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1 Introduction

Does uncertainty aggravate business cycles? The recent financial crisis has

again brought up this question. For example, the bankruptcy of the Lehman

Brothers in Autumn 2008 was followed by a jump in the US stock market

volatility which in its turn coincided with declining industrial production (see

Figure 1). There are many theoretical reasons why higher uncertainty could

cause a negative business cycle. For example, higher uncertainty might lead

firms to scale down and postpone their investments and hiring (Bernanke

(1983), Bloom (2009)), or consumers to postpone purchases of durable goods

(Romer (1990)1). On the other hand, declining (and hence usually more

volatile) stock market prices in a recession could be a consequence of investors

expecting lower future dividends and capital gains.

Either way, one would assume that stock market returns and volatil-

ity predict business cycles. This paper brings together two (possible) real

economic effects of a stock market crash: the first order effect of negative

returns, and the second order effects via higher uncertainty which we mea-

sure by stock market volatility2. The methodological contribution of this

paper is to extend the multivariate general autoregressive conditional het-

eroskedastic (GARCH) model of Vrontos, Dellaportas, and Politis (2003) to

a vector autoregressive (VAR) model with GARCH-in-mean effects. This

model provides an ideal framework to study both jointly and separately the

importance of the two possible effects of a stock market crash.

1Actually, Romer (1990) simply extends the intuition of the ”wait and see” hypothesis

for investments of Bernanke (1983) to consumable durable goods.
2Although there are many other possible measures of uncertainty, stock market volatil-

ity is probably the most common one. Also, it is highly correlated with the other measures

(see, for example, Arnold and Vrugt (2008), Bloom (2009)).
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The variables of our model are the monthly stock market return and the

change in industrial production. In order to to study the business cycle effects

of negative stock market returns and higher uncertainty, we need to identify

a structural shock that generates stock market surprises. By referring to the

high autocorrelation in the monthly capacity utilization in the manufacturing

industry, we argue that the production of an industrial company necessarily

is quite persistent. This enables us to identify one of the structural shocks of

our model as a stock market specific shock which is interpreted as financial

news. Then, financial news can affect the stock market returns immediately

but the industrial production only with a lag. Hence, our financial news

variable can generate unexpected increases in the stock market volatility.

The model can be estimated with the method of maximum likelihood (ML),

and we can statistically test the significance of the first and second order

effects of a stock market crash on the industrial production. Also, our model

allows us to separately study the importance of these two effects by means

of impulse responses.

In the empirical application, we estimate the model with US data cov-

ering the period from the beginning of 1919 to the mid 2013. According to

the estimation results the stock market volatility (as well as the return) is a

statistically significant predictor of the change in industrial production. Fur-

thermore, as the theoretical contemplations would predict, financial volatil-

ity is countercyclical, meaning that higher volatility decreases the growth

rate of industrial production. The impulse response analysis shows that a

(monthly) negative stock market shock of ten percent is followed by a slump

in the growth rate of industrial production that lasts for around two years,

with the cumulative effect on the industrial production of roughly minus

three percent. Approximately half of the duration of the business cycle is
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explained by the direct effects of negative stock market returns. The other

half is due to the higher volatility, or uncertainty.

As the emphasis of the paper is to study the business cycle effects of

uncertainty, it is closely related to the literature on the linkages between

financial and macroeconomic volatility. The question of predicting financial

volatility with macro variables (and their volatility), is of course an old theme

in the financial literature (Schwert (1989) is a classical reference, whereas

Beltratti and Morana (2006), Diebold and Yilmaz (2008), and Engle, Ghysels,

and Sohn (2013) are more recent ones, only to mention a few). According to

Diebold and Yilmaz (2008) the main finding of this research is that, perhaps

unsurprisingly, stock market volatility is higher in recessions. This is also the

main conclusion of Hamilton and Lin (1996) who, furthermore, notice that it

is the higher stock market volatility that precedes a fall in the US industrial

production by one month. However, in their model stock market volatility

and industrial production follow the same latent process which determines

the state of the economy. Hence, they do not consider the direct links between

the two variables.

