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Abstract

The design of gaits and corresponding control policies for bipedal walkers is a
key challenge in robot locomotion. Even when a viable controller parametriza-
tion already exists, finding near-optimal parameters can be daunting. The use
of automatic gait optimization methods greatly reduces the need for human ex-
pertise and time-consuming design processes. In this paper, we experimentally
evaluate Bayesian optimization for gait optimization of a real bipedal walker. By
performing more than 1800 experimental evaluations, we compare Bayesian op-
timization with various acquisition functions. Additionally, we study the effects
of using fixed hyperparameters instead of automatically optimize them.

1 Introduction

Key challenges in bipedal locomotion include balance control, foot placement, and gait optimization.
In this paper, we focus on black-box gait optimization. Hence, we assume that a suitable controller
to generate the desired gait has already been designed, but that appropriate gait parameters for the
controller still need to be found. Due to the partially unpredictable effects and correlations among the
gait parameters, gait optimization is often an empirical, time-consuming and strongly robot-specific
process. As a result, gait optimization may require considerable expert experience, engineering
efforts and time-consuming experiments. Additionally, a change in the environment (e.g., different
floor surfaces), a variation in the hardware response (e.g., performance decline, substitution of a
component or differences in the calibration) or the choice of a performance criterion (e.g., walking
speed, energy efficiency, robustness), which differs from the one used during the controller design
process, can require searching for new and more appropriate gait parameters. By formulating the
search for appropriate gait parameters as an optimization problem, it is possible to automate the gait
optimization and reduce the need for engineering expert knowledge. In the context of robotics, and
specifically gait optimization, the number of experiments that can be performed on a real system can
be extremely limiting. Each experiment can be costly, requires a long time, and inevitably leads to
wear and tear of the robot’s hardware. As a result, it is crucial for the chosen optimization method to
limit the number of experiments to perform while reliably finding near-optimal parameters. In this
paper, we propose to use Bayesian optimization in the context of gait optimization. To evaluate its
applicability, we perform an experimental comparison of different variants of Bayesian optimization.
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2 Automatic Gait Optimization

Figure 1: The bio-inspired dynamical
bipedal walker Fox used for the exper-
imental evaluation.

The search for appropriate parameters of a controller can
be formulated as an optimization problem, such as the min-
imization

minimize
θ∈RD

f (θ) (1)

of an objective function f (·) with respect to the parame-
ters θ. In the context of gait optimization, this optimization
problem is characterized as a global optimization of a zero-
order stochastic objective function. Therefore, the use of
Bayesian optimization well suits this challenging optimiza-
tion task.

Bayesian Optimization Bayesian optimization is an iter-
ative model-based global optimization method [7, 5, 11, 1].
In Bayesian optimization, for each iteration (i.e., evalua-
tion of the objective function f ), a GP model θ 7→ f (θ)
is learned from the data set T = {θ, f (θ)} composed
by the past parameters θ and the corresponding measure-
ments f (θ) of the objective function. This model is used
to predict the response surface f̂ and the corresponding ac-
quisition surface α (θ)1, once the response surface f̂ (·) is mapped through the acquisition func-
tion α (·). Using a global optimizer, the minimum θ∗ of the acquisition surface α (θ) is computed
without any evaluation of the objective function, e.g., no robot interaction. The current minimum θ∗

is evaluated on the robot and, together with the resulting measurement f (θ∗), added to the datasetT.

Gaussian Process Model for Objective Function To create the model that maps θ 7→ f(θ), we
make use of Bayesian non-parametric Gaussian Process regression [12]. Such a GP is a distribution
over functions

f(θ) ∼ GP (mf , k(θp,θq)) , (2)
fully defined by a prior mean mf and a covariance function k(θp,θq). As prior mean, we choose
mf ≡ 0, while the chosen covariance function k(θp,θq) is the squared exponential with automatic
relevance determination and Gaussian noise

k(θp,θq) = σ2
f exp(−1

2 (θp−θq)TΛ−1(θp−θq))+σ2
wδpq (3)

with Λ = diag([l21, ..., l
2
D]). Here, li are the characteristic length-scales, σ2

f is the variance of
the latent function f(·) and σ2

w the noise variance. A practical issue, for both GP modeling and
Bayesian optimization, is the choice of the hyperparameters of the GP model, such as the charac-
teristic length-scales li, the variance of the latent function σ2

f and the noise variance σ2
w. In gait

optimization, these hyperparameters are often fixed a priori [9]. There are suggestions [8] that fixing
the hyperparameters can considerably speed up the convergence of Bayesian optimization. However,
manually choosing the value of the hyperparameters requires extensive expert knowledge about the
system that we want to optimize, which is often an unrealistic assumption. An alternative common
approach is to automatically select the hyper-parameters by optimizing with respect to the marginal
likelihood [12].

