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Persistent activation of hedgehog (HH)/GLI signaling accounts for the development of basal cell carcinoma (BCC), a very

frequent nonmelanoma skin cancer with rising incidence. Targeting HH/GLI signaling by approved pathway inhibitors can

provide significant therapeutic benefit to BCC patients. However, limited response rates, development of drug resistance, and

severe side effects of HH pathway inhibitors call for improved treatment strategies such as rational combination therapies

simultaneously inhibiting HH/GLI and cooperative signals promoting the oncogenic activity of HH/GLI. In this study, we

identified the interleukin-6 (IL6) pathway as a novel synergistic signal promoting oncogenic HH/GLI via STAT3 activation.

Mechanistically, we provide evidence that signal integration of IL6 and HH/GLI occurs at the level of cis-regulatory sequences

by co-binding of GLI and STAT3 to common HH-IL6 target gene promoters. Genetic inactivation of Il6 signaling in a mouse

model of BCC significantly reduced in vivo tumor growth by interfering with HH/GLI-driven BCC proliferation. Our genetic and

pharmacologic data suggest that combinatorial HH-IL6 pathway blockade is a promising approach to efficiently arrest cancer

growth in BCC patients.

Key words: basal cell carcinoma , GLI transcription factors , hedgehog, GLI signaling , interleukin-6 signaling , STAT transcription factors

Abbreviations: BCC: basal cell carcinoma; ChIP: chromatin immunoprecipitation; EDN2: endothelin 2; EGFR: epidermal growth factor recep-

tor; ERK: extracellular signal-regulated kinase; GLI: glioma-associated oncogene; GSEA: gene set enrichment analysis; HH: hedgehog; IL6: inter-

leukin-6; IL6R: interleukin-6 receptor; JAK: Janus tyrosine kinase; MEK: mitogen-activated protein/extracellular signal-regulated kinase kinase;

NFkB: nuclear factor of kappa light polypeptide gene enhancer in B-cells; NRP1: neuropilin 1; OSM: oncostatin M; PI3K: phosphatidylinositol

3-kinase; PLAT: tissue plasminogen activator; PTCH: patched; SDS–PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; shRNA:

short hairpin RNA; SMO: smoothened; SMOi: smoothened inhibitor; STAT3: signal transducer and activator of transcription-3; TAM: tamoxi-

fen; TYK2: tyrosine kinase-2

Additional Supporting Information may be found in the online version of this article.

Conflicts of Interest: The authors declare no conflict of interest.

Grant sponsor: University of Salzburg; Grant sponsor: Austrian Science Fund

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction

in any medium, provided the original work is properly cited.

DOI: 10.1002/ijc.31724
History: Received 29 Nov 2017; Accepted 22 Jun 2018; Online 10 July 2018

Correspondence to: Fritz Aberger, MSc, PhD, Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg,

Hellbrunner Strasse 34, 5020 Salzburg, Austria, E-mail: fritz.aberger@sbg.ac.at; Tel: +43-662-8044-5792, Fax: +43-662-8044-183 Markus Eberl’s

current address is Department of Dermatology, University of Michigan, 48109 Ann Arbor, Michigan, USA Supreet Kaur’s current address is

Monash University, 3168 Clayton, Victoria, Australia

International Journal of Cancer

IJC

Int. J. Cancer: 143, 2943–2954 (2018) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC.

M
ol
ec
ul
ar

C
an

ce
r
B
io
lo
gy

https://orcid.org/0000-0003-2009-6305
http://creativecommons.org/licenses/by/4.0/
mailto:fritz.aberger@sbg.ac.at


What’s new?

Persistent activation of hedgehog (HH)/GLI signaling represents the main driver signal for the development of basal cell

carcinoma (BCC), a common non-melanoma skin cancer with rising incidence. Small molecule hedgehog pathway inhibitors are

successfully used for the treatment of hedgehog-driven BCC, but frequent drug resistance calls for improved strategies. Here,

the authors identified the interleukin-6 pathway as a novel synergistic signal promoting oncogenic HH/GLI via STAT3

activation. The synergistic interaction was required for the in vivo growth of hedgehog-driven BCC. The study thus provides a

rationale for effective combination treatments simultaneously targeting oncogenic hedgehog and interleukin-6 signaling in BCC

patients.

Basal cell carcinoma (BCC) is the most common cancer in the
Western world with an annual incidence of 3–4 million new
cases in the US alone.1 Genetic activation of the hedgehog
(HH)/GLI pathway by inactivating mutations in the patched
(PTCH) gene or—more rarely—by activating mutations in the
smoothened (SMO) gene represents the main driver signal in
BCC pathogenesis. HH-mediated hyperactivation of the zinc
finger transcription factors GLI1 and GLI2 results in a malig-
nant expression profile driving tumor growth (Fig. 1a).2–6

Small-molecule SMO inhibitors (SMOi) show striking ther-
apeutic efficacy in patients with advanced and metastatic
BCC,7,8 though development of drug resistance and severe
adverse effects leave many patients without proper treatment
options.9–11 Furthermore, noncanonical, SMO-independent
GLI activation has been identified as critical factor contribut-
ing to the growth of malignant cells refractory to SMOi treat-
ment (reviewed in Refs. 12–15). Therefore, understanding the
intricate molecular basis and genetic landscape of HH/GLI-
driven skin cancer,16 including microenvironmental cues and
interactions with the immune system, is key to the develop-
ment of improved targeted therapies, particularly for BCC
patients with a priori or acquired resistance to SMOi.

