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Abstract. We introduce a robust learning paradigm for synthesizing invariants,
called ICE-learning, that learns using examples, counter-examples, and implica-
tions, and show that it admits honest teachers and convergent mechanisms for
invariant synthesis. We observe that existing algorithms for black-box abstract
interpretation can be interpreted as ICE learning algorithms. We develop new
convergent ICE-learning algorithms for two domains, one for learning Boolean
combinations of numerical invariants for scalar variables and one for quantified
invariants for arrays and dynamic lists. We implement these ICE learning algo-
rithms in a verification tool and show they are robust, practical, and effective.

1 Introduction
The problem of generating adequate inductive invariants to prove a program correct is
at the heart of automated program verification. Automated program verifiers invariably
synthesize invariants; for example, abstract interpretation methods find invariants using
fixed-points evaluated over an abstract domain [1,2], counter-example guided predicate
abstraction iteratively computes predicates and uses model-checking to establish in-
variants [3], etc. In deductive verification settings, traditionally, invariants are provided
manually, and automated tools need to synthesize invariants to relieve the programmer
of this burden [4–6]. Moreover, synthesizing invariants is the hardest aspect of program
verification— once adequate inductive invariants are synthesized, program verification
reduces to checking validity of verification conditions obtained from finite loop-free
paths, which is a logic problem that has been highly automated over the years [7–9].

Invariant generation techniques can be broadly classified into two kinds: white-box
techniques where the synthesizer of the invariant is acutely aware of the precise pro-
gram and property that is being proved and black-box techniques where the synthesizer
is largely agnostic to the structure of the program and property, but works with a partial
view of the requirements of the invariant. Abstract interpretation [1], counter-example
guided abstraction refinement, predicate abstraction [3, 10], the method of Craig inter-
polants [11, 12], IC3 [13], etc. all fall into the white-box category. In this paper, we are
interested in the newly emerging black-box techniques for invariant generation.

Learning invariants: One prominent class
of black-box techniques for invariant gener-
ation is the emerging paradigm of learning.
Intuitively (see picture on right), we have
two components in the verification tool: a
white-box teacher and a black-box learner.
The learner synthesizes suggestions for the invariants in each round. The teacher is
completely aware of the program and the property being verified, and is responsible
for two things: (a) to check if a purported invariant H (for hypothesis) supplied by the
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learner is indeed an invariant and is adequate in proving the property of the program
(typically using a constraint solver), and (b) if the invariant is not adequate, to come up
with concrete program configurations that need to be added or removed from the invari-
ant (denoted by + and − in the figure). The learner, who comes up with the invariant H
is completely agnostic of the program and property being verified, and simply aims to
build a simple formula that satisfies the properties the teacher demands.

A crucial restriction here is that the teacher communicates the constraints on H
using only a finite set of program configurations. When learning an invariant, the teacher
and learner talk to each other in rounds, where in each round the teacher comes up with
additional constraints involving new data-points and the learner replies with some set
satisfying the constraints, until the teacher finds the set to be an adequate invariant.
The above learning approach for invariants has been explored for quite some time in
various contexts [14–16], and is gaining considerable excitement and traction in recent
years [17–20].

Advantages of learning: There are many advantages the learning approach has over
white-box approaches. First, a synthesizer of invariants that works cognizant of the pro-
gram and property is very hard to build, simply due to the fact that it has to deal with the
complex logic of the program. When a program manipulates complex data-structures,
pointers, objects, etc. in a real language with a complex memory model and seman-
tics, building a set that is guaranteed to be an invariant for the program gets extremely
complex. However, the invariant for a loop in such a program may be much simpler,
and hence a black-box technique that uses a “guess and check” approach guided by a
finite set of configurations is much more light-weight and has better chances of find-
ing the invariant. (See [5] where a similar argument is made for black-box generation
of the abstract post in an abstract interpretation setting). Second, the learning proce-
dure, by concentrating on finding the simplest concept that satisfies the constraints,
implicitly provides a tactic for generalization, while white-box techniques (like inter-
polation) need to build in tactics to generalize. Finally, the black-box approach allows
us to seamlessly integrate highly scalable machine-learning techniques into the verifi-
cation framework [21, 22].

ICE-learning: The problem with the learning approach described above is that it
is broken, as we show in this paper! In particular, the teacher cannot come up with
examples and counter-examples alone to guide the learner towards an invariant. Ap-
proaches to learning invariants have been unduly influenced by algorithmic learning
theory, automata learning, and machine learning techniques, which have traditionally
offered learning from positive and negative examples. As we show in this paper, learn-
ing using examples and counter-examples does not form a robust learning framework
for synthesizing invariants. To see why example and counter-example configurations
are not sufficient, consider the following simple program—

pre; S ; while (b) do L; od S ′; post
with a single loop body for which we want to synthesize an invariant that proves that
when the pre-condition to the program holds, the post-condition holds upon exit. As-
sume that the learner has just proposed a particular set H as a hypothesis invariant. In
order to check if H is an adequate invariant, the teacher checks three things:
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(a) whether the strongest-post of the pre-condition across S implies H; if not finds a
concrete data-point p and passes this as a positive example to the learner.

(b) whether the strongest-post of (H ∧ ¬b) across S ′ implies the post-condition; if not,
pass a data-point p in H that shouldn’t belong to the invariant as a negative example.

(c) whether H is inductive; i.e., whether the strongest post of H ∧ b across the loop
body L implies H; if not, finds two concrete data-points p and p′, where p ∈ H and
p′ < H.

In the last case above, the teacher is stuck. Since she does not know the precise invariant
(there are after all many), she has no way of knowing whether p should be excluded
from H or whether p′ should be included. In many learning algorithms in the litera-
ture [14–16, 20], the teacher cheats: she arbitrarily makes one choice and goes with
that, hoping that it will result in an invariant. However, this makes the entire frame-
work non-robust, causing divergence, blocking the learner from learning the simplest
concepts, and introducing arbitrary bias that is very hard to control. If learning is to be
seriously developed for synthesizing invariants, we need to fix this foundationally in the
framework itself.

The main contribution of this paper is a new learning framework called ICE-learning,
which stands for learning using Examples, Counter-examples, and Implications. We
propose that we should build learning algorithms that do not take just examples and
counter-examples, as most traditional learning algorithms do, but instead also handle
implications. The teacher, when faced with a refutation of non-inductiveness of the cur-
rent conjecture H in terms of a pair (p, p′), simply communicates this implication pair
to the learner, demanding that the learnt set satisfies the property that if p is included in
H, then so is p′. The learner makes the choice, based on considerations of simplicity,
generalization, etc., whether it would include both p and p′ in its set or leave p out.

We show that ICE-learning is a robust learning model, in the sense that the teacher
can always communicate to a learner precisely why a conjecture is not an invariant
(even for programs with multiple loops, nested loops, etc.). This robustness then leads
to new questions that we can formulate about learning. In particular, we can ask whether
the iterative learning process, for a particular learner, strongly converges— whether the
learner will eventually learn the invariant, provided one exists expressible as a concept,
no matter how the teacher gives examples, counter-examples, and implications to refute
the learner’s conjectures. Such questions are, of course, meaningless in the non-robust
learning framework based only on examples and counter-examples.

We emphasize that the earlier works in the literature have indeed seen inductiveness
as an important aspect of synthesizing invariants, and several mechanisms for guid-
ing the search towards an inductive property are known [13, 23–26]. Our work here is
however the first that we know that develops a robust learning model that explicitly
incorporates the search for inductive sets in black-box invariant generation.

Our main contributions are as follows:

– We propose the ICE-learning framework as a robust learning framework for syn-
thesizing invariants. We study ICE learning algorithms at two levels: ICE-learning
for a particular sample as well as the iterative ICE model in which the teacher and
learner iteratively interact to find the invariant. The complexity of the ICE-learner
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for a sample, strong convergence of iterative learning, and the number of rounds of
iteration required to learn are pertinent questions.

– It turns out that when the class of concepts forms a lattice, ICE learning already
exists in the literature. In fact, the Houdini algorithm [4] and the recently proposed
abstract Houdini algorithms in [5] and [27] for invariant synthesis over abstract nu-
merical domain lattices are in fact ICE-learning algorithms (however, they are not
typically strongly convergent and moreover, cannot learn from negative examples
at all).
We hence concentrate on strongly convergent ICE learning algorithms, and exhibit
two such algorithms, one for numerical domains and one for linear data-structures,
as described below.

