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‘FUZZY’ PREDICTIONS FOR STRATEGIC DECISION MAKING:  
A THIRD-GENERATION PREDICTION MARKET  

 

ABSTRACT 

This article theorizes a new way to predict firm performance based on aggregation of sensing among 

frontline employees about changes in operational capabilities to update strategic action plans. We 

frame the approach in the context of first- and second-generation prediction markets and outline its 

unique features as a third-generation prediction market. It is argued that frontline employees gain 

deep insights when they execute operational activities on an ongoing basis in the organization. The 

experiential learning from close interaction with internal and external stakeholders provides unique 

insights not otherwise available to senior management. We outline a methodology to agglomerate 

these insights in a performance barometer as an important source for problem finding and 

innovation.    

  

Keywords: frontline employees, information aggregation, innovation, operational capabilities, 

prediction markets, sensing, strategic decision-making.  

  

INTRODUCTION   

It is a classical assertion in strategic management that the quality of strategic decisions depends on 

the knowledge available for decision makers (Eisenhardt, 1989; March and Olsen, 1976; Vroom and 

Yetton, 1973). The frontline employees in the organization should be the first to know what is 

happening as they front the business and interact on a daily basis with customers, suppliers and 

other important stakeholders and thereby gain unique experiential insights about the firm’s ability to 

perform its’ operational tasks. However, these frontline employees are rarely asked for updated 

information on about critical issues. They are not consulted on  how service delivery will fare, how 
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business opportunities will develop and how operational conditions will change.  One reason can be 

that frontline employees are believed to lack the ‘big-picture’ and, therefore are unable to provide 

strategic information to top-level executives. Another reason may relate to the difficulty of collecting 

dispersed information effectively where cumbersome consultation processes consume time and 

resources. As a consequence executive decision-makers are likely to deprive themselves from gaining 

important updated information that could improve the accuracy of their strategic analysis and reduce 

the risk of biased decisions.   

 The ability of humans to infer subtle information from systemic properties is 

commonplace in the public sphere (Berg, Forsythe and Rietz, 1996; Berg, Forsythe and Rietz, 1997) 

and this suggests that such inferences also concern knowledgeable employees within the firm 

(Thompson, 2012). The assumption that employees obtain unique insights about the state of 

operational capabilities through sensing and personal experience (Cepeda and Vera, 2007; Teece, 

2007) makes the idea of aggregating their knowledge highly relevant in a strategic management 

context. Corporate prediction markets provide organizations with a means to aggregate the 

knowledge of the companies’ own employees.  Strategic decision makers may consult frontline 

employees and tap into their insights using different polling or prediction markets (Abramowicz, 

2007; Berg et al., 1996; Berg et al., 1997; Forsythe et al., 1992). These approaches make it possible to 

aggregate knowledge across a potentially large number of employees. The use of prediction markets 

has demonstrated how even relatively small groups of people can make accurate predictions even in 

areas where they are not considered experts (Van Bruggen et al., 2010).  

Several companies have responded to this opportunity by incorporating prediction 

markets as a way to gather intelligence about issues that are important for their business. The 

increasing interest in prediction markets reflects their accuracy in forecasting the probability of 

certain events taking place (Servan-Schreiber et al., 2004; Spann and Skiera, 2003). In first-generation 



2 

 

prediction markets, participating employees invest in the outcome of important performance 

indicators such as next quarter’s sales volume, or in second-generation prediction markets where 

employees are asked to predict the probability of success for various product concepts and ideas 

(Slamka, Jank and  Skiera, 2012).  Participants in first- and second generation prediction markets 

typically invest in the outcome of predefined and time constrained issues.  

Here we propose an extension of prediction markets into the domain of fuzzy events 

that characterize the operational conduct of organizations assessed by engaged employees. This 

involves letting them judge, assess and invest in issues that are not clearly defined or easily measured 

like, managers’ ability to deal with problems, or the ability of departments to cooperate. The aggregated sensing 

of these operational capabilities can serve as a barometer for early (warning) signals about changes in 

firm performance. This explains the reference to fuzzy prediction markets since they identify areas 

that require managerial attention due to operational issues, emergent strategic risks and 

opportunities. We refer to this as third-generation prediction markets characterized by (1) 

investment in fuzzy events, (2) ongoing investments performed as continuous time-series, e.g., on a 

monthly basis, and (3) aggregating the time-series periodically, e.g., monthly, into an operational 

performance barometer. The ongoing sensing by frontline employees of the operational conditions 

can detect early performance effects that otherwise are difficult to uncover.  In the following we 

review the literature on prediction markets and pinpoint the differentiating factors of fuzzy events 

sensed by frontline employees as a relevant agenda for effective strategic decision-making. Finally, 

we discuss the implications of this predication technique for strategic control processes as a 

promising new approach to strategic issue identification urging a need to update strategic action 

plans. 