Inflammatory signals activated in cancer tissues are potent
promoters of tumor initiation, progression and metastasis.
Tumor-promoting inflammation is often mediated by the pro-
duction of proinflammatory cytokines such as interleukin-6
(IL6) (reviewed in Refs. 17,18). IL6 signaling is triggered by
ligand binding to the high-affinity IL6 receptor alpha (IL6R)
subunit, which together with gp130 receptor subunits trans-
duces the signal to the Janus tyrosine kinases (JAK1, JAK2
and TYK2). Upon JAK-mediated tyrosine phosphorylation of
signal transduction and activator of transcription (STAT)-3,
phospho-STAT3 (pSTAT3) dimerizes and translocates into
the nucleus, where it engages its transcriptional regulatory
function. STAT3 is the main transcription factor through
which IL6 signals, although IL6 can lead also to the activation
of MEK/ERK, PI3K/AKT or NFkB signaling.17,19 IL6 can also
be bound by a soluble form of the IL6R followed by subse-
quent interaction with gp130. This so-called IL6 trans-
signaling allows IL6 to target cells not expressing the
membrane-bound IL6R.20 The therapeutic relevance of IL6
signaling in malignant development is currently evaluated in a

number of clinical trials with antibodies and small-molecule
inhibitors targeting oncogenic IL6/STAT3 signaling.17,21

In light of the pivotal role of immunomodulatory cytokines
and growth factors in the development and progression of
malignancies, we performed in this study a candidate-based
screen to identify possible enhancers of oncogenic HH/GLI
signaling in the context of BCC development. We identified
the proinflammatory IL6 pathway as a novel oncogenic coop-
eration partner of HH/GLI in BCC and show that HH/GLI
and IL6/STAT3 signaling interact at the level of cis-regulatory
elements of common HH-IL6 target genes. Using conditional
genetic mouse models of BCC, we demonstrate that IL6 sig-
naling is required for the formation of HH/GLI-driven BCC
in vivo by synergistically promoting the proliferative effect of
oncogenic HH/GLI signaling. Our study provides a rationale
for combined inhibition of HH/GLI and IL6/STAT3 signaling
for improved targeted therapy of BCC.

Material and Methods
Cell culture and treatments
Doxycycline (Dox)-inducible GLI1-expressing HaCaT keratino-
cytes and mouse BCC cell line ASZ00122 were grown as
described previously.23,24 Induction of GLI1 expression in
HaCaT keratinocytes was done as reported in Refs. 25,26 Murine
NIH/3 T3 cells (AMS Biotechnology Ltd, Abingdon, UK) trans-
duced with pBabe-puro-GLI1 or empty control vector were
grown in Dulbecco’s modified Eagle medium (DMEM) (Sigma,
St. Louis, MO) supplemented with 10% calf bovine serum
(Sigma) and penicillin–streptomycin (Sigma). Chemicals and
reagents used for cell treatments are listed in Supporting Infor-
mation, Table S1. Recombinant human and mouse IL6 and
Dox were used at a concentration of 50 ng/ml, unless indicated
otherwise. For three-dimensional (3D) cultures, 1 × 104 human
HaCaT keratinocytes were seeded in 12-well plates (Greiner
Bio-one, Kremsmünster, Austria), cultured and analyzed in a
blinded fashion as described previously.25

qPCR and Western blot analysis
RNA isolation, cDNA synthesis and qPCR analysis of mRNA
expression were carried as described previously.23 qPCR analy-
sis was done on a Rotor-Gene Q (Qiagen, Hilden, Germany)
using GoTaq qPCR Master Mix (Promega, Madison, WI). The
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sequences of primers used for amplification are listed in Sup-
porting Information, Table S2. SDS-PAGE and Western blot-
ting were performed according to standard protocols. Applied
antibodies are listed in Supporting Information, Table S3.

RNA interference and lentiviral transduction
RNA interference and lentiviral transduction experiments
were performed as described in Ref. 23. The following short
hairpin RNA (shRNA) constructs selected from the Mission
TRC shRNA library (Sigma) were used: shRNA IL6R#1
(TRCN0000378748), shRNA IL6R#2 (TRCN0000058780),
shRNA JAK2#1 (TRCN0000003180), shRNA JAK2#2
(TRCN0000003181), shRNA STAT3#1 (TRCN0000071456),
shRNA STAT3#2 (TRCN0000020843) and scrambled control
shRNA (SHC002). Transduced cells were selected for puromy-
cin resistance prior to further analysis.

Analysis of cell proliferation
Proliferation of human HaCaT keratinocytes with Dox-
inducible GLI1 expression was analyzed with the Click-iT®

Plus EdU Alexa Fluor® 555 Imaging Kit (Thermo Fisher Sci-
entific, Waltham, MA). Cells were treated for 72 hr with Dox,
IL6 and 1 μM panJAK-Inh I. EdU proliferation assay was per-
formed according to the manufacturer’s instructions with the
following modifications: Cells were incubated with 5 μM EdU
for 3 hr. Cells were stained with Alexa Fluor® picolyl acid
555 and Hoechst® 33342, and counted in a blinded fashion.
The ratio of proliferative cells to Hoechst-positive cells was
calculated.