– We develop a new ICE-learning algorithm for Boolean combinations of numerical
invariants, which does not form a complete lattice (arbitrarily large subsets do not
have a least upper bound). Given an ICE-sample, we show how to find the simplest
expressible formula that satisfies the sample. Our algorithm iterates over all possi-
ble template formulas, growing in complexity, till it finds an appropriate formula.
In order to scale well, we adapt existing template-based synthesis techniques that
use a constraint solver [28–31] to a black-box ICE-learning algorithm for synthe-
sizing invariants. We prove that the resulting iterative ICE algorithm is strongly
convergent. Note that the user only specifies the logic for the invariants, and does
not need to give templates.
We build a tool over Boogie [9] for synthesizing invariants over scalar variables and
show that it is extremely effective in proving a large corpus of programs correct. It
outperforms most other techniques, and furthermore gives guarantees of simplicity
and strong convergence that other algorithms do not.

– As a second instantiation of the ICE framework, we develop a new strongly con-
vergent ICE-learning algorithm for quantified invariants. We develop a general
technique of reducing ICE-learning of quantified properties to ICE-learning of
quantifier-free properties, but where the latter is generalized to sets of configura-
tions rather than single configurations. We instantiate this technique to build an
ICE-learner for quantified properties of arrays and lists. This new learning algo-
rithm (which is the most involved technical contribution of this paper) extends the
classical RPNI learning algorithm for automata [32] to learning in the ICE-model
and further learns quantified data automata [20], which can be converted to quan-
tified logical formulas over arrays/lists. We build a prototype verifier by building
this learner and the teacher as well, and show that this results in extremely efficient
and robust learning of invariants.

Related Work: Prominent white-box techniques for invariant synthesis include ab-
stract interpretation [1], interpolation [11, 12] and IC3 [13]. Abstract interpretation has
been used for generating invariants over mostly convex domains [2, 33], some non-
convex domains [34,35] and more recently even over non-lattice abstract domains [36].
Template based approaches to synthesizing invariants using constraint solvers have been
explored in a white-box setting in [28–31], and we adapt these techniques in Section 4
for developing an ICE-learning algorithm for numerical invariants. Several white-box
techniques for synthesizing quantified invariants are also known. Most of them are ei-
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ther based on abstract interpretation or are based on interpolation theorems for array
theories [37–45].

In contrast to the above mentioned white-box techniques, there are black-box learning-
based techniques for synthesizing invariants and rely-guarantee contracts. First, Daikon [46]
proposed conjunctive Boolean learning to learn likely invariants from program config-
urations recorded along test runs. Learning was introduced in the context of verifi-
cation by Cobleigh et al. [14], which was followed by applications of Angluin’s L∗

algorithm [47] to finding rely-guarantee contracts [15] and stateful interfaces for pro-
grams [16]. Houdini [4] uses essentially conjunctive Boolean learning (which can be
achieved in polynomial time) to learn conjunctive invariants over templates of atomic
formulas. In Section 3, we show that the Houdini algorithm along with its generaliza-
tion by Thakur et al. [5] and [27] to arbitrary abstract domains like intervals, octagons,
polyhedrons, linear equalities, etc. can be adapted to ICE-learning algorithms.

Recently, there has been a renewed interest in the application of learning to program
verification, in particular to synthesize invariants [17–19] by using scalable machine
learning techniques [21,22] to find classifiers that can separate good states that the pro-
gram can reach (positive examples) from the bad states the program is forbidden from
reaching (counter-examples). Quantified likely invariants for linear data-structures and
arrays are found from dynamic executions using learning in [20], but these aren’t nec-
essarily adequate. Boolean formula learning has also been applied recently for learning
quantified invariants in [48]. In addition, learning has been applied towards inductive
program synthesis [49, 50] and model extraction and testing of software [51, 52].

Counterexamples to inductiveness of an invariant have been handled in the past [24–
26], but only in the context of lattice domains where the learned concepts grow mono-
tonically and implications essentially yield positive examples. Recently, [23] tries to
find inductive invariants by finding common interpolants for same program locations.
Though [18] mentions a heuristic for handling implication samples in their algorithm
for learning invariants their tool does not implement that heuristic. As far as we know,
our work here is the first to explicitly incorporate the search for inductive sets in black-
box invariant generation.

2 Illustrative Example
#include <vcc.h>
int foo(int a[], int p)
_(requires (p>=25 && p<75))
_(requires a[p]==1)
_(requires \thread_local_array(a, 100))
{
int i=0, j=0;
while (i<100)
_(invariant (i>p ==> j==1))
{
if (a[i]==1)
j = 1;

i = i+1;
}
_(assert j==1);

}

Consider the C program on the right. This program re-
quires a scalar invariant (i> p⇒ j=1) for its verification
using VCC [53]. Even to synthesize such a scalar invari-
ant, white-box techniques would need to reason about the
array a in the program, and in general have to deal with
language features like objects, pointers, a complex mem-
ory model and its semantics, etc. A black-box approach
can however learn such an invariant from a small set of
program configurations.

Consider a black-box engine that calls foo with the
values for p– 25, 26, . . . and that unrolls the loop a few
times to find positive examples for (i, j, p) in the kind
(0, 0, 25), (1, 0, 25), (1, 1, 25), . . . for a small number of
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values of i, and counter-examples of the form (100, 0, 25), (100, 2, 25), . . . (99, 0, 25),
(99, 2, 25), . . . (values close to 100 for i and different from 1 for j). From these posi-
tive and negative examples, the learner could naturally come up with a conjecture such
as (i > 50 => j = 1) (machine learning algorithms tend to come up with such an
invariant).

Now notice that the teacher is stuck as all positive and negative examples are sat-
isfied by the conjecture, though it is not inductive. Consequently, when using a learner
from only positive and negative samples, the teacher cannot make progress. However, in
ICE learning, the teacher can give an implication pair, say of the form ((50, 0, 25), (51, 0, 25)),
and proceed with the learning. Hence we can make progress in learning, and a learner
that produces the simplest conjectures satisfying the samples would eventually general-
ize a large enough sample to come up with a correct invariant. Our tool from section 4
in fact precisely learns the above mentioned invariant for this program.

3 ICE-Learning
When defining a (machine) learning problem, one usually specifies a domain D (like
points in the real plane or finite words over an alphabet), and a class of concepts C
(like rectangles in the plane or regular languages), which is a class of subsets of the do-
main. In classical learning frameworks (see [22]), the teacher provides a set of (positive)
examples in D that are part of the target concept, and a set of counter-examples (or neg-
ative examples) in D that are not part of the target concept. Based on these examples and
counter-examples, the learner has to construct a hypothesis, which best approximates
the actual target concept the teacher has in mind.

ICE learning: In our setting, the teacher does not have a precise target concept from C
in mind, but is looking for an inductive set which meets certain additional constraints.
Consequently, we extend this learning setting with a third type of information that can
be provided by the teacher: implications. Formally, let D be some domain and C ⊆ 2D

be a class of subsets of D, called the concepts. The teacher knows a triple (P,N,R),
where P ⊆ D is an (infinite) set of positive examples, N ⊆ D is an (infinite) set of
counter-examples (or negative examples), and R ⊆ D × D is a relation interpreted as an
(infinite) set of implications. We call (P,N,R) the target description, and these sets are
typically infinite and are obtained from the program, but the teacher has the ability to
query these sets effectively.

The learner is given a finite part of this information (E,C, I) with E ⊆ P, C ⊆ N,
and I ⊆ R. We refer to (E,C, I) as an (ICE) sample. The task of the ICE-learner is to
construct some hypothesis H ∈ C such that P ⊆ H, N ∩ H = ∅, and for each pair
(x, y) ∈ R, if x ∈ H, then y ∈ H. A hypothesis with these properties is called a correct
hypothesis. Note that a target description (P,N,R) may have several correct hypotheses
(while H must include P and exclude R and be R-closed, there can be several such sets).

Iterative ICE learning: The above ICE-learning corresponds to a passive learning
setting, in which the learner does not interact with the teacher. In general, the quality
of the hypothesis will heavily depend on the amount of information contained in the
sample. However, when the hypothesis is wrong, we would like the learner to gain

6



information from the teacher using new samples. Since such a learning process proceeds
in rounds, we refer to it as iterative ICE-learning.