 

‘WISDOM OF CROWDS’ FOR DECISION MAKING  
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Financial economists have established the notion that stock markets have the capability to ‘see 

through form or cosmetics . . . to the underlying economic substance’ (Lee and Verbrugge, 1996: 

39). This notion is commonly referred to as the ‘wisdom of crowds’ (Surowiecki, 2004), which 

suggests that investor reactions are ‘a reliable sign of [a given event’s] outcome’ (Zajac and Westphal, 

2004: 434). For instance researchers in behavioral finance have demonstrated that investment 

decisions are not made in a vacuity (Barberis and Thaler, 2003; Shleifer, 2000). More precisely they 

provide support for the fact that investors, being boundedly rational, take one another’s 

anticipations into account when making judgments. Consequently, these scholars have been able to 

explain stock market bubbles and other phenomena that influence capital market efficiency (e.g. 

Shiller, 2003; Shleifer, 2000).  

 Extending this reasoning to the domain of strategic management, we develop the 

argument that anticipations of changes in operational conditions among frontline employees are 

shaped, to an significant extent, by the crowd perceptions of frontline employees, which is 

important information of relevance for strategic decision making (Thompson, 2012). Leaders must 

constantly use heuristics to determine the relevant information and try to make sense of it (Starbuck 

and Milliken, 1988). The limited capacity of individuals to process vast amounts of information 

means that leaders end up using only a simplified subset of available information for decision 

making (Mintzberg, Raisinghani and Théorêt, 1976). The asymmetry between the amount of 

information available and the capacity to process it could thus result in bad decision outcomes.  

The newer aggregation mechanisms, such as crowdsourcing and predictions markets, 

serve to source relevant information from traditional public crowds but these techniques may also 

be applied towards internal agents. Crowdsourcing and prediction markets are mechanisms closely 

linked to the ‘wisdom of crowds’. This notion assumes that large groups of people are smarter than 
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an elite of one or a few people, no matter how brilliant. The crowd is better at solving problems, 

fostering innovation, devising good decisions and even predicting the future (Surowiecki, 2004).  

Propositions about what constitutes ‘wisdom’ are at the core of economic theory. For 

example, Hayek (1945) noted that dispersed and heterogeneous knowledge amongst a group of 

people is central to the design of an efficient economic system. As he argued: ’[we] need 

decentralization because only thus can we insure that the knowledge of the particular circumstances 

of time and place will be promptly used’ (Hayek, 1945: 84). The capacity to aggregate heterogeneous 

and dispersed information from the environment is also seen as a critical input for strategic decision 

making (Arrow, 1974; Stinchcombe, 1990).  Prediction markets draw heavily on the belief that 

markets are efficient in aggregating and disclosing dispersed information among a group of diverse 

and involved agents.   

Page and Hong (2012) provide some empirical foundations for the ‘wisdom of 

crowds’. With their diversity and complexity models arguing that some level of experience and 

diversity among participants is required for the ‘wisdom’ to occur. This is in accordance with the 

underlying ideas of “wisdom of crowds”; ‘diversity and independence’ are important because the 

best collective decisions are the product of disagreements and contest, not consensus or 

compromise’ (Surowiecki, 2004; xix). That is, an intelligent group would not expect its members to 

modify their positions when confronted with cognitive problems to reach consensus. In contrast, 

the group figures out how to aggregate information for example expressed in market prices, or use 

intelligent voting systems that represent not what every person of the group thinks but rather what 

they all individually think.  

The prediction markets technique creates actual markets for problem-solving 

through open calls typically solicited among the company’s external stakeholders 

including customers and suppliers (Howe, 2006; Zenger, Felin and Bigelow, 2011).  The prediction 
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markets can collect decentralized information from dispersed agents and use it to obtain the most 

accurate and reliable predictions. Such techniques can be useful for problem solving by inviting 

contributions from a much broader and diverse set of knowledgeable constituents. However, 

academic research on information aggregation from frontline employees is lacking and constitutes 

one the least understood ideas in management research. While studies have discussed crowdsourcing 

in terms of outsourcing open calls to individuals outside the firm, crowdsourcing among employees 

within the firm to solve distributed problems has barely been touched in management research 

(Stieger and Ladstaetter-fussenegger, 2012). There are some notable exceptions that look at the 

collective intelligence of employees (Berg, Neumann and Rietz, 2009; Cowgill, Wolfers and 

Zitzewitz, 2009; Thompson, 2012), but only described through anecdotal case examples where firms 

aggregate information from individuals inside the firm. First-generation (G1) and second-generation 

(G2) prediction markets are applied by some businesses today, but the theoretical and empirical 

implications of such markets are presently understudied.  

