRF Ti

M
2.

1
M

2.
2

M
2.

3
M

2.
4

M
3.

1
M

3.
2

M
3.

3
M

4.
1

M
4.

2

M
4.

3
M

4.
4

M
6.

1
M

6.
2

M
6.

3
M

6.
4

M
7.

1
M

7.
2

M
7.

3

-20

0

20

40

60
XRD Zno
XRF Zn

M
2.

1
M

2.
2

M
2.

3
M

2.
4

M
3.

1
M

3.
2

M
3.

3
M

4.
1

M
4.

2

M
4.

3
M

4.
4

M
6.

1
M

6.
2

M
6.

3
M

6.
4

M
7.

1
M

7.
2

M
7.

3

-10

10

30

50
XRD Fe2O3

XRF Fe

M
2.

1
M

2.
2

M
2.

3
M

2.
4

M
3.

1
M

3.
2

M
3.

3
M

4.
1

M
4.

2

M
4.

3
M

4.
4

M
6.

1
M

6.
2

M
6.

3
M

6.
4

M
7.

1
M

7.
2

M
7.

3

R
el

at
iv

e 
C

on
c.

 (%
)

R
el

at
iv

e 
C

on
c.

 (%
)

R
el

at
iv

e 
C

on
c.

 (%
)

(c)

(a) (b)

(d)

(e)
XRD 

XRD XRD 

XRDXRD



Chapter 4: X-ray Diffraction 

 
117 

 

than in comparison to the XRF emission line.  This does not mean that zinc oxide is not 

present, just that another approach may be more successful in resolving components from the 

XRD data.   A non-negative constraint method might be a better approach to compensate for 

the components present with lower diffraction peak intensities. 

 

4.3.7 Multivariate Curve Resolution Alternating Least Squares 

Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) has become an 

increasingly popular method used to decompose data matrices of mixtures into spectra 

components and concentration profiles [16].  The multivariate curve resolution process 

utilizes constrained alternating least squares optimization to extract the pure component 

spectra and concentration profiles associated with the number of components, of the data 

matrix, X, according to the following equation     

 
X = CST + E          (Equation 4.3) 

 
where E is the residual matrix containing the variance, S are the pure component spectra (ST is 

the transpose) and C are the concentration profiles associated with the resolved components.  

It is possible to obtain the existence of each component as well as an initial estimate of the 

concentration profiles using either simplisma or evolving factor analysis [17].  The number of 

components and initial concentrations are used by the alternating squares optimization, to 

produce a new estimate of the spectra matrix S and then of the concentration profiles C using: 

 
ST = C+T Xest           (Equation 4.4) 

C= Xest S+           (Equation 4.5) 

 
where C+ = C(CTC)-1 and S+ = S(STS)-1 are the pseudoinverses of the matrices C and S 

respectively [18].  Xest is a PCA noise filtered estimate of X and is generally used to improve 
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the stability of the pseudoinverse calculations [18].  As mentioned previously, the selection of 

the correct number of components is important.  Too few components will cause small-

variance components to be undetectable.  An estimation of the number of components can be 

obtained through chemometric analysis using methods such as PCA. 

The MCR-ALS method has been shown in near-infrared and UV spectrphotometric studies to 

provide improved resolution and enable quantitative analysis of complex mixtures.  Azzouz 

and Tauler reported the use of MCR-ALS to resolve and aid in quantification of analytes in 

pharmaceutical and agricultural samples [19]. 

Multivariate Curve Resolution Alternating Least Squares was applied to XRD data of the true 

mineral-based formulations for quantitative determination of components present in the 

mixtures using the mcr function in the PLS tool-box.  MCR-ALS was conducted using six 

components.  The six components represented the possible raw materials expected in the 

mineral-based formulas and the number was consistent with the number of components 

resolved using simplisma.  The MCR function produced a scores matrix of 469 x 6 of the 

resolved component spectra and a loadings matrix of 18 x 6 corresponding to the 

concentration profiles of the resolved components.  The resolved spectra and concentration 

profiles determined by MCR-ALS using 6 components are displayed as relative 

concentrations (%) in Figure 4.19 and Figure 4.20 respectively.  Resolved diffraction patterns 

were investigated using the raw material diffraction data to identify the components resolved 

by the MCR-ALS method.  Components 1-4 were not completely resolved and the resolved 

spectra resembled combinations of more than one raw material.  This would have occurred 

due to the misalignment of diffraction peaks between samples or because the raw material 

present was not one that was used as a reference in this research.  Diffraction peaks of the 

resolved spectra were compared with diffraction peaks of the raw materials by matching the 

2θ angle values.  Component 5 resembles the diffraction pattern of bismuth oxychloride and  
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Figure 4.19 Resolved spectra of the 6 components determined by MCR-ALS of (a) Component 1 (b) 

Component 2 (c) Component 3 (d) Component 4 (e) Component 5 & (f) Component 6. 
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Figure 4.20 Concentration profiles of the 6 components determined by MCR-ALS of (a) Component 1 

(b) Component 2 (c) Component 3 (d) Component 4 (e) Component 5 & (f) Component 6, displayed as 

relative concentrations (%). 
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the concentration profile is consistent with relative concentrations of bismuth produced 

through XRF analysis (refer to Table 3.2).  The resolved spectrum for component 6 resembles 

the diffraction pattern of pearl mica.  However, the concentration profile cannot be directly 

linked to one particular element  

analysed through XRF, as it contains varying amounts of potassium, aluminium and silica. 

Pure component data was applied to MCR-ALS method with mineral-based sample data to 

see whether raw material data would aid in resolving component mixtures.  MCR-ALS 

method was applied to the 469 x 18 XRD data matrix of mineral-based formulation and a 469 

x 6 XRD data matrix of raw material data.  The raw materials selected for MCR-ALS were 

kaolin, titanium dioxide, zinc oxide, bismuth oxychloride, pearl mica and sericite mica.  A 

scores matrix of 469 x 6 of the resolved spectra and a loadings matrix of 18 x 6 corresponding  

to the concentration profiles of the resolved components were produced.  The resolved spectra 

and concentration profiles for each raw material component are displayed in Figure 4.21 and 

Figure 4.22 respectively.   

Bismuth oxychloride, pearl mica and sericite mica were successfully resolved and resemble 

the diffraction patterns of these components. However, the remaining components have not 

produced resolved spectra true to the diffraction patterns of kaolin, titanium dioxide and zinc 

oxide and resemble mixture of various raw components.  The concentration profile of bismuth 

oxychoride is consistent with the relative concentrations of bismuth determined through XRF.  

The concentration profiles of pearl mica and sericite mica cannot be directly compared to the 

relative concentrations examined by XRF.  Virtual data is produced that does not match the 

raw materials.  This virtual data finds the best fit with the XRD mineral sample data, and 

hence changes the concentration profiles.      
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Figure 4.21 Resolved spectra of the 6 components determined by MCR-ALS of (a) Kaolin (b) TiO2 (c) 

ZnO (d) BiOCl (e) Pearl Mica & (f) Sericite Mica. 

  

 

 

 

R
el

at
iv

e 
In

te
ns

it
y/

 a
.u

.

(a)

0

20

40

60

80

100

0 10 20 30 40 50
0

20

40

60

80

100

0 10 20 30 40 50

(b)
R

el
at

iv
e 

In
te

ns
it

y/
 a

.u
.

(c)

0

20

40

60

80

100

0 10 20 30 40 50
0

20

40

60

80

100

0 10 20 30 40 50

(d)

(e)

2θ theta 2θ theta

0

20

40

60

80

100

0 10 20 30 40 50

(f)

R
el

at
iv

e 
In

te
ns

it
y/

 a
.u

.

0
20
40
60
80

100

0 10 20 30 40 50



Chapter 4: X-ray Diffraction 

 
123 

 

To show how the diffraction patterns of the pure components fitted with the diffraction 

patterns of the mineral-based samples, the MCR-ALS scores matrix was multiplied by the 

MCR-ALS loadings matrix to produce a virtual data matrix.  The original sample data, the 

virtual data and the subsequent difference or error between the two are plotted and displayed 

in Figure 4.23 for (a) sample M2.1 and (b) sample M6.4.  The error is minimal because the 

virtual data has been produced from the pure components, creating resolved spectra for 

components that do not exist, therefore the fit is good.  However, the virtual data does not 

match the diffraction patterns of the raw materials so the fit is not correct.  MCR-ALS was 

essentially used to make a comparison between results determined by simplisma, to see how it 

would resolve components from XRD data.   But like simplisma, not all components could be 

successfully resolved. 
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Figure 4.22 Concentration profiles of the 6 components determined by MCR-ALS of (a) Kaolin (b) 

TiO2 (c) ZnO (d) BiOCl (e) Pearl Mica & (f) Sericite Mica, displayed as relative concentrations (%). 
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Figure 4.23 MCR-ALS applied to XRD data for samples (a) M2.1 and (b) M6.4 showing the error 

between the virtual data and the original data for each sample. 
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4.3.8 Non-negative Least-Squares Constraint  

The least-squares method with nonnegative constraint is often applied to curve resolution 

problems.  Least-squares methods provide a model to describe the large number of 

observations by estimating parameters in experimental data.  For experimental data matrix, 

xmeas, let the unknown parameters be denoted by the vector xstd, where xstd = (xstd1,…,xstdn), 

and the set of observed values is given by C.  The aim is to reconstruct vector xstd so that it 

best describes the observed values [20].  Experimental parameters represent quantities that are 

only expressed as non-negative values, eg. concentrations, peak intensities, therefore, the 

model must include non-negative constraints, where it is subject to C > 0, proposed by the 

following equation [14]: 

 
‖𝒙𝒔𝒔𝒔.𝑪 − 𝒙𝒎𝒎𝒎𝒎‖𝟐 = 𝑚𝑚𝑚,𝑪 ≥ 0          (Equation 4.6) 

 
where C are the concentration profiles for each of the raw material standards denote by xstd. 