Transgenic mice and allograft experiments
K14creERT;Ptchfl/fl;Il6rafl/fl mice: K14CreERT (#5107), Ptchf/f

(#12457) and Il6raf/f (#12944) mice were genotyped according

Figure 1. IL6 synergizes with HH/GLI signaling in oncogenic transformation.(a) Schematic illustration of linear, canonical HH/GLI signaling in
the absence of signal cross-talk. Loss-of-function mutations (LOF) in patched (PTCH) or gain-of-function mutations (GOF) in smoothened
(SMO) account for the majority of BCC by releasing the GLI zinc-finger transcription factors from their inhibitor suppressor of fused (SUFU).
Nuclear translocation of GLI activator forms (GLI*) leads to the onset of transcriptional activation of HH/GLI target genes.(b) Scheme of screen
for oncogenic HH modifiers. Nontumorigenic, human HaCaT keratinocytes were grown in in vitro transformation assays and four conditions
were tested: cells were either left untreated and served as solvent-only control (+solvent;-GLI1), treated with cytokines or growth factors
(+cytokine/growth factor;−GLI1), expressed GLI1 (+solvent;+GLI1) or a combination of both (+cytokine/growth factor;+GLI1). The number of
transformed colonies served as readout. (b0) Heat-map analysis of the in vitro screen for oncogenic HH modifiers. Changes in spheroid
numbers are depicted relative to GLI1-expressing cells treated with solvent only (+solvent;+GLI1). Red color indicates a synergistic increase in
the number of transformed colonies.(c) Quantitative results of in vitro transformation assays of human HaCaT keratinocytes after GLI1
activation in combination with or without IL6 treatment.(d) Quantitative results of in vitro transformation assay of Gli1 expressing mouse
NIH/3T3 cells with or without Il6 treatment as indicated. Empty vector not expressing Gli1 served as control.(e) Quantitative results of in vitro
transformation assay of SAG-responsive NIH/3 T3 cells upon SAG (100 nM) with or without Il6 stimulation as indicated.Statistical analysis by
Student’s t test; ***p < 0.001; **p < 0.01.
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to the supplier’s instructions (The Jackson Laboratory, Bar
Harbor, ME). Tamoxifen (TAM) (Sigma) was dissolved in
sunflower oil and administered at 1 mg/day by oral gavage to
induce activation of Cre recombinase and knock-out of floxed
alleles. All mice were treated with TAM on postnatal days
p21–25, p46, p48 and p50 to achieve efficient recombination
and euthanized on day p67, when the overall health condition
of the mice declined and an established phenotype was
observed (Supporting Information, Figs. S5c and S5d).

For in vivo tumor growth studies, 1 × 106 ASZ001 BCC
cells with Stat3 knockdown (shStat3#1) or scrambled control
shRNA were mixed with 25% Matrigel (BD Biosciences, San
Jose, CA) and injected subcutaneously into nude mice
(Charles River Laboratories, Wilmington, MA). Tumor vol-
ume was measured with a caliper and calculated according to
the formula [4/3 × π × (length/2) × (width/2) × (height/2)].

Histology and immunohistochemistry
Immunohistochemistry (IHC) was performed with formalin-
fixed paraffin-embedded tissue using standard protocols and
antibodies listed in Supporting Information, Table S3. Anti-
body detection was done using IDetect Super Stain System
(IDlabs Biotechnology, Empire Genomics, Buffalo, NY). Stain-
ing was visualized using 3-amino-9-ethylcarbazole (IDlabs
Biotechnology) under visual control. All images were taken
with a Zeiss AxioImager Z1, and quantification was per-
formed with HistoQuest (TissueGnostics, Vienna, Austria).
For tumor area determination, at least three different high-
power fields per mouse of H&E-stained dorsal skin were ana-
lyzed and quantified. The tumor area of Ptch-deficient BCC
mice with functional Il6ra was set to 100%.

Microarray analysis and GSEA
Genome-wide mRNA expression profiling was performed on
a bead array technology platform (Illumina Inc., San Diego,
CA). RNA of human HaCaT keratinocytes either expressing
GLI1 (Dox treatment), treated with IL6 or stimulated with a
combination of both was analyzed in comparison to untreated
control cells. Gene set enrichment analysis (GSEA) was per-
formed using GSEA software v3.0 (Broad Institute of MIT
and Harvard, (http://software.broadinstitute.org/gsea/).27 For
the identification of synergistically regulated HH-IL6 target
genes, data obtained from microarray analysis were verified by
qPCR analysis and the synergy score according to McMurray
et al. was calculated.28 Synergy scores ≤0.9 defined target
genes as synergistically induced in response to combined HH-
IL6 stimulation.

Promoter and histone modification studies
In silico prediction of putative GLI binding sites was done
using the D-Light Software29 (genome sequence GRCh37/
hg19) trained with the GLI binding site matrix according to
Winklmayr et al.30 The ENCyclopedia Of DNA Elements
(ENCODE) Project31 was used to check for STAT3 binding

regions. Luciferase reporter assays and site directed mutagene-
sis were carried out as described previously.23 All constructs
were confirmed by sequencing.

Chromatin-immunoprecipitation (ChIP) assays were car-
ried out as described previously.32 A total of 10 μg cross-
linked chromatin was precipitated with antibodies listed in
Supporting Information, Table S3. Immunoprecipitated DNA
was analyzed by qPCR on a Rotor-Gene Q (Qiagen) using
GoTaq qPCR Master Mix reagent (Promega) with primers
listed in Supporting Information, Table S2. The amount of
immunoprecipitated DNA in each sample was calculated by
the Percent Input Method according to the manufacturer’s
instructions (Cell Signaling Technology, Boston, MA).