 

FIRST-GENERATION (G1) PREDICTION MARKETS  

A first-generation (G1) of prediction markets were construed as markets for contracts 

– traded as stocks – with payoffs linked to the final outcome of specified future events. They were 

initially developed to predict presidential elections and other political elections (for a complete 

review see Forsythe, Rietz and Ross, 1999). These political market models adopt a design proposed 

by (Forsythe et al., 1992) to elicit information about the outcome of a random variable. One of the 

most cited and most successful prediction markets is the Iowa Electronic Market (IEM). Since 1988, 

IEM has run political elections using real-money prediction markets. Scholars have demonstrated 

that on average the market’s predictions are more accurate and less volatile than political opinion 

polls, particularly with respect to predicting the outcome of large US elections (Forsythe et al., 1992). 
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Participants in a prediction market react to new information rapidly and mostly before the 

information has been widely disseminated. The markets are accurate despite documented evidence 

that individual traders often are biased, irrational, and make mistakes (Abramowich, 2007; Pennock 

and Sami, 2007).  

G1 markets are set up to elicit and aggregate information prior to an outcome of a 

random variable or set of variables. For example, the presidential election contract can be structured 

as a binary variable (‘will a Republican win the next US Presidential election?’) or a discrete variable 

(‘who will win the next US Presidential election?’). Such contracts offer a certain payoff to the 

holder of the contract with the correct prediction on Election Day. Once the outcome of a specific 

market situation is known, each share of virtual stock receives a ‘cash dividend’ (payoff) according to 

a predetermined (market) outcome (Pennock and Sami, 2007). For example, in the presidential 

election contract structured as a binary variable (‘will a Republican win the next US Presidential 

election?’) each share of virtual stock will receive a certain ‘cash dividend’ (payoff), e.g., $1 per unit 

bought, according to a specific predetermined (market) outcome payable once the actual outcome is 

known, (Spann and Skiera, 2003).  

The idea with G1 markets is to create an efficient market for specific situations with 

predictable outcomes by trading virtual stocks. The trading price of shares of virtual stocks will 

reflect the aggregate expectations of the market outcomes specified in the contracts. The 

fundamental idea is to make an efficient futures market for given situations with predictable 

outcomes by trading virtual stocks. The trading price of such shares of virtual stocks will reflect the 

aggregate expectations of the market outcomes specified in the contracts. Borrowing from the 

notation used by Spann and Skiera (2003: 1312), the payoff of a specified event at time T can be 

expressed as follows:  
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 iTT,i Zd    ( li I)   (1) 

Where:  

T,id  cash dividend of the stock modeling the outcome of the ith event at time T , 

   transformation function,  

 iTZ  outcome of the ith event at time T 

I index set of events  

T point of period in time that is relevant for the determination of the outcome of the 

event  

 

T is usually predetermined indicating, for example, the end of the election period in a 

political stock market. The transformation function    can have different forms where one form 

frequently used in political stock markets is to pay a cash dividend of $1 multiplied by the fraction of 

votes received by the particular candidate (Forsythe et al., 1999). In accordance with the literature 

dealing with political events (Forsythe et al., 1992; Forsythe, Rietz and Ross, 1999)  the denomination 

‘stocks’ is used to make the concept easier to understand for the market participants.  

Some corporations adopted prediction type markets in the late 1990s to collect 

intelligence from employees to forecast total sales (Chen and Plott, 2002) and probabilities that 

certain competitors would enter the market, etc. (Cowgill et al., 2009). Hence, General Electric, 

Google, Motorola, Microsoft, Hewlett-Parkard and Eli Lilly have all implemented such markets to 

advance strategic decision-making (Thompson, 2012). Table 1 provides an overview of existing 

corporate G1 markets.  

 

[ Insert Table 1] 
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Corporate first-generation prediction markets draw primarily on the company’s own 

employees as market participants. This has engaged people within the firm to estimate the 

probability of future events including sales forecast and new product success.   These approaches are 

set up as internal markets in contracts where the payoff is directly linked to the accuracy of the 

predictions. Yet, the first-generation (G1) prediction markets only address a limited set of 

predetermined questions within a finite timeframe where specific outcomes are revealed shortly after 

the market is closed. This imposes limitations on their application for internal corporate purposes, 

because many managerial decisions relate to events that may, or may not occur, or do not have clear 

predetermined outcomes or they may have a very long time horizon.  