The literature that studies the macroeconomic effects of financial volatil-

ity is not very voluminous but growing, especially due to the recent financial

crisis. From the perspective of this paper, the most relevant part of this liter-

ature consists of the papers that explicitly focus on the effects of uncertainty

or volatility shocks. The main methodology of this line of research is to write

down and calibrate a theoretical macroeconomic model where the uncertainty

shock is modeled as a second order shock to the productivity process (see,

for example, Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2012)). The main finding is that uncertainty shocks can create

business cycles that last for about six to twelve months. Our result on the

3



magnitude of the second order effect of a stock market crash is consistent

with this.

There are only few truly empirical studies on the subject. Alexopoulos

and Cohen (2009), Beetsma and Giuliodori (2012), and Denis and Kannan

(2013) are some rare exceptions. As the model specifications of these papers

come quite close to our model, we will discuss them (and problems in their

identification) in detail later on. Also Bachmann, Elstner, and Sims (2013),

and Baker and Bloom (2013) use statistical methods to determine the busi-

ness cycle effects of uncertainty. But the methods and data they use are quite

different from ours. As a measure of uncertainty, the former uses dispersion

of forecasts for economic conditions of manufacturing companies. The latter

considers an event study framework where natural disasters, coups, and rev-

olutions are used as exogenous sources of uncertainty shocks. Overall, these

studies find that higher uncertainty has a statistically significant negative

effect on economic growth. Our results reconfirm this and, also highlight the

relative importance of the second order effects to the first order effects in

explaining a recession.

The rest of the paper is organized as follows. In the next section, we intro-

duce the model and discuss its estimation and identification of the structural

shocks. In Section 3, we present the estimation results on the US data.

Finally, Section 4 concludes.

2 The empirical framework

In this section, we first introduce the model for the joint dynamics of in-

dustrial production and the stock market return and discuss its estimation.

Then, we discuss both the identification of the structural shocks and the
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econometric analysis of the identified model. Finally, we briefly compare the

model to a number of similar ones in the literature.

2.1 The model

Let us denote by ∆indt the monthly percentage change in industrial produc-

tion and by rt the monthly stock market return. We collect the variables

into the (2×1) vector yt = [∆indt, rt]
′ and assume that yt follows a bivariate

GARCH model with a non-zero conditional mean. Specifically, we assume

the following multivariate specification of the (G)ARCH-in-mean model of

Engle, Lilien, and Robins (1987):

A(L)yt = µ+ Cht + ut, (1)

where A(L) = I2 − A1L − . . . − ApL
p is a (2 × 2) matrix polynomial, µ

is a (2 × 1) vector of the intercepts, C is a (2 × 2) coefficient matrix, and

ht = [h1,t, h2,t]
′ is a (2× 1) vector of the conditional volatilities h1,t and h2,t

of the structural shocks ε1,t and ε2,t, respectively. The structural shocks are

discussed shortly. Finally, ut = [uind,t, ur,t]
′ is the (2× 1) reduced from error

vector. In the empirical application, the order of A(L) is determined with

the Bayesian information criterion (BIC).

To complete the model, we assume that the reduced form errors are a

linear function of the two structural shocks with the following simple speci-

fication:

ut = Bεt, (2)

where εt = [ε1,t, ε2,t] is the (2 × 1) vector of the structural shocks, and B is

a (2× 2) coefficient matrix. To identify the shocks, we assume that B is the
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following lower triangular matrix:

B =

 1 0

b 1

 . (3)

This assumption identifies the second structural shock (ε2,t) as a stock mar-

ket specific shock. The assumption that the diagonal elements are equal to

one restricts the number of parameters and, hence, normalizes the model.

The structural shocks are assumed to be mutually orthogonal and to follow

univariate GARCH(1,1) processes with Gaussian conditional distributions:

εi,t|It−1 ∼ N(0, h2i,t), (4)

h2i,t = αi + βi · ε2i,t−1 + γi · h2i,t−1 (5)

for i = 1, 2. Here It−1 denotes the information set up to time period t − 1

(the period t− 1 included), and αi, βi, and γi, i = 1, 2, are parameters.

