Expression of csal1 in pre limb-bud chick embryos

DYLAN SWEETMAN*, TERENCE G. SMITH, ELIZABETH R. FARRELL and ANDREA MÜNSTERBERG
School of Biological Sciences, University of East Anglia, Norwich, UK

ABSTRACT The spalt family of transcriptional repressors has been implicated in limb, heart, ear and kidney development and truncating mutations in a human gene, SALL1, result in the autosomal dominant disorder Townes-Brocks syndrome. Here we show the expression pattern of the chick orthologue of the SALL1 gene, csal1, during early development. We found csal1 expression in the heart and in the pharynx, a source of inductive signals during heart development. Expression was also seen in involuting mesoderm and later in presegmented paraxial mesoderm. We also describe expression in the ectoderm and neural plate of the early embryo and subsequent expression in the neural tube.

KEY WORDS: chick, csal1, Townes-Brocks syndrome, spalt, heart

The spalt zinc finger proteins, some of which have been shown to act as transcriptional repressors, have been implicated in various patterning events during development. A number of orthologues have been identified in Drosophila (Barrio et al., 1996), human (Kohlhase et al., 1996, Kohlhase et al., 1999a, Kohlhase et al., 2002), mouse (Ott et al., 1996, Buck et al., 2000, Kohlhase et al., 2000, Kohlhase et al., 2002), Xenopus (Hollemann et al., 1996, Onuma et al., 1999, Onai et al., 2004), zebrafish (Camp et al., 2003), chick (Capdevila et al., 1999, Farrell and Munsterberg, 2000, Farrell et al., 2001) and Medaka (Koster et al., 1997). In Drosophila the related genes sal and salr are involved in the determination of the embryonic termini, wing patterning and tracheal branching (Kuhnlein et al., 1994, Kuhnlein and Schuh, 1996, de Celis and Barrio, 2000, Barrio and de Celis, 2004). In human the autosomal dominant condition Townes-Brocks syndrome (TBS) is caused by mutations in SALL1 and patients present with defects in kidney, ear, anogenital, heart and limb development (Kohlhase et al., 1998). Most of the phenotypic features in TBS patients are variable, including heart defects which have been reported in some familial and spontaneous cases of TBS (Surka et al., 2001). The mutations resulting in TBS are premature stop codons predicted to lead to the production of a truncated SALL1 protein (Kohlhase et al., 1999b). Recent work has strongly suggested that such a truncated protein can act as a dominant negative allele interfering with the function of full length SALL1 and possibly other spalt proteins (Netzer et al., 2001, McLeskey Kiefer et al., 2002, Sweetman et al., 2003). This view has been confirmed by the production of mice expressing a truncated Sall1 protein. Malformations in mice expressing this truncated protein are similar to those seen in TBS patients (McLeskey Kiefer et al., 2003).

In the chick three members of the spalt family have been described so far, csal1, csal3 and csal4. We have previously characterized the expression of csal1 at later developmental stages where transcripts were detected in the CNS, tail bud and developing limb buds. Furthermore, we demonstrated that csal1 expression is regulated by members of the FGF and Wnt families of proteins during limb development (Farrell and Munsterberg, 2000). csal3 is expressed in the nervous system, developing kidney, cloaca and limb bud (Farrell et al., 2001) and csal4 is expressed in the neural tube, migrating neural crest and branchial arches (Barembaum and Bronner-Fraser, 2004).

In order to address the potential role of csal1 in early development we have undertaken a detailed expression analysis in chick embryos from pre-streak to Hamburger-Hamilton (HH, Hamburger and Hamilton, 1951) stage 16. Transcripts were found in ectoderm, involuting mesoderm and presegmented mesoderm. We also observed csal1 expression in the heart, the neural plate and the pharynx.

csal1 expression during gastrulation and neurulation

Transcripts of csal1 were first detected at HH stage 3 embryos with expression restricted to Hensen’s node and the primitive streak (Fig. 1A). At HH stage 5 expression was seen in the ectoderm of the head fold, the head process and in the involuting mesoderm in the primitive groove (Fig. 1B - E). At HH stage 6 csal1 was expressed in the head fold, neural and non-neural

Abbreviations used in this paper: TBS, Townes-Brocks syndrome.
ectoderm, the notochord, Hensen’s node and posterior primitive streak (Fig. 1F). By HH stage 7 expression was still present in the notochord and node while the expression in the ectoderm has expanded throughout the embryo with the exception of the ectoderm posterior to the node (Fig. 1 G - K).