The iterative ICE learning happens in rounds, where in each round, the learner starts
with some sample (E,C, I) (from previous rounds or an initialization) and constructs a
hypothesis H ∈ C from this information, and asks the teacher whether this is correct.
If the hypothesis is correct (i.e., if P ⊆ H, H ∩ N = ∅, and for every (x, y) ∈ R, if
x ∈ H, then y ∈ H as well), then the teacher answers “correct” and the learning process
terminates. Otherwise, the teacher returns either some element d ∈ D with d ∈ P \H or
d ∈ H ∩ N, or an implication (x, y) ∈ R with x ∈ H and y < H. This new information is
added to the sample of the learner.

The learning proceeds in rounds and when the learning terminates, the learner has
learnt some R-closed concept that includes P and excludes N.

Aside: In more traditional active learning, especially in automata theory, learners are
allowed to ask membership queries (asking whether a particular element in the domain
belongs to the target concept). However, in our setting the teacher does not have a
precise target concept in mind and therefore cannot, in general, answer membership
queries. The only query we can expect the teacher to answer is the correctness query
above.

Using ICE Learning to Synthesize Invariants: Honesty and Progress
Given an ICE-learning algorithm for a concept class, we can build algorithms for syn-
thesizing invariants that fall into this concept class by building a (white-box) teacher
that can check whether hypotheses given by the learner are adequate invariants, and
if not, find concrete examples, counter-examples, and implications to explain why the
hypothesis is not an invariant.

We can apply such learning for finding invariants in programs with multiple loops,
nested loops, etc. The learning of the invariant will simultaneously learn all these in-
variant annotations. The teacher can check the hypotheses by generating verification
conditions for the hypothesized invariants and by using automatic theorem provers to
check their validity. In general, the positive examples will arise from propagating the
pre-condition for the program across code, the negative examples will arise from (weak-
est pre-conditions of) the specifications, including the assertions and post-condition of
the program, and the implications will arise from non-inductiveness of the hypothesis.

The salient feature of ICE-learning is it ensures progress: no matter which verifi-
cation conditions are proven invalid, the teacher can always add an example/counter-
example/implication to the sample such that H (and any other hypothesis returned in
earlier rounds) does not satisfy the new sample. Furthermore, while augmenting the
sample, the teacher does not preclude any possible adequate invariant of the program in
future. In other words, the teacher doesn’t lie in any round, and gives only constraints
consistent with all adequate invariants; we call this honesty. These two salient prop-
erties of progress and honesty are what makes ICE-learning of invariants robust: the
teacher can always make progress and never has to make arbitrary choices that causes
valid inductive invariants to be excluded. When using learning just from positive and
negative examples, progress and honesty cannot both be maintained (when the teacher
finds no new examples or counter-examples to furnish and the hypothesis is not induc-
tive, there is no way to make progress without making an arbitrary dishonest choice).
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Note that honesty and progress do not, of course, imply convergence to an adequate
invariant.

Convergence: The setting of iterative ICE-learning naturally raises the question of
convergence of the learner, that is, does the learner find a correct hypothesis in a finite
number of rounds? We say that a learner strongly converges, if for every target de-
scription (P,N,R) it reaches a correct hypothesis (from the empty sample) after a finite
number of rounds, no matter what information is provided by the teacher (of course, the
teacher has to answer correctly according to the target description (P,N,R)).

Note that the definition above demands convergence for arbitrary triples (P,N,R),
and allows the teacher in each round to provide any information that contradicts the
current hypothesis, and is hence a very strong property.

Observe now that for a finite class C of concepts, a learner strongly converges if it
never constructs the same hypothesis twice. This assumption on the learner is satisfied
if it only produces hypotheses H that are consistent with the sample (E,C, I), that is, if
E ⊆ H, C ∩ H = ∅, and for each pair (x, y) ∈ I, if x ∈ H, then y ∈ H. Such a learner is
called a consistent learner. Since the teacher always provides a witness for an incorrect
hypothesis, the next hypothesis constructed by a consistent learner must be different
from all the previous ones.

Lemma 1. For a finite class C of concepts, every consistent learner strongly converges.

For various iterative ICE algorithm classes, where class of concepts may be infinite, we
will study strong convergence.

ICE Learning over Lattice Domains: It turns out that (non-iterative) ICE algorithms
are especially easy to build when the class of concepts forms a lattice, as typical in an
abstract interpretation setting.

Consider an abstract domain that is a lattice. Then given any sample (E,C, I), we
can compute the best (smallest) abstract element that satisfies the constraints (E,C, I) as
follows. First, we take the least upper bound of the set of all α(e), for each e ∈ E. Then
we see if these satisfy the implication constraints; if not, then for every pair (p, p′) ∈ I
that is not satisfied, we know that p′ must be added to the set (since p belongs to every
set that includes E). Hence all these elements p′ can be added by applying α to them,
and we can take the lub with respect to the existing set. We continue in this fashion till
we converge to an abstract element that is the smallest satisfying E and I. Now, we can
check if C is excluded from it; if yes, we have computed the best set, else there is no set
satisfying the constraints. The above is an ICE-algorithm for any abstract domain.

We can, using this argument, establish polynomial-time (non-iterative) ICE learning
algorithms for conjunctive formulas (in fact, this is what the classical Houdini algorithm
does [4,22]), k-CNF formulas [22], and for abstract domains such as octagons, polyhe-
dra, etc. as in [24, 25]

However, note that the iterative extension of the above ICE algorithm may not halt
(unless the domain has finite height). One can of course use a widening heuristically
after some rounds to halt, but then clearly the iterative ICE algorithm will not be nec-
essarily strongly convergent. In fact, the iterative ICE algorithm with widening is, in

8



fact, precisely the abstract Houdini algorithm proposed recently in [5], and is similar
to another recent work in [27]. Note, however, that these are not strongly convergent
iterative ICE learning schemes.

The iterative ICE learning algorithms we develop in this paper are strongly con-
vergent. While the above derived iterative ICE algorithms essentially ignore counter-
examples, and fail to use counter-examples and implications as a way to come down the
lattice after a widening/over-generalization, the algorithms we propose in the next two
sections are more general schemes that truly utilize examples, counter-examples, and
implications to find succinct expressions.

4 An ICE-learning algorithm for Numerical Invariants

In this section, we describe a learning algorithm for synthesizing invariants that are ar-
bitrary Boolean combinations of numerical atomic formulas. Since we want the learning
algorithm to generalize the sample (and not capture precisely the finite set of implication-
closed positive examples), we would like it to learn a formula with the simplest Boolean
structure. In order to do so, we iterate over templates over the Boolean structure of the
formulas, and learn a formula in the given template.

Note that the domain is a join-semilattice (every pair of elements has a least upper
bound) since formulas are closed under disjunction. Hence we can employ the generic
abstract Houdini algorithm [5] to obtain a passive ICE learning algorithm. However,
using the vanilla algorithm will learn only the precise set of positive and implication-
closed set, and hence not generalize without a widening. Widening for disjunctive do-
mains is not easy, as there are several ways to generalize disjunctive sets [54]. Fur-
thermore, even with a widening, we will not get a strongly convergent iterative ICE
algorithm that we desire (see experiments in this section where abstract Houdini di-
verges even on conjunctive domains on some programs for this reason). The algorithm
we build in this section will not only be strongly convergent but also will produce the
simplest expressible invariant.

Let Var = {x1, · · · , xn} be the set of (integer) variables in the scope of the program.
For simplicity, let us restrict atomic formulas in our concept class to octagonal con-
straints, over program configurations, of the general form:

s1v1 + s2v2 ≤ c, s1, s2 ∈ {0,+1,−1}, v1, v2 ∈ Var, v1 , v2, c ∈ Z.
(We can handle more general atomic formulas as well; we stick to the above for sim-
plicity and effectiveness.)

