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Abstract

The evolution of proteins is one of the fundamental processes that has delivered the diversity and complexity of life we see
around ourselves today. While we tend to define protein evolution in terms of sequence level mutations, insertions and
deletions, it is hard to translate these processes to a more complete picture incorporating a polypeptide’s structure and
function. By considering how protein structures change over time we can gain an entirely new appreciation of their long-
term evolutionary dynamics. In this work we seek to identify how populations of proteins at different stages of evolution
explore their possible structure space. We use an annotation of superfamily age to this space and explore the relationship
between these ages and a diverse set of properties pertaining to a superfamily’s sequence, structure and function. We note
several marked differences between the populations of newly evolved and ancient structures, such as in their length
distributions, secondary structure content and tertiary packing arrangements. In particular, many of these differences
suggest a less elaborate structure for newly evolved superfamilies when compared with their ancient counterparts. We
show that the structural preferences we report are not a residual effect of a more fundamental relationship with function.
Furthermore, we demonstrate the robustness of our results, using significant variation in the algorithm used to estimate the
ages. We present these age estimates as a useful tool to analyse protein populations. In particularly, we apply this in a
comparison of domains containing greek key or jelly roll motifs.
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Introduction

The current wealth of freely available genetic sequences offers the

potential to uncover the evolutionary history of genes and their

products, proteins. While there exist no remains of primitive

proteins, extant protein information can be used to estimate a

protein family’s history. This approach is particularly well suited to

structural information. Protein structures are far more conserved

than their sequences and thus preserve a deep phylogenetic signal

[1]. Furthermore, for the majority of globular proteins, a stable

three-dimensional structure is thought to be a requirement for many

aspects of its function. By maintaining the precise positioning of

functional residues while also minimising other undesirable

interactions a protein’s structure is intimately linked to the role it

plays within the cell [2]. Moreover, phylogenetic trees built using

the structural content of species’ proteomes have been shown to

produce more reliable topologies than trees constructed using their

protein sequences [3]. These observations support the use of

structure as a fundamental molecular unit when studying the

evolution of proteins. Furthermore, they suggest that any conver-

sation on the evolution of proteins must first understand the major

driving forces behind such changes from a structural perspective.

In order to visualise the landscape and diversity of structure

space protein structures have been clustered within a hierarchical

taxonomy [4,5]. The SCOP database is one such manual

classification scheme which, at the superfamily level, attempts to

cluster together protein domains with a common evolutionary

origin, based primarily on strong functional and structural

similarity [6]. The superfamily classification lies in between the

family level, largely defined by a domain’s amino acid sequence,

and the fold, a structural consensus of a domain’s topology. In this

work we primarily consider sets of structural domains classified as

superfamilies in SCOP 1.75.

Despite the potential for rich diversity within the structural

universe it is surprising how sparse this space remains [7]. The

current repertoire of proteins with known structure fall into less

than 1,200 unique SCOP folds and the majority of these contain

only one sequence family [8]. While this is unlikely to represent the

true diversity of naturally occurring proteins and current

projections for the size of protein fold space range from around

2,000 [9] to over 10,000 [10], it is thought that the vast majority of

extant proteins will fall into only around 1,000 common folds [11].

Furthermore, the landscape of this core fold space is highly

heterogeneous, with a few so called ‘superfolds’ densely populated

by sequence families [12]. The unique composition of this space is

a consequence of protein evolution through neutral drift and

active selection together with a complex interplay of other factors

such as genome structure, mutational mechanisms, function and

the need for interactions, all of which close off portions of the

configuration space. However, little is known about the exact

nature by which the range of protein structures we see today have

evolved [2].
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One way in which we can seek to explore the forces behind such

a history is to consider annotating the protein structure universe

with an estimate of its evolutionary age [7,13,14]. The age of a

population of proteins is the estimated node age of its first ancestor

across a phylogeny of completely sequenced genomes. This

method has been implemented for both structural superfamilies

[13,15] and sequence families [7,14], although the latter tend to

involve a much reduced phylogenetic tree and evolutionary scale.

Methods for predicting the internal node of the ancestor for a

given family or superfamily also vary. A maximum parsimony

model for superfamily evolution has been largely adopted for this

step [13,15,16], although alternatives include Dollo parsimony:

taking the most recent common ancestor [7,13].

These parsimony models take as input a phylogenetic species

tree and the occurrence profile of each structural superfamily

across this set of species. The occurrence profile for a superfamily

is simply its presence or absence on each of the genomes [16].

Parsimony attempts to reconstruct the most likely series of gain

and loss events at internal nodes of the tree which explain the

occurrence profile at its leaves. The likelihood of these events is

based on simple assumptions relating to the evolution of protein

domains. The principle underlying all types of parsimony is that

the scenario of events involving the least evolutionary change is

preferred. Gain events can represent de novo superfamily gain,

lateral gene transfer of a superfamily between genomes, and a false

positive assignment of a superfamily to a genome. Loss events can

represent the loss of a superfamily and also false negative

assignments to a genome. Maximum parsimony methods allow

for a weighting of the likelihood of loss events relative to gain

events, while Dollo parsimony considers a gain event to be so rare

it is most likely to have occurred only once in the evolution of a

superfamily. Since lateral gene transfer is rare between Eukaryotes

but may be quite common among Prokaryotes it has been

suggested that maximum parsimony is an appropriate model for

Prokaryotic genomes while Dollo parsimony should be used for

Eukaryotes [16,17].

Previous studies have shown a significant positive correlation

between the age of a domain’s structure and its length [7,14].

These results remain pronounced over different methods for

calculating the age of a superfamily or protein sequence. This

seemingly fundamental relationship between the age of a structure

and its length has supported the idea that the primitive protein

universe was populated mainly by small folds [7]. In fact, the

recent success in using structural fragments to predict protein

structures (see, for example [18]) has further stimulated debate as

to whether the evolutionary origins of the current fold space are in

fact short peptide fragments that have combined to form larger

folds [19].

It has also been reported that a=b class domains tend to be

significantly older than superfamilies belonging to other classes

[13]. a=b domains also tend to be significantly longer than other

classes but they are also distinguishable in other respects [20].