Quantitative methylation analysis by bisulfite
pyrosequencing
Methylation status of a total of 9 CpG sites in adjacent GLI
and STAT3 binding site regions of human EDN2
(NM_001956) was analyzed by bisulfite pyrosequencing.
Genomic DNA (500 ng) was bisulfite-treated using the EZ
DNA Methylation Kit (Zymo Research, Irvine, CA) according
to manufacturer’s instructions. Bisulfite-converted DNA was
PCR amplified using HotStar Taq Polymerase (Qiagen) with
the primers listed in Supporting Information, Table S4. GLI
binding sites were biotin-tagged with a universal sequence
(see Supporting Information, Fig. S4f ). Pyrosequencing was
performed on the PyroMark Q24 Advanced System (Qiagen).

Statistical analysis
Significant differences between two groups were determined
using a two-tailed, unpaired t test. p values of <0.05 were
assigned significance and p values are considered as follows:
*p < 0.05, **p < 0.01 and ***p < 0.001. All values are given
as means �standard error of the mean (s.e.m.) and were ana-
lyzed by GraphPad Prism® 7 (GraphPad Software, San Diego,
CA). Numbers of animals are stated in the respective figure
legends.

Ethics
Human BCC tissue arrays for immunohistochemistry analyses
were used in accordance with the guidelines of the Austrian ethics
committee application (EK405/2006, extension 11/10/2016). Ani-
mal experiments and care were carried out in accordance with
the guidelines of institutional authorities and approved by the
Federal Ministry of Science, Research and Economy (BMWF-
66.012/0017-II/3b/2012, BMWFW-66.012/0016-WF/V/3b/2015).

Results
IL6 synergizes with HH/GLI in oncogenic transformation
To screen for immunomodulatory cytokines and/or growth
factors able to cooperate with HH/GLI signaling (Fig 1a) in
oncogenic transformation, we used nontumorigenic, human
keratinocytes (HaCaT) with doxycycline-inducible GLI1
expression.24 Importantly, GLI1 expressing keratinocytes do
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not display a fully transformed phenotype but require addi-
tional cooperative signals for malignant growth.25 We took
advantage of this characteristic and performed a candidate-
based in vitro transformation screen for immunomodulatory
cytokines and growth factors that are able to cooperate with
HH/GLI in the process of oncogenic transformation. As read-
out for oncogenic transformation we monitored clonal growth
in 3D anchorage-independent settings, which we have previ-
ously shown to correlate with in vivo tumor growth (Fig 1b).25

In total, we have screened 13 secreted factors, of which seven
factors passed the preselection criteria, including detectable
expression of the cognate receptor as judged by RNAseq data
(Human Protein Atlas www.proteinatlas.org) 33 and the ability
to induce the activation of established downstream effectors
(Supporting Information, Table S5). As positive control for
the integrity of the screen, we monitored cellular transforma-
tion by concomitant epidermal growth factor (EGF) signaling
and GLI1 expression, which we have previously shown to
have potent synergistic transformation capacity (Fig 1b0).25 As
shown in Figures 1b0 and 1c, GLI1 expression and simulta-
neous treatment with the proinflammatory cytokine IL6
resulted in a synergistic increase in the number of trans-
formed colonies in 3D anchorage-independent assays com-
pared to single treatments. Neither of the other soluble
signaling factors tested was able to enhance the oncogenic
transformation efficiency of GLI1. We also observed synergis-
tic transformation of Hh-responsive mouse NIH/3T3 fibro-
blasts upon combined Gli1 expression and Il6 treatment
(Fig. 1d) and upon combined treatment with the HH pathway
activator smoothened agonist (SAG)34 and Il6 (Fig. 1e).
Together, these data identify IL6 signaling as a novel synergis-
tic interaction partner of HH/GLI in oncogenic
transformation.

IL6 signals through IL6R/JAK2/STAT3 to cooperate with
oncogenic HH/GLI signaling
Next, we aimed to identify the IL6-induced downstream sig-
naling cascade that integrates with HH/GLI in the synergistic
transformation of epidermal cells. IL6 can signal through the
activation of MEK/ERK, PI3K/AKT or JAK/STAT3, the latter
representing the canonical intracellular signal relay mecha-
nism (Fig. 2a). As shown in Figure 2b and Supporting Infor-
mation, Figure S1b, IL6 treatment of human HaCaT
keratinocytes resulted in the JAK-dependent phosphorylation
of STAT3 (pSTAT3) but failed to activate PI3K/AKT and
MEK/ERK signaling. This clearly differentiates the mechanism
of HH-IL6 synergy from the previously described synergism
of HH/GLI and EGFR signaling, which involves MEK/ERK/
JUN activation downstream of EGFR.25

To identify the respective IL6 signal effectors in HH-
IL6-mediated oncogenic transformation, we performed sys-
tematic pharmacologic and genetic inhibition experiments
(see overview in Fig. 2a and Supporting Information, Fig. S1
for validation of the functionality of inhibitors and short