Our ICE learning algorithm will work by iterating over more and more complex
templates till it finds the simplest formula that satisfies the sample. A template fixes
the Boolean structure of the desired invariants and also restricts the constants c ∈ Z
appearing in the atomic formulas to lie within a finite range [−M,+M], for some M ∈
Z+. Bounding the constants leads to strong convergence as we show below. For a given
template

∨
i
∧

j α
i j, the iterative ICE-learning algorithm we describe below learns an

adequate invariant ϕ, of the form:
ϕ(x1, · · · , xn) =

∨
i
∧

j( si j
1 vi j

1 + si j
2 vi j

2 ≤ ci j ), | ci j | ≤ M.
Given a sample (E,C, I), the learner iterates through templates, and for each tem-

plate, tries to find concrete values for si j
k , vi j

k (k ∈ {1, 2}) and ci j such that the formula ϕ is
consistent with the sample; i.e., for every data-point p ∈ E, ϕ(p) holds; for p ∈ C, ϕ(p)
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does not hold; and for every implication pair (p, p′) ∈ I, ϕ(p′) holds if ϕ(p) holds. Un-
fortunately, finding these values in the presence of implications is hard; classifying each
implication pair (p, p′) as both positive or p as negative tends to create an exponential
search space that is hard to search efficiently. Our ICE-learner uses a constraint solver
to search this exponential space in a reasonably efficient manner. It does so by checking
the satisfiability of the formula Ψ (below), over free variables si j

k , v
i j
k and ci j, which pre-

cisely captures all the ICE-constraints. In this formula, bp is a Boolean variable which
tracks ϕ(p); the Boolean variables bi j

p represent the truth value of (si j
1 vi j

1 + si j
2 vi j

2 ≤ ci j)
on point p, ri j

kp encode the value of si j
k · v

i j
k (line 2 of the formula); and di j

kp encode the

value of vi j
k (line 3).
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i j
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 ∧
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 ∧
 ∧
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 ∧
∧

p

(
bp ⇔

∨
i

∧
j

bi j
p

)∧∧
p,i, j

(
bi j

p ⇔
( ∑

k∈{1,2}

ri j
kp ≤ ci j )) ∧

∧
i, j

(
−M ≤ ci j ≤ M

) ∧

∧
p,i, j
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si j

k = 0⇒ ri j
kp = 0

si j
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kp = di j
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si j
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 ∧

∧
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∧
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 ∧
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(
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k ≤ 1
) ∧


∧
i, j

k∈{1,2}
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 ∧
∧

i, j

(vi j
1 , vi j

2 )


Note that Ψ falls in the theory of quantifier-free linear integer arithmetic, the satisfi-

ability of which is decidable. A satisfying assignment for Ψ gives a consistent formula
that the learner conjectures as an invariant. If Ψ is unsatisfiable, then there is no invari-
ant for the current template consistent with the given sample. In this case we iterate by
increasing the complexity of the template. For a given template, the class of formulas
conforming to the template is finite. Our enumeration of templates dovetails between
the Boolean structure and the range of constants in the template, thereby progressively
increasing the complexity of the template. Consequently, the ICE learning algorithm
always synthesizes a consistent hypothesis if there is one, and furthermore synthesizes
a hypothesis of the simplest template.

A similar approach can be used for learning invariants over linear constraints, and
even more general constraints if there is a solver that can effectively solve the resulting
theory.
Convergence: Our iterative ICE algorithm conjectures a consistent hypothesis in each
round, and hence ensures that we do not repeat hypotheses. Furthermore, the enumera-
tion of templates using dovetailing ensures that all templates are eventually considered,
and together with the fact that there are a finite number of formulas conforming to any
template ensures strong convergence.
Theorem 1. The above ICE-learning algorithm always produces consistent conjec-
tures and the corresponding iterative ICE algorithm strongly converges.

Our learning algorithm is quite different from earlier white-box constraint based
approaches to invariant synthesis [28–31]. These approaches directly encode the ade-
quacy of the invariant (encoding the entire program’s body) into a constraint, and use
Farkas’ lemma to reduce the problem to satisfiability of quantifier-free non-linear arith-
metic formulas, which is harder and in general undecidable. On the other hand, we split
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the task between a white-box teacher and a black-box learner, communicating only
through ICE-constraints on concrete data-points. This greatly reduces the complexity
of the problem, leading to a simple teacher and a much simpler learner. Our idea is
more similar to [19] which use algebraic techniques to guess the coefficients.

Program Invariant
White Black

Program Invariant
White Black

Box Box Box Box
InvGen CPA absH ML ICE InvGen CPA absH ML ICE
[31] [55] [5] [18] [31] [55] [5] [18]

w1 [29] x ≤ n 0.1 × 0.1 0.2 0.0 w2 [29] x ≤ n − 1 0.1 × 0.2 0.1 0.0
fig6 [56] true 0.1 1.3 0.1 0.1 0.0 fig1 [29] x ≤ −1 ∨ y ≥ 1 × 4.5 × × 0.1
fig8 [56] true 0.0 1.4 0.0 0.0 0.0 fig3 [56] lock = 1 ∨ x ≤ y − 1 0.1 1.4 × 0.1 0.0
ex14 [57] x ≥ 1 × 1.5 0.2 0.2 0.0 fig9 [56] x = 0 ∧ y ≥ 0 0.1 1.4 0.0 0.2 0.0
finf1 x = 0 0.1 1.5 0.1 0.4 0.0

ex23 [57]
0 ≤ y ≤ z∧

× 90.5 0.2 × 14.2
finf2 x = 0 0.1 1.4 0.0 0.1 0.0 z ≤ c + 4572
sum3 sn = x 0.1 1.5 0.1 0.1 0.0 ex7 [57] 0 ≤ i ∧ y ≤ len × 1.6 0.2 0.4 0.0
term2 true 0.0 1.6 0.0 0.0 0.0

sum1
sn = i − 1∧

× × × × 1.8
term3 true 0.0 1.4 0.0 0.0 0.0 (sn = 0 ∨ sn ≤ n)
trex1 z >= 1 0.1 1.5 0.1 0.4 0.0 sum4 sn = i − 1 ∧ sn ≤ 8 0.1 2.8 × × 2.6
trex2 true 0.0 1.4 0.0 0.0 0.0

tcs [12]
i ≤ j − 1 ∨ i ≥ j + 1∨

0.1 1.4 × 0.5 1.4
trex4 true 0.0 1.4 0.0 0.0 0.0 x = y
winf1 x = 0 0.0 1.4 0.0 0.0 0.0

trex3
0 ≤ x1 ∧ 0 ≤ x2∧

0.5 × × × 2.2winf2 x = 0 0.0 1.4 0.0 0.0 0.0 0 ≤ x3 ∧ d1 = 1∧
winf3 x = 0 × 1.4 0.3 0.1 0.1 d2 = 1 ∧ d3 = 1
vmail i ≥ 0 × 1.4 0.1 0.3 0.0

matrix
a[0][0] ≤ m ∨ j ≤ 0;

× × × × 5.8
lucmp n = 5 × 77.0 0.0 0.1 0.0 a[0][0] ≤ m ∨ j + k ≤ 0

n.c11
0 ≤ len

0.1 2.2 × 0.2 0.6 cgr2 [29] N ≤ 0 ∨ (x ≥ 0∧
× 1.8 × × 7.3

≤ 4 0 ≤ m ≤ N − 1)
cgr1 [29] x − y ≤ 2 0.1 1.5 0.1 0.2 0.0 array j ≤ 0 ∨ m ≤ a[0] × × × 0.2 0.3
oct x + y ≤ 2 0.0 1.3 0.2 0.1 0.2 vbsd pathlim ≤ tmp × 1.6 0.5 × 0.0

Table 1. Results for ICE-learning numerical invariants. ICE is the total time taken by our tool.
All times reported are in seconds. × means an adequate invariant was not found.

Experimental Results: We have implemented our learning algorithm as an invariant
synthesis tool in Boogie [9]. In our tool we enumerate templates in an increasing order
of their complexity. For a given Boolean structure of the template Bi, we fix the range
of constants M in the template to be the greater value out of i and the maximum integer
in the program. If an adequate invariant is not found, we increase i. If an adequate
invariant is found, we use binary search on M to find an invariant that has the same
Boolean structure but the smallest constants. This enumeration of templates is complete
and it ensures that we learn the simplest invariant. In our tool, ICE samples discovered
while learning an invariant belonging to a simpler template are not wasted but used
in subsequent rounds. As already mentioned, our learner uses an incremental Z3 [58]
solver that adds a new constraint for every ICE sample discovered by the Boogie based
teacher. A graphical representation of an ICE sample where implications dictate the
invariant learnt by our tool is shown in Figure 2 in the Appendix.