They are unique among the classes in containing a majority of

parallel b-strands as opposed to the antiparallel structure which

characterise all-b and azb classes. a=b folds also contain a large

number of the so-called ‘superfolds’: folds containing large

numbers of different superfamilies and a high proportion of all

determined structures [12]. Such a=b superfolds include P-loop

NTPases, Rossmann folds and TIM barrels [11].

In this work we present phylogenetic profiles and evolutionary

ages for superfamilies representing the current known structural

universe. We show that these age estimates are largely robust to

different evolutionary models, datasets and phylogenetic trees.

We compare the structural characteristics of two protein

populations: new-borns, with biologically recent structural ances-

tors, and ancients, with ancestors at the root of the tree of life. Our

results identify several characteristics that differ between the two

populations. These differences support known relationships, such

as the propensity of a=b and longer superfamilies to be ancient,

and also postulate several previously unseen characteristics which

correlate with age.

While these structural relationships are marked we considered

the possibility that they were the result of an asymmetry in the

functional annotation of fold space. Here we show that our

structural partitions result in far more dramatic age differences

than functional groupings and as such the relationships between

structure and age are not a residual effect of functional

preferences.

Results

1,847 SCOP superfamilies are annotated with an estimate of

their age relative to a tree of life incorporating 1,014 completely

sequenced genomes across the three superkingdoms (Archaea,

Bacteria and Eukarya). These ages can be found online at http://

www.stats.ox.ac.uk/research/proteins/resources. The superfamily

age is a relative measure of when that superfamily first appeared,

calculated according to parsimonious interpretations of evolution-

ary events. Figure 1 gives an outline of the age estimation

procedure. These ages are used to discriminate the set of

superfamilies into different age groups. There are 557 ancient

superfamilies, that are predicted to have first evolved at the root of

the tree (age~1) and 443 new-born superfamilies, predicted to

have an ancestor nearer the leaves of the tree (agev0:4). As there

is not a single standard tree of life we calculate age estimates using

8 different phylogenetic trees (see methods for descriptions of the

different trees).

Robustness of superfamily ages and preferences
Superfamily ages are sensitive to the phylogenetic tree of life

used, the prediction of superfamilies on genome sequences for the

occurrence profiles, and to the parsimony method and parameters

used to estimate events. In order to investigate the robustness of

Author Summary

Proteins are the molecular workers of the cell. They are
formed from a string of amino acids which folds into an
elaborate three-dimensional structure. While there is a
relationship between a protein’s sequence and its struc-
ture this relationship is highly complex and not fully
understood. Protein structures tend to evolve differently to
their sequences. They are far more conserved so tend to
change slower. The aim of this paper was to identify trends
in the way that protein structures evolve, rather than
adapting models of sequence evolution. To do this we
have provided a database of ages for structural superfam-
ilies. These ages are robust to drastic differences in the
evolutionary assumptions underlying their estimation and
can be used to study differences between populations of
proteins. For example, we have compared newly evolved
structures against those with a long evolutionary history
and found that, overall, a shorter evolutionary history
corresponds to a less elaborate structure. We have also
demonstrated here how these ages can be used to
compare particular structural motifs present in a large
number of protein structures and have shown that the jelly
roll motif is significantly younger than the greek key.

Fold Space Preferences of Protein Superfamilies
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our age estimates to these assumptions we undertook our analysis

across several phylogenetic trees and multiple parsimony models.

We also explored the effect on our results of using different

datasets: changing both the occurrence profiles and the set of

genomes considered.

Parsimony method. In this work we have primarily used a

maximum parsimony algorithm to estimate superfamily ages. One

of the most significant assumptions within the maximum parsimony

model is the ratio of the probability of a loss event relative to a gain

event [21]. There is, to our knowledge, no comprehensive

assessment of the biological relevance for different values of this

parameter for structural superfamily evolution. The results we

present here follow previous studies in assuming that these two

events are equally likely to occur at any internal node [13,16].

However we also predicted age estimates using a range of values for

this parameter, up to a ten-fold asymmetry in the relative likelihood

of both gain and loss events. As expected, the age estimates were

sensitive to the change in this parameter, although they still

maintained a strong correlation to ages calculated with a relative

gain weight of 1 (r§0:8). Moreover, the fold space preferences we

report were upheld under the variation of this parameter. The

results of this analysis for SCOP class, strand direction and domain

length are given in the Figure S1.

As we mentioned in the Introduction, gain events in the tree

represent gene gain but also false positives in the occurrence data

as well as lateral gene transfer events. Since lateral gene transfer

rarely occurs among Eukaryotic genomes it is perhaps more

biologically relevant to consider the weights placed on gain events

differently when considering the Eukaryotic tree of life [17]. We

therefore also calculated ages using a fusion parsimony method:

assigning events based on Dollo parsimony within the Eukaryotic

subtree and according to maximum parsimony at the root and

within the Bacterial and Archaeal subtrees. These fusion ages are

strongly correlated to those estimated using the maximum

parsimony model on the entire tree (r§0:94 over equivalent

phylogenetic trees) and, moreover, support the fold space

preferences we report in the main body of the Results (see Figure

S2). For simplicity, we have reported our results using the

maximum parsimony ages, although the ages calculated using the

fusion model, as well as those estimated using different gain

weights, are also available to download.

Phylogenetic trees. For each method we also estimated ages

across 8 different phylogenetic trees, including the NCBI common

taxonomy tree. The ages generated using these different topologies

were strongly correlated (r§0:91 under a maximum parsimony

model). Any result described here is significant using ages from any

of these trees.

Other datasets. Ages calculated using data from SUPER-

FAMILY from October 2011 were strongly correlated (r§0:93
over equivalent phylogenetic trees) to the estimates presented here

on the newer data. More significantly, ages calculated using an

earlier version of SCOP (1.65) with reduced coverage on a much

smaller set of genomes also supported the fold space preferences

for new-born and ancient superfamilies which we report here.

SCOP superfamilies were chosen as the unit of this analysis

because they are thought to represent definitive evolutionary

relationships. They remain, however, a manually classified

construct. To avoid any bias in their assignment we also

performed the same analysis ages calculated at the fold level of

the SCOP hierarchy. Using these fold ages produced the same

results regarding properties of new-born and ancient folds as were

seen using the superfamily ages.