Non-negative least-squares (NNLS) was applied to XRD data using an in-house program, 

matrixlsqnonneg.m, for mineral and traditional foundation samples using all 12 pure 

components.  Tables 4.5 and 4.6 show the concentration profiles obtained through non-

negative least-squares method of each of the raw materials present in the mineral and 

traditional-based formulations.  As expected, the mineral-based samples contained 

predominately mica, differing in the pearl and sericite mica, differing in amounts between 

manufacturers and samples from the same manufacturer. 

This method was more successful in producing concentration profiles consistent with XRF 

results than MCR-ALS.  Bismuth oxychloride was found to be present in samples M3.x and 

M6.x, zinc oxide in samples M3.x, M4.x and M6.x and titanium dioxide in samples M6.x, 

however, titanium dioxide produced by NNLS were significantly lower than XRF results.  A 

discrepancy produced by NNLS was the relative concentrations of calcium carbonate found in 
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samples M3.x and to a lesser extent samples M6.x.  X-ray Fluorescence analysis found no 

traces of calcium within these formulations.  Small amounts of kaolin were determined in 

samples M2.3, M3.x and M6.1 but EVA search matches and PCA of XRD indicate that kaolin 

was only present in samples M2.x and M4.x.   

The presence of a stearate was an unexpected ingredient.  Non-negative least squares 

determined significant relative concentrations of magnesium stearate in samples M6.x and 

small traces in samples M.2.1, M2.3 and M3.x.  Magnesium stearate and zinc stearate have 

similar diffraction patterns.  Patterns consist of peaks at 3°, 6°, 21.3° and 37.8° 2θ angles 

[21&22].  Diffraction patterns of M2.x and M3.x had no visible diffraction peaks of stearate, 

while M6.x displayed peaks at 2.13° but no others.  X-ray Fluorescence results found very 

small amounts of magnesium to present in these samples.  Zinc was determined in samples 

M3.x and M6.x but not in sample M2.x.  X-ray Fluorescence and X-ray Diffraction analysis 

produced insufficient evidence of the presence of stearate.  Further investigation would be 

required, eg. IR spectroscopy, to determine whether magnesium stearate or zinc stearate has 

been included in these formulations.   

Non-negative least squares of the traditional samples show a wider variety in the raw 

materials used for in their production when compared with the mineral samples.  As 

anticipated, the traditional-based formulations contained smaller amounts of pearl and sericite 

mica than the mineral-based samples with very large amounts of talc.  Talc was found to be 

present in samples in differing forms across all traditional formulations.  Non-negative least 

squares method calculated two forms of kaolin to be present in samples M5.1, T6.1, T1.1, 

T1.2, T6.2 and T4.3.  The diffraction pattern of M5.1 show no evidence that kaolin is present 

in this sample but the value produced by NNLS is significantly large.  EVA search/match 

results indicate kaolin to be incorporated into samples M1.x and M4.x.  However, NNLS 

results determined the concentration in samples T1.3 to be zero.  The presence of kaolin in  
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        Table 4.5 Relative concentrations (%) calculated using nonnegative least-squares method applied to XRD data of mineral foundation samples.

Sample/ 
Component Pearl Mica 

Sericite 
Mica BiOCl CaCO3 TiO2 ZnO Talc 1 Kaolin 2 Kaolin 3 

Magnesium 
Stearate 

      
Kaolin 

M2.1 4.37 93.24 0.43 0 0 0 0 0 0 1.91 0 

M2.2 2.92 97.05 0.02 0 0 0 0 0 0 0 0 

M2.3 4.61 85.91 1.01 0 0 0.59 0 0 0 6.50 1.28 

M2.4 1.53 98.47 0 0 0 0 0 0 0 0 0 

M3.1 27.09 0.00 41.08 7.41 0.29 11.94 0.22 1.78 4.64 4.83 0 

M3.2 23.82 0.00 43.38 9.67 0.66 9.33 0.19 0.14 5.58 7.23 0 

M3.3 29.42 0.00 40.83 7.99 0 7.44 0.08 6.16 1.08 7.00 0 

M4.1 15.41 74.62 0 0 0 9.97 0 0 0 0 0 

M4.2 13.89 80.24 0 0 0 5.87 0 0 0 0 0 

M4.3 13.39 78.39 0 0 0 8.23 0 0 0 0 0 

M4.4 18.78 75.08 0 0 0 6.14 0 0 0 0 0 

M6.1 6.68 23.58 35.04 1.65 1.69 15.96 0.50 3.07 0 11.83 0 

M6.2 5.48 24.34 35.15 3.04 1.47 14.69 0.14 0.14 0 15.42 0 

M6.3 4.56 30.03 35.32 1.14 0.71 14.10 0 0 0 13.10 0 

M6.4 3.63 25.45 41.69 1.09 0 12.83 0 0 0 14.86 0 

M7.1 19.62 80.38 0 0 0 0 0 0 0 0 0 

M7.2 12.83 87.17 0 0 0 0 0 0 0 0 0 

M7.3 16.92 83.08 0 0 0 0 0 0 0 0 0 
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samples T6.x is consistent with interpretation their diffraction patterns.  The relative 

concentrations of calcium carbonate were found to be significantly high in samples T4.x and 

T2.3.  X-ray Fluorescence results determined these samples have a high calcium content, 

along with sample T8.2, while the NNLS method produced an insignificant amount of 

calcium carbonate.  Sample M5.1 produced a relatively high concentration of calcium 

carbonate.  Although, XRF analysis determined traces of calcium in this sample the result is 

not consistent as XRF found similar concentrations in samples M5.2 and M5.3 which is not 

reflected in NNLS results.  Results for components with relatively low concentrations are 

inconsistent.  For example, the method determined traces of zinc oxide in sample M5.1 but 

not in the other samples from this manufacturer.  Whereas, results for XRF show 

concentrations of zinc in all M5.x samples.  This may be due to peak alignment issues within 

the sample diffraction patterns, causing misinterpretation of the data with the raw material 

diffraction patterns.  Results indicate that the NNLS method is not an accurate measure for 

determining concentration profiles, but can provide an estimate of the components present and 

the quantities that may be present in samples. 

The concentration profile matrix produced by NNLS was multiplied by the original pure 

component matrix to produce a virtual mixture data matrix.  The virtual data was compared 

with the original sample data, and the error between them calculated.  Figure 4.24 displays the 

virtual data fit to the original sample data and the error for (a) M2.1 and (b) M4.3.  Figure 

4.24(a) shows a good fit between the virtual data and the original data for sample M2.1.  The 

error is minimal and the main differences are those between the relative peak intensities of the 

components present.  The split of peaks that occurs in the error is due to the misalignment of 

certain diffraction peaks within the XRD sample data.  The error between the virtual data 

determined by NNLS and the original XRD data was more realistic than the error predicted by 

MCR-ALS.  Even though the virtual data does not give an ideal fit to original data for each 

sample, it does confirm which raw materials are present and which are not.  It also indicates  
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 Table 4.6 Relative concentrations (%) calculated using nonnegative least-squares method applied to XRD data of traditional foundation samples.

Sample/ 
Component Kaolin 1 Pearl Mica 

Sericite 
Mica BiOCl CaCO3 Talc 2 TiO2 ZnO Talc 1 Kaolin 4 

Magnesium 
Stearate 

M1.1 0 5.38 8.16 0 0 61.48 0 0 24.98 0 0 
M1.2 0 5.84 10.00 0 2.06 68.46 0 0 10.70 0 2.74 
M5.1 0 4.95 5.00 1.57 13.39 25.63 1.35 5.30 9.31 14.18 19.32 
M5.2 0 6.24 3.61 0 4.24 63.54 1.35 0 17.17 0 3.57 
M5.3 0 6.71 2.48 0 4.41 58.78 0.92 0 22.59 0 3.79 
T6.1 13.44 1.03 048 0 0 52.41 3.92 0 28.60 0 0 
T1.1 0.54 0 1.80 0 0 64.84 0.45 0 15.76 8.22 7.64 
T1.2 0 0 0 0 3.39 48.46 0 2.42 13.46 13.79 15.72 
T3.1 0 0 0 0 0 68.47 0 0 31.53 0 0 
T8.1 0 0 0 0 14.32 68.18 0 1.42 25.39 0 2.00 
T8.2 0 5.84 0 0 1.35 80.49 0 0 11.13 0 1.15 
T2.1 0 3.21 13.69 2.81 1.80 66.40 0 0 10.34 0 1.16 
T2.2 0 5.81 12.45 4.26 3.80 56.19 0 0 9.53 0 7.92 
T4.1 0.26 2.66 0 0 31.47 24.27 1.97 0 8.88 23.09 7.38 
T4.2 3.58 2.78 0 0 25.39 35.54 1.60 0 22.55 6.34 2.21 
T1.3 0 2.75 1.81 0 0 72.76 0 0 22.67 0 0 
T6.2 12.25 5.28 25.60 0 0 40.32 3.71 0 12.74 0 0 
T2.3 0 12.07 30.37 0 14.35 24.46 0 0 11.13 0 7.57 
T3.2 0 0.95 0 0 4.87 60.17 0 2.57 21.10 0 8.91 
T3.3 0 0 0 0 2.31 78.53 0 0 15.08 0 2.11 
T4.3 7.15 2.96 0 0 22.67 44.62 1.42 0 18.97 2.21 0 
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Figure 4.24 Nonnegative least-squares applied to (a) M2.1 and (b) M4.3 showing error between the 

virtual data and original data for each sample. 
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that raw materials appear in these samples may not be in the same form as analysed in this 

research.  This is shown in Figure 4.24(b), sample M4.3 where two diffraction peaks at 2θ 

angles 4.25° and 6.35° do not match diffraction peaks from the virtual data.  The diffraction 

patterns of these peaks are not those of the raw materials analysed by XRD.  Sample M2.1 is a 

better fit with the virtual data than sample M4.3 and materials used are likely to be similar to 

those of the reference raw materials.  There is a larger discrepancy in the error between the 

virtual data and the original data for M4.3, indicating that the components used are less like 

the reference components.  The differences in the error between samples M2.1 and M4.3 

show the variety of raw materials that are used in the mineral foundation formulations and 

that differing forms of these materials are used depending on the manufacturer. 