The multivariate GARCH model in equations (2)–(5) was proposed by

Vrontos, Dellaportas, and Politis (2003). The model is well defined under

rather mild assumptions. To see this, collect first the conditional variances

h21,t and h2r,t into the (2×2) diagonal matrix H2
t = diag(h21,t, h

2
2,t). Then, given

specification (3), the conditional covariance matrix of the reduced form error

vector ut,

Σu|It−1 = BH2
tB
′,

is always positive definite as long as the conditional variances h21,t and h2r,t

are well defined. In order to guarantee this, we follow Vrontos et al. and

assume that αi > 0, βi ≥ 0, and γi ≥ 0 for i = 1, 2.

The model can be estimated with the method of ML. Assume a sam-

ple of T observations, and denote by Yt−1 the vector of observations up

to the time period t − 1 (yt−1 included). Then, given the initial values
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{y0, . . . ,y−p,h0, ε0}, the conditional density function of the model (1)–(5)

becomes

f(yt|Yt−1) =det(BHt)
−1×

exp

{
−1

2
(A(L)yt − µ−Cht)

′(BH2
tB
′)−1(A(L)yt − µ−Cht)

}
,

where we have omitted the constant terms of the Gaussian distribution. After

collecting all the parameters of the model into the vector δ, the log-likelihood

function of the model can be written as

l(δ,YT ) =− T × ln(det(B))−
T∑
t=1

ln(det(Ht))−

− 1

2

T∑
t=1

(A(L)yt − µ−Cht)
′(BH2

tB
′)−1(A(L)yt − µ−Cht)

which can be maximized numerically with standard optimization algorithms.

In our empirical analysis, we take the first p observations of y as the initial

values for the dependent variables, set h0 equal to the sample standard de-

viations of the residuals ûind,t and ûr,t of a standard pth order VAR model

estimated from the full sample, and finally assume that ε0 = 0.

2.2 Identification and econometrics analysis

Assumption (3) on matrix B serves two purposes. On the one hand, as men-

tioned above, it guarantees that the model is well defined under the stated

assumptions (see Vrontos, Dellaportas, and Politis (2003, 314–15)), on the

other hand it identifies the second structural shock (ε2,t) as the stock market

specific shock, a shock which affects the stock market returns instantaneously,

in period t, but industrial production only from period t+ 1 onwards.

The second shock ε2,t can be interpreted as financial news. As we are

especially interested in the effects of unexpected surges in uncertainty on the
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real side of an economy, we will restrict our attention to studying the business

cycle effects of this shock. The first structural shock (ε1,t) does not have any

specific interpretation here. It is a shock that can affect both the real sector

and the stock markets contemporaneously, and hence it could incorporate,

for example, productivity shocks.

Why does it make sense to assume that financial news in period t in-

stantly affects only the stock markets but not the industrial production?

The monthly capacity utilization in the US manufacturing, mining, and elec-

tric and gas sectors (in 1972–2012) is a highly persistent variable (with the

coefficient estimate of 0.99 in a first order autoregressive model). Hence, a

high level of orders of an industrial company this month predicts a high level

of orders also in the next month. This seems natural as probably many in-

dustrial products are (investment) goods whose production take more than

a month. Assume there is negative financial news, such as the bankruptcy

of the Lehman Brothers, in period t. During this same period, given the

high persistence in the industrial orders, the companies would still be busy

in fulfilling their orders from the previous months, and so, the shock would

not affect the current production. Of course, it could affect the number of

new orders received in period t and, hence, the future production, but this

is exactly the effect we are interested in.

In order to avoid any misunderstanding, let us briefly discuss the limi-

tations of our identification scheme. Such dramatic news as the default of

the Lehman Brothers and the subsequent stock market crash could of course

be a consequence, not necessarily the cause of slowing economic activity; af-

ter all, stock market prices should reflect discounted future dividends and

capital gains. However, such reversed causality between stock market prices

and future economic activity is irrelevant for our purposes of quantifying the
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business cycle effects of uncertainty shocks. To this end, we only need to

identify a stock market specific shock that can generate stock market volatil-

ity surprises. With such a shock available we can separate the direct effect

of the drop in the stock market prices from the volatility effect.