Structural Preferences
Representative domains for these superfamilies were taken from

the ASTRAL database [22]. A number of different properties

Figure 1. What do we mean by the age of a superfamily? Ages are generated using a phylogenetic species tree and an occurrence profile of a
superfamily across the genomes of these species. Parsimony algorithms predict the simplest scenario of loss and gain events on internal nodes of the
tree which explain the occurrence profile at its leaves. Ages are normalised between 0, at the leaves of the tree, and 1, at its root. Ancient
superfamilies are predicted an age of 1 and new-born superfamilies are estimated to have an evolutionary age v0:4.
doi:10.1371/journal.pcbi.1003325.g001

Fold Space Preferences of Protein Superfamilies
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pertaining to the sequences, structures and functions of these

domains were then used to compare the ancient and new-born

populations.

Secondary structure: SCOP class and strand

direction. Most globular proteins are classified by their majority

secondary structure content in one of the four main SCOP classes

(all-a, all-b, a=b and azb). This distinction, while potentially

arbitrary from an evolutionary perspective, appears to characterise

a large part of the structural variation within fold space [23]. We

observe, in consensus with previous work [7,13], that the age

distributions of these classes differ substantially. Figure 2a gives a

percentile plot for the age distributions of the SCOP classes. Each

line represents the percentiles of an age distributions for a class

from a different tree. Most notably, a=b superfamilies appear

significantly older than all other SCOP classes (pƒ8:29|10{7).

a=b domains tend to be longer than other classes (Figure 2b) and

they also contain a large number of the so-called ‘superfolds’: folds

containing large numbers of different superfamilies [12].

a=b domains are also unique among the classes in containing a

majority of parallel b-strands as opposed to the antiparallel

structure which characterise all-b and azb classes. We found that,

when looking just at domains with primarily either parallel or

antiparallel sheet structure there was a strong, significant

preference for superfamilies containing parallel strands to be older

than those with antiparallel strands (p~5:20|10{11, Figure 2c).

Parallel sheets are rarely seen containing less than five strands so

seem to require the cooperation of a more elaborate hydrogen-

bonded network than antiparallel sheets. Parallel strands also tend

to have tighter restrictions to the torsion angles of their backbone

conformation and tend to be buried by other main chain

structures [24].

Domain length. Previous studies have demonstrated a

significant positive correlation between the length of a domain

and its age [7,14]. The fact that new-born structures appear to be

shorter has supported the hypothesis that the primitive protein

universe was populated mainly by small folds [7]. We find that

ancient superfamilies are significantly longer than new-born

superfamilies (p~1:74|10{16, Figure 2d). We also observe that

the SCOP class of small proteins significantly younger, than all

other classes (pƒ1:93|10{2, Figure 2a).

The observation that a=b superfamilies are both older and

longer than other domains raises the question of whether there are

other properties unique to these folds which drive their difference

in ages and result in a residual correlation between the length of a

domain and its age. In order to investigate this we studied the

relationship between domain length and superfamily age stratified

by SCOP class.

The relationship between length and age within different classes

showed a much weaker correlation than that seen overall. Ancient

superfamilies within the all-a and azb classes still appeared

significantly longer than new-born superfamilies within the same

classes but other classes failed to show a significant preference (see

Figure S3). However, this lack of significance could be due to

insufficient numbers of superfamilies in both age groups within

these classes. It seems that the relationship between the length of a

domain and its age is not purely a residual effect of the age

distributions of different SCOP classes.

Non-local contacts. We compared the number of non-local

contacts with superfamily age and found that ancient superfamilies

had significantly more non-local contacts, normalised by radius of

gyration, than new-born superfamilies (p~4:38|10{11). We

found no significant difference between the numbers of overall

contacts, including local contacts, of ancient and new-born

superfamilies. Thus, newly evolved superfamilies appear by this

measure to be, on average, simpler and less elaborate structures,

with fewer long-range contacts.

Buried residues. The residues in the core of a protein

structure are key to maintaining the overall architecture of the

domain, and its structural stability. There are also more

evolutionary constraints on these residues than on surface residues

[25].

Here we studied whether there was a correlation between the

ages of our superfamilies and the proportion of their residues that

were buried. We found that amongst all domains ancient

superfamilies contained a significantly higher proportion of buried

residues, normalised by the radius of gyration of the structure,

than new-born superfamilies (p~3:67|10{7). This normalised

value for the proportion of buried residues indicates the buried

portion of the domain relative to its size. New-born superfamilies

therefore tend to have a higher surface area to volume ratio than

superfamilies in other age groups.

Hydrophobicity. The hydrophobic collapse of a globular

polypeptide is thought to be one of the primary forces behind

protein folding [2]. The hydrophobicity of the core of a protein

structure is thus an important indication of its thermostability and

of its folding rate. Given that new-born superfamilies have a higher

surface area to volume ratio and there is a marked difference in the

hydrophobicities of the core and surface residues in a domain, we

investigated whether the age of a domain modulated the

hydrophobicity of either its core or its surface.

There was no indication that any age group preferred a highly

hydrophilic surface. However, ancient superfamilies tended to

contain a more hydrophobic core (p~1:10|10{3) than new-born

superfamilies.

Disulphide bonds. Another feature that stabilises particular

protein structures is the presence of disulphide bonds. These are

formed between the thiol groups of two cysteine residues. They are

particularly important for the stability of some small proteins and

those secreted in the extracellular medium [26]. Here we looked at

the age distributions of superfamilies containing disulphide bonds

compared to those containing none.

Due to the enrichment of disulphides in extracellular proteins

we carried out the analysis using ages estimated by Dollo

parsimony from their occurrences in multicellular Eukaryotes

only (for details of this see Methods). Even with this constraint

superfamilies containing disulphide bonds appear to be signifi-

cantly younger than those containing none (p~1:00|10{3). The

set of superfamilies containing disulphides contained, as expected,

a greater proportion of the small protein class. However, there was

no significant difference in the length distributions of superfamilies

with disulphide bonds and those containing no disulphide bonds.

It is possible that, in new-born superfamilies, disulphide bonds

provide extra stability for more simple, less globular structures.

Sequence level preferences
The enrichment of disulphide bonds among new-born super-

families indicated a potential over-representation of cysteine

residues among these superfamilies. We investigated whether

there were further relationships with other amino acids.