Figure 4.25 shows the virtual data fit with traditional samples.  Results differed from the 

mineral-based samples.  Figure 4.25 (a) displays the virtual data fit with sample T3.3.  The 

error is minimal and the fit quite good, with peak intensity differences between the original 

and the virtual data.  In comparison, sample T2.3 shown in Figure 4.25 (b), has a ‘bad’ fit with 

the virtual data, with a significantly larger error.  Diffraction peaks at 2θ angles 6.24°, 12.44° 

and 25.14° appear in the virtual data but not in the original.  These diffraction angles match 

peaks in the diffraction pattern of Talc 1.  This indicates that this particular form of talc is not 

used as an ingredient in sample T2.3.  There are components in the original data which do not 

match the raw materials used in analysis. The major peaks occur at 2θ angles 19.94°, 29.54°, 

31.04°, 32.64° and 41.24°.  This indicates that other raw materials have been used in the 

production of sample T2.3 or the materials are in a differing form than and are unlike the 

reference raw materials.  The relative concentrations of traditional-based samples obtained by 

NNLS from Table 4.6 show a wide variety of raw materials that can be included in 

formulations.  The raw materials used may differ worldwide and between manufacturers.  Due 

to the wider variety of ingredients, the traditional samples are more difficult to characterize 

than the mineral samples.        
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Figure 4.25 Nonnegative least-squares applied to (a) T3.3 and (b) T2.3 showing error between the 

virtual data and original data for each sample. 
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4.4 Conclusion 

X-ray Diffraction analysis was effective in providing an overview of the mineral and clay 

phases used for cosmetic foundation production.  Analysis of cosmetic grade raw materials 

was useful in peak identification, but not all diffraction peaks could be determined by eye.  

Results obtained using an available commercial database provided a preliminary analysis, 

however, it did not provide a full characterisation, as many of the matches were not cosmetic 

grade and did not comply with XRF results.   

X-ray Diffraction analysis enabled identification of kaolin in diffraction patterns of samples.  

This was achieved through XRD analysis of cosmetic raw materials and through EVA 

search/match.  Kaolin could not be identified through XRF analysis as there was no sole 

element that could be represented by kaolin.  The aim of applying 2D correlation to two 

differing analysis techniques was to highlight its ability to provide a relationship between the 

elemental concentration and the structural phases found in samples.  Two-dimensional 

correlation of XRD with XRF data proved successful in producing positive correlations 

between the elemental emission lines and the diffraction patterns of cosmetic raw materials.  

This method helped to validate peak identification of foundation samples that had been 

determined when comparing diffraction patterns of raw materials, and identifying peaks that 

could not be identified in this process.  Correlation coefficients for traditional samples were 

not as high as those produced from the mineral sample data set.  Due to the complexity of the 

chemical formulas of the raw materials, elemental analysis cannot solely be used for XRD 

peak identification.  Only components, such as bismuth oxychloride, titanium dioxide, zinc 

oxide and to an extent mica could be identified by correlation with XRF.   

Simplisma was not as successful in deconvoluting diffraction patterns of components found in 

traditional samples.  The major problem in using simplisma on this data set was the large 

intensity peaks produced by the presence of talc.  This inhibited other known components 
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from being resolved from the data.  Simplisma was better suited to the mineral-based 

formulations.  However, concentration contributions determined did not always match those 

produced from XRF data.  A possible reason is due to the complex nature of the samples and 

overlap of diffraction peaks of materials that are present.  Peak overlap resulted in incorrect 

calculation of concentration contributions.    This problem may have also affected the results 

of 2D correlation.  Base line correction techniques or data smoothing may help aid the 

problems caused by peak overlap.   

X-ray Diffraction analysis of iron oxide was unsuccessful.  Iron oxide identification in 

samples proved difficult and was not a relevant factor in any of the chemometric analysis 

tools used on this chapter.    

Simplisma indicated the presence of two forms of mica; sericite and pearl mica.  Other 

methods, such as infra-red spectroscopies need to be employed, to help with identification of 

iron oxides and differing component phases of materials such as mica with the aid of PCA, 

2D correlation and simplisma. 

Multivariate curve resolution did not provide accurate concentration profiles for the 

components present in the mineral-based samples.  The virtual data produced did not 

resemble the raw materials present and the fit it provided to the original data matched well 

because the resolved spectra was created from the original data.  

Nonnegative least-squares provided an insight into the quantities of each component that was 

present in the mineral and traditional-based formulas.  Not all results were consistent with 

relative elemental concentrations determined through XRF, but patterns between the two data 

sets did arise and NNLS was able to provide information on the differing forms component 

phases, such as kaolin, mica and talc that could not be represented by a single element in 

XRF.  The comparison of the virtual data produced by NNLS with the original XRD data was 

able to provide information on which raw materials were present and which were not in each 

sample.  Some samples had a better fit with the virtual data than others, which indicates that 



Chapter 4: X-ray Diffraction 

 
136 

 

manufacturers are using differing forms of ingredients and some were not the same as the 

reference materials used in analysis.  Infrared spectroscopies may provide a better insight into 

the forms of raw materials present in the cosmetic foundation samples.      
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Chapter 5: Analysis of Cosmetic 
Foundations using Infrared 
Spectroscopies  
 

5.1 Introduction 

Fourier Transform Infrared spectroscopies in the mid (400-4000 cm-1) and near-infrared 

regions (4000-10000 cm-1) have proved successful techniques for identifying mineral 

compositions.  While absorption methods can be used for mineral characterization, reflectance 

methods are commonly employed for such studies [1].  Diffuse reflectance FT-IR is highly 

effective in retrieving information concerning the mineral composition and structure of 

cosmetic foundation powders.  It is a fast, non-destructive means of measurement with simple 

sample preparation compared with the preparation of KBr discs [2] used in 

transmission/absorption studies.  Diffuse reflectance is defined by the IR radiation emerging 

from a powdered sample after it has undergone absorption, refraction, reflection and 

scattering in a majority of the material [3].  Diffuse reflectance is dependent upon the particle 

size and surface morphology of powdered sample materials, which can be altered and 

controlled during sample preparation.  The recorded DRIFT spectrum results from the 

scattering of the irradiated powdered sample, a combination of diffuse and specular 

reflectance.  Specular reflectance contains little spectral information and is a reflection from 

the front surfaces of the sample being analysed.  It can lead to distortions in the DRIFT 

spectra but can be minimized by correct sample preparation [2].  

The characterization of cosmetics powders using diffuse reflectance techniques has not 

previously been reported.  However, mid-infrared and near-infrared diffuse reflectance 
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spectroscopy has been widely used for the characterization of mineral components in, for 

example, soils.  Nguyen et al. applied DRIFT spectroscopy for mineral characterization of 

soils to highlight the advantages the technique provided over the use of pressed KBr discs in 

the mid-infrared region.  It was reported that the degree of scattering as well as total 

absorption in intense spectral regions and the sloping base-lines caused by pressed discs, do 

not appear in DRIFT spectra.  However, distortion of strong bands can occur, but can be 

inhibited with sample grinding and a degree of dilution with KBr powder [3&4].  McCarty 

employed diffuse reflectance in the mid and near-infrared regions to obtain information of the 

organic and inorganic components present to quantify organic and inorganic matter relating to 

carbon in 273 soil samples [5].   

In this study, diffuse reflectance across the mid-infrared (MIR) and near-infrared (NIR) 

regions is used to obtain complementary characteristic spectra in both regions, providing a 

more complete means of analysis.  The MIR region can provide structural information 

relating to fundamental vibrations, while the NIR region provides complex structural 

information due to weaker and broader vibration overtones and combination bands [5] due to 

the presence of O-H, C-H, C-O and N-H bands [6].  Principal component analysis has been 

applied to spectral data to investigate trends in material composition of samples between 

manufacturers.  Two-dimensional correlation is shown to be a useful tool for the analysis and 

interpretation of spectroscopic data.       

 

5.2 Experimental 

As with previous studies, thirty-nine foundation samples were analysed, 23 mineral-based 

samples and 16 traditional-based formulations.  The samples, with description and coding 

employed, are listed in Table 2.1 (Chapter 2).  Known raw materials of cosmetic foundation 
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were also analysed.  The raw materials, with description and supplier details are listed in 

Table 4.1 and Table 4.2 (Chapter 4). 