 

SECOND-GENERATION (G2) PREDICTION MARKETS  

In corporate environments with accelerating technologies and shortened product life cycles, firms 

and communities engage in fast product development and must filter the most promising product 

opportunities very rapidly. This applies to both tangible and intangible products, e.g., smart phones, 

video gaming systems, home entertainment, information appliances, and other goods and services 

that require development teams to prioritize multiple design decisions (Thompson, Hamilton and 

Rust, 2013). As such, there is a growing need to bridge the front end- and design phases by 

narrowing many features and concepts down to a few ‘make-or-break’ success factors, which 

requires a fast prioritization methodology.  

This new form of ‘collaborative creativity’ of the Web 2.0 paradigm is performed by 

using preference markets (Dahan, Soukhoroukova, and Spann, 2010). These are second-generation 

(G2) prediction markets operating with different prioritization mechanisms (Spann and Skiera, 

2003). They provide fast and responsive market feedback to decision makers about the expected 
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viability of new product development ideas. Preference markets measure the potential of new 

products and ideas suggested by users by predicting the concepts expected future market share or 

value in the market expressed as a price. Preference markets are also referred to as ‘securities trading 

of concepts’ (Chan et al., 2002; Dahan and Hauser, 2002). This labeling is used because it is the 

intention to reflect consumer or employee preferences for different product concepts. In contrast to 

preference markets, idea markets allow participants to introduce their own ideas and evaluate them 

in a combined single trading instrument (LaComb, Barnett and Pan, 2007). As competitive 

conditions require ongoing product development, companies have increasingly adapted G2 

prediction markets to advance and evaluate ideas. Examples are XPree, which offers ‘open 

innovation markets’ and Nosco, which offers an ‘idea exchange’. NewsFutures, a leading prediction 

market software provider, incorporates idea and preference markets in their standard product 

portfolio. Table 2 presents overview of other type of G2 prediction markets. 

[Insert Table 2] 

 

G2 prediction markets are fundamentally different from G1 prediction markets 

because there is no measurable outcome against which to compare market performance or at least 

none that can be determined in the near term. In G2 markets there are no actual or realized market 

shares to be predicted, but rather a ranking among proposed product concepts and ideas. The 

products that receive the highest bets are high on the list of chosen products. Therefore the classical 

incentive structure of the virtual stock market in G1 where participants can make money either by 

being correct about the final outcome, or by accurately speculating on the behavior of other market 

participants, falls apart in preference markets (Slamka, Jank and Skiera, 2012; Spann and Skiera, 

2003). Participants in preference markets cannot be rewarded based on the precision and correctness 

of their predictions of actual outcomes. Instead G2 prediction market participants must determine 
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the volume-weighted average (vwap) of the last traded price. In other words; participants are 

rewarded primarily on their ability to accurately foresee the future market preferences by other 

participants in combination with their own expectations about the winner products or concepts. 

Therefore, participants have no incentive to disclose their own private information as they cannot 

gain any rewards from this. As a consequence a form of information drop might occur 

(Bikhchandani et al., 1992) whereby the private information gets underweighted and transactions 

instead depend on transactions by other participants. Therefore, G2 prediction markets are not 

based on external information about market changes as is the case in G1 markets. Instead the 

valuation mechanisms are based on the volume-weighted average (vwap) of trading prices (LaComb 

et al., 2007; Slamka et al., 2012) expressed as;  

with,
t,qi

qt,Pi
payoff tvwap

i 
 

 time (t) start_vwap   (2) 

where,  

Pi, t denotes the price of a share of the ith stock at the tth trade,  

qi,t denotes the corresponding number of shares per trade   

vwap_start is the point in time at which the vwap calculation starts 

time (t) is the point in time at which the ith trade is executed.  

Since the vwap includes trades over a certain period of time to determine payoff values there is an 

attempt to reduce reliance on single trades. 

An alternative G2 payoff mechanism relies on the last price at which a stock traded at 

a fixed publicly known point in time, T fixed payoff last price (Chan et al., 2002; Soukhoroukova and 

Spann, 2005): 
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lastprice
ipayoff  = Pi, max(t) , with time (t) fixedT   (3) 

 

The rationale behind this payoff derives from the efficient market hypothesis, which 

states that all available information at the end of the market should be reflected in the last price. 

Such market contracts are easily understood by all market participants (Slamka et al., 2012). While 

G1 typically runs for weeks or longer, preference markets (G2) require only minutes to work, 

because they are not affected by external market influences (Dahan et al, 2010). For example, Dahan 

et al. (2011) demonstrate how product concepts can be evaluated in stock trading that run for less 

than an hour.  

The shortcomings of G2 markets are that market participants may never know if the 

winning product will be constructed and sold. The actual preference of the target consumer market 

will never be revealed. As such, there are no certainties that market participants are representative of 

the targeted consumer market. Hence, the G2 markets are limited in terms of prediction accuracy. 