To take an example, consider Figure 1, which shows that after the de-

fault of the Lehman Brothers, the US stock market prices collapsed and the

estimated volatility tripled. Whether the subsequent stock market crash was

the cause or the consequence of the recession, the upsurge in the volatility

suggests that at least many investors perceived a huge rise in the uncer-

tainty over the actual and future state of the US economy. Our question is

whether there is any evidence of this uncertainty prolonging the slump as the

theoretical literature referred to in Introduction suggests. This means that

higher volatility should be an important variable in explaining variation in

the industrial production.

In order to study this question we can first test for the statistical sig-

nificance of the parameter c1,2 (the first row, second column element of the

matrix C in equation (1)). This measures the direct effect of the volatility

of the structural shock ε2,t on industrial production. One would expect that

c1,2 ≤ 0, i.e. higher volatility tends to decrease industrial production. Fur-

thermore, assume a negative realization of ε2,t, say, at period T0, and call it

ε̃2. According to our assumptions, ε̃2 affects the stock market return already

at period T0 but the growth rate of industrial production only from period

T0 + 1 onwards. In our model, the effect of ε̃2 on ∆indT0+1 comes from two

channels; on the one hand via the lagged (negative) stock market return,

and on the other hand via the conditional variance of ε2,t which, according

to equation (5), increases at period T0 + 1. The first channel corresponds to

the first order effect of a stock market shock, and the second channel to the
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second order, or uncertainty, effect.

The dynamic effects of ε̃2 and the importance of the two channels on

the growth rate of industrial production can be studied with two different

impulse response functions. First, as suggested by Elder (2003)3, we can

calculate the total impulse response function by simply introducing ε̃2 and

numerically compute the responses of rt and ∆indt to the shock. This gives

us the total effect of ε̃2. (The details of our actual calculations are explained

in the next section.) Then, in order to separate the effect of higher volatility

on ∆indt from the total effect of ε̃2, we can calculate the responses of the

system to another shock which we refer as a ”volatility jump”. This jump

corresponds to an increase only in h22,t at period T0+1 which exactly matches

the increase in it due to the shock ε̃2. The two impulse response functions

of ∆indt give us the total effect of the stock market shock and the effect of

higher volatility on the growth rate of industrial production. The difference

of the two (at each period) tells us the first order effect.

2.3 Related literature

Hamilton and Lin (1996) model the joint dynamics of the changes in the US

industrial production and the excess stock market return. The framework

they consider is a bivariate Markov-switching VAR model with ARCH-effects.

Their main finding is that both variables are more volatile in recessions and

that increasing volatility in stock markets precedes declines in the industrial

production by one month. This result supports our identifying assumption.

Alexopoulos and Cohen (2009), Denis and Kannan (2013), and Beetsma

and Giuliodori (2012) study the business cycle effect of uncertainty (financial

3Elder (2003) discusses in detail the differences in the impulse response functions of a

standard homoskedastic VAR model and the VAR-GARCH-in-means model.
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market volatility) with the VAR framework. Unlike us, the first two papers

assume that volatility shocks (to financial markets) affect the real sector

immediately but that the real sector specific shocks affect volatility only

with a lag. On the basis of the discussion above, this seems an incorrect

timing of events. At the very least, we should expect shocks to real sector to

have an immediate effect on the financial markets.

Like us, Beetsma and Giuliodori (2012) assume that stock market volatil-

ity affects the real sector only with a lag, but strangely enough they include

the quarterly return of the Dow Jones index and its volatility as separate

variables in their VAR model and assume that the return can immediately

affect the volatility but not vice versa. However, as their volatility variable is

necessarily a function of the returns data, dealing these two variables as sep-

arate time series is questionable. In our framework, the effect of returns on

the volatility is explicitly modeled, and the parameters of the model jointly

estimated.

Nonetheless, Alexopoulos and Cohen (2009), Denis and Kannan (2013),

and Beetsma and Giuliodori (2012) find that uncertainty (or volatility) shocks

can predict recessions which, depending on the size of the shock, last one to

two years. In the next section we find quite similar results with our model

fitted to US data.