hairpin RNAs (shRNAs)). As shown in Figure 2c, shRNA-
mediated knockdown of the receptor subunit IL6R (shIL6R)
prevented synergistic transformation of human HaCaT kerati-
nocytes in response to combined activation of IL6 and
HH/GLI signaling. In line with the protein data shown in
Figure 2b, treatment with panJAK-Inh I resulted in a signifi-
cant reduction of synergistic oncogenic transformation in
response to combined IL6-GLI1 activation (Fig. 2d). To iden-
tify the respective signal-mediating JAK involved in the HH-
IL6 cooperation, we first targeted TYK2 and JAK2 using selec-
tive kinase inhibitors Bayer-18 and lestaurtinib, respectively.
Treatment with the TYK2 inhibitor Bayer-18 did not abrogate
the transformed phenotype, whereas the JAK2 inhibitor les-
taurtinib efficiently prevented colony formation (Fig. 2d). We
corroborated the essential role of JAK2 by genetic targeting
with two independent shRNAs (shJAK2#1 and shJAK2#2). In
line with chemical JAK2 perturbation, knockdown of JAK2
significantly diminished HH-IL6-dependent oncogenic trans-
formation (Fig. 2e). To address the involvement of STAT3
downstream of IL6/JAK2, we blocked STAT3 pharmacologi-
cally and genetically. The small-molecule STAT3 inhibitor
STATTIC35 (Fig. 2f ) and depletion of STAT3 expression using
shSTAT3 (Fig. 2g) both resulted in a significant reduction of
HH-IL6 induced transformation. Consistently, also treatment
of Il6-stimulated/Gli1 expressing NIH/3T3 cells (Supporting
Information, Fig. S2a) or Il6/SAG-stimulated NIH/3T3 cells
(Supporting Information, Fig S2b) with panJAK-Inh I or les-
taurtinib impaired Hh-Il6 driven oncogenic transformation.
Taken together, our data show that oncogenic HH-IL6 signal
cooperation requires activation of the IL6R/JAK2/STAT3 sig-
naling cascade.

HH/GLI-IL6/STAT3 cross-talk cooperatively regulates gene
expression by signal integration at the level of cis-
regulatory elements of common HH-IL6 target genes
Next, we aimed to decipher the molecular mechanisms under-
lying oncogenic HH-IL6 signal cooperation, first by testing for
possible reciprocal modifications of signaling activities at mul-
tiple regulatory levels. We examined if STAT3 modifies GLI1
protein stability, expression or nuclear localization, but found
no evidence for that (Supporting Information, Figs. S3a–S3d).
Vice versa, GLI1 expression neither affected the intracellular
localization of STAT3 (Supporting Information, Fig. S3d) nor
STAT3 activation in response to IL6 signaling (Supporting
Information, Fig. S3e). We therefore hypothesized that cell
transformation induced by cooperating oncogenic signals is
caused by synergistic modulation of gene expression via signal
integration at the level of cis-regulatory regions of common
HH-IL6 target genes, analogous to our previous findings of
HH-EGFR signal cooperation.23 To test this hypothesis, we
performed Illumina bead array-based transcriptomics of
human HaCaT keratinocytes with either active HH/GLI1,
IL6/STAT3 or a combination of both. We identified genes
synergistically regulated by combined HH-IL6 signaling,

Sternberg et al. 2947

Int. J. Cancer: 143, 2943–2954 (2018) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC.

M
ol
ec
ul
ar

C
an

ce
r
B
io
lo
gy

http://www.proteinatlas.org


Figure 2. IL6/JAK2/STAT3 signaling cooperates with HH/GLI in oncogenic transformation.(a) Illustration of IL6 signaling and downstream
pathway activation. Binding of IL6 to its receptor can activate at least three downstream signaling cascades: JAK/STAT3, MEK/ERK/JUN and
PI3K/AKT signaling. In the context of malignant transformation, IL6 induces JAK/STAT3 activation. The genetic and pharmacologic approaches
to inhibit IL6 signaling effectors are depicted.(b) Western blot analysis of GLI1 expressing human HaCaT keratinocytes treated with IL6, or
10 ng/ml EGF. β-tubulin served as loading control. Fine black lines indicate cropping of intermediate lanes from the same Western blots. p,
phospho; t, total;(c–g) Quantitative analysis of in vitro transformation assays using HaCaT keratinocytes. Cells were treated either with
solvent, Dox to induce GLI1, IL6 or Dox and IL6. Additionally, double-stimulated cells (+GLI1;+IL6) were treated as follows: (c) with shRNA
against IL6R (shIL6R, shRNA #1 in Supporting Information, Fig. S1a), (d) with panJAK-Inh I (1 μM), Bayer-18 (100 nM and 300 nM) or
lestaurtinib (100 nM and 300 nM), (e) with shRNA constructs against JAK2 (shJAK2#1, shJAK2#2), (f ) with STATTIC (1 μM) or (g) with shRNA
against STAT3 (shSTAT3). ns, not significant; shcont, scrambled nontarget control shRNA; Statistical analysis by Student’s t test;
***p < 0.001; *p < 0.05.
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where synergistic regulation was defined by synergy score
values of ≤0.9 (see Ref. 28). From the list of synergistically reg-
ulated HH-IL6 target genes we selected endothelin 2 (EDN2),
neuropilin 1 (NRP1) and tissue-type plasminogen activator
(PLAT) as representative genes highly expressed in BCC
(Supporting Information, Fig. S4a)36 and used these HH-IL6
regulated genes as molecular readout to decipher the mecha-
nisms of signal integration (Fig. 3a). Intriguingly, we found
that transcriptional activation of the known HH/GLI target
gene PTCH was unaffected by simultaneous IL6 signaling
(Supporting Information, Fig. S4b), suggesting that IL6 does
not simply boost the expression of HH/GLI target genes but—
in combination with HH/GLI—selectively activates a distinct
set of common HH-IL6 targets. Having shown that oncogenic
transformation induced by combined HH-IL6 signaling
depends on activation of IL6R/JAK2/STAT3 signaling activity,
we first tested whether synergistic HH-IL6 target gene regula-
tion also involves these IL6 effectors. In line with our data on
oncogenic transformation by combined HH-IL6 signaling,
RNAi-mediated inhibition of IL6R, JAK2 or STAT3 effectively
abrogated the expression of the HH-IL6 target genes EDN2,
NRP1 and PLAT (Fig. 3b).