5.2.1 Sample Analysis  

All samples and raw materials were analysed using a FT-IR Spectrometer (Model Spectrum 

100, Perkin-Elmer, Shelton, USA) with a DRIFTS attachment (Specac Limited, Slough, UK).  

Approximately 2mg of sample were mixed with approximately 200mg of KBr and thoroughly 

ground.  The stainless steel holders were filled with the sample and KBr mixture and the 

surface flattened with a spatula.  Diffuse reflectance spectra were measured over the 400-4000 

cm-1 mid-infrared region at 2 cm-1 intervals.  For each sample and raw material 16 scans were 

averaged at a spectral resolution of 8cm-1.  

For the near-infrared region, all samples and raw materials were analysed without KBr.  The 

stainless steel sample holders were filled with the samples and surface flattened with a 

spatula.  Diffuse reflectance was measured in the near-infrared region, 4000-8000 cm-1 at 

2cm-1 intervals.  For each material 128 scans were recorded at a resolution of 16cm-1.   

 

5.2.2 Data Processing 

Vibrational spectroscopy techniques generate large amount of data and appropriate 

multivariate statistical methods are employed for data interpretation [7].  All raw reflectance 

data were converted to absorbance (log10(1/R)).  Principal component analysis and 2D 

correlation were used to interpret and identify components in FT-IR data.  Principal 

component analysis reduces the dimensionality of multivariate data by generating a new set of 

variables called principal components.  Each component is characterized by its loadings and 

scores.  Loadings plot are calculated for each PC and indicate which variables (reflectance at 

each wavenumber) contribute to the variance explained by each PC [7].  However, spectral 
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pre-processing was required before chemometric analysis to reduce light scattering, base-line 

drift and random noise that can affect the interpretation of the results.  Light is reflected and 

transmitted when the refractive index changes, as occurs when the light meets a particle in a 

powder [8].  The amount of scatter is dependent on the physical nature of the sample particles, 

and spectral path length is largely dependent on sample particle size [9].  Variations within 

spectra can be due to how densely samples are packed, as well as how finely each sample is 

ground.  Various scatter correction techniques were trialled, such as Savitzky-Golay [10] and 

Multipicative Scatter Correction (MSC) [11], but Standard Normal Variate (SNV) 

transformation gave the best results here for chemometric analysis.  Standard normal variate 

centres and scales individual spectra.  According to Barnes et al., SNV at each wavelength 

removes variation on an individual sample by the use of the following equation, where xij 

represents each spectrum at the jth wavelength for the ith sample: 

𝑋𝑖𝑗,𝑆𝑁𝑉 =
�𝑥𝑖𝑗−𝑥𝚤� �

�∑ (𝑥𝑖𝑗−𝑥�)2𝑗
𝑖=1

𝑗−1

            (Equation 5.1) 

 and where 𝑥̅i is the mean response value for spectrum i and j is the number of variables 

(absorbance at each wavelength) in the spectrum [12].  So, SNV mean-centres each spectrum 

and scales each spectrum by its standard deviation. 

 

5.3 Results and Discussion 

All reference material and sample spectra were subjected to SNV pre-processing using 

MATLAB.  Once scatter corrected, a 3-point binning was employed to smooth data and 

reduce the number of variables considered.   
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5.3.1 Spectral Analysis of Reference Materials in the Mid-Infrared Region 

Diffuse reflectance infrared fourier transform spectra in the mid-infrared region of mineral 

components found in cosmetic foundation powders are presented in Figures 5.1 and 5.2.   

The DRIFT spectrum of kaolin (see Figure 5.1(a)) contains stretching vibrations for two types 

of hydroxyl groups, outer hydroxyl and inner surface hydroxyl groups.  Four distinct bands 

can be observed at 3698, 3672, 3655 and 3622 cm-1.  The three higher frequency bands are 

assigned to the outer hydroxyls and the bands near 3622 cm-1 the inner surface hydroxyl [13].  

The spectra of clay minerals display Si-O stretching and bending in the 1300-400 cm-1 region, 

however, the shape and the positions of the bands are dependent on the layering of the silicate 

structure.  Kaolin exhibits several strong bands due to Si-O stretching vibrations in the 1120-

1000 cm-1 region characteristic of its 1:1 layer structure, in which Al(III) and Si(IV) lie in the 

octahedral and tetrahedral positions, respectively [14].   The Al-OH bending vibrations in 

kaolin occur near 937 and 915 cm-1 and arise from inner and surface hydroxyl groups [15].  

Further bands can be seen in the 800 and 470-420 cm-1 region [3]. 

The MIR spectra for pearl and sericite mica are fairly similar.  The significant differences are 

the OH group bands characteristic of micas near 3654, 3653 and 3635 cm-1 observed only in 

the in the sericite mica IR spectrum.  Both exhibit Al-OH bands from 930 cm-1 and 915 cm -1 

[21].  Since pearl mica is blended with titanium dioxide (see Table 4.2) it exhibits differences 

in spectral features in the region near 700 cm-1 in comparison to sericite mica and displays 

similarities to the MIR spectra of titanium dioxide displayed in Figure 5.2(a). 

Carbonates absorb in regions near 1450, 880 and 700 cm-1 due to the C=O vibrations.  The 

band near 1450 cm-1 is a characteristic feature of the calcite form of CaCO3 [16] and can be 

seen in the diffuse reflectance spectrum displayed Figure 5.1 (b).  Talc exhibits OH stretching, 

of the Mg3OH group at 3676 cm-1 [17].  Lattice vibrations of the Mg-OH in talc are observed 
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Figure 5.1 DRIFT spectra of mineral components used in production of cosmetic foundation powders 

in the mid-infrared region. 
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near 670 and 464 cm-1 [18].  The diffuse reflectance spectrum of magnesium stearate exhibits 

some of the features typical of stearic acid.  The symmetric and asymmetric CH2 stretching 

bands can be observed near 2900 cm-1 and a C=O stretching vibration near 1570 cm-1 

[19&20].  A CH2 scissoring vibration appears near 1466 cm-1.    

The diffuse reflectance spectra of zinc oxide and titanium dioxide shown in Figure 5.2(a) are 

relatively simple.  Little chemical information can be found from the MIR spectra.  The MIR 

spectrum of bismuth oxychloride displays a sharp peak at 536 cm-1. 

The reflectance spectra for iron oxides are displayed in Figure 5.2(b).  There are similar 

characteristic features in each of the spectra with bands observed in the 900 to 400 cm-1 

region.  Fourier Transform Infrared study of iron oxides is well established.  Characteristic 

absorption bands that are observed are due to OH stretching and Fe-O lattice vibrations [22].     

The MIR spectra of orange iron oxide contains absorption bands characteristic of goethite.  

Bands are observed near 3150, 890 and 795 cm-1, due to Fe-OH stretching, while Fe-O 

vibrations are observed at a lower wavenumber, near 600 cm-1 [23].  The MIR spectra of deep 

red, medium brown and dark brown iron oxides exhibit a broad absorption near 620 cm-1, 

characteristic of the spectra of hematite due to OH stretching vibrations [24]. 

In comparison, the spectra of ochre shows absorption bands characteristic of maghemite, in 

which bands are observed near 680, 650 and 554 cm-1 due to Fe-O vibrations [25]. 
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Figure 5.2 DRIFT spectra of cosmetic metal and iron oxides used in foundation powder production in 

the mid-infrared region. 
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5.3.2 Comparison of Spectral Data in the mid-infrared region using reference materials  

The DRIFT spectra of traditional and mineral-based foundation powders in the mid-infrared 

region (400-4000 cm-1) are presented in Figure 5.3 and 5.5 respectively.  There are visible 

differences between the mineral and traditional foundation types, as well as by manufacturer.  

The spectra of traditional foundation samples (Figure 5.3) contain absorbance bands 

characteristic of talc at 3674, 1022, 670 and 460 cm-1.  Bands appear in all traditional-based 

samples at 2918 and 2852 cm-1 that resemble the CH2 stretching bands of magnesium or zinc 

stearate.     However, not all samples exhibit stearate C=O stretching vibration near 1570 cm-1 

and the CH2 scissoring vibration near 1466 cm-1.  A strong, broad band observed near 1466 

cm-1 is representative of calcium carbonate.  A closer investigation is required to distinguish 

these differences between samples.  The major spectral differences between traditional-based 

samples are displayed in Figure 5.4.       

 

Figure 5.3 FTIR spectra of the 21 traditional-based foundation formulations recorded in the mid-

infrared region. 
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Calcium carbonate, distinguished by a broad band near 1466 cm-1 was found to be present in 

the MIR spectra of T2.3, T4.x and T8.2 and is displayed in Figure 5.4(a).  This finding was 

consistent with XRF and XRD results.  Relative elemental concentrations (%) produced by 

XRF analysis, are shown in Table 3.2 (Chapter 3), and indicate calcium is found to be present 

in samples T4.x, T2.3 and T8.2.  The XRD PCA scores and loadings displayed in Figure 4.6 

(Chapter 4), shows the grouping of samples T4.x and T2.3 due to calcium carbonate.  T8.2 

does not group with these samples in XRD PCA results but it is likely that another component 

is responsible.  Samples T2.1 and T2.2 exhibit a similar band at 1466 cm-1, however, XRF 

and XRD do not support the presence of calcium carbonate in these samples.  It is assumed 

that the band is due to another material component not examined in this study. 