3 Uncertainty and business cycles in the US

In order to estimate the model, we consider monthly percentage changes in

the US stock market prices (returns rt) and industrial production (∆indt).
4

4The variables are computed in the following way: ∆indt = 100× (ln indt− ln indt−1),

and rt = 100× (lnPt − lnPt−1), where Pt is the monthly stock market price index.
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The stock market prices are downloaded from Robert Shiller’s home page5

and here we use the nominal prices (the correlation between the nominal

and real prices is 0.96). The industrial production data is from the online

database (FRED) of the Federal Reserve Bank of St.Louis. As the industrial

production data is available only from January 1919 onwards, our data on

monthly changes covers the period from February 1919 to July 2013. This

means that there are 1134 observations.

3.1 Estimation results and testing

Table 1 reports the estimation results for the model (1)–(5) where the lag

length p is set to two by the BIC.6 In the equation of the change in industrial

production, all the coefficients of the lagged returns and changes in industrial

production are statistically significant at the 5% significance level. On the

contrary, in explaining the stock market return, only the first lag of the return

seems to have a statistically significant coefficient at the 5% significance level

while the coefficient of the first lag of the change in industrial production is

statistically significant only at the 10% significance level. All the parameters

of the GARCH-processes are statistically significant at the 1% significance

level.

As explained in Section 2.2 our main interest is in testing whether the

coefficient of h2,t, the conditional volatility of the shock market specific struc-

tural shock, on the change in industrial production is statistically different

from zero. Its estimated value in Table 1 equals -0.08 and, hence, is nega-

tive as expected. The value of the likelihood ratio test statistic for the null

hypothesis of c1,2 = 0 against the alternative hypothesis of c1,2 6= 0 gets

5http://www.econ.yale.edu/~shiller/data.htm
6All the estimations were done with the procedures in the CMLMT library of GAUSS.
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value 9.40, which means that the null hypothesis is rejected at any reason-

able significance level. Hence, we conclude that uncertainty is a statistically

significant explanatory variable for the changes in industrial production. It

is also countercyclical in the sense that when it rises, as it usually does in

recessions, it decreases the growth rate of industrial production.

Neither of the conditional standard deviations seem to be statistically

significant variables in explaining the stock market return. However, some-

what surprisingly, the coefficient of the conditional standard deviation of

the first structural shock appears to be a statistically significant predictor

of the change in industrial production. However, as the robustness checks

in Section 3.3 below shows, this result seems to depend on the fact that our

sample period includes the Great Depression of the 1930’s. As a final remark

on Table 1, notice that the parameter b of the matrix B in equation (3)

is statistically significant only at the 10% significance level. Hence, there is

some weak evidence of the second structural shock being a real sector specific

shock.

3.2 Impulse response analysis

In order to study the economic significance of uncertainty in explaining re-

cessions, we generate a stock market crash by introducing a large negative

realization of ε2,t. The magnitude of the shock is minus ten. This gener-

ates a drop of ten percentage points in the monthly stock market return

which roughly corresponds to the average (-14%) of the monthly returns in

September–October 2008, the period when the Lehman Brothers defaulted

(Figure 1).

The shock happens in period 0. We assume that in period -1 the vari-

ables equal their long run levels (unconditional means) which are computed
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based of our parameter estimates. The long run levels (monthly percentage

changes) of stock market return and the change in industrial production are

0.72 percent and 0.37 percent, respectively. When these are transformed into

yearly percentage changes, we get 8.64 percent stock market return and 4.44

percent increase in the industrial production. These are reasonable figures,

which lends support to our estimation results. Notice also that in our model

there is no feedback in equations (4)–(5) from the variables of yt back to the

GARCH processes of the conditional variances of the structural shocks. This

makes the calculation of the impulse responses straightforward.

Figure 2 reports the impulse responses of the stock market return and the

change in industrial production to the stock market shock in period 0 with

the 95% confidence intervals7. The impulse responses are demeaned with the

long run levels of rt and ∆indt in order to highlight the effect of the shock.