We evaluate our tool on SV-COMP benchmarks1 and several other programs from
the literature (see Table 1). We use SMACK [59] to convert C programs to Boogie and
use our tool to learn loop invariants for the resulting Boogie programs. We use inlin-
ing to infer invariants for programs with multiple procedures. In Table 1 we compare
our tool to invariant synthesis using abstractHoudini [5] (called absH in Table 1), [18]

1 https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp13/loops/
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(called ML), Invgen [31] and interpolation based Impact algorithm [60] implemented in
CPAchecker (called CPA) [55]. We implemented the octagonal domain in abstractHou-
dini for a comparison with our tool. As mentioned in Section 3, abstractHoudini is an
ICE learning algorithm but is not strongly convergent. Unlike our tool, abstractHoudini
is not able to learn disjunctive octagonal invariants. In addition, it is unable to prove
programs like trex3 and n.c11 where it loses precision due to widening. InvGen [31]
uses a white-box constraint-based approach to invariant synthesis. Unlike our tool that
enumerates all templates, InvGen requires the user to specify a template for the invari-
ants. Being white-box, it cannot handle programs with arrays and pointers, even if the
required invariants are numerical constraints over scalar variables. Being incomplete, it
is also unable to prove several scalar programs like fig1 and cegar2. Finally, [18] is
a machine learning algorithm for inferring numerical invariants. From our experience,
the inference procedure in [18] is very sensitive to the test harness used to obtain the
set of safe/unsafe program configurations. For several programs, we could not learn an
adequate invariant using [18] despite many attempts with different test harnesses.

The experiments show that our tool outperforms [5, 18, 31, 55] on most programs,
and learns an adequate invariant for all programs in reasonable time. Though we use the
more complex but more robust framework of ICE-learning that promises to learn the
simplest invariants and is strongly convergent, it is generally faster than other learning
algorithms like [17, 18] that learn invariants from just positive and negative examples,
and lack any such promises.

5 Learning Universally Quantified Properties
In this section we describe a setting of ICE-learning for universally quantified concepts.
For a typical such scenario consider programs that manipulate dynamic heaps. A con-
figuration of a program can be described by the heap structure (locations, the various
field-pointers, etc.), and a finite set of pointer variables pointing into the heap. Since
the heap is unbounded, typical invariants for programs manipulating heaps require uni-
versally quantified formulas. For example, a list is sorted if the data at all pairs y1, y2
of successive positions is sorted correctly. In general, we consider universal proper-
ties of the form ψ = ∀y1, . . . , ykϕ(y1, . . . , yk), where ϕ is a quantifier-free formula. We
now describe how to modify the learning setting such that we can use a learner for the
quantifier-free property described by ϕ(y1, . . . , yk).

We consider for each concrete program configuration c the set S c of valuation con-
figurations of the form (c, val), where val is a valuation of the variables y1, . . . , yk. For
example, if the configurations are heaps, then the valuation maps each quantified vari-
able yi to a cell in the heap, akin to a scalar pointer variable. Then c |= ψ if (c, val) |= ϕ
for all valuations val, and c 6|= ψ if (c, val) 6|= ϕ for some valuation val.

This leads to the setting of data-set based ICE-learning. In this setting, the target
description is of the form (P̂, N̂, R̂) where P̂, N̂ ⊆ 2D and R̂ ⊆ 2D × 2D. A hypothesis
H ⊆ D is correct if P ⊆ H for each P ∈ P̂, N * H for each N ∈ N̂, and for each
pair (X,Y) ∈ R̂, if X ⊆ H, then also Y ⊆ H. The sample is a finite part of the target
description, that is, it is of the form (Ê, Ĉ, Î), where Ê, Ĉ ⊆ 2D, and Î ⊆ 2D × 2D.

An ICE-learner for the data-set based setting corresponds to an ICE-learner for uni-
versally quantified concepts in the original data-point based setting using the following
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connection. Given a standard target description (P,N,R) over D, we now consider the
domain Dval extended with valuations of the quantified variables y1, . . . , yk as described
above. Replacing each element c of the domain by the set S c ⊆ Dval transforms (P,N,R)
into a set-based target description. Then a hypothesis H (described by a quantifier-free
formula ϕ(y1, . . . , yk)) is correct w.r.t. the set-based target description iff the hypothesis
described by ∀y1, . . . , ykϕ(y1, . . . , yk) is correct w.r.t. the original target description. Un-
like [40] that uses “Skolem constants”, learning over data-sets allows us to learn from
not only examples, but also from counter-examples and implications (where simple
Skolem constants will not work).

Recap of Quantified Data Automata and related results [20]:
We will develope ICE learning algorithms for universally quantified invariants over
arrays and lists that can be expressed by an automaton model called quantified data
automata (QDA) introduced by Garg et al in [20]. We briefly recall the main ideas
concerning this model and refer the reader to Appendix C and [20] for more detailed
definitions.

Let us illustrate QDAs with an example. Consider a typical invariant in a sorting
program over an array A: ∀y1, y2.((0 ≤ y1 ∧ y2 = y1 + 1 ∧ y2 ≤ i) ⇒ A[y1] ≤ A[y2]).
This says that for all successive cells y1, y2 that occur somewhere in the array A before
the cell pointed to by a scalar pointer variable i, the data value stored at y1 is no larger
than the data value stored at y2.

We model arrays (or other linear data structures) by data words, in which each po-
sition corresponds to an element or cell in the data structure. Each position in such a
word is labeled with a tuple of a set of pointer variables of the program that indicates
their position in the data structure and a data value from some data domain (e.g., inte-
gers) that indicates the value contained in the cell of the data structure. A QDA defines
a set of data words. However, to capture the idea of expressing universally quantified
properties, a QDA reads valuation words, which are additionally annotated with univer-
sally quantified variables. The alphabet of a QDA is a pair in which the first component
corresponds to the pointer variables, and the second component contains the universally
quantified variable at that position (if any).

q1 q2 q3 q4q5

b =̂ no pointer var.
− =̂ no universal var.
b =̂ (b,−)
∗ =̂ arbitrary valued(y1) ≤ d(y2)

true

(b, y1)

(i, ∗), (b, y2)

b

(b, y2)b, (i,−)

(i, y2)

(i,−)

b b∗

Fig. 1. An example QDA representing an invariant of a sorting routine.

The sortedness invariant above is captured by the QDA in Figure 1 (some abbrevia-
tions for transition labels are explained on the right side of the figure). The QDA accepts
a valuation word if the data values at the positions of y1 and y2 satisfy the formula at the
final state it reaches. Moreover, the automaton accepts a data word w if for all possible
valuations of y1 and y2, the automaton accepts the corresponding valuation word.

We assume that the set of formulas used to label the final states of a QDA forms a
finite lattice in which the order v is compatible with implication of formulas, that is, if
ϕ1 v ϕ2, then ϕ1 ⇒ ϕ2.
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In [20] the subclass of elastic QDAs (EQDAs) is considered because they have
a decidable emptiness problem and can be translated into decidable logics, like the
array property fragment (APF) [61] for arrays, or a decidable fragment of the logic
Strand [62] for lists. The key property of these logics is their inability to express that
quantified variables are only a bounded distance away from each other. This is captured
at the automaton level by only allowing self loops on b in EQDAs. The example QDA
in Figure 1 is not an elastic QDA because there is a b-transition from q2 to q5. However,
there is an EQDA for an equivalent invariant in which the sortedness property is checked
for every pair of cells y1, y2 such that y1 ≤ y2. Note that since each variable can occur
only once, the blank symbol is the only one that can appear arbitrarily often in an
input word. Therefore, there are only finitely many EQDAs for a fixed alphabet (set of
variables). We refer the reader to [20] for more details on EQDAs.

ICE-learning algorithms for EQDAs. The goal of this section is to develop an it-
erative ICE-learner for concepts represented by EQDAs. The first relevant question is
whether there is a polynomial time iterative ICE-learner. We show that this is impossible
when the set of pointers and quantified variables is unbounded (see Appendix B for a
proof sketch).

Theorem 2. There is no polynomial time iterative ICE-learner for EQDAs, when the
alphabet size is unbounded.

The theorem can be proven by adapting a result from [63], namely that there is no
polynomial time learning algorithm for DFAs that only uses equivalence queries. This
shows that there is no hope of obtaining an iterative ICE-learner for EQDAs (or even
QDAs) in the style of the well-known L∗ algorithm of Angluin, which learns DFAs in
polynomial time using equivalence and membership queries.

Though we cannot hope for a polynomial time iterative ICE-learner, we develop a
(non-iterative) ICE-learner that constructs an EQDA from a given sample in polynomial
time. In the iterative setting this yields a learner for which each round is polynomial,
while the number of rounds is not polynomial, in general. Our ICE-learning algorithm
is adapted from the classical RPNI passive learning algorithm [32], which takes as
input a sample (E,C) of positive example words E and counter-example words C, and
constructs a DFA consistent with (E,C); that is, the resulting DFA accepts all words in
E and rejects all words in C.