Accordingly experimental studies comparing the accuracy of G1 with G2 prediction markets have 

demonstrated that G1 mechanisms perform the best (see Slamka et al., 2012 for an overview).   

 

THIRD-GENERATION (G3) PREDICTION MARKET MODEL 

Base assumptions  

The strategic management literature describes how local operational knowledge held by individuals 

deep within an organization inspire autonomous initiatives that can have significant strategic 

consequences for the firm (e.g. Burgelman 1983, 1994; Burgelman and Grove, 1996, 2007; 

Mintzberg and Waters 1985; Noda and Bower, 1996). Essential information about specific 

operational conditions is typically decentralized and held among lower-level employees associated 
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with daily operations (Mintzberg, 1990). This is consistent with an information processing 

perspective suggesting that turbulent conditions require flexible organic forms where updated 

information is readily available for adaptive responses to emerging changes (Galbraith, 1977; 

Thompson, 1967).  

The decentralized knowledge may represent unique insights about what is happening 

in the organization and the market of strategic significance to the firm. In accordance with this 

view, Grove (1996: 22-23) argues that ‘We need to expose ourselves to lower-level employees, who, 

when encouraged, will tell us a lot that we need to know … the leader is often the last of all to 

know.’ The local knowledge held by lower-level employees should be qualitatively different from 

that of executives. Strategy scholars suggest that operational capabilities are everyday routines 

performed by employees deep within the organization as reactions to internal and external stimuli 

(Zollo and Winter, 2002; Winter, 2003). Lower-level employees perform basic functional activities in 

the organization and learn about operational capabilities through the enactment of everyday 

routines. In contrast, executives transform and reconfigure the operational capabilities through 

strategic decision making supported by the firm’s information systems and management discussions 

(Helfat et al., 2007; Protogerou, Caloghirou and Lioukas, 2011). That is, lower-level employees and 

executives obtain information from different sources.   

In recent years, the importance of employees sensing changes in the firm’s 

environment as a strategic capability for decision making has gained general acceptance (Helfat et al., 

2007; Teece, 2007). Teece (2007) categorizes sensing as a firm capability that is difficult for other 

firms to replicate and thus can provide the firm with a competitive advantage. It constitutes a tool 

for environmental scanning that allows the firm to ascertain important opportunities and risks that 

need firm responses and as such, it constitutes a dynamic capability (Peteraf and Bergen, 2003; 

Teece, 2009). Employee sensing is presumed to originate from an exposure to the environment with 
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which the employees interacts. When individuals reach a plausible interpretation of operational 

capabilities, they develop anticipations about the future as an automatic,  affective reaction (Dane 

and Pratt, 2007) such as the firm’s ’good’ or ’bad’ abilities to deal with ongoing challenges (Zajonc, 

1980).  

The sensing construct is variously used in management research. In the organizational 

behavior literature, Daft and Weick (1984) speak about organizations that functionally look like 

information processing systems where environmental observations are captured by individuals. The 

individual sensors observe actions and reactions and process these impressions in symbolic form 

that allows information to be stored and retrieved from memory. Hence, the individual cognitive 

schemas act as information structures that sort and accept new impressions that can guide 

subsequent actions (Neisser, 1976). So, the sensing as  organizational systems is interpretative and 

depends on individual beliefs about the environment (Burrell and Morgan, 1979; Daft and Weick, 

1984). As interpretations about the environment can vary due to diversity, uncertainty and 

complexity, organizations construct processing mechanisms to scan, interpret and diagnose 

environmental events (Galbraith, 1977; Lawrence and Lorsch, 1967; Thompson, 1967). These 

interpretive systems derive from social actions where shared meaning is formed through everyday 

interactions among people in their immediate surroundings (Daft and Weick, 1984; Walsh and 

Ungson, 1991). Hodgkinson and Healey (2011) use Teece’s (2007) framework to organize and 

demonstrate the fundamental capabilities of sensing: ‘Opportunity discovery and creation originate 

from the cognitive and creative (‘right brain’) capacities of individuals, requiring access to 

information and the ability to recognize, sense, and shape developments and groups to blend 

effortful forms of analysis with the skilled utilization of less deliberative, intuitive processes’ 

(Hodgkinson and Healey, 2011: 1502). That is, ‘Recognizing, scanning, and shaping depend on 

individuals’ cognitive capabilities and extant knowledge’  (Hodgkinson and Healey, 2011: 1502). 
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As frontline employees engage in business execution, they gain detailed insights about 

changing conditions, stakeholder sentiments and the quality of internal competencies in dealing with 

those changes. This provides an intuitive understanding of internal strengths and weaknesses and 

the ability to deal with emergent risks and opportunities that cannot be accessed elsewhere in the 

organization.  From daily operations, frontline employees sense actual operational problems that 

over time can amount to potential threats of firm survival. The aggregated sensing information from 

frontline employees about changes in operations concerns ongoing and precise operational problem 

identification. So, strategic issue identification predictions and suggested solutions to such issues by 

operational employees can constitute the foundations a new type of online trading market; a third-

generation (G3) prediction market. Therefore, sensing the evolution of operational capabilities 

(routines) against changing external conditions and new environmental requirements can provide 

information about an organization’s capacity for strategic adaptation. But what are the emergent 

operational problems frontline can sense, foresee and solve?   