Acquisition Function A number of acquisition functions α (·) exist, such as Probability of Im-
provement [7], Expected Improvement [10], Upper Confidence Bound [3] and Entropy-Based Im-
provements [4]. Experimental results [4] suggest that Expected Improvement on specific families
of artificial functions performs better on average than Probability of Improvement and Upper Con-
fidence Bound. However, these results do not necessarily hold true for real-world problems such
as gait optimization, where the objective functions are more complex to model. Both Probability
of improvement [9] and Expected Improvement [14] have been previously employed in gait opti-
mization. In our experiments, we evaluate Probability of Improvement, Expected Improvement and
Upper Confidence Bound.

1The correct notation would be α
(
f̂ (θ)

)
, but we use α (θ) for notational convenience.
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Figure 2: Maximum walking speed of Fox eval-
uated during the gait optimization process. For
Bayesian optimization different acquisition func-
tions, with automatically determined hyperpa-
rameters, are shown.
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Figure 3: Maximum walking speed during the
gait optimization process of Fox. Bayesian opti-
mization using different acquisition functions is
evaluated for both automatically optimized and
fixed hyperparameters.

3 Comparative Evaluation on the Fox Robot

Experimental Set-up To validate our Bayesian gait optimization approach we used the 2-D dy-
namic walker Fox, shown in Figure 1. This robot consists of a rudimentary trunk, two legs, made of a
rigid segment connected by a knee joint to a telescopic leg spring, and two spherical feet with touch
sensors [13]. Fox is equipped with four actuated degrees of freedom at both hip and knee joints.
Moreover, there are six sensors on the robot: two on the hip joints, two on the knee joints, and one
under each foot. The sensors on the hip and knee joints return voltage measurements corresponding
to angular positions of the leg segments. The touch sensor under each foot returns binary ground
contact signals. The walker is mounted on a boom that enforces planar, circular motion. An addi-
tional sensor in the boom measures the angular position of the walker on the circle. The controller
of the walker is a Finite State Machine (FSM) that controls the four actuated joints. For the opti-
mization process, we identified four parameters of the controller crucial for the resulting gait.The
objective function f to be minimized was defined as f (θ) = − 1

N

∑N
i=1 v̄i(θ) , i.e., the negative

mean of the average walking velocity v̄ over N = 3 experiments on the robot. Minimizing this
performance criterion does not only guarantee a fast walking gait, but also reliability since the gait
must be robust to noise and initial configurations across multiple experiments. The chosen parameter
space is sufficiently large that only a small percentage of the possible parameter values can achieve
stable walking, while for most of the configurations the robot falls down after one or two steps.
Each experiment was initialized from similar initial configurations, and each experiment consisted
of 12 seconds starting from the moment when the foot of the robot first touched the ground. As a
baseline to compare Bayesian optimization we also evaluate grid search and pure random search.
For grid search optimization, we used 3 evaluations along each of the four dimensions for a total of
81 evaluations. For comparability, we performed for all other methods the same number of evalu-
ations. In our experiments, as global optimizer of the acquisition surface, we used DIRECT [6] to
find the approximate global minimum, followed by L-BFGS [2] to refine it. To initialize Bayesian
optimization, we used the first three evaluations from pure random search (i.e., uniformly randomly
sampled sets of parameters), thus, leaving 78 evaluations to be selected.

