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Abstract
Mg2Si is apart from its conductivity properties expected to be a promising candidate for thermoelectric applications due to its
low toxicity, low costs, and the high abundance of its precursor chemicals. Through the addition of a homogeneous
distribution of nanoparticles (e.g. MgO) and by reducing the size of Mg2Si to the nanometer regime, it is possible to decrease
the thermal conductivity by increasing phonon-interface scattering and, as a result, improve the thermoelectric properties.
However, classical approaches do not allow for the synthesis of nanocomposites from Mg2Si and MgO. In this work, a
straightforward route is presented towards homogeneously mixed Mg2Si/MgO via a two-step magnesiothermic reduction
process starting from sol–gel derived hierarchically organized porous silica. Monolithic materials composed of Mg2Si and
MgO in variable molar ratios are built up from a macroporous network of Mg2Si with homogeneously distributed MgO
particles exhibiting a crystallite size in the range of 24–37 nm.

Graphical Abstract

* M. S. Elsaesser
michael.elsaesser@sbg.ac.at

1 Materials Chemistry, Paris Lodron University Salzburg, Jakob-

Haringer Straße 2a, 5020 Salzburg, Austria
2 USTEM, Technische Universität Wien, 1040 Vienna, Austria
3 Toyota Motors Company Europe, 2000 Antwerp, Belgium

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10971-018-4778-8) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1007/s10971-018-4778-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10971-018-4778-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10971-018-4778-8&domain=pdf
http://orcid.org/0000-0002-4675-9819
http://orcid.org/0000-0002-4675-9819
http://orcid.org/0000-0002-4675-9819
http://orcid.org/0000-0002-4675-9819
http://orcid.org/0000-0002-4675-9819
mailto:michael.elsaesser@sbg.ac.at
https://doi.org/10.1007/s10971-018-4778-8


Highlights
● We present a new and versatile method to prepare macroporous Mg2Si/MgO composites.
● Both components, Mg2Si and MgO, are homogeneously distributed in the final composite.
● Our approach can easily be extended to other highly porous silica templates.
● The Mg2Si/MgO network comprises nanosized MgO particles in a 3D interconnected Mg2Si network.

Keywords Hierarchically structured silica ● Nanocomposite material ● Magnesiothermic reduction ● Magnesium silicide