Hence, for example the period 0 value of -10 for rt means that, due to the

shock, the stock market return is ten percentage points lower than the return

7The computation of the 95% confidence intervals was carried out in five steps: (Step

1) the ML estimates of the parameters of the model were used to simulate a data set of the

same size as our actual data. The simulation of the data consisted of three phases: first,

the initial values of ε1,t and ε2,t were drawn from normal distributions with the variances

equal to the long run values of h2
1,t and h2

2,t, respectively. Second, the estimated univariate

GARCH processes (4)–(5) were used to simulate the realizations of the structural shocks.

Third, the simulated structural shocks (and the estimated equations (1)–(3)) were used

to construct the new data set on rt and ∆indt. In ’Step2’, the model was re-estimated

for these new (simulated) data. ’Step 3’ consisted of using the new parameter estimates

from the previous step to compute the impulse responses of rt and ∆indt to a negative

realization of ε2,t = −10 (the same magnitude as in the original case). In ’Step 4’, the

previous three steps were repeated 10000 times. Finally, in ’Step 5’, for each lag separately,

we ordered the 10000 impulse responses into ascending order and selected the elements that

were the 500th and 9500th in order. We did the fifth step separately for both variables,

rt and ∆indt.
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in the long run. Gradually, both variables converge back to their long run

levels (level zero in the graphs).

For both variables the drop is significant. As the upper panel of Figure 2

shows, for the stock market return the highest impact of the shock is right

away after the shock (period 0), and the stock market accommodates to the

shock quite quickly; after four to six months the stock market return has

converged back to its long run level. In period 4, there is even a small boom

in the stock markets as the volatility has started to decrease from its high

levels right after the shock (the volatility time series is not reported) and

uncertainty decreases. In the lower panel, as assumed in our model, the

effect of the shock on the change in the industrial production in period 0 is

nil. The highest impact of the shock on ∆indt comes three months after the

shock, and the negative effect lasts much longer than for the stock market

return. It is only after around two to two and a half years (!) that ∆indt

has basically converged back to its long run level.

Figure 3 decomposes the total effect of the stock market crash into the

first and second order effects (for details on the concepts, see the end of

Section 2.2). The second order effect measures the share that uncertainty

explains of the negative business cycle following the stock market crash. As

seen from the figure, the first order effect lasts only around nine to ten months

which is consistent with the quick recovery in the stock market return. After

this, for around one more year, it is only the effect of higher volatility that

still drags down the growth rate of industrial production. At the trough of

the business cycle (period 3), uncertainty explains around one third of the

minus 0.6 percentage points deviation of ∆indt from its long term level.

Figure 4 shows the cumulative effect of the stock market crash on the

change in industrial production and decomposes it into the shares explained
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by the first and second order effects. The cumulative effects were computed

by summing the demeaned impulse responses in the previous figure. As

Figure 4 shows, the total cumulative effect of the stock market crash on

∆indt is around minus three percentage points. This means that around two

years after the shock, the level of industrial production is three percent lower

than without the shock (assuming the growth rate of industrial production

at its long run level). As seen from the figure, the second order effect, or

uncertainty, explains around two thirds of the total cumulative effect. Based

on Figure 3, this is result is intuitive as it is the second order effect that

prolongs the business cycle with another year while the first order effect dies

out quickly. Clearly, uncertainty is an important factor in propagating and

prolonging business cycles.

3.3 Robustness checks

Beetsma and Giuliodori (2012) argue that the responsiveness of the real

sector of an economy to stock market volatility shocks changes in time. They

find that, after the 1980’s, the GDP growth has become less responsive to

volatility shocks. This raises the question of how robust our findings are for

different time intervals, especially as our sample period includes two severe

economic crises, one at the beginning and the other at the end of the sample.

Table 2 shows the estimates of the coefficients c1,1 and c1,2 for a num-

ber of subsamples. Encouragingly, the estimate of the effect of stock market

volatility on the industrial production (the coefficient c1,2) is always nega-

tive with p-values below 0.05, but we also reconfirm the finding of Beetsma

and Giuliodori (2012) that the absolute value of c1,2 decreases towards the

end of the sample period. Also, according to Table 2 the coefficient c1,1 ap-

pears to become statistically insignificant towards the end of the sample. It
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seems that this coefficient gets its largest value in the period including the

Great Depression and the Second World War. Overall, our main finding that

uncertainty is countercyclical, seems robust.