RPNI can be viewed as an instance of an abstract state merging algorithm that is
sketched as Algorithm 1. In this general setting, the algorithm takes a finite collection
S of data, called sample, as input (we make this precise later) and produces a Moore
machine (i.e., a DFA with output) that satisfies a given (decidable) property p that de-
pends on S as output. In the case of RPNI, S = (E,C) consists of two finite sets of
words, the resulting Moore machine is interpreted as a DFA, and the property p states
that all words in E are to be accepted whereas all words in C are to be rejected.

Algorithm 1 proceeds in two consecutive phases. In Phase 1 (Lines 1 and 2), the
algorithm calls init(S) to construct an initial Moore machine Ainit from S that sat-
isfies p (assuming that this is possible). Then, it picks a total order q0 < . . . < qn on
the states of Ainit, which determines the order in which the states are to be merged in
the subsequent phase. The actual state merging then takes place in Phase 2 (Lines 3
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to 14). According to the given order, Algorithm 1 tries to merge each state qi with a
“smaller” state q j (i.e., j < i) and calls test on the resulting Moore machine to check
whether this machine still satisfies p; since a merge can cause nondeterminism, it might
be necessary to merge further states in order to restore determinism. A merge is kept if
the Moore machine passes test (otherwise the merge is discarded), which guarantees
that the final Moore machine still satisfies p. Note that we represent merging of states
by means of a congruence relation ∼⊆ Q × Q over the states (i.e., ∼ is an equivalence
relation that is compatible with the transitions) and the actual merging operation as con-
structing the quotient Moore machine Ainit/∼ in the usual way. Note that in the case of
DFAs each merge increases the language and thus can be seen as a generalization step
in the learning algorithm.2

Algorithm 1: Generic State Merging algorithm.
Input: A sample S
Output: A Moore machineA that passes

test(A)

1 Ainit = (Q, Σ, Γ, q0, δ, f )← init(S);
2 (q0, . . . , qn)← order(Q);

3 ∼0← {(q, q) | q ∈ Q};
4 for i = 1, . . . , n do
5 if qi /i−1 q j for all j ∈ {0, . . . , i − 1} then
6 j← 0;
7 repeat
8 Let ∼ be the smallest congruence that

contains ∼i−1 and the pair (qi, q j);
9 j← j + 1;

10 until test(Ainit/∼);
11 ∼i←∼;
12 else
13 ∼i←∼i−1;
14 end
15 returnAinit/∼n ;

We are now ready to describe
how to instantiate Algorithm 1 to
work in the EQDA setting. In this
setting, a sample is of the form
(Ê, Ĉ, Î) where Ê, Ĉ are sets of sets
of valuation words and Î contains
pairs of sets of valuation words, and
the task is to compute an EQDA that
is consistent with the given sample.
From [20] we know that EQDAs
can be viewed as Moore machines
that read valuation words and out-
put data formulas. Hence we can
adapt the RPNI algorithm to learn
EQDAs as explained below.

For the initialization init(S)
we construct an EQDA whose lan-
guage is the smallest (w.r.t. in-
clusion) EQDA-definable language

that is consistent with the sample S. For this purpose, we consider the set of all positive
examples, that is, the set E :=

⋃
Ê. This is a set of valuation words, from which we

strip off the data part, obtaining a set E′ of symbolic words only made up of pointers
and universally quantified variables. We start with the prefix tree of E′ using the pre-
fixes of words in E′ as states (as the original RPNI does). The final states are the words
in E′. Each such word w ∈ E′ originates from a set of valuation words in E (all the
extensions of w by data that result in a valuation word in E). If we denote this set by
Ew, then we label the state corresponding to w with the least formula that is satisfied
in all valuation words in Ew (recall that the formulas form a lattice). This defines the
smallest QDA-definable set that contains all words in E. If this QDA is not consistent
with the sample, then either there is no such QDA, or the QDA is not consistent with an
implication, that is, for some (X,Y) ∈ Î it accepts everything in X but not everything in

2 We refer the reader to Appendix C for an in-depth description of the generic state merging
algorithm and its instantiations.
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Y . In this case, we add X and Y to Ê and restart the construction (because every QDA
consistent with the sample needs to accept all of X and all of Y).

To make this QDA A elastic, all states that are connected by a b-transition are
merged. This defines the smallest EQDA-definable set that contains all words accepted
by A (see [20]). Hence, if this EQDA is not consistent with the sample, then either
there is no such EQDA, or an implication (X,Y) ∈ Î is violated, and we proceed as
above by adding X and Y to Ê and restarting the computation. The result of this adapted
initialization is an EQDA whose language is the smallest EQDA-definable language
that is consistent with the sample.

Once Phase 1 is finished, our algorithm proceeds to Phase 2, in which it successively
merges states of Ainit, to obtain an EQDA that remains consistent with the sample but
has less states. When merging accepting states, the new formula at the combined state is
obtained as the least upper bound of the formulas of the original states. Note that merg-
ing states of an EQDA preserves the self-loop condition for b-transitions. Finally, the
test routine simply checks whether the merged EQDA is consistent with the sample.

It follows that the hypothesis constructed by this adapted version of RPNI is an
EQDA that is consistent with the sample. Hence we have described a consistent learner.
For a fixed set of pointer variables and universally quantified variables there are only
a finite number of EQDAs, and therefore by Lemma 1 we conclude that the above
learning is strongly convergent (though number of rounds need not be polynomial).

Theorem 3. The adaption of the RPNI algorithm for iterative set-based ICE-learning
of EQDAs strongly converges.

Program White-Box Black-Box

SAFARI (s) R |Q| ICE (s)

copy 0.0 4 8 0.7
copy-lt-key × 5 13 1.2
init 0.7 4 8 0.6
init-partial × 8 12 1.5
compare 0.1 9 8 1.3
find 0.2 9 8 1.2
max 0.1 3 8 0.4
increment × 5 8 0.7
sorted-find × 8 17 5.1
sorted-insert × 6 21 2.0
sorted-reverse × 18 17 9.4
devres [48] 0.1 3 8 0.7
rm_pkey [48] 0.3 3 8 0.7

Table 2. Results for RPNI-based
ICE-learning for quantified array in-
variants. R: # of rounds of iterative-
ICE; |Q|: # of states in final EQDA.
× means a timeout of 5 min.

Experiments: We built a prototype of the set-based
ICE-learning algorithm for EQDAs, which consists
of an implementation of the learner and the teacher.
The learner is an adaptation of the RPNI algorithm
from the libALF library [64]. Our implementation
of the teacher works as follows. Given an EQDA
conjectured by the learner, the teacher converts it
to a quantified formula in the APF [61] or decid-
able Strand for lists [62], and uses a constraint
solver to check adequacy of invariants. Since there
was no implementation of the decision procedure
for Strand, we evaluate our prototype on array pro-
grams only. More details about the implementation
are in appendix D.

Table 2 presents the results of our prototype on
typical programs manipulating arrays. We compare
our results to SAFARI [44], the state-of-the-art veri-
fication tool based on interpolation in array theories.
SAFARI, in general, cannot handle list programs,
and also array programs like sorted-find that have quantified pre-conditions. From the
remaining, SAFARI diverges for some more programs and one probably needs to man-
ually provide a term abstraction list for them to achieve convergence.
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The results in Table 2 show that our ICE-learning algorithm for quantified invariants
is effective, in addition to promising polynomial-per-round efficiency, promising invari-
ants that fall in decidable theories, and promising strong convergence of the iterative
learning.

6 Conclusions
The argument in this paper is a simple one: in order to build robust learning algorithms
for invariant synthesis, we need the learner to be able to process implication samples,
in addition to positive and negative samples. Traditional machine learning algorithms
do not support implications and we must adapt them to the ICE-framework. Using new
ICE learning algorithms for numerical domains as well as quantified invariants for lin-
ear data-structures, we have illustrated that it leads to much more robust and efficient
algorithms for invariant synthesis.
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Fig. 2. The shaded region corresponds to the invariant x ≤ −9 ∨ x ≤ y − 1. In the figure + are the
positive examples, ∗ are negative counter-examples and arrows (→) indicate an implication from
the tail to the head of the arrow.
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B Proof sketch for Theorem 2.