Very little is known about the evolution of early life but it is a

common theory that the twenty amino acids we see today did not

appear simultaneously. It is likely therefore that the earliest

peptides consisted of only a subset of these amino acids: the first to

evolve. Trifonov suggests a chronological order for the evolution of

these amino acids: Gly, Ala, Asp, Val, Pro, Ser, Glu, Leu, Thr,

Arg, Ile, Gln, Asn, His, Lys, Cys, Phe, Tyr, Met, Trp [27].

We looked here at the sequence composition of different

domains and the propensity for different amino acids for ancient

Fold Space Preferences of Protein Superfamilies
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or new-born superfamilies. Since sequence change is rapid

compared to structural change it is unlikely that the composition

of the earliest peptides could be detected from their extant

descendants. However, the propensities calculated here may still

hold some signal of preference for certain amino acids.

Propensities were calculated for all 20 amino acids across the

two age groups and are shown in Table 1. While amino acids

predicted by Trifonov to occur early during protein evolution were

more likely to be enriched in ancient superfamilies this relationship

was by no means strict. Amino acids significantly over-represented

in ancient superfamilies are Arg, Gly, and Val, which are

hydrophobic, non-polar residues, with the exception of Arg,

which is polar and positively charged. Residues over-represented

in new-born superfamilies are Asn, Cys, Gln, Ser, Thr, Trp and

Figure 2. The relationships between superfamily ages, secondary structure and length. Figure A gives a percentile plot of the age
distributions of 5 SCOP classes. For ease of interpretation, plots of multi-domain and membrane proteins have been omitted. Each line represents the
distribution of ages generated using a different phylogenetic tree. Noticeably, a=b superfamilies’ age distributions rise quicker than those of the other
classes. Moreover, superfamilies classified as small under SCOP are significantly younger than the other classes. Figure B gives a boxplot of the length
distributions for these SCOP classes. Roughly speaking, the ordering of the classes by length corresponds to their ordering by age. a=b superfamilies
are longer and small proteins are shorter than the other classes. Figure C gives a percentile plot of the age distributions of superfamilies with different
average domain lengths. Multi-domain superfamilies were omitted from this analysis. Ancient superfamilies are significantly longer than their new-
born counterparts. Figure D gives a percentile plot of the age distributions of two populations of superfamilies: those containing a majority parallel
strand direction and those with more antiparallel strands. The parallel population is significantly older than the antiparallel superfamilies.
doi:10.1371/journal.pcbi.1003325.g002

Fold Space Preferences of Protein Superfamilies
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Tyr. These residues are mostly polar and uncharged. Trp and Tyr

also contain large, aromatic side chains. The propensities in new-

born superfamilies for polar residues further supports our previous

observation that newly evolving structures may have a larger

surface area to volume ratio.

Functional preferences
In this study we have primarily focussed on the structural

properties characterising superfamilies rather than on their

functional roles.

We performed enrichment analysis of GO functions for

populations of superfamilies in the different age groups. We

compared three different age groups: new-born, ancient and

middle-aged superfamilies (those superfamilies in neither the new-

born or ancient groups). A list of all terms which were significantly

enriched can be found in Table S1.

It has been observed in a study of the protein interaction

network of yeast that older proteins tend to have more interaction

partners than either middle-aged or young proteins [28]. This

would appear to indicate that older superfamilies will tend to have

more enriched functional terms than younger superfamilies, since

partners in the interaction network will tend to share functional

annotations. Indeed we find this to be the case. Of 189 GO terms

found to be enriched in any one of the three age groups (ancient,

middle-aged or new-born), none were enriched in new-born

superfamilies, 8 in middle-aged superfamilies and the remaining

181 were enriched in ancient superfamilies.

The terms enriched in middle-aged superfamilies refer mostly to

the regulation of developmental growth unique to Eukaryotes. The

majority of terms enriched in ancient superfamilies correspond to

fundamental cellular processes common to the vast majority of the

tree of life. Interestingly, while RNA synthesis is enriched in

ancient superfamilies, terms relating specifically to DNA synthesis

are not. This supports the RNA world hypothesis, that during

early evolution genetic material was stored as RNA as opposed to

DNA [29]. For full details of the functional terms enriched in our

age groups see Table S1.

Does structure or function drive the structural
preferences?

We considered the possibility that the structural biases of

ancient and new-born superfamilies we report here might be a

residual effect of a more fundamental relationship with function.

For example, we observe a strong relationship between ancient

superfamilies and parallel strands. But, as mentioned before, a=b
folds are often superfolds, and are known to be associated with a

large repertoire of fundamental functions. Perhaps it is the

enrichment of these functions in the a=b class that drives the

preference for ancient superfamilies to have parallel strands.

We compared our structural ages (Figure 2c) with ages for

populations of superfamilies annotated with functional terms

enriched in either parallel or antiparallel superfamilies. In order to

do this we constructed lists of parallel/antiparallel functions: GO

terms significantly enriched in the subset of parallel/antiparallel

superfamilies. We then compared the ages of the superfamilies

annotated with these terms. The results of this comparison are

shown in Figure S4. We found that the structural partition resulted

in a much more dramatic age difference than the functional

groupings. In particular, the functional annotations failed to divide

the space efficiently, with many superfamilies annotated with both

‘parallel’ terms and ‘antiparallel’ terms. Even when considering

superfamilies unique to a directional functional annotation, there

was a less marked distinction than seen in superfamilies

distinguished by structural features alone.

Case study: Common b-sheet motifs
Not only can these ages be related to general properties of

proteins but they also provide a framework for examining more

specific questions. For example, we present here a case study for

analysing the evolutionary dynamics of certain structural motifs

common in domains in a number of different folds.

As was discussed earlier, antiparallel b-sheet structures appear

to be significantly younger than parallel sheets. Antiparallel

topologies are, however, more common and more varied than

parallel motifs. The most common topology in antiparallel sheets is

the hairpin meander where neighbouring strands in a sheet are

consecutive in the amino acid sequence. Apart from the simple

meander the next two most common topological motifs are the

greek key and the jelly roll. Around 30% of all-b folds in SCOP are

annotated as containing either a greek key or a jelly roll and these

motifs form a considerable role in their classification. Proteins

containing these motifs rarely share either sequence similarity or a

common function [30]. The topological architecture of these two

common motifs is very similar, with the jelly roll containing a

greek key at its core. While some papers treat the jelly roll motif as

a special case of the greek key [31], others argue that they occupy

a unique portion of fold space [32].