Nelson and Winter (1982) introduce the notion of operational capabilities, as they 

view the organization as a set of operating and administrative routines that evolve on the basis of 

ongoing performance feedback. Zollo and Winter (2002) refer to operating routines, as opposed to 

the more generic ‘competencies,’ and argue that routines are stable patterns of behavior that 

characterize organizational reactions to internal and external stimuli. Operational routines depend on 

the type of industry the firm operates in and the firm-specific capabilities it possesses. Empirical 

research on operational capabilities is sparse, although the operational management literature offers 

a broad spectrum of operating capabilities to consider (Li et al., 2005; Shah and Ward, 2007; Wu, 

Melnyk and Flynn, 2010). For example the classical operational capability framework by Swink and 

Hegarty (1998: 383–385) proposes seven core operational capabilities. They argue that operational 
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effectiveness is influenced by three change capabilities of improvement, innovation and 

coordination, and four response capabilities of acuity, control, agility and responsiveness.  

 

Prediction and pay-off mechanisms  

The prediction tasks in G3 differ from both G1 and G2 markets because they focus on operational 

issues that are fuzzy. An example would be prediction of employees’ expectations about their 

‘department managers’ ability to deal with problems effectively in the department’. To generate 

relevant operational capability items for survey predictions in a G3 market, therefore, requires some 

preparation studies for the market to succeed (Hallin, Andersen and Tveterås, 2012). The critical 

operational capabilities for firm performance can be assessed through; 1) interviews with the 

operational employee population about critical operational capabilities for firm performance, and 2) 

administration of surveys asking operational employees to rank the importance of unique 

operational capabilities for firm performance. The G3 prediction market is built on the highest 

ranked items and can run on a monthly basis using the same prediction items. The prediction items 

can be revised over time when variables become outdated as a source for firm performance 

predictions.  

G3 markets  invest in strategic issue identification that may need solutions. The 

operational capability(ies) that constitute the highest risk(s) or opportunity(ies) according to the 

participants assessments can provide both problem identification and suggestions for how the 

problems can be solved. Typically, predictions will be based on a continuous scale (e.g. 1-3) where 1 

denotes anticipations of a negative development – that is value 1 of each item represents ‘problem 

identification’ values, 2 corresponds to expectations of no change, and 3 on the scale indicates 

expectations of a positive development, that is ‘opportunity identification’. In a G3 market with a set 

of continuous fuzzy events (e.g., adopting 13 operational capability items) in monthly surveys, 
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participants can be given a sum of ‘fictive’ money (e.g., US$1.000.000) for each survey month where 

they are asked to invest in different operational capabilities they expect constitute the highest 

concern (risk or opportunity) for the firm within the prediction horizon (say the next 3 months). 

When prioritizing the capabilities, the market participants will ‘trade’ or allocate resources based on 

their personal preferences around these fuzzy events while combining their own expectations with 

those of others peoples’ anticipations of the critical problems. Only the identified problems with the 

highest accumulated bets, or resource allocation, will be ‘chosen’ as winner of the month. This G3 

betting system can also adopt a G2 payoff mechanism relying on the last stock trading price at a 

publicly known point in time, T fixed payoff last price (Chan et al., 2002; Soukhoroukova and Spann, 

2005). This payoff mechanism relies on the last price it will cost the firm within the prediction horizon 

(e.g. 3 months) if management does not deal effectively with the identified problem. The G3 

prediction markets can use the same payoff mechanisms as G2 markets, because market participants 

need to invest in fuzzy operational capabilities that are hard to verify after the predictions are made. 

Unlike G1 prediction markets the payoff mechanism cannot be linked to actual outcomes of 

specified events. Instead payoffs can be determined by using one of the three mechanisms described 

for G2 markets. This means that payoff in some way is linked to a market ‘consensus’ where payoff 

depends on how close the predictions are.  