 

Figure 5.4 Comparison of spectra of traditional-based samples (a) T8.2, T4.x and T2.x and (b) T1.2, 

M5.3, T3.1 and T6.1 in the 1600-400cm-1 spectral region. 
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Samples T1.2, M5.3, T3.1 and T6.1 are shown in Figure 5.4(b) to highlight the differences in 

bands present in samples due to stearate at 1538 and 1466 cm-1.  Samples M1.x, M5.x and 

T1.x show characteristic bands of stearate near 2900, 1538 and 1466 cm-1, whereas samples 

T3.x and T6.x do not exhibit a band at 1538 cm-1.  The MIR spectra of zinc stearate exhibits a 

band near 1537 cm-1 due to carboxylate vibrations [26].  It can be assumed that samples that 

exhibit a band at 1538 cm-1 contain zinc stearate and those without contain magnesium 

stearate or another form of stearate.  XRD analysis could not support the presence of stearate 

in all cases.  The X-ray powder diffraction patterns of zinc and magnesium stearate are 

similar.  Patterns consist of peaks at 3°, 6°, 21.3° and 37.8° 2θ angles [27&28].  These peaks 

are only visible in diffraction patterns of samples M5.x.  This indicates that absorbance bands 

could be due to another component besides stearate or XRD analysis was not an appropriate 

technique for the identification of stearate.  Although samples M1.x, M5.x and T1.x contain 

traces of zinc determined by XRF analysis, elemental concentrations could not be used to 

confirm MIR results, as zinc is also present in cosmetic foundations as zinc oxide and was 

unable to be identified through FT-IR.    

In comparison, the reflectance spectra of the mineral-based samples displayed in Figure 5.5 

have less obvious spectral features and overlapping of component bands.  The characteristic 

CH2 stretching bands of stearate at 2924 and 2852 cm-1 are observed in some of the mineral-

type foundations, M4.x and M6.x.  The mineral-based sample spectra display major 

difference in the 1100 to 450 cm-1 compared to the traditional-based samples and lack of C=O 

bond at 1466 cm-1.  The mineral-based foundations feature absorbance characteristic of mica 

near 1000, 570 and 430 cm-1.  There are clear differences between the sample manufacturers.  

There are differences in spectra in the 840 to 560 cm-1 region.  Figure 5.6 shows the 

comparison of MIR spectra of mineral-based samples for each manufacturer.  It should be 

noted that samples produced from the same manufacturer gave very similar spectra and one 
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sample from each manufacturer is used as an example.  The region from 1200 to 400 cm-1 

displays spectral differences between samples due to mica.  Samples M3.x exhibit bands at 

1058 and 980 cm-1 and at 548 and 482 cm-1, like those in the MIR spectra of pearl mica.  In 

contrast, samples M2.x, M4.x, M6.x and M7.x display bands characteristic of sericite mica at 

1004 and 914 cm-1 and then at 530 and 470 cm-1.  This indicates that the form of mica used 

may differ between manufacturers. 

 

 

Figure 5.5 FTIR spectra of the 18 mineral-based foundation formulations recorded in the mid-infrared 

region. 

Samples M6.x differs from the other mineral samples.  M6.4 exhibits a band near 800 cm-1 

that is not visible in the other samples from M6.x.  These samples display a broad band near 
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722 cm-1 but it is not clear whether it is responsible for the band present in samples M6.x. 

3000 2500 2000 1500 1000 500
Wavenumber (cm-1)

4000 3500

0

1

2

3

4

5

R
el

at
iv

e A
bs

or
ba

nc
e/

 a
.u

.

1004

1466

2918

2852 15383698
3620



Chapter 5: Analysis of Cosmetic Foundations using Infrared Spectroscopies 
 

151 
 

Differences in spectral features between samples occur in the 4000 to 1200 cm-1 region.  

Samples from M4.x and M6.x exhibit bands near 2900 cm-1, typical of CH2 bands of stearate.  

Samples M4.x contain a sharp band at 1538 cm-1 and another at 1466 cm-1.  However, the 

band at 1538 cm-1 is absent in the spectra of samples M6.x.  This indicates samples M4.x 

contain zinc stearate and samples M6.x contain another form of stearate.  The presence of 

stearate in these samples is supported by XRD analysis and differences can be seen in their 

diffraction patterns.  Both M4.x and M6.x show diffraction peaks at 21.3° but only samples 

M4.x have visible peaks at 3°, indicating differences in the form of stearate used between 

manufacturers.  

Samples M7.x exhibit a broad band at 3620 cm-1, that is similar to a band visible in the 

spectra of pearl mica.  However, it does not display other spectral features of pearl mica in the 

1200 to 400 cm-1 region. 

Due to the complexity of the sample mixtures, not all spectral features could be identified 

visually because of band overlap.   

Iron oxides, titanium dioxide, zinc oxide and bismuth oxychloride could not be identified 

visually, as characteristic features of these materials could not be seen within samples.  

Principal component analysis was employed to further investigate the components present in 

the foundation samples and the differences between samples.     
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Figure 5.6 Comparison of MIR spectra of mineral-based samples from each manufacturer. 
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A scores plot of the first two PCs is shown in Figure 5.8(a).  Once again, there is a clear 

distinction between the mineral-based and the traditional-based formulations, with samples 

M1.x and M5.x consistently grouping with the traditional samples.  The separation occurs 

mainly along the PC1 axis, and can be interpreted by the factor loading plot of Figure 5.8(b).  

The factor loadings show separation along PC1 is due to bands between 2900-2800 cm-1 and a 

band at 1466 cm-1 representative of stearate and calcium carbonate respectively.   

 

Figure 5.7 Scree plot of variance of PCA scores (percentage of total variance) of MIR spectral data 

for 39 cosmetic foundation samples.  

Like PCA results from XRF and XRD data, separation of mineral and traditional-based 

samples is due to the presence of talc and calcium carbonate.  Grouping of samples in the 

positive PC2 region is due to talc (distinct bands near 1022, 668 and 452 cm-1), calcium 

carbonate in the positive PC1 region (absorbance band near 1466 cm-1), and mica in the 

negative PC1 region.  Samples T4.x, T2.3 and T8.2 have consistently grouped due to calcium 

carbonate.  Samples M6.x is grouped away from the other mineral foundation samples.  A 

band near 752 cm-1 seems to be responsible for the separation.  The spectra of M6.x have a 

region that reflects the MIR spectra of titanium dioxide.  XRF analysis found significant 

amounts of titanium in these samples and XRD analysis also displays titanium dioxide 

diffraction peaks in these patterns.  
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Figure 5.8 The scores plot (a) and the loadings plot (b) associated with PC1 and PC2 from principal 

component analysis of data obtained through diffuse reflectance spectroscopy in the mid-infrared 

region of the 39 foundation samples. 
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It cannot be confirmed that titanium dioxide is the cause of separation and further 

investigation of PC’s is required.  Sericite bands occur near 3698, 1010, 914, 530 and 470 cm-

1 and in the 850 to 600 cm-1 region but not all are distinguishable due to overlap with other 

components such as kaolin and talc.  Sericite mica is separating samples in the negative 

region of the PC1 axis.  These samples have higher mica content but are not reflected by the 

loadings plot.  There is no separation of samples M2.x, M3.x, M4.x and M7.x and differences 

may be apparent in other PC scores and loadings.  Interpretation of MIR spectra of samples 

revealed that mineral-based samples M4.x and M6.x contain a form of stearate, however these 

samples grouping in the positive PC1 region.    

Further information can be provided in PC1 and PC3, shown in scores and loadings plot of 

Figure 5.9.  The scores plot (Figure 5.9(a)) shows grouping of samples due to calcium 

carbonate along the PC1 axis and talc along the PC3 axis.  Samples M6.x is separated along 

the PC3 axis with a majority of the traditional-based formulations that contain talc.  

Absorbance bands for talc can be found at 3674, 1022, 668 and 452 cm-1 shown in the 

loadings plot of Figure 5.9(b).  The loadings plot shows the absorbance bands near 3674 and 

1022 cm-1 to have loadings close to zero in PC1 and PC3.  However, the bands near 668 and 

452 cm-1 have positive loadings in the PC1 and PC3 region.  This indicates that overlapping 

of components is occurring and a component other than talc has caused samples M6.x to 

cluster with the group of traditional-based samples.  Once again, stearate seems to have little 

effect on the separation of samples and there is little separation between mineral-based 

samples and PCA was undertaken on mineral-based formulas separately.  In Figure 5.10(a) 

the samples identified as belonging to the mineral-type have been investigated by PCA.  The 

associated loadings plot of Figure 5.10(b) show the separation is due to the presence of pearl 

mica, sericite mica and a form of stearate in the samples.  The absorbance bands that appear   
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Figure 5.9 The scores plot (a) and the loadings plot (b) associated with PC1 and PC3 from principal 

component analysis of data obtained through diffuse reflectance spectroscopy in the mid-infrared 

region of the 39 foundation samples. 
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near 3698 and 3626 cm-1 are characteristic of bands that occur in this region in the DRIFT 

spectrum of sericite mica.  Sericite mica is separating samples M2.x and M4.x along the 

negative axis of PC2.  Samples M3.x are grouping in the positive PC2 region, which seems to 

be defined by the presence of pearl mica in these samples.  Bands occurring in the loadings 

plot near 1058 and 986 cm-1, resemble those in the DRIFT spectrum of pearl mica.  Samples 

M7.x is grouping in the positive PC2 region but close to zero as it has characteristic spectral 

features from both pearl and sericite mica.  There is an identifiable difference of separation of 

samples M6.x from the other mineral-based formulas.  These samples are grouping to the left 

in the negative PC1 region, it is assumed due to a form of stearate, either magnesium or zinc.  