We next tested the hypothesis that selective activation of
HH-IL6 target genes involves co-binding of GLI1 and STAT3
transcription factors to the cis-regulatory region of HH-IL6
targets. Interestingly and as depicted in Figure 3c, all three
HH-IL6 target genes harbor putative GLI and STAT3 binding
sites in close proximity as predicted by bioinformatics analy-
sis. By contrast, in silico analysis of the PTCH promoter
revealed GLI binding sites 30, but failed to identify STAT3
binding sites (Supporting Information, Fig. S4c), consistent
with PTCH expression being insensitive to IL6 signaling. To
analyze binding of GLI1 and STAT3 to HH-IL6 target gene
promoters, we performed chromatin immunoprecipitation
(ChIP) of GLI1 and STAT3 and found that both transcription
factors bind to the predicted binding sites in the representa-
tive HH-IL6 target genes (Fig. 3d).

To corroborate the ChIP data, we cloned the promoter
region of the HH-IL6 target PLAT and performed luciferase
reporter assays to analyze the functionality of the GLI and
STAT3 binding sites in the respective cis-regulatory region.
Site directed single and combined mutagenesis of the GLI and
STAT3 binding sites in the PLAT promoter confirmed the
requirement of both binding sites for full-blown promoter
activation (Supporting Information, Fig. S4d).

Furthermore, we analyzed possible epigenetic changes trig-
gered by combined HH-IL6 signaling. ChIP analysis of acti-
vating histone modifications revealed an increase in H3K27
acetylation upon combined HH/GLI and IL6/STAT3 activity
when compared to single pathway activity (Supporting Infor-
mation, Fig. S4e). As combined HH/GLI-IL6/STAT3 signaling
did not affect the DNA methylation status (see Supporting
Information, Fig. S4f ), we conclude that cooperation of GLI
and STAT3 does not depend on changes in CpG methylation.

Together, our data suggest a mechanistic model, where HH-
IL6 signal integration involves simultaneous binding of HH-
induced GLI and IL6-induced STAT3 transcription factors to
the cis-regulatory region of common HH-IL6 target genes.

IL6 signaling is required for in vivo growth of HH/GLI-
driven BCC
We next addressed the in vivo relevance of HH-IL6 synergism
in HH/GLI-driven BCC. As a first approach, we analyzed by
immunohistochemistry (IHC) human and murine BCC for
expression of IL6 effectors such as IL6R and STAT3. In line
with a putative oncogenic role of IL6 signaling in HH/GLI-
driven BCC, we found expression of both proteins in human
and mouse BCC tissue (Fig. 4a and Supporting Information,
Fig. S5a). Of note, human BCC display prominent IL6R
expression on the cell surface of palisading BCC cells. Consis-
tently, we also detected active, nuclear STAT3 staining in this
tumor area. In addition, marked expression of Il6ra and
nuclear Stat3 was detected in mouse BCC-like lesions
(Supporting Information, Fig. S5a and Supporting Informa-
tion), supporting a crucial role for IL6 signaling in HH-
induced skin carcinogenesis.

To address a possible functional contribution of IL6 signal-
ing to HH/GLI-driven BCC, we genetically inactivated Il6 sig-
naling in a conditional mouse model of human BCC. For this
purpose, we crossed Keratin14creERT;Ptchfl/fl (PtchΔep) mice,
which develop BCC lesions upon tamoxifen (TAM)-induced,
epidermal-specific Ptch deletion,37 with mice harboring a con-
ditional, floxed Il6ra allele (Il6rafl/fl)38 to generate BCC mice
with an additional tumor-specific deletion of Il6ra (PtchΔep;
Il6raΔep) (Fig. 4b). As shown in Figure 4c, PtchΔep;Il6ra+/+

mice developed numerous BCC-like lesions. Intriguingly, mice
with concomitant deletion of Il6ra (PtchΔep;Il6raΔep) presented
significantly smaller lesions compared to Il6ra-proficient mice
(Fig. 4c). Quantification of tumors grown revealed a 50%
reduction of the relative tumor area in the epidermis of
PtchΔep;Il6raΔep mice compared to PtchΔep;Il6ra+/+ controls
(Fig. 4d).

To also address the role of STAT3 in HH/GLI-driven BCC
growth, we depleted by RNAi the expression of Stat3 in
murine Ptch-deficient BCC cells and compared the in vivo
growth of Stat3-deficient BCC cells with that of
Stat3-proficient controls. As shown in Figure 4e, shRNA-
mediated knockdown of Stat3 expression significantly reduced
the in vivo growth of murine BCC cells (Fig. 4e and Support-
ing Information, Fig. S5b).

Together with our in vitro studies on oncogenic transfor-
mation, these data suggest that IL6/STAT3 cooperates with
HH/GLI signaling to promote BCC growth.