In [63] Angluin shows that there is no polynomial time learning algorithm for DFAs
that only uses equivalence queries (no membership queries). The gist of this proof is as
follows. One constructs a familyLn of languages, where each language inLn is defined
by a DFA of quadratic size in n, with the following property. For each learner that runs
in polynomial time (meaning that it uses polynomially many rounds in the size of the
target concept and each round only takes polynomial time in the size of the current
sample), there is an n such that the teacher can answer the equivalence queries in such
a way that after the polynomial number of rounds available to the learner, there is more
than one language left in Ln that is still consistent with the answers of the teacher. This
means that the learner cannot, in general, identify each target concept from Ln.

This proof can be adapted to EQDAs (using just the formulas true and false) be-
cause the DFAs used to define the classes Ln are acyclic. However, for each class Ln

a different alphabet is needed because for a fixed alphabet there are only finitely many
EQDAs.

C RPNI for QDAs

In this section, we describe in detail how we adapt the RPNI algorithm to the setting of
Section 5, i.e., to the setting of ICE-learning for EQDAs. To this end, we look at RPNI
from a more abstract perspective and treat it as a generic state merging algorithm (GSM)
for Moore machines. Generic in this context means that some methods are “templates”,
which we need to instantiate in order to obtain a concrete algorithm.

This section is structured as follows. We first introduce some definitions and nota-
tions that we will need throughout this section; in particular, this entails the definition
of QDAs and EQDAs from [20]. Then, we describe the GSM algorithm. Finally, we
explain how we instantiate the GSM algorithm to obtain the original RPNI algorithm
and the adapted RPNI algorithm of Section 5.

C.1 Definitions and Notations

Let Σ be an alphabet and L ⊆ Σ∗ a set of words. The set

Pref (L) = {u ∈ Σ∗ | ∃v ∈ Σ∗ : uv ∈ L}

is the set of all prefixes of words in L.

QDAs and EQDAs The definition of QDAs is taken from [20]. We work with a set of
program variables PV , a data domain D, and a set of universally quantified variables
Y . We furthermore fix a formula lattice F that is used to express properties over the
relative positions of the pointer variables and universally quantified variables, as well
as properties of the data values from D at the positions of the variables.

With these parameters fixed, a quantified data automaton (QDA) is of the formA =

(Q, q0, Π, δ, f ) where Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q×Π → Q
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is the transition function with Π = 2PV × (Y ∪ {−}), and f : Q→ F is a final-evaluation
function that maps each state to a data formula. The alphabet Π used in a QDA does
not contain data. Words over Π are referred to as symbolic words because they do
not contain concrete data values. The symbol (b,−) indicating that a position does not
contain any variable is denoted by b.

A configuration of a QDA is a pair of the form (q, r) where q ∈ Q and r : Y → D is
a partial variable assignment. The initial configuration is (q0, r0) where the domain of r0
is empty. For any configuration (q, r), any letter a ∈ 2PV , data value d ∈ D, and variable
y ∈ Y we define δ′((q, r), (a, y, d)) = (q′, r′) provided δ(q, (a, y)) = q′ and r′(y′) = r(y′)
for each y′ , y and r′(y) = d, and we let δ′((q, r), (a,−, d)) = (q′, r) if δ(q, (a,−)) = q′.
We extend this function δ′ to valuation words in the natural way.

A valuation word v is accepted by the QDA if δ′((q0, r0), v) = (q, r) where (q0, r0)
is the initial configuration and r |= f (q), i.e., the data stored in the registers in the final
configuration satisfy the formula annotating the final state reached. We denote the set
of valuation words accepted byA as Lv(A). We assume that a QDA verifies whether its
input satisfies the constraints on the number of occurrences of variables from PV and
Y , and that all inputs violating these constraints either do not admit a run (because of
missing transitions) or are mapped to a state with final formula false.

A data word w is accepted by the QDA if every valuation word v that has w as the
corresponding data word is accepted by the QDA. The language L(A) of the QDAA is
the set of data words accepted by it.

Finally, a QDA A is called elastic—or an EQDA—if each transition on b is a self
loop, that is, whenever δ(q, b) = q′ is defined, then q = q′.

Moore Machines Broadly speaking, a Moore machine is a deterministic finite au-
tomaton equipped with an output on its states. Formally, a Moore machine is a tuple
A = (Q, Σ, Γ, q0, δ, f ) where Q is a finite, nonempty set of states, Σ is the input alpha-
bet, Γ is the output alphabet, q0 ∈ Q is the initial state, δ : Q × Σ → Q is the transition
function, and f : Q→ Γ is the output function that assigns an output symbol from Γ to
every state.

Runs are defined in the usual way, and we denote the unique state reached by A
from some state q ∈ Q after reading a word u ∈ Σ∗ as δ∗(q, u). A Moore machine
defines a function fA : Σ∗ → Γ where fA(u) = f (δ∗(q0, u)). Note that QDAs can be
seen as a Moore machines that read symbolic words and output data formulas.

Later, we will also deal with partial Moore machines in which the transition function
is not necessarily total. In this case, there might exist inputs that do not admit a run
because of missing transitions. To make sense of such situations, we fix a dedicated
symbol � ∈ Γ that the Moore machine outputs in such cases.

Quotient Moore Machine Let A = (Q, Σ, Γ, q0, δ, f ) be a (partial) Moore machine and
∼⊆ Q × Q an equivalence relation. We call ∼ a congruence (with respect to δ) if the
following is satisfied for all p, q ∈ Q and a ∈ Σ:

if p ∼ q and δ(p, a), δ(q, a) are defined, then δ(p, a) ∼ δ(q, a).

Moreover, the equivalence class of a state q is the set

[[q]]∼ = {p ∈ Q | p ∼ q}.
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Given a congruence ∼, we define the quotient Moore machine to be the the Moore
machineA/∼ = (Q′, Σ, Γ, q′0, δ

′, f ′) where

– Q′ = {[[q]]∼ | q ∈ Q},
– q′0 = [[q0]]∼, and

– δ′([[p]]∼, a) =

{
[[q]]∼ if ∃p′ ∈ [[p]]∼ : δ(p′, a) = q
undefined else .

To define the output function f ′, we additionally need a means to “combine” the output
of several states. To this end, we assume that a function F : 2Γ → Γ is given that maps
a set of output symbols to a single (combined) output symbol. Then, we have

f ′([[q]]∼) = F
(
{ f (p) | p ∈ [[q]]∼}

)
.

C.2 The GSM algorithm

We are now ready to describe the GSM algorithm of which RPNI is a concrete instance.
In the following description, the reader should interpret concepts printed in »italic« as
“templates”, which we will instantiate later.

Roughly speaking, the GSM algorithm proceeds in two phases:

1. It first constructs an »initial Moore machine« Ainit that satisfies a »property p«
from a »sample«. This sample might be any collection of words together with their
output.

2. Then, it successively »merges« states ofA in a »particular order«. For each candi-
date merge, it »tests« whether the merged Moore machine still satisfies p. If the
merged Moore machine passes the test, the GSM algorithm proceeds with this
merge. Otherwise, it discards the merge and proceed with the last successful merge.

A more formal description of this GSM algorithm is given as Algorithm 1 in Sec-
tion 5 (the algorithm is repeated below). Internally, the algorithm calls three template
functions, which have the following effect:

– The function test(A) checks whether the Moore machine A satisfies a property
p and returns either true or false.

– The function init(S) constructs a Moore machine A that passes test (A) from
a sample S.

– The function order(Q) returns an ordered list of all elements of Q with respect to
some total order over Q.

Note that Algorithm 1 does not perform a state merge on the transition structure of the
Moore machineAinit itself. For the sake of a simpler description, we rather represent a
merge by means of a congruence ∼, which describes the merging of states on an abstract
level. To perform the actual merge, we construct the quotient Moore machine Ainit/∼.
Let us remind the reader that the computation of a quotient Moore machine requires a
function F : 2Γ → Γ to combine different outputs.

Since Algorithm 1 starts with a Moore machine that passes test and only merge
states if the same is true for the merged Moore machine, we immediately obtain the
following remark.
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Input: A sample S
Output: A Moore machineA that passes test(A)

1 Ainit = (Q, Σ, Γ, q0, δ, f )← init(S);
2 (q0, . . . , qn)← order(Q);

3 ∼0← {(q, q) | q ∈ Q};
4 for i = 1, . . . , n do
5 if qi /i−1 q j for all j ∈ {0, . . . , i − 1} then
6 j← 0;
7 repeat
8 Let ∼ be the smallest congruence that contains ∼i−1 and the pair (qi, q j);
9 j← j + 1;

10 until test(Ainit/∼);
11 ∼i←∼;
12 else
13 ∼i←∼i−1;
14 end
15 end
16 returnAinit/∼n ;

Remark 1. Algorithm 1 always returns a Moore machineA that passes test(A).