This is visible from the CH2 stretching in the loadings plot at 2924 and 2852 cm-1.  However, 

samples M4.x were found to contain stearate and it would be expected that these samples 

would group with M6.x, but this is not the case.  It is clear that another component is 

separating samples M6.x towards the positive PC2 region.  The bands at 722 cm-1 are 

influencing samples M6.x to be grouping in the positive PC2 region, which could be due to 

titanium dioxide, however due to band overlap it is too difficult to identify the component 

responsible. 

Further investigation of PCA with all 39 cosmetic foundations was undertaken to try to 

identify the distinct separation of samples M6.x.  Figure 5.11 displays samples projected 

across PC3 and PC4 with the associated loadings vectors.  The score plot in Figure 5.11(a) 

shows that samples are not distinctly separating based on foundation-type but still grouping 

according to manufacturer.  Separation is occurring across PC3 axis due to talc in the positive 

PC3 region and CaCO3 in the negative PC3 region.  Once again samples high in calcium 

carbonate, MT2.3, M4.x and T8.2 are grouping together and M1.x and M5.x with other 

traditional-based formulas with high talc content.  The effect of PC4 of samples is causing 

separation in the positive PC4 region due to stearate (bands at 2918, 2846 and 1538 cm-1) and  



Chapter 5: Analysis of Cosmetic Foundations using Infrared Spectroscopies 
 

158 
 

 

Figure 5.10 The scores plot (a) and the loadings plot (b) associated with PC1 and PC2 from principal 

component analysis of data obtained through diffuse reflectance spectroscopy in the mid-infrared 

region of the 18 mineral-based samples. 
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sericite mica due to bands at 3620, 914 and 524 cm-1.  There is a distinct separation of the 

mineral-based samples M2.x, M3.x, M4.x and M7.x, and depends on the form of mica 

present.  Those samples that contain pearl mica, e.g. M3.x are grouping in the negative PC4 

region due to pearl mica bands at 962 and 488 cm-1.  While samples M2.x and M4.x are 

grouping in the positive PC4 region due to sericite bands at 3620, 914 and 524 cm-1.     

Samples M7.x is once again grouping in between as its MIR spectra displays characteristics 

from both pearl and sericite mica. Samples M4.x and M6.x are not grouping even though they 

both contain stearate.  Comparison of their MIR spectra reveals M4.x contains a higher 

amount of sericite mica than samples M6.x.  Unlike samples M4.x, M6.x have no band at 

1538 cm-1 representative of zinc stearate, which indicates M6.x could contain another form of 

stearate.  The band at 1538 cm-1 is grouping samples M4.x to the top left along the PC3 axis.  

This explains the separation based on the type of stearate but another component is grouping 

samples M6.x in the positive PC3 region.  A band near 750 cm-1 in the loadings plot could be 

responsible for the grouping of M6.x, which once again could be due to titanium dioxide. 

Principal components 5 and 6 were investigated but did not reveal any new trends and 

loadings began to reflect noise within data.  Principal component analysis  results successfully 

separated samples based on the manufacturer and the components present.  However, the 

interpretation on which components were causing the separation in each case was not as clear 

as PCA results of XRF and XRD data, as overlapping bands of components caused confusion.  

It is assumed that samples M6.x were separating due to titanium dioxide but MIR analysis did 

not provide enough evidence to support this.   



Chapter 5: Analysis of Cosmetic Foundations using Infrared Spectroscopies 
 

160 
 

 

Figure 5.11 The scores plot (a) and the loadings plot (b) associated with PC3 and PC4 from principal 

component analysis of data obtained through diffuse reflectance spectroscopy in the mid-infrared 

region of the 39 foundation samples. 
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5.3.4 Covariance and correlation (MIR and XRD) 

XRD phase data were correlated with MIR spectral data to aid interpretation and to confirm 

the presence of the material components in powder foundation samples.  This method uses the 

correlation coefficient to estimate the degree of similarity between variables, in this case, 

XRD peak intensities and MIR absorbance bands.   

 A 2D covariance matrix was produced with MIR spectral data and XRD phase data for all 

samples given by, 

Ф = MIRT.XRD          (Equation 5.2) 

where MIR and XRD are the mean-centred data matrices obtained from diffuse reflectance 

spectra data (39 x 599) in the mid-infrared region and diffraction data (39 x 783) respectively.  

Figure 5.12 shows a 2D covariance contour map of MIR vs. XRD, in which positive and 

negative correlations are displayed.  The red colour indicates a positive correlation of XRD 

component peaks with absorption bands of the MIR spectral data.  A positive correlation 

indicates that XRD diffraction peak intensities and MIR absorbance bands are changing 

simultaneously.  The covariance map shows positive correlations for the diffraction peaks of 

mica and talc with the characteristic absorbance bands of these components.   

Two-dimensional correlation was employed to aid in the interpretation of the 2D map.   A 

correlation slice of each component was taken from the XRD data at a selected 2θ with the 

highest peak intensity across mineral-based samples.  For example, the diffraction pattern of 

sericite mica displays a characteristic diffraction peak at 26.6°.  The correlation slice for 

sericite mica was taken at this angle.  The correlation slice for each component was then 

cross-correlated with  
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Figure5. 12 The covariance contour plot of MIR vs. XRD.  An average spectrum of each technique is 

presented along each axis to aid in interpretation, showing positive (red) and negative (blue) 

correlations of XRD component diffraction peaks with MIR spectral bands of all foundation samples. 
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analysis using XRD produced such poor results due to the Cu Kα source.  Two-dimensional 

correlation of MIR and XRD data was first undertaken across the whole sample set.  As with 

the study of correlation with XRF and XRD data, the correlation method worked more 

successfully with the mineral-based formulations due to the similarity of components between 

manufacturers.   

However, correlation coefficients using all samples produced for talc and calcium carbonate 

were higher than 0.8.  Other components produced poor results.  The covariance slices for talc 

(slice taken at 9.44°) and calcium carbonate (slice taken at 29.42°) are shown in Figure 5.13.  

It is clear that the 2θ peak positions of talc and calcium carbonate have highly correlated with 

the absorbance bands present in the reference spectra.  The covariance slice of talc, displayed 

in Figure 5.13(a), produced correlation coefficients of 0.8 and 0.86, with absorption bands at 

668 and 452 cm-1 respectively.  These are consistent with absorption bands recorded in the 

reference spectra of talc.  The correlation of the calcium carbonate diffracted peak resulted in 

a correlation coefficient value 0.81 with the strong broad characteristic band of calcium 

carbonate at 1466 cm-1.   

Two-dimensional correlation was investigated with mineral-based sample data to see whether 

higher correlation coefficients could be produced for other components present in cosmetic 

foundations.   

A 2D covariance matrix was produced with MIR spectral data and XRD phase data for 

mineral-based samples given by, 

Ф = MIR(mineral)T.XRD(mineral)         (Equation 5.3) 

where MIR and XRD are the mean-centred data matrices obtained from diffuse reflectance 

spectra data (18 x 599) in the mid-infrared region and diffraction data (18 x 783) respectively.   
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Figure 5.13 Covariance slices obtained from correlation of MIR and XRD data. The correlation 

coefficients relating to correlation of (a) Talc & (b) CaCO3 diffraction peaks with MIR spectral data 

of all samples. 
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Samples M1.x and M5.x were not included in this correlation study.  Figure 5.14 shows a 2D 

covariance contour map of MIR vs. XRD, in which only positive correlations are displayed.  

The red colour indicates a positive correlation of XRD component peaks with absorption 

bands of the MIR spectral data.  However, the 2D map is much more complex than in 

comparison to Figure 5.12 and is difficult to interpret by eye. 

 

Figure 5.14 The covariance contour plot of MIR vs. XRD of mineral-based formulations.  An average 

spectrum of each technique is presented along each axis to aid in interpretation, showing positive 

correlation of XRD diffraction peaks with MIR absorbance bands. 
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Two-dimensional correlation was employed to aid in the interpretation of the 2D map.  The 

correlation coefficients of kaolin, pearl mica and sericite mica, with slices taken at 12.32°, 

26.72° and 26.9° respectively are shown in Figure 5.15.  It is clear that the 2θ peak positions 

of each component that have highly correlated with bands in the MIR data, match with the 

absorbance bands present in the reference component spectra.  Kaolin, pearl mica and sericite 

mica returned correlation coefficients values close to 1.  The diffraction peak of kaolin 

produced correlation coefficients ranging from 0.93 to 0.60, with absorbance bands found in 

its reference spectra.     

Correlation of magnesium diffraction peak at 21.3° returned poor correlation values with MIR 

data.  XRD analysis of magnesium stearate may have produced diffraction peaks that were too 

minor and insignificant to show differences between samples that have stearate present and 

those that did not, hence why poor correlation coefficient values were produced.  The 

diffraction peaks for pearl and sericite mica matched consistently with most of the absorbance 

bands found in the reference spectra, with correlation coefficients ranging from 0.8 to 0.95.      