In this study the age distributions of superfamilies classified as

containing a greek key or a jelly roll were compared. Greek keys

were significantly older than jelly rolls (p~0:01, Figure 3).

Table 1. Preferences of different amino acids for new-born or
ancient superfamilies.

amino acid
ancient
propensity p-value

new-born
propensity p-value

Ala 1.03 2.93e-03 0.94 4.50e-05

Arg 1.06 2.14e-05 0.89 5.59e-09

Asn 0.91 2.13e-09 1.17 ,2.2e-16

Asp 0.97 1.24e-02 1.06 6.03e-04

Cys 0.84 4.59e-09 1.31 8.88e-16

Gln 0.92 3.09e-06 1.14 1.57e-10

Glu 1.00 7.46e-01 0.99 6.57e-01

Gly 1.07 1.23e-08 0.88 5.66e-15

His 1.03 1.18e-01 0.94 3.21e-02

Ile 1.04 2.50e-03 0.93 3.37e-05

Leu 1.03 1.34e-02 0.95 6.90e-04

Lys 0.97 1.14e-02 1.06 5.19e-04

Met 1.03 1.95e-01 0.95 7.56e-02

Phe 0.99 4.89e-01 1.02 3.43e-01

Pro 1.03 4.92e-02 0.95 6.97e-03

Ser 0.93 1.92e-07 1.13 9.15e-13

Thr 0.96 2.50e-03 1.08 3.38e-05

Trp 0.91 9.01e-04 1.18 5.27e-06

Tyr 0.94 3.69e-04 1.11 1.03e-06

Val 1.05 2.98e-06 0.90 1.46e-10

Propensities for amino acids for a particular age group were calculated using
representative domains from the ASTRAL database. P-values were based on a

x2-test on the proportions of that amino acid observed in each age group.
Values were considered significant and given in bold if the adjusted value

(using the Bonferroni correction) was less than 0:01. That is, if pv2:5|10{4 .
doi:10.1371/journal.pcbi.1003325.t001
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Moreover, we could find no other disparity (for example, in the

lengths of these populations) that helped explain this difference.

Discussion

In this work we estimate the evolutionary age of structural

superfamilies. Our results are highly robust to different evolution-

ary assumptions in estimating ages, as well as alternative topologies

and a smaller number of species in the phylogenetic trees.

The results presented here indicate that newly evolving

superfamilies tend to be, in general, shorter and structurally more

simple than ancient structures. They appear, on average, to have a

less hydrophobic core and a greater surface area to volume ratio.

They differ from ancient superfamilies in terms of their amino acid

composition, containing more polar residues, and tend to contain

more additional stabilising features such as disulphide bonds and

aromatic residues.

Ancient superfamilies on the other hand are dominated by a=b
superfamilies and are enriched for many fundamental cellular

functions. In particular, the still extant LUCA folds contain a

comprehensive repertoire of proteins relating to RNA synthesis

and maintenance rather than those used in DNA synthesis, and

thus LUCA may have contained a ribosome mechanism for

protein synthesis.

The age of a superfamily could also be described as the depth at

which it can be traced back through evolution. As such, there are

several interpretations of our results, in particular in the case of

what we have termed new-born superfamilies. Firstly, it could be

that an entirely new domain was formed at some point in

evolution. This could indicate that the evolution of a new

superfamily as a transition from an already existing structure is a

rare event, or that evolutionary transitions through fold space,

when they occur, are more often reductive. It could also suggest

that, through evolutionary drift, there is a tendency towards an

increasingly elaborate structure.

Secondly, a superfamily with a low age estimate might have

originated earlier in evolution but the family recognition profiles

have failed to identify homologues in distantly related species. In

this case, such a superfamily may lack a representative deposition

of solved structures, or be rapidly evolving and highly divergent.

Certainly, characteristics such as a high solvent accessibility are

correlated with the rate of sequence evolution [33]. Nevertheless,

by using multiple profiles to build their Hidden Markov Models,

SUPERFAMILY improves detection of sequence-divergent fam-

ilies compared to pairwise comparison and single profile searches

[34]. As a greater coverage of proteins in such superfamilies are

solved structurally, the likelihood of an incorrect low age estimate

will decrease.

Thirdly, a young superfamily may be the result of an unfound

evolutionary link between superfamilies. As such the structural

ancestor of these superfamilies may be earlier than their given age

estimates. In order to address this possibility we have shown that

the preferences are preserved at both the superfamily and fold

level of the SCOP hierarchy.

Finally, what appears to be a young superfamily may actually be

ancient but has been lost at several more internal nodes than a

parsimonious scenario suggests. This could be the result of

functional specialisation within a superfamily. At present our

understanding of the evolutionary history of individual superfam-

ilies is not advanced enough to alter the evolutionary model

behind age estimation for each superfamily. Our work concerning

the robustness of the dataset overall to differing gain weights

suggest that our results will be upheld within a moderate level of

variation between different superfamilies.

In this study we consider the structural universe of proteins and

show that the age preferences of structural characteristics are not a

residual effect derived from functional preferences. This result

alone justifies the use of protein structures as a fundamental

evolutionary unit.

Using our age estimates we examined the specific case of greek

key and jelly roll motifs, and identified a significant difference

between their ages of origin. Given their similarity in topology it is

possible that some superfamilies containing these motifs were

involved in evolutionary transitions, where a greek key acted as a

scaffold during the innovation of a jelly roll topology.

This example demonstrates that these ages can be used to

examine specific properties or motifs of interest, as well as explore

more general fold space preferences for proteins at different stages

in their evolution.

Methods

Superfamily ages
Occurrence profiles of superfamilies across whole genome trees

were analysed using the principles of parsimony to estimate when

their structural ancestor first evolved. The method described here

is based on the the formulation developed by Winstanley et al.

[13]. In subsequent sections we outline the process as it is used in

this work.