Cooperation of HH/GLI and IL6 signaling promotes
epidermal proliferation
Based on the pronounced expression of IL6R and STAT3 in
the peripheral growth zone of human BCC and the
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Figure 3. Integration of HH-IL6 signaling at cis-regulatory regions of commonHH-IL6 target genes.(a) mRNA expression analysis by qPCR of selected
HH-IL6 target genes (EDN2, NRP1, PLAT) in human HaCaT keratinocytes in response to Dox-inducedGLI1 expression, IL6 treatment or a combination
of both. Synergy (syn) score values of ≤0.9 indicate synergistic cooperation of simultaneous HH-IL6 signaling.(b) qPCRmRNA expression analysis of
HH-IL6 target genes in human HaCaT keratinocytes in response to GLI1 expression, IL6 stimulation and additional knockdown of IL6R (shIL6R#1,
shIL6R#2), JAK2 (shJAK2#1, shJAK2#2) or STAT3 (shSTAT3#1, shSTAT3#2). Signals are relative to double-stimulated cells transduced with shcont
non-target shRNA. shcont, scrambled nontarget control shRNA; ***p < 0.001;(c) In silico analysis of the cis-regulatory region of selected HH-IL6
target genes (EDN2, NRP1, PLAT) for the presence of STAT3 binding regions and putative GLI binding sites. Numbers show the start position of GLI
binding sites (blue) and STAT3 binding regions (red) relative to the transcriptional start site (TSS).(d) ChIP analysis of selected HH-IL6 target genes
(EDN2, NRP1, PLAT) for GLI1 (left) and STAT3 binding (right). Human HaCaT keratinocytes expressing Dox-inducibleMYC-tagged GLI1 treated with IL6
were analyzed. Mouse IgG (mIgG) or rabbit IgG (rIgG) served as negative controls.
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requirement of Il6ra and Stat3 for efficient in vivo growth of
mouse BCC, we hypothesized that cooperation of IL6 and
HH/GLI may promote proliferation of BCC. We therefore
analyzed by IHC the skin of PtchΔep;Il6raΔep and PtchΔep;
Il6ra+/+ mice for the proliferation marker Ki67. In BCC
lesions of PtchΔep;Il6ra+/+ mice, Ki67 positive cells were dis-
tributed throughout the tumor tissue (Fig. 5a). By contrast, in
the dorsal skin of PtchΔep;Il6raΔep mice, the proliferative
Ki67-positive cells were restricted to the basal layer of the
skin, similar to the normal proliferation pattern of healthy
skin. To corroborate the putative proliferative role of HH/GLI
and IL6 cooperation, we also performed in vitro proliferation
studies using GLI1 expressing human HaCaT keratinocytes as

a model for epidermal proliferation 24. Consistent with an
enhancement of epidermal proliferation by HH-IL6, combined
activation of GLI1 and IL6 signaling significantly increased
keratinocyte proliferation compared to single treatments
(Figs. 5b and 5c). Perturbation of the HH-IL6 cooperation
with the panJAK-Inh I resulted in significantly decreased pro-
liferation as assessed by EdU labeling. In addition, gene set
enrichment analysis (GSEA) of HH-IL6-regulated mRNA
expression revealed cell cycle and DNA replication genes to
be significantly enriched in the target gene set, further sup-
porting a proliferative role of HH-IL6 signaling in BCC devel-
opment (Fig. 5d). In summary, our findings suggest a model
where HH-IL6 cooperation at the level of common target

Figure 4. IL6 signaling is required for in vivo growth of HH-driven BCC lesions.(a) Representative IHC staining of IL6R and tSTAT3 in human
nodular BCC (n(samples analyzed) = 16). Arrows mark nuclear STAT3.(b) Illustration of the genetic approach for conditional depletion of Ptch and
Il6ra under the control of the epidermis-specific K14 promoter.(c) Representative hematoxylin–eosin (H&E) staining and
immunohistochemistry (IHC) staining of Il6ra in dorsal skin sections of mice with the indicated genotype. Il6ra expression in patched-
deficient (PtchΔep) epidermis is also shown in Supporting Information, Fig S5a. e, epidermis; d, dermis; m, muscle; HF, hair follicle; scale
bars (H&E), 50 μm; scale bars (Il6ra), 25 μm;(d) Quantitative analysis of tumor area of control mice (n = 2), PtchΔep mice (n = 6) and PtchΔep;
Il6raΔep mice (n = 8) relative to tumor load of PtchΔep mice. Control mice occasionally developed small BCC (due to leakiness of the used Cre-
deleter strain) and were used as basal level for tumor area analysis.(e) Engraftment of murine Ptch-deficient BCC cells (ASZ001) with shRNA-
mediated knockdown of Stat3. Left panel: control cells transduced with scrambled nontarget control shRNA (shcont) were grafted
subcutaneously into the left and Stat3 knockdown cells (shStat3) into the right lower flank of nude mice, respectively. Right panel:
quantitative analysis of tumor growth in nude mice (n = 7). Tumor growth was measured over a period of 31 days.Statistical analysis by
Student’s t test: ***p < 0.001; **p < 0.01, *p < 0.05.
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genes promotes BCC growth by enhancing tumor cell prolifer-
ation (Fig. 5e).

Discussion
Aberrant activation of HH/GLI signaling plays an etiologic
role in a wide variety of human cancer entities and despite
several setbacks in clinical trials, targeting HH/GLI remains a
promising treatment strategy with the potential for curative
effects by eradicating cancer stem cells involved in tumor ini-
tiation, metastasis and drug resistance.14,39–41 Despite the

remarkable therapeutic benefits of SMOi in BCC, develop-
ment of resistance, severe adverse effects and recurrence after
cessation of drug treatment9,42–44 highlight the need for novel
strategies that not only focus on HH inhibition but also take
into account interacting pathways modulating the oncogenic-
ity of HH signaling.