Analogously to G2 markets, G3 markets can contain idea markets for problem 

solutions to the fuzzy events.  G3 markets can comprise both quantitative and qualitative prediction 

information. The latter type of predictions entails follow-up questions to quantitative predictions 

about, e.g., ‘Why do you expect the development you ranked in the previous question?’. The 

qualitative prediction information then works as an idea market collecting information about how 

management can deal effectively with the fuzzy issues and devising innovative solutions to identified 

problems.        
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Accuracy performance measure  

The accuracy of G3 markets is determined differently from G1 and G2 markets. As the accuracy of 

predicted performance cannot be tested with actual performance in G3 markets, the employee 

predictions are tested against indicators of firm performance. We can construe an Employee-Sensed 

Operational Capabilities (ESOC) index to predict firm performance, which consists of a diffusion 

measure for each of the identified prediction items, say 13 of them. The diffusion measure is then 

calculated as the difference between the number of positive and negative responses in each time 

period divided by the total number of responses in that period. If the positive responses outnumber 

the negative ones, the diffusion measure is above 100. In the opposite case, the measure is below 

100. This is expressed as: 

100100 









it

itit
it ponsesno. of resTotal

)esponsesnegative r - no. of ponsessitive res(No. of po
ESOC            (3) 

 

where ESOCit is the diffusion measure for ESOC indicator i, and t is the time period. The ESOC 

index is then calculated by aggregating the diffusion measures for each of the 13 indicators for each 

period and then dividing by the sum of the base period: 
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


       (4) 

Following this convention, the result is multiplied by 100 to get the representation of 

an index with base period equal to 100. In this computation, an ESOC value greater than 100 

indicates that frontline employees are positive about the future state of the operational capabilities, 

and a value less than 100 indicates that employees have a negative view of the future state of 



18 

 

capabilities. All items are equally weighted and it is difficult to find ways to measure the weight of 

the various items beside the descriptive statistical output of the survey ranking. The investment of 

virtual money into different capabilities might, however, increase the accuracy of predictions and 

give some indication of how much each capability should be weighted in the aggregated index.  

The performance measure should be a standard industry performance indicator. For 

example in the in the hotel industry, occupancy rate and revenue per available room (REVPAR) 

(Enz, Canina and Walsh, 2001) are common benchmarks. Because REVPAR, unlike occupancy rate, 

is a financial measure that allows benchmarking, it is the most used performance measure in the 

industry. We then transform the measure to obtain a relative performance measure for the firm  that 

runs the G3 prediction market. We can calculate the percentage change in REVPAR from one 

period to the next for the hotel and compare that with the percentage change in REVPAR across 

relevant peers in the hotel industry. Formally, the relative performance measure of hotel i at time t 

(Pfmi,t) is be calculated as: 

Pfmi,t = ln(Rfirm)i,t - ln(Rindustry)i,t, (5) 

where Rfirm and Rindustry are REVPAR for the individual hotel and the total hotel industry, respectively. 

The transformation using the first difference of the logarithms approximates percentage change. As 

a result, ln(Rindustry)i,t estimates the average return of the hotel industry. In other words, Pfmi,t 

measures the excess return of the hotel compared to the industry average. The measure of excess 

return (Pfmi,t ) filters out effects of common market movements, such as, capacity changes in the 

industry, economic peak times, seasonality, and other common factors, so that only hotel-specific 

variations remain. As a result, the ESOC will not only test the accuracy of changes in operational 

performance linking it within actual firm performance, but the prediction market, employing ESOC 

mechanism, will also attempt to predict whether the firm is performing better or worse than close 
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competitors. Hallin et al. (2012) provide some indications that ESOC as an aggregation mechanism 

can perform accurately in relation to changes in financial firm performance.  

 

CONCLUDING REMARKS 

Prediction markets take various forms that can support strategic decision making in different ways. 

Table 3 presents an overview of the characteristics of first-, second- and third-generation prediction 

markets.  

 

[Insert Table 3] 

 

We have theoretically described a G3 prediction market that can be used to inform 

strategic decision makers about emergent risk and opportunities that need updated strategic 

responses. The G3 prediction mechanism can be employed proactively for strategic control 

purposes as valid indicators of significant changes in operational capabilities indicating their 

immediate consequences for firm performance. Prediction markets take various forms and can 

support strategic decision making in different ways. In the G3 market an employee-sensed 

operational capability (ESOC) index can be construed to predict firm performance on the basis of 

predefined operational capabilities of strategic significance. This provides a forward-looking 

prediction capability that identifies emergent issues and, therefore, can be utilized for dynamic 

strategy-making processes. In contrast, G1 and G2 prediction markets are confined to predicting 

specified events and assess the success of already indentified solutions, which also can add potential 

benefits to strategic decisions. These mechanisms offer new dynamic ways of managing the strategy-

making processes in terms of forecasting strategic issues and identifying problem solutions. The new 

prediction method hold a promise of informing strategic decision makers with continuous and up-
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dated information from the operational periphery of the corporate businesses and, thereby,  capture 

emergent risks and opportunities that may affect firm survival and corporate prosperity. 
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Table 1 Corporate Use of G1 Prediction Markets. 