Superfamily predictions
The data we use in this study were taken primarily from the

SUPERFAMILY (v1.75) database. SUPERFAMILY uses families

of HMMs to identify homologues of 2,019 SCOP superfamilies.

The database comprises protein sequences taken from completely

sequenced and annotated genomes and assignments of these

sequences to SCOP superfamilies.

We downloaded predicted superfamilies for all 1,496 species

available in the SUPERFAMILY database on September 11th

2012. This set was then filtered as follows:

N 407 species annotated as pathogens in the GOLD (v.4)

database [35] were removed as pathogens are often associated

with incomplete genomes and with lateral gene transfer.

Figure 3. Superfamily ages of greek key and jelly roll motifs.
Percentile plots for the age distributions of superfamilies containing a
greek key or a jelly roll motif within their beta-sheet topologies.
Domains annotated as containing at least one greek key motif are
significantly older than those containing the jelly roll motif.
doi:10.1371/journal.pcbi.1003325.g003
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N 31 species which were classified in the category candidatus, a

provisional status for putative taxa [36] were also removed.

N 44 species found, during the later stages of the method, to lead

to poor resolution on the phylogenetic tree were manually

identified and removed. These species were largely charac-

terised by having small genomes or were pathogens with

annotations missing in the GOLD database and are listed in

bold in Table S2.

This left 649 Bacteria, 265 Eukaryotes and 100 Archaea. We

called this set the ALLgenomes and it was intended to represent

the diversity in the currently known tree of life as accurately as

possible. A second set (MULTIgenomes) was created that

contained 211 multi-cellular Eukaryotes, a subset of ALLgenomes.

The list of all these species including those removed from the

original data are included in Table S2.

These predictions of superfamilies on genome sequences were

then collapsed to a binary occurrence matrix where each element

represents the presence or absence of a superfamily on a genome.

A similar occurrence matrix was constructed at the fold level of the

SCOP hierarchy.

Whole genome trees
Multiple species trees were considered as the underlying

phylogeny for the completely sequenced genomes. Using numer-

ous trees helps to ensure that the results presented here are robust

to inaccuracies in estimating the tree of life. We considered both

the NCBI common taxonomy tree [37,38] as well as phylogenies

constructed using the superfamily and fold occurrence profiles

calculated above. For completeness the constructed trees were

estimated using both parsimony and distance-based algorithms.

All the trees were inferred using the PHYLIP package [39]. A total

of 8 different trees were constructed for each of the genome sets

(ALLgenomes, MULTIgenomes).

NCBI trees. The NCBI common taxonomy tree for ALL-

genomes and MULTIgenomes were downloaded from the NCBI

website. Branch lengths were added using the presence-absence of

superfamilies or folds as unweighted, symmetric states using the

Wagner parsimony algorithm (PARS) which averages the number

of state transitions over all sites and over all possible most

parsimonious placements of the state transitions among branches.

Distance trees. A neighbour-joining algorithm (NEIGH-

BOR) was used to construct trees from pairwise distance matrices.

The distance metrics used were calculated using a comparison of

the numbers of folds or superfamilies on two different genomes. A

contingency table was constructed comparing any two genomes Gi

and Gj . This table counts the number of folds or superfamilies

occurring on both genomes (a), those occurring only on Gi (b), and

those occurring just on Gj (c).

The distance Di,j between genomes Gi and Gj was then

calculated using two different dissimilarity metrics defined as

follows:

N Jaccard distance: Di,j~(bzc)=(azbzc)

N Bray-Curtis distance: Di,j~(bzc)=(2azbzc)

Matrices were composed of the distances between every

pairwise combination of species in a set and used as input to the

tree building algorithm. For each genome set four distance

matrices were calculated: using the Jaccard and the Bray-Curtis

distances on superfamily and fold occurrence data.

In all these cases, an extended majority rule consensus tree

(CONSENSE) was calculated from individual trees constructed

using neighbour-joining on 100 delete-half jackknife samples of the

original occurrence data. Branch lengths were added to this

consensus topology using the Fitch-Margoliash algorithm (FITCH)

using the complete distance matrix.

Parsimony trees. Trees were also built using Wagner

parsimony (PARS) and treating the presence-absence data of folds

or superfamilies as unweighted, symmetric states. Extended

majority-rule consensus trees (CONSENSE) were summarised

from trees built from 100 delete-half jackknife samples of the

occurrence data where up to 10 trees tied for the best parsimony

score were retained per sample. Branch lengths were added to the

consensus trees using a final implementation of the Wagner

parsimony algorithm (PARS).

Tree transformations. The trees for ALLgenomes were

rooted at the trifurcation of the three superkingdoms and the trees

for MULTIgenomes were rooted by including the archaeal species

Acidianus hospitalis and using this as an outgroup. Branch lengths

were normalised to lie between 0 and 1, with the root at 0 and the

leaves at 1.

Age estimation
For each tree, the age of a superfamily is the result of a

parsimony analysis on potential gain and loss events of the

superfamily.

Maximum parsimony. The maximum parsimony analysis

was undertaken as implemented by Mirkin et al. [16]. Given the

occurrence profile of a superfamily across the genomes, several

scenarios of gain and loss events at internal and external nodes of

the tree can be proposed which explain the profile. Maximum

parsimony attempts to find the scenario which minimises the score

S~lzgc, where l and c are the numbers of loss and gain events

respectively and g is the gain weight.

By minimising this score the algorithm considers vertical descent

of superfamilies to be by far the most common evolutionary

scenario at any species-ization event on the tree. Both lateral gene

transfer and de novo gene gain are considered as gain events and

the likelihood of these events occurring, relative to gene loss, is

parametrised as the gain weight g. For this work we primarily used

a gain weight of g~1, maintaining an equal penalty for both loss

and gain events. Further analysis was also carried out using values

of g ranging from 0:1{10 incorporating up to a 10-fold penalty

on either loss events or gain events relative to each other.

Dollo parsimony. On the trees of MULTIgenomes species

Dollo parsimony was adopted as the default model for age

estimation. Dollo parsimony allows at most a single gain event and

aims to minimise the number of subsequent loss events.

Fusion parsimony. The maximum parsimony model de-

scribed above was adjusted to allow at most one gain event to

occur on the Eukaryotic subtree. As such, fusion parsimony

assumes Dollo parsimony on Eukaryotic genomes and maximum

parsimony elsewhere as the most likely evolutionary model for

domain evolution.