2D correlation was successful in confirming absorbance in MIR spectral data using the 

mineral-based sample set.  There was overlap of bands in the 400 to 1000cm-1 region which 

made interpretation particularly difficult.  Mica and talc both exhibit Si-O absorbance bands 

in this region and when the mineral and traditional-based samples are combined for analysis, 

it is hard to determine which components are responsible with each absorbance band.     
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Figure 5.15 Covariance slices obtained from correlation of MIR and XRD data.  The correlation 

coefficients relating to correlation of (a) Kaolin (b) Pearl Mica & (c) Sericite Mica diffraction peaks 

with MIR spectral data of mineral-based samples. 
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Eliminating the traditional-based samples, eliminated the presence of talc and hence 

highlighted absorbance bands representing mica.  There is a possibility of overlapping of 

bands due to kaolin and mica in the 400 to 800 cm-1 region which have produced low 

correlation coefficient values.  However, the method was still successful in finding a 

relationship between the two techniques and highlighted the range of components present in 

the mineral-based samples. 

 

5.3.5 Spectral Analysis of Reference Materials in the Near-Infrared Region 

Diffuse reflectance infrared fourier transform spectra in the mid-infrared region of some 

mineral components are presented in Figures 5.16.  The DRIFT spectra of the cosmetic grade 

iron oxides were not analysed as the spectra were too noisy, and hence will not be discussed 

in this section.   

Kaolin displays absorbance bands in the 4000 and 7000 cm-1 region due to the first overtone 

region near 7170, 7152, 7116 and 7068cm-1 corresponding to the outer and inner surface 

hydroxyl groups [29].  Bands at 4620 and 4530 cm-1 are assumed to be combination bands 

due to the addition of the inner hydroxyl stretching and the Si-O stretching [30].  The NIR 

spectrum of calcium carbonate did not exhibit any characteristic bands or features.  Talc 

spectrum shows a sharp characteristic peak around 7188 cm-1 corresponding to the first 

overtone OH stretching [17].  The most notable feature of the IR spectra of pearl and sericite 

mica are the bands observed near 4530 cm-1 due to the Al-OH groups present in the structure 

of mica [20].  Magnesium stearate exhibits a strong absorbance observed near 5780 cm-1, 

corresponding to the first overtone of CH2 stretching, while the band near 4340 cm-1 is 

observed due to combinations of CH2 stretching frequencies [31].  
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Figure 5.16 DRIFT spectra of mineral components used in production of cosmetic foundation powders 

in the near-infrared region. 

The NIR spectra of titanium dioxide, bismuth oxychloride and zinc oxide displayed no 

significant characteristic features.       

5.3.6 Comparison of Spectral Data in the near-infrared region using reference materials  

The DRIFT spectra of, SNV corrected, mineral and traditional-based foundation powders in 

the near-infrared region (4000-7200 cm-1) are presented in Figure 5.17 and 5.18.  There are 

visible differences between the mineral and traditional foundation types, as well as by 

manufacturer.  The spectra of traditional foundation samples (Figure 5.17) contain a sharp 

absorbance band characteristic of talc at 7180cm-1.  The traditional samples also display two 

4000500060007000

R
el

at
iv

e A
bs

or
ba

nc
e/

 a
.u

.

Wavenumber (cm-1)

Magnesium Stearate

Talc

Pearl Mica

Sericite Mica

Kaolin

7080

7068

5778

4254

4548

4368

4182

7188

7068

4530

4326

4620

4326

5664

4260
4098

4248
4524

4614

4194



Chapter 5: Analysis of Cosmetic Foundations using Infrared Spectroscopies 
 

170 
 

sharp bands at 4368 and 4326 cm-1 that mimic those recorded in the reference spectra of talc.  

Sample T2.3 shows a band near 4550 cm-1, resembling a band in the reference spectra of pearl 

mica.  There are notable differences between spectra of the two foundation types in the 4600 

to 4000 cm-1 region.  The mineral-based samples (Figure 5.18) contain a strong Al-OH group 

band found in mica at 4530 cm-1.  There is little visible difference between the spectra of the 

traditional samples.  On closer inspection of the mineral-type samples, it is clear a form of 

stearate is present in samples M6.x.  These samples exhibit an absorbance bands near 4320 

and 5770 cm-1, characteristic of the CH2 stretching found in the reference spectra of 

magnesium stearate.  This is seen more clearly in Figure 5.19, highlighting spectral 

differences between manufacturers M2.x, M3.x, M4.x, M6.x and M7.x.  Samples M4.x also  

 

Figure 5.17 FTIR of the 21 traditional-based foundation formulations recorded in the near-infrared 

region. 
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exhibit characteristics of stearate, with bands observed near 4326 and 4254 cm-1 but not near 

5772 cm-1.  Like the MIR spectra of M6.x, the NIR spectra of these samples displays bands at 

4188 and 4098 cm-1 which are not present in the other true-mineral formulations.  This could 

be due to titanium dioxide, however analysis of reference materials by NIR could not confirm 

this.  Samples M2.x display a bands near 7068, 4524 and 4248 cm-1, characteristic of bands 

found in the reference spectra of sericite mica.  Whereas, M7.x shows a band at 4548cm-1, 

characteristic of pearl mica.  Mid-infrared spectra of M4.x clearly indicated the presence of 

sericite mica, however bands are not as clearly visible in the NIR spectra.  This is also the 

case with M3.x, as pearl mica bands are not visible in the NIR spectra.  Principal component 

analysis seeks to further investigate the components present in the foundation samples.  

     

    

 

Figure 5.18 FTIR spectra of the 18 mineral-based foundation formulations recorded in the near-

infrared region. 
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Figure 5.19 Comparison of NIR spectra of mineral-based samples from each manufacturer. 
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It must be noted that NIR analysis was unable to identify as many components as XRF, XRD 

and MIR, due to limitations of the technique and the high noise recorded.  It was expected that 

separation of samples by PCA analysis would be due to very few components.  The first three 

principal components contained approximately 85% of the spectral variance, with results 

summarized in Figures 5.21 and 5.22.  A scores plot of the first two PCs is shown in Figure 

5.22(a), accounting for 74% of the total variance contained in the spectral data.  Once again, 

there is a clear distinction between the mineral-based and the traditional-based formulations, 

however, samples M1.x and M5.x are not grouping as closely with the traditional samples 

rather in comparison with XRF, XRD and MIR PCA results.  As with MIR results samples 

M6.x are once again not grouping with the other mineral-based formulations. 

 

Figure 5.20 Scree plot of variance of PCA scores (percentage of total variance of NIR spectral data 

for 39 cosmetic foundation samples. 
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Figure 5.21 The scores plot (a) and the loadings plot (b) associated with PC1 and PC2 from PCA 

analysis of phase data obtained through diffuse reflectance spectroscopy in the near-infrared region 

of the 39 foundation samples. 
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4326 and 4182 cm-1 match those of the reference spectra of talc, shown in Figure 5.16.  The 

loadings for the OH band at 7180 cm-1 is not distinctly positive in PC1 and PC2 as with bands 

at 4368, 4236 and 4182 cm-1 that are characteristic of talc.  This indicates that scatter effects 

or noise may be influencing PCA results.  The variation between individual sample NIR 

spectra may be large and SNV did not sufficiently correct for scatter effects.  Samples M1.x, 

M5.x , M6.x and T4.1 seem to be grouping in the positive PC1 region due to bands at 5778 

and 4257 cm-1 representative of stearate.   It was expected that samples M1.x, M5.x and T4.1 

would group closely with the remaining traditional samples due to the presence of talc.  The 

presence of stearate is not a determining factor as it is also present in other traditional samples 

and does not explain the separation.  Principal components 1 and 2 do not provide enough 

information.       

The separation of the two foundation types is better illustrated in PC1 and PC3 shown in 

scores and loadings plot of Figure 5.22.  Again we see samples M6.x grouping with 

traditional formulations but unlike PC1 versus PC2, samples M1.x, M5.x and T4.1 are 

grouping with traditional-based formulations.  It is clear that the band at 4254 cm-1 is 

grouping these samples in the negative PC3 region, with the other traditional samples that 

also contain a form of stearate.  Once again OH vibration of talc at 7180 cm-1, is responsible 

for separation of traditional samples to the positive region of the PC1 and PC3 axis.  Mineral-

based samples are separating from traditional samples due to mica bands at 7068 and 4530 

cm-1.  Principal component 1 vs principal component 3 shows the separation of samples M2.x, 

M3.x, M4.1 and M4.2 from M4.3, M4.3 and M7.x along the PC3 axis.  It is assumed that 

mineral formulations would separate based on the form of mica present but noise in individual 

spectra seems to be the cause of the separation.  Mid-infrared PCA results determined 

separation due to pearl mica in samples M3.x and M7.x and sericite in samples M2.x and 

M4.x.   
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Figure 5.22 The scores plot (a) and the loadings plot (b) associated with PC1 and PC3 from PCA 

analysis of phase data obtained through diffuse reflectance spectroscopy in the near-infrared region 

of the 39 foundation samples. 
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Principal component 3 versus principal component 4 was investigated for further 

interpretation, with scores and loadings displayed in Figure 5.23.  Mineral and traditional 

samples are grouping together.  Talc bands at 7188 cm-1 are separating traditional samples 

positive PC3 region.  Loadings show bands at 4368 and 4326 cm-1 in the positive PC3 region 

but are pulling samples into the negative PC4 region.  While the band 4182 cm-1 has negative 

PC3 loadings.  Because the loadings of talc are different across all bands, it is causing 

traditional-based samples to spread rather than group.  Mineral-based samples are separating 

across PC4 due to sericite bands at 7068 and 4530 cm-1.  The NIR spectra of M3.x do not 

show many characteristic features of mica and hence are projected across the negative PC4 

region.    