Companies  G1 Prediction Market Applications 

Henkel  Sales forecasts of existing and new products.  

Tchibo  Sales forecasting in retail.  

MVZ Zeppelin  Forecasting utilization, actual sales prices, marketing campaigns, 

impact of new technology, and strategic topics.  

Syngenta  Market forecasts, demand forecasting, business planning.  

Ford Motor Company  Sales forecast, potential new car features, electrification and 

economic KPIs, commodity prices. 

Siemens  Forecasting project deadlines. Two months advance warning – works 

as an truth-telling early-warning system.  

Illy Lilly   Chances of pharmaceutical products and substances in pipeline.

Pfizer  Changes of pharmaceutical products and substances in pipeline.

Abbott Laboratories   Changes of pharmaceutical products and substances in pipeline.

Best Buy  Sales, new products, new shop openings, launch dates, strategic 

topics.   

Hewlett Packard   Printer sales.

Google  Service utilization, demand forecasting, industry outlook, project 

deadlines.  

Microsoft  Project deadlines.  

ElectronicArts Project management, launch dates and product quality. 

ArcelorMittal  Industry outlook, demand forecasts.

Coming  Market growth for LCD TV, price elasticity, predicting industry 

cycles   

Sources: Berg (2007); Chen and Plott (2002); Cowgill et al. (2009).  
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Table 2 Corporate Use of G2 Prediction Markets. 

Companies  Areas of G2 Prediction Market Applications  

Deutsche Telecom  New product potential, strategic topics  

Touchstone, Simon and Schuster  Selection of titles for publication. 

General Electric   Ideation/sourcing and assessment of new ideas. Higher quality of ideas 

than before. 

Thompson Financial  Assessment of investment opportunities 

Nokia   
Increase CRM performance of 1,000 agents across cultures of 174 

countries  

Motorola  Product innovation, rate new ideas  

Intel  Demand planning, 20% lower error than previous methods  

Dentsu  Advertising compaign optimization  

FritoLay  Predicting the success of new product platforms   

 

Sources:  Berg (2007); Chen and Plott (2002); Cowgill et al. (2009). 
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Table 3. Comparing Prediction Markets Mechanisms.  

Criteria  First Generation (G1) Second Generation (G2) Third Generation (G3)

Time perspective  Finite (T) Periodic cut-offs (Ti) Continuous time-series 

Strategic motives  Forecasting problem Prioritize and ideation 

problem 

Problem identification and 

ideation solutions  

Outcomes  Actual outcomes No actual outcomes No actual outcomes 

Payoff mechanisms 

 

a) ‘winner-takes-all’ (wta) 

market 

b) Payoff value is linear and 

proportional with the actual 

outcome. 

 

 

Market-internal: trading 

actions serve as proxies for 

the payoff values: 

Payoff on the volume-

weighted   average over a 

certain time 

Relies on the last price at 

which a stock is traded at a 

fixed point in time 

Uses the final trading 

price but closes the market at 

a random point in time 

Market-external:  

Determined externally by 

experts through a proxy 

measure. 

Relies on the last price 

consensus at which a 

problem is traded at a fixed 

point each month.   

Scales  Binary, discrete or 

continuous 

Binary or discrete Discrete  

Number of trades per 

trader 

Multiple trades Multiple trades  Single trade  

Qualitative items Not applicable Ideas possible Fuzzy events with 
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qualitative feedback.

Criteria  First Generation (G1) Second Generation (G2) Third Generation (G3)

Design of security  Contract bidding Selection among design 

options 

Assessments of fuzzy 

events 

Stock price  Contract value  Average stock rating on 

a 1-100 scale  

Number of units that 

will be sold in a given period  

Percentage of people 

who would choose this 

option. 

Estimated consensus price 

for the potential risk if 

management does not solve 

the problem.  

Incentives  Maximizing portfolio value Final portfolio values and 

intrinsic reward of 

competition. 

Personal involvement, gift 

lottery, and intrinsic reward 

of competition. 

Shortcomings  Actual long term outcomes 

may never be known 

Actual success of selected 

concept may never be known 

Outcome is when 

management deal with the 

problem and initiate an 

innovation to solve the 

problem. 

Prediction accuracy  Perform well both with real 

money and play money (e.g. 

Berg, Nelson and Rietz, 

2003; Servan-Schreiber et al., 

2004). 

The last price markets 

perform best (Dahan et al., 

2010). 

Aggregated predictions of 

changes in operational firm 

performance predict 

financial firm performance 

accurately (Hallin et al., 

2012) 
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