Expression during somitogenesis stages and heart morphogenesis

At HH stage 10 in anterior regions *csal1* was expressed in the head and stomatodaeum (Fig. 2A, B). At the level of the heart tube expression was seen in the ectoderm, paraxial mesoderm and dorsal mesocardium (Fig. 2A, C). Posterior to the heart tube *csal1* was expressed in lateral endoderm (Fig. 2A, D). Just posterior to the level of neural tube fusion *csal1* was observed in the dorsal neural folds and notochord (Fig. 2A, E) while in more posterior regions expression was seen throughout the neural folds and the presegmented mesoderm (Fig. 2A, F). At HH stage 10 *csal1* transcripts were still observed in the node, primitive streak and involuting mesoderm (Fig. 2A, G). Strong expression was observed in the sinus venosus at HH stage 12. At the same axial level expression was seen in the overlying ectoderm, somatic mesoderm and the keel of the pharynx (Fig. 3A, B). At HH stage 14 expression was still present in the sinus venosus and maintained in the pharynx (Fig. 3C, D). By HH stage 16 *csal1* was only expressed in the presegmented mesoderm and the underlying endoderm. The region of the presomatic mesoderm which will give rise to the next formed somite does not express *csal1* (Fig. 3E, F).

In other vertebrate species where the expression of orthologues of *csal1* has been reported expression has been observed in both the developing kidney and the otic vesicle (Buck et al., 2000, Buck et al., 2001, Ott et al., 2001). However in the chicken embryo *csal1* is not expressed in either of these tissues. Given the other similarities in expression in the limb bud, ectoderm, heart and neural plate this may imply some divergence in function between species. A parologue of *csal1*, *csal3*, is expressed in the mesonephros and CNS and may functionally substitute for *csal1* in these areas.

Fig. 1. In situ hybridisation of *csal1* in early gastrula embryos. (A) Wholemount staining of HH st 3 embryo. (B) Wholemount staining of HH st 5 embryo. (C,D,E) Transverse sections of HH st 5 embryo, levels indicated in (B). (F) Wholemount staining of HH st 6 embryo. (G) Wholemount staining of HH st 7 embryo. (H,I,J,K) Transverse sections of HH st 7 embryo, levels indicated in (G). E, ectoderm; HF, head fold; HN, Hensen’s node; HP, head process; M, mesoderm; NC, notochord; NP, neural plate; PG, primitive groove; PS, primitive streak.
Diversification of csa1 orthologues has also been reported in zebrafish where gene duplication has produced two similar sa1 alleles (Camp et al., 2003). However, it is clear that many of the tissues affected in TBS patients are those where csa1 is expressed and studies in chick embryos would complement those in other model systems to help understand the function of these important genes in normal development and disease. For example a potential role of the spalt genes in heart development has not yet been elucidated. Heart defects have been reported in some TBS patients (Kohlhase et al., 1999b, Kohlhase et al., 2003) and expression of spalt genes has been detected in the hearts of both mouse (Ott et al., 1996, Buck et al., 2001, Ott et al., 2001) and zebrafish embryos (Camp et al., 2003). The expression within the developing heart in the chick suggests a possible role for csa1 in cardiac morphogenesis. In addition expression of csa1 in the pharynx raises the possibility that expression of csa1 may be required for the mutual signalling events that occur between this tissue, cardiac neural crest and myocardium and this could be tested in a vertebrate model system.

Materials and Methods

Whole mount *in situ* hybridisations, sections and photography were performed as described (Schmidt et al., 2000). Probes used were as described in (Farrell and Munsterberg, 2000). The EMBL/GenBank accession number of csa1 is: AF_288697.
References

Received: February 2005

Reviewed by Referees: March 2005

Modified by Authors and Accepted for Publication: March 2005

Acknowledgements

We thank Grant Wheeler for comments on the manuscript. D.S. was funded by a Wellcome Trust project grant (ref. 059540). T.S. was funded by a MRC studentship and E.F. was funded by a Wellcome Trust RCDF (ref. 047701) to Andrea Münsterberg.