Principal component analysis of NIR spectral data show separation of foundation-type due to 

talc.  Mineral-based samples separated due to the presence of mica.  Loadings for PC’s were 

affected by scatter effects and noise in data that inhibited the interpretation of results.  PCA 

results may be improved if other scatter correction techniques such as normalization were 

investigated.      
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Figure 5.23 The scores plot (a) and the loadings plot (b) associated with PC3 and PC4 from PCA 

analysis of phase data obtained through diffuse reflectance spectroscopy in the near-infrared region 

of the 39 foundation samples. 
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5.3.8 Covariance and correlation (MIR and NIR) 

Near-infrared spectral data was correlated with MIR spectral data to determine whether 

patterns could be found between the two data sets.  A 2D covariance matrix was produced 

with MIR spectral data and XRD phase data for all samples to give, 

Ф = NIRT.MIR          (Equation 5.4) 

where NIR and MIR are the mean-centred data matrices obtained from spectra data (39 x 533) 

in the near-infrared region and spectral data in the mid-infrared region (39 x 599) 

respectively.  Figure 5.24 shows a 2D covariance contour map of NIR vs. MIR, in which 

positive and negative correlations are displayed.  The red colour indicates a positive 

correlation of NIR with absorption bands of the MIR spectral data.  There is a positive 

correlation between the OH stretching of the Mg-OH bonds in talc at 1022 cm-1 in the mid-

infrared region and 7180 cm-1 in the near-infrared region.   Talc bands at 670 and 470 cm-1 

positively correlate with talc bands at 4368, 4326 and 4182 cm-1.  Stearate band at 4326 cm-1 

shows a correlation with a band at 1538 cm-1, characteristic of zinc stearate.  Positive 

correlation in the fingerprint and combination band regions was difficult to interpret due to 

overlap of component bands.  It was expected the mica band at 4530 cm-1 in the NIR region 

would show correlation with mica bands in the MIR region, however, overlap of mica with 

talc and kaolin may be the cause. 

Two-dimensional correlation was employed to aid in interpretation of the 2D contour map. A 

correlation slice of component was taken from the MIR data at a particular wavenumber, 

relating to a characteristic absorption band across all samples. For example, talc shows a 

characteristic band at 452 cm-1 and the correlation slice taken at this wavenumber.  A 

correlation slice was taken for each component was then cross-correlated with the entire  
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Figure 5.24 The 2D covariance contour plot of NIR vs. MIR.  An average spectrum of each technique 

is presented along each axis to aid in interpretation, showing positive (red) correlations spectral 

bands of all foundation samples. 
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region, produced correlation coefficients of 0.85 and 0.90 with bands near 7180 and 4320 cm-

1 respectively.  Magnesium stearate produced a coefficient value of 0.73, correlating with the 

first overtone CH2 stretching band of stearate at 5770 cm-1.  It was expected that magnesium 

stearate would highly correlate with bands near 4320 cm-1, characteristic of combination CH2 

stretching of the NIR reference spectra of magnesium stearate.  This was not the case, and the 

presence of other component band overlap may have contributed to this.   

2D correlation was conducted using mineral samples.  Once again it produced poor results for 

certain components, however, relatively high correlation coefficients were obtained for mica 

and kaolin.  The covariance The MIR spectra of pearl and sericite mica exhibit similar 

characteristic features, therefore an absorbance band that was representative of both forms of 

mica was chosen to correlate with NIR spectra.  The covariance slice of kaolin and mica with 

corresponding correlation coefficient values are displayed in Figure 5.26.  Mica produced a 

correlation coefficient of 0.88 with a band near 7068 cm-1, relating to a band observed in the 

reference spectra of pearl and sericite mica.  The MIR absorbance band of kaolin correlated 

with a band near 4524 cm-1, in which a coefficient value of 0.79 was obtained, due to Si-O 

stretching visible in the NIR reference spectra of kaolin.   

Two-dimensional correlation using MIR spectral data was successful in confirming 

components in the NIR region.  Once again, correlation across the entire sample set did not 

produce sufficient coefficient values for all components and to achieve the best results, 

mineral-based samples had to be analysed separately.  Performing 2D correlation on the 

mineral-based sample set eliminated talc and hence highlighted absorbance bands of mica and 

kaolin.  Generally, poor correlation coefficient values were obtained for absorbance bands in 

the 5000-4000 cm-1 region and not all bands could be successfully confirmed.  Overlapping of 

component bands may have contributed to poor results in this region.     
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Figure 5.25 Covariance slices obtained from correlation of NIR and MIR data.  The correlation 

coefficients relating to correlation of (a) Talc & (b) Magnesium stearate MIR absorbance bands with 

NIR spectral data of all samples. 
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Figure 5.26 Covariance slices obtained from correlation of NIR and MIR data.  The correlation 

coefficients relating to correlation of (a) Mica & (b) Kaolin MIR absorbance bands of mineral-based 

samples. 
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5.4 Conclusion 

Application of FTIR to cosmetic foundation samples was successful in providing additional 

structural and chemical information, concerning the components used in their production.  

Spectral data obtained in the mid and near infrared regions gave a more complete analysis of 

samples.  Analysis of reference spectra of known materials used in foundation production, 

verified chemical bonding of components within samples and spectra could be interpreted by 

eye. 

Principal component analysis was effective in separating samples based on their structural and 

chemical composition.   

Two-dimensional correlation of XRD phase data and MIR spectral data proved successful in 

finding a relationship between the two techniques.  Correlation demonstrated that XRD data 

could aid in the interpretation of MIR spectra and validated the presence of components in 

samples that could not be visually identified. 

Two-dimensional correlation of NIR and MIR displayed positive correlation of absorbance 

bands representative of talc.  However, it was unsuccessful in highlighting positive correlation 

of the other components present due to overlap of bands. 
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Chapter 6: Conclusion and Future 
Work 
 

6.1 Conclusion 

X-ray diffraction and spectroscopic methods proved to be useful tools in the examination of 

material components in cosmetic foundation samples.  The techniques employed provided 

information on the elemental, crystalline content, chemical composition and structure of 

cosmetic foundations, resulting in an extensive characterisation of their composition.  These 

techniques were successful in confirming the material components of samples and were used 

complementary to provide a more complete means of analysis, with each technique 

interpreting or supporting the other. 

Two-dimensional correlation was effective in highlighting relationships between analysis 

techniques.  It was able to aid in interpretation of diffraction and spectral data, hence 

confirming the presence of material components in samples.  Two-dimensional correlation of 

XRF and XRD use is limited as it is only successful for components that may have a single 

element that can be represented by a crystal phase.  It was successful using bismuth, titanium 

and zinc Kα emission lines interpret diffraction peaks and confirm the presence of bismuth 

oxychloride, titanium dioxide and zinc oxide in samples.  However, these components could 

not be confirmed in FTIR data using diffraction peaks. 2D correlation of MIR and XRD was 

better suited to confirming absorbance bands of talc, calcium carbonate, kaolin and mica.  

Near-Infrared versus Mid-Infrared confirmed the presence of components such as talc and 

stearates.   
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Principal component analysis was useful in visually displaying the similarities and 

differences between samples based on their composition.  Through all characterization 

methods, foundation samples grouped consistently according to foundation-type and 

manufacturer.  This indicates differences in the raw components incorporated into formulas 

between manufacturers.  These components are from differing sources and that formulations 

vary in differing amounts of each component.   

Cosmetic foundation samples could be discriminated by manufacturer based on the raw 

materials and the amount present in each sample.  Certain so-called ‘mineral’ samples were 

classified as traditional samples, having the same raw components as traditional samples.  

This was consistent throughout all analysis techniques and separation of sample type was due 

to the presence of talc in traditional samples and larger amounts of mica in mineral-based 

formulations.  There was a considerable variation in components between the foundation 

types.  Traditional-based samples contained a larger variety of potential components.  For 

example, calcium carbonate was only present in certain samples.  Analysis of traditional 

samples could not determine the source/manufacturer but it could determine whether two 

samples were similar or not.  The mineral-based samples exhibited similar components 

throughout the sample set, generally only varying in the amounts of each component.  

However, certain samples differed and contained bismuth oxychloride.  Samples could be 

discriminated based on manufacturer.   

The presence of iron oxides in samples was not thoroughly investigated in this study.  X-ray 

Fluorescence was successful in determining the relative concentration of iron in foundation 

powders.  However, XRD and FTIR could not confirm the presence of iron oxide and could 

not discriminate chemical form of iron oxide present in each sample.   
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6.2 Future Work 

The current research has the possibility of expansion.  Characterisation of the red, yellow and 

brown iron oxides would be beneficial and provide further knowledge on the material 

composition of cosmetic foundation powders.  X-ray Diffraction could be employed for this 

analysis, using Co Kα radiation source to overcome the problem of fluorescence when 

recording iron. 

Use of the powder diffraction beamline at the Australian Synchrotron could potentially be 

useful in identification of iron oxides.  Mössbauer Spectroscopy could be used 

complementary to XRD, to identify iron oxides by examining the valence state of iron in each 

sample. 

Far-infrared spectroscopy could be investigated to see whether it could provide structural 

information for bismuth oxychloride and other metal oxides, such as zinc and titanium 

dioxide, as those were not successfully identified in samples in the mid and near-infrared 

regions. 

The analytical methods, procedures and data analysis protocols could be used to characterise 

other powder inorganic mixtures, whether they be other cosmetic products or not.     
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