Experimental Results The maximum walking speed of Fox evaluated during the gait optimiza-
tion process for the different methods is shown in Figure 2. The optimization process of GP-
UCB is limited to 57 evaluations due to a mechanical failure that forcefully interrupted the ex-
periment. Values of the objective function below 0.1 m/s indicate that the robot fell down after
a single step. Values between 0.1 and 0.15 m/s indicate that the robot was capable of execut-
ing multiple steps but showed systematic falls. Between 0.15 m/s and 0.25 m/s occasional falls
occurred. Above 0.25 m/s the achieved gait was robust and did not manifested any fall. From
the results, we see that both grid search and random search performed poorly, finding a maxi-
mum that can only barely walk. We can notice how Bayesian optimization, using any acquisition
functions, performed considerably better. Bayesian optimization using PI and GP-UCB achieved
robust gaits with similar walking speed, while GP-UCB being slightly faster in finding the maxi-
mum. On the other hand, Bayesian optimization using EI was incapable of achieving robust gaits.
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Figure 4: Intensity map of a GP model
of the parameter space, along two of
the dimensions.

This result is unexpected as EI is considered a versatile ac-
quisition function, and there are experimental results [4],
which suggest that EI on specific families of artificial func-
tions performs better than GP-UCB and PI. The reason of
this result were the inaccuracies of the model of the under-
lying objective function. The automatically selected hyper-
parameters had overly long length-scales (see Equation (3))
which converted into an inappropriate model. In turn, we
observed that EI behaved excessively greedily, exploring
the parameter space insufficiently. In a spiral, this insuf-
ficient exploration resulted in overly long length-scales and
so on. We hypothesize that in case of complex real-world
objective functions, such as the one we optimized, the use
of the EI acquisition function might not perform as well as
in the artificial functions. As second comparison, we stud-
ied the effects of manually fixing hyperparameters, based on our expert knowledge. Figure 3 shows
the comparison between the various acquisition functions, when using the manually fixed hyperpa-
rameters. From these results, it can be observed that all the different acquisition functions, when
using the fixed hyperparameters, found similar sub-optimal solutions. The reason is that for all three
acquisition functions with fixed hyperparameters, one parameter reached only a sub-optimal value.
This observation suggests that, at least for this one parameter, the chosen length-scales were suffi-
ciently wrong to prevent the creation of an accurate model and, therefore, the optimization process
was hindered. A confirmation of this hypothesis derived from training a GP model and automatically
selected the hyperparameters using the marginal likelihood, using all the evaluations performed.
Both GP-UCB and PI using fixed hyperparameters performed worst than the respective cases with
automatic hyperparameters selection. In contrast, for EI the use of fixed hyperparameters was bene-
ficial. The hyperparameters of the GP model directly influence the amount of exploration performed
by the acquisition functions. Hence, fixing the hyperparameters using expert knowledge can be an
attractive choice, since forcing the right amount of exploration can speed up the optimization pro-
cess. However, the presented experimental results also show that a poor choice of hyperparameters
can potentially harm the optimization process by limiting the exploration and leading to sub-optimal
solution. A visual representation between two of the parameters of the parameter space as predicted
using the data collected from all the over 1800 evaluations is shown in Figure 4. This space is
complex and non-convex, and, therefore, motivate the use of global optimization methods, such as
Bayesian optimization.

4 Discussion & Conclusion
Gait optimization is a key research topic in order to obtain efficient bipedal locomotion. Bayesian
optimization is a promising method for efficient optimization, especially in fields like locomotion
where only few evaluations can be performed before wearing out the hardware. To compare the
performances of Bayesian optimization in different configurations, we performed over 1800 evalua-
tions on a real bipedal walker. We firstly compared different acquisition functions. While GP-UCB
had the best performances, EI performed poorly. Secondly, we compared the manually fixing hy-
perparameters against automatically selecting them. The results showed that manually fixing the
hyperparameters can strongly influence the outcome of the optimization process. The GP model-
ing capabilities are often overlooked when evaluating Bayesian optimization’s performances, with
most of the emphasis on the use of different acquisition functions. Following from the results of
our experimental evaluation, we conclude that the GP modeling capabilities are equally important
to the use of different acquisition functions, when evaluating Bayesian optimization’s performances.
We speculate that for complex objective functions exist a strict and yet unclear connection between
the exploration properties of the acquisition function and the capabilities of the GP modeling. The
performance of an acquisition function depends on the capabilities of properly modeling the func-
tion. On the other hand accurate modeling takes place only when the acquisition function evaluates
relevant parameters.
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