Note that the repeat-loop always terminates because if i = j, then the constructed quo-
tient automaton is the same as the one from the previous round, which already passed
the test.

C.3 Instantiations of the GSM algorithm

To illustrate the GSM algorithm, let us now briefly demonstrate how to instantiate the
templates in order to obtain the original RPNI algorithm. Then, we explain how to apply
the GSM algorithm to the setting of ICE-learning of EQDAs.

RPNI In the original RPNI setting, the task is to learn a DFAA that is consistent with
a pair (E,C) where E,C ⊆ Σ∗ are two disjoint, finite sets of words andA has to satisfy
E ⊆ L(A) and C ∩ L(A) = ∅. We instantiate Algorithm 1 as follows to obtain the
original RPNI algorithm:

– We simulate DFAs by using Moore machines with the output alphabet Γ = {0, 1};
1 corresponds to a final state and 0 corresponds to a nonfinal state.

– For S ⊆ Γ, we define the function F to be

F(S ) =

{
1 if 1 ∈ S
0 else .

That is, if a state with output 1 is merged with some other states, then the resulting
merged state has also output 1.

– The sample is S = (E,C).
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– test(A) checks whether all u ∈ E have output 1 and all u ∈ C have the output 0,
i.e., whether all words from E are “accepted” and those of C are “rejected”.

– init(S) constructs the prefix tree acceptor of E, i.e., the partial Moore machine
A = (Q, Σ, Γ, q0, δ, f ) where Q = Pref (E), q0 = ε,

δ(u, a) =

{
ua if ua ∈ Pref (E)
undefined else ,

and

f (u) =

{
1 if u ∈ E
0 else .

– order(Q) returns a set ordered with respect to the canonical order over words.

It is not hard to verify that the Moore machine produced by init passes test. Thus,
Remark 1 yields that the Moore Machine returned by Algorithm 1 when interpreted as
a DFA is consistent with (E,C).

ICE-learning of EQDAs We now can formally present our ICE-learning algorithm of
Section 5.

The first thing to note is that we do not distinguish between (E)QDAs and Moore
machines that read symbolic words (i.e., Σ = Π) and output a data formula (i.e., Γ = F ).
Moreover,

– we choose the output combination function F to be the function that maps a set
S ⊆ F of data formulas to the least upper bound of all formulas of S .

Note that the definition of F is sound because we assume that F forms a lattice.
Our GSM algorithm for EQDAs takes a sample S = (Ê, Ĉ, Î) as input where Ê, Ĉ

are sets of sets of valuation words and Î consists of pairs of sets of valuation words.
In the end, we want our algorithm to produce an EQDA A that is consistent with the
sample. In the context of EQDAs, consistency with a sample is defined as follows:

- For all sets of valuation words S ∈ Ê and each valuation word w ∈ S , the EQDA
A has to accept w.

- For all sets of valuation words S ∈ Ĉ there exists a valuation word w ∈ S such that
the EQDAA rejects w.

- For all pairs of sets of valuation words (S 1, S 2) ∈ Î, if the EQDA accepts all w1 ∈

S 1, then it must also accept all w2 ∈ S 2.

Thus,

– test(A) checks whether the Moore machineA is consistent with the sample S.

The process of creating an initial Moore machine (EQDA) from a sample (the func-
tion init) is more elaborate than in the case of RPNI and requires a fixed-point com-
putation. First, let E =

⋃
S∈Ê S be the set of all valuation words from positive examples

and E′ the set of all symbolic words that results from stripping the data from every val-
uation word of E. Then, we execute the following procedure, which is slightly different
from the description in Section 5 but yields the same result.
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1. We begin with constructing the prefix tree “acceptor” of E′, i.e., the (partial) Moore
machineA = (Q, Π,F , q0, δ, f ) where Q = Pref (E′), q0 = ε,

δ(u, a) =

{
ua if ua ∈ E′

undefined else .

To define the output function f , we consider a symbolic word w ∈ E′ and define
the set Ew = {v ∈ E | v without data is w} to contain all valuation words of E that
result in the word w when stripped from their data. Then, f (w) is the least formula
in F that is satisfied for all valuation words in Ew. Due to the definition of f , A
satisfies the first two conditions of consistency.

2. We elastify the resulting QDA A according to [20] and obtain the unique EQDA
A′.

3. If the resulting QDA A′ is not consistent, then either there exists no such EQDA
or the EQDA violates an implication. In the first case, we terminate the whole
learning process. In the latter case, there exists an (S 1, S 2) ∈ Î such thatA′ accepts
all w ∈ S 1 but rejects at least one w ∈ S 2. We then add S 1 and S 2 to Ê.

4. We repeat Steps 1 to 3 until we obtain an EQDA that is consistent with the sample
(or we discover that no such EQDA exists).

Since the sample is finite, init eventually terminates and either reports that there exists
no EQDA consistent with the sample or it produces a consistent EQDA. Thus, if init
returns an EQDAA, it passes test(A).

To finish the description,

– order(Q) returns an list of states (symbolic words) that is ordered according to
the canonical order on words.

Finally, Remark 1 yields that the GSM instance from above produces an EQDA that
is consistent with the given sample provided that such an EQDA exists.

D Details of the Prototype Implementation of the Iterative
ICE-learner for EQDAs

This section provides a more detailed description of the exact functioning of our proto-
type including a detailed description of the teacher and learner.

Given a conjectured hypothesis, the role of the teacher is to check whether the con-
jectured invariant is adequate or not. In our case, the learner conjectures an EQDA as
a hypothesis. The teacher first converts the EQDA to a quantified formula in the array
property fragment (APF) [61] or the decidable Strand fragment over lists [62]. Then
the teacher uses a constraint solver to check if the conjectured EQDA corresponds to
an adequate invariant or not. If the answer is no, the teacher finds examples, counter-
examples or implications over concrete data words that need to be added to the sample
of the learner for the next iteration of iterative-ICE. However, because of the quantified
setting, the sample is defined over sets of valuation words and not data words. There-
fore, for every data word, the teacher obtains a set of valuation words and then adds
these sets, or pair of sets in the case of implications, to the sample.

26



The learner is an RPNI-based ICE-learner which given a set-based sample (Ê, Ĉ, Î)
conjectures an EQDA that is consistent with the sample. Let us first fix the formula
lattice over data formulas to be the Cartesian lattice of atomic formulas over relations
{=, <,≤}. To check whether a valuation word v is rejected by an EQDA, the learner
should just read v and check if its data values satisfy the data formula ϕv that the EQDA
outputs on reading v. However, the learner actually implements this check in a slightly
different manner. Given a valuation word v, the learner finds the smallest data-formula
in the formula lattice which includes the data values in v, and rejects the word only
if that formula is unsatisfiable in conjunction with ϕv. With this criterion of rejecting
valuation words, words which should be actually rejected by the EQDA might not be
rejected under this new criterion. In terms of the RPNI-based learner which merges
states only if the EQDA still rejects all C ∈ Ĉ, the new rejection criterion leads to fewer
states being merged. The new criterion is therefore more conservative and it ensures that
the EQDA learned by the learner still remains consistent with the sample. Apart from
this modification, the learner is implemented exactly as described in the main paper.

To start the learning process, the teacher in the beginning runs the program on a
few random input lists/arrays and collects the concrete data words that manifest at the
program locations for which we want to synthesize an invariant. Each such data word is
converted to a set of valuation words and together they form the set of positive examples
Ê in the sample with which the iterative ICE-learning is initialized (Ĉ and Î are empty
to begin with).

We adapted the RPNI algorithm from the libALF library [64] to support the above
described set-based ICE-learning algorithm. We use Z3 (which supports APF) as the
constraint solver in the teacher for checking the adequacy of the quantified array in-
variants. We evaluated the learning algorithm on several array programs (see Table 2).
Since we did not have an implementation of the decision procedure for the decidable
fragment of Strand for lists, we could not evaluate our prototype on list-manipulating
programs.

27


	ICE: A Robust Framework for Learning Invariants