4 Conclusions

The aim of this paper was to study the business cycle effects of uncertainty.

According to theory, one expects uncertainty to be countercyclical. To ex-

amine this, we proposed measuring uncertainty with stock market volatility

and introduced a bivariate VAR-GARCH-in-mean model for the monthly

stock market return and the change in industrial production. We identified

stock market specific structural shock which can generate volatility surprises

whose effects on industrial production we study. The framework enables us

to test the statistical significance of uncertainty in explaining variations in

the industrial production.

In analysis of US data from the beginning of 1919 to the mid 2013, we

found that, in accordance with the theoretical models, uncertainty is coun-

tercyclical with statistically significant coefficient. The result was robust for

varied time periods. The impulse response analysis shows that a ten percent

monthly decrease in the stock market prices is followed by a slump in the

growth rate of the industrial production that lasts for about two years and

leaves the industrial production three percent lower than without the stock

market crash. Roughly half of the duration of the business cycle and two

thirds of the total cumulative effect of the stock market shock are explained

by higher uncertainty.
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Figure 1: Monthly US stock market returns, estimated stock market volatil-

ity, and change in the US industrial production in January 2007–December

2010
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Note: Here volatility of the stock market returns is computed as the conditional standard

deviation of the returns implied by the univariate GARCH(1,1) model estimated from

our full sample period (January 1919–July 2013). Sources: http://www.econ.yale.edu/

~shiller/data.htm (stock market data), St.Louis FED’s FRED database (industrial pro-

duction), and own calculations.
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Figure 2: Response of rt and ∆indt to a negative stock market specific shock
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Note: Negative stock market specific shock at period t=0. The panels show demeaned

impulse responses (demeaned by the long-run levels of the variables). Hence, the levels

rt = 0 and ∆indt = 0 correspond to the long run stock market return and the growth rate

of industrial production, respectively. The bootstrapped confidence intervals are based on

10000 replications (for details, see footnote 7).
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Figure 3: Decomposition of the IRF of ∆indt
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Note: The first order effect refers to the direct effect of ε2,t on ∆indt via stock market

returns, the second order effect refers to the effect of ε2,t on ∆indt via higher h2,t only, or

uncertainty. For details, see the end of Section 2.2.

22



Figure 4: Cumulative effect of the stock market specific shock on ∆indt
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Note: For explanations, see the note to Figure 3.
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Table 1: Estimation results (standard errors in parentheses)

Dependent variables

∆indt rt

Intercepts 0.239 0.560

(0.101) (0.384)

∆indt−1 0.244 -0.135

(0.033) (0.075)

rt−1 0.020 0.269

(0.007) (0.033)

∆indt−2 0.151 0.037

(0.033) (0.077)

rt−2 0.033 -0.061

(0.007) (0.033)

h1,t 0.241 0.001

(0.060) (0.124)

h2,t -0.080 0.022

(0.027) (0.113)

h1,t h2,t

Intercepts 0.062 0.622

(0.013) (0.169)

h2
1,t−1 0.646 · · ·

(0.032) · · ·

h2
2,t−1 · · · 0.832

· · · (0.021)

ε1,t−1 0.394 · · ·

(0.048) · · ·

ε2,t−1 · · · 0.140

· · · (0.022)

uind,t ur,t

ε1,t−1 · · · 0.117

· · · (0.077)

Continued on next page
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Table 1 – continued from previous page

NOTE: Standard errors in parenthesis are

obtained from the inverse Hessian of

the log-likelihood function.

Table 2: Robustness of volatility coefficients (p-values in parentheses)

Time period c1,1 c1,2

Full sample period
0.24 -0.08

(0.00) (0.00)

Feb/1919–Dec/1954
0.43 -0.16

(0.00) (0.00)

Jan/1955–Dec/1989
0.07 -0.22

(0.73) (0.03)

Jan/1955–Jul/2013
0.21 -0.09

(0.23) (0.02)

NOTE: p-values are based on the standard

errors as detailed in the note to Table 1,

c1,1 (c1,2) is the effect of h1,t (h2,t) on ∆indt.
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