Although genetic and epigenetic alterations within cancer
cells are the main drivers of malignant development, it has
recently become clear that intricate reciprocal interactions of
cancer cells with the tumor microenvironment and the

Figure 5. HH-IL6 cooperation promotes epidermal proliferation.(a) Representative IHC staining of Ki67 in dorsal skin sections of the indicated
phenotypes. Scale bars, 25 μm;(b) Representative fluorescence microscopy images of EdU assays. Blue, Hoechst 33342 (Cell nuclei); red,
EdU-positive, proliferating cells;(c) Quantitative analysis of cell proliferation in response to single and combined HH/GLI-IL6 activity in human
HaCaT keratinocytes. panJAK-Inh I (1 μM) was used to block IL6/JAK signaling. Statistical analysis, Student’s t test; ***p < 0.001; **p < 0.01;
*p < 0.05;(d) Gene-set enrichment analysis (GSEA) of cell cycle (left) and DNA replication (right) gene sets fed with genes induced by
combined HH-IL6 signaling compared to untreated controls. Genes were sorted according to their fold change in expression between
keratinocytes with activated HH/GLI-IL6 signaling and control cells on the x-axis. NES, normalized enrichment score;(e) Proposed model of
cooperative HH/GLI and IL6/STAT3 driving BCC growth by signal integration at the level of cis-regulatory regions of common target genes via
co-occupancy of joint promoters. Binding of active GLI (GLI*) and STAT3 (pSTAT3) to their respective binding sites in shared HH-IL6 target
gene promoters synergistically enhances proliferation and BCC growth. LOF, loss-of-function mutation; GOF, gain-of-function mutation.
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immune system are pivotal for malignant progression.18 In
this study, we performed a candidate-based screen for
immune-related modifiers of oncogenic HH/GLI signaling
and identified a striking tumor promoting role of the proin-
flammatory cytokine IL6 in HH/GLI-driven oncogenic trans-
formation and BCC development. We show that synergistic
transformation by HH/GLI-IL6 signaling relies on
IL6/JAK2-mediated activation of STAT3. In this context, it is
intriguing to note that combined stimulation with Oncostatin
M (OSM) and HH/GLI failed to induce transformation
despite strong STAT3 activation upon OSM treatment
(Fig. 1b0). Whether the inability of OSM signaling to cooper-
ate with HH/GLI is due to for instance distinct signal
strength, duration, STAT heterodimerization or parallel acti-
vation of tumor suppressive processes is unclear and needs to
be addressed in future studies.

Our genetic, ChIP- and reporter assay based analyses suggest
that HH-IL6 signal integration involves concomitant binding of
IL6-activated STAT3 and GLI activator forms such as GLI1 to
the cis-regulatory regions of HH-IL6 target genes, thereby driv-
ing selective and synergistic activation of target gene expression.
We have also shown that HH-IL6 signal integration coopera-
tively enhances epidermal proliferation, suggesting that simulta-
neous HH-IL6 signaling supports tumor growth by
synergistically activating a proliferative expression profile. This
is in agreement with the genetic inactivation of Il6ra and Stat3
function in murine models of BCC as well as with the respective
in situ expression of IL6 effectors in human BCC, which
together support the pathophysiological and clinical relevance
of our findings. Whether the protumorigenic effect of combined
HH-IL6 signaling is directly mediated by the HH-IL6 targets
EDN2, PLAT and NRP1 requires further functional studies. In
this context, it is noteworthy that PLAT and NRP1 play a well-
documented role in angiogenesis, in line with previous reports
about a putative angiogenic function of IL6 in BCC.45–47 How-
ever, as we did not detect a decrease in CD31+ endothelial cells
in Il6ra-deficient mouse BCC (data not shown), it appears
rather unlikely that HH-IL6 signal integration drives BCC
growth by supporting tumor angiogenesis.

This study also raises the question about the source of IL6.
Paracrine IL6 signaling may emanate for instance from

macrophages,48 though the precise immune cell status of
established BCC has not yet been characterized in detail. As
an alternative to paracrine IL6 signaling, activation of
HH/GLI may itself stimulate the production of IL6 in the can-
cer cells. Indeed, we have previously shown that activation of
GLI2 enhances the expression of IL6 in epidermal cells.26

Also, GLI1 has been shown to directly induce IL6 expression
in stromal cells of pancreatic adenocarcinoma lesions, trigger-
ing paracrine STAT3 activation in the tumor cell compart-
ment.49 Whether IL6 signaling is activated by oncogenic
HH/GLI within the tumor cell compartment or communi-
cated to BCC via the tumor microenvironment, infiltrating
immune cells or via sIL6R-mediated trans-signaling remains
to be addressed in future studies.

The possible therapeutic relevance of our findings is fur-
ther underlined by the promising efforts to develop efficacious
anti-IL6/JAK/STAT3 drugs for the treatment of various solid
and hematopoietic malignancies. Small-molecule inhibitors or
antagonistic antibodies targeting critical effectors of IL6 sig-
naling including IL6 itself, IL6R, gp130, JAK1/JAK2 and
STAT3 have recently been approved or are currently evaluated
in several clinical trials with patients suffering from cancer
entities with a documented involvement of HH/GLI signaling
such as breast and non-small-cell lung cancer (for review, see
Refs. 17,21,50 and references therein).

The identification of the IL6/JAK/STAT3 signaling cascade as
cooperative partner in HH/GLI-associated cancers provides a
new rationale for evaluating combined HH-IL6 targeting in BCC
to improve the therapeutic efficacy of SMO inhibitor treatments.
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