Relative ages are quantified as the height of the node of the

earliest event and as such are a number between 0 and 1, where an

age of 0 refers to a superfamily whose structural ancestor first

appeared on one or more leaves of the tree and an age of 1 refers

to a superfamily whose structural ancestor first appeared before

the trifurcation of the superkingdoms.

Age groups. There are 557 ancient superfamilies, assigned a

relative age of 1, and 443 superfamilies with an age v0:4, which

are referred to as new-born superfamilies. The value for this cut-

off was primarily chosen to allow for comparable numbers of

superfamilies in the new-born and ancient subsets. Where

applicable, middle-aged superfamilies are any superfamily not
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counted as ancient or new-born. The distribution of superfamily

ages is given in Figure S5.

Fold space preferences
Structural properties of 1,279 superfamilies were obtained using

domains from the ASTRAL (1.75) database [22] with an aerospaci

score w0:4 and filtered to v40% sequence identity. This set of

5,493 domains will be referred to as the ASTRAL40 set. The

number of representative ASTRAL40 domains for each super-

family is included in Table S3.

Comparisons between the properties of new-born and ancient

superfamilies were carried out using the Mann-Whitney U test

[40]. Since multiple superfamilies shared the same age and

therefore tied in rank the standard deviation of the distribution for

the test statistic was appropriately adjusted [41].

While age distributions from all trees were considered in the

analysis, for simplicity the p-values reported in the Results section

derive from the ages calculated by maximum parsimony on the

NCBI tree with branch lengths added using superfamily annota-

tions. However, the results are only reported as significant if they

gave significant p-values on ages from all the trees.

Length. Lengths of superfamilies were defined as the mean of

the sequence length of domains representing that superfamily in

the ASTRAL40 set. Superfamilies classified as multi-domain

proteins in SCOP were omitted from this analysis.

Strand direction. Secondary structure was assigned using

DSSP [42] and the direction of a strand relative to each of its

hydrogen bonding partners was calculated using PROMOTIF

[43]. Only domains in the ASTRAL40 set with w10% strand

content were considered. Each domain was then annotated as

parallel if w75% of it’s strand residues were in parallel strands,

antiparallel if w75% of its strand residues were in antiparallel

strands and mixed otherwise. The label for a superfamily was

summarised as the majority label for its representative domains.

Non-local contacts. Two residues were said to be in contact

if their Ca atoms are ƒ6 Å apart (see,for example [44]). Contacts

are defined as non-local if they occur between atoms §10 residues

apart. The number of non-local contacts for a domain is

normalised by dividing by its radius of gyration:

C�~
#non-local contacts

Rg

Non-local contacts were summarised for a superfamily as the mean

value of C� on its representative domains.

Radius of gyration. The centre of mass (Rc) and the radius

of gyration (Rg ) of a domain were calculated from the coordinates

of the Ca atoms (ri for i~1::N):

R2
g~

1

N

XN

i~1

(ri{Rc)2, where Rc~
1

N

XN

i~1

ri

Buried residues. The solvent accessibility of a residue was

assigned using JOY [45]. A residue was classified as buried if v7%
of its surface area is exposed to water. The proportion of buried

residues in a domain of length N was normalised by the radius of

gyration, an estimate of the volume of the structure:

B�~
#buried residues

RgN

Buried residues for a superfamily were generalised as the mean

value of B� across its representative domains.

Hydrophobicity. The hydrophobicity of a residue was

measured using the OMH scale [46]. The hydrophobicity of a

sequence of amino acids was calculated as the sum of hydropho-

bicities of each residue divided by the length of the sequence.

Summary values for the hydrophobicity of a superfamily were

calculated by averaging over the hydrophobicities of its represen-

tative domains in the ASTRAL40 set.

Disulphide bonds. Disulphide bonds were annotated with

JOY [45]. Each domain in the ASTRAL40 set was annotated as to

whether it contained disulphide bonds or not. If more than half of

the representative domains for a particular superfamily contained

at least one disulphide bond it was counted as a superfamily with

disulphide bonds. A superfamily was considered to contain no

disulphide bonds only if all its domains in the ASTRAL40 set

contained no disulphide bonds.

Amino acid content. The Propensities of an amino acid aa

for ancient and new-born domains were calculated as:

P(aa)g~
N(aa)g=N(aa)

N(total)g=N(total)

where N(aa) is the number of amino acids of type aa across all

domains in the ASTRAL40 set, N(total) is the total number of

amino acids in these domains, and N( � )g is the number of amino

acids in domains representing superfamilies predicted to belong to

an age group g[fancient,new-borng. Propensities have an

expected value of 1, with values w1 indicating over-representation

of that amino acid in a particular age group compared to the

background distribution and values v1 indicating under-repre-

sentation. We calculated the significance of these propensities

using a x2-test with a single degree of freedom on the observed

occurrences of that amino acid in that age group N(aa)g. To

account for multiple testing the Bonferroni correction was used

and only propensities with pv0:01=40~2:5|10{4 were consid-

ered significant.

Function. GO functional annotations [47] for SCOP super-

families were downloaded from the SUPERFAMILY website [34].

These functional annotations were assembled using GO terms

assigned to Uniprot proteins [48] with known SCOP classifica-

tions.

Functional enrichment analysis was performed on this set,

assuming the number of superfamilies annotated with a particular

GO term followed a hypergeometric distribution [49], and

significance calculated with a one-sided test for the enrichment

of a term in a particular age group g[fancient,middle-aged,new-
borng. As above, the Bonferroni correction was used to account

for multiple testing. A total of 7,394 GO terms were investigated so

terms with a p-value v0:01=22,182~4:5|10{7 were considered

significant.

Greek key and jelly roll motifs. Greek key motifs were

extracted from ASTRAL40 domains using the method outlined in

[30]. Strand hydrogen bond partners were assigned using

PROMOTIF [43]. As the jelly roll motif is formed by adding

two extra strands to a greek key motif, these were then identified

from the greek key set. Superfamilies with a jelly roll motif found

in any representative domain contributed to the jelly roll set. All

other superfamilies containing domains annotated with a greek key

motif were counted as the greek key set. The result was 105

superfamilies containing a greek key motif and 33 containing a

jelly roll.
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Supporting Information

Figure S1 The effect of altering the gain weight on fold
space preferences. Fold space preferences were recalculated

using ages generated on the NCBI tree using a maximum

parsimony algorithm with different gain weights. The gain weight

represents the relative penalty of gain events as opposed to loss

events in a superfamily’s evolutionary history. By altering the gain

weight between 0.1 and 10 we explore up to a 10-fold asymmetry

in the likelihood of these two events. The quantile plots here show

the results of an analysis of SCOP class, strand direction and

domain length against ages generated with these different gain

weights.

(TIF)

Figure S2 The effect of altering the parsimony model on
fold space preferences. Fold space preferences were recalcu-

lated using ages generated using a fusion parsimony algorithm on

the NCBI tree. This fusion model assigned gain and loss events at

internal nodes of the tree according to maximum parsimony on

the Bacterial and Archaeal subtrees and according to Dollo

parsimony on the Eukaryotic subtree. The quantile plots here

show the results of an analysis of SCOP class, strand direction and

domain length against ages generated using either a maximum or

a fusion parsimony analysis.

(TIF)

Figure S3 Domain lengths and their relationship to
superfamily age when stratified by their class. Percentile

plots of the ages for different domain lengths within the four main

SCOP classes. Ancient domains are significantly longer than new-

born domains in both the all-a and the azb classes but not in the

all-b and a=b classes. The ages shown are calculated using a

maximum parsimony algorithm on the NCBI tree.

(TIF)

Figure S4 Structure vs. functional annotations on fold
space preferences. Three percentile plots exploring the

differences between superfamilies with parallel or antiparallel

beta-sheet structure. The structural annotation plot shows the age

distributions of superfamilies with a majority of either parallel or

antiparallel strands. It is a reproduction of Figure 2D. The

functional annotation plots compare the age distributions of

superfamilies annotated with parallel or antiparallel functions: that is

functional terms significantly enriched in the parallel or antipar-

allel set of superfamilies. The functional annotations fail to divide

the space effectively with 758 superfamilies annoted with both

parallel and antiparallel functions. When considering superfamilies

unique to a directional functional annotation there appeared a less

marked distinction in the age distributions than was shown using

the structural annotation.

(TIF)

Figure S5 The distribution of ages. Histograms are drawn

for the distribution of superfamily ages across all 8 trees built using

occurrences on the 1,014 ALLgenomes. Tree names reference the

method used to construct the topology (NCBI common taxonomy

tree (NCBI), Neighbour-joining with Jaccard distances (JACC),

Neighbour-joining with Bray-Curtis distances (BC), and Wagner

Parsimony (PARS)) and whether it was constructed using

superfamily or fold (F) occurrences on the genomes. Ages were

calculated using either a maximum parsimony algorithm with the

probability of a gain and loss event equally weighted, or a fusion

parsimony algorithm (see methods).

(TIF)

Table S1 Enriched functional terms for different age
groups. GO terms that are found to be significantly enriched in

new-born, middle-aged, or ancient superfamilies. Terms in italics

are supported by analysis on annotations derived purely from

single domain Uniprots only. These terms can be understood as

domain-centric functional annotations but as they are more rare

they lead to a less specific enrichment analysis.

(PDF)

Table S2 List of complete genomes. The list of species

names used for superfamily predictions and tree building. Species

in italics were removed from the data set as pathogens or

Candidatus species. Species in bold were removed manually.

(PDF)

Table S3 ASTRAL40 domains. The number of domains for

each superfamily with representative structures in the ASTRAL40

set.

(PDF)
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33. Toll-Riera M, Bostick D, Albà MM, Plotkin JB (2012) Structure and Age Jointly

Influence Rates of Protein Evolution. PLoS Computational Biology 8: e1002542.

34. Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to

genome sequences using a library of hidden Markov models that represent all
proteins of known structure. Journal of Molecular Biology 313: 903–919.

35. Kyrpides N (1999) Genomes OnLine Database (GOLD 1.0): a monitor of

complete and ongoing genome projects world-wide. Bioinformatics 15: 773–774.
36. Murray RG, Schleifer KH (1994) Taxonomic notes: a proposal for recording the

properties of putative taxa of procaryotes. International journal of systematic
bacteriology 44: 174–6.

37. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, et al. (2012) Database

resources of the National Center for Biotechnology Information. Nucleic acids
research 40: D13–25.

38. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2009)
GenBank. Nucleic acids research 37: D26–31.

39. Felsenstein J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2).
Cladistics 5: 164–166.

40. Mann HB, Whitney DR (1947) On a test of whether one of two random

variables is stochastically larger than the other. The Annals of Mathematical
Statistics 18: 50–60.

41. Sheskin DJ (2004) Handbook of parametric and nonparametric statistical
procedures. Chapman & Hall/CRC, 3 edition.

42. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers 22:
2577–2637.

43. Hutchinson E, Thornton J (1996) PROMOTIF-a program to identify and
analyze structural motifs in proteins. Protein Science 5: 212–220.

44. Plaxco KW, Simons KT, Baker D (1998) Contact order, transition state
placement and the refolding rates of single domain proteins. Journal of

molecular biology 277: 985–94.

45. Mizuguchi K, Deane C, Blundell T, Johnson M, Overington J (1998) JOY:
protein sequence- structure representation and analysis. Bioinformatics 14: 617–

623.
46. Sweet RM, Eisenberg D (1983) Correlation of sequence hydrophobicities

measures similarity in three-dimensional protein structure. Journal of molecular

biology 171: 479–88.
47. Ashburner M, Ball C, Blake J (2000) Gene Ontology: tool for the unification of

biology. Nature 25: 25–29.
48. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, et al. (2005) The

Universal Protein Resource (UniProt). Nucleic acids research 33: D154–9.
49. Rivals I, Personnaz L, Taing L, Potier MC (2007) Enrichment or depletion of a

GO category within a class of genes: which test? Bioinformatics 23: 401–7.

Fold Space Preferences of Protein Superfamilies

PLOS Computational Biology | www.ploscompbiol.org 11 November 2013 | Volume 9 | Issue 11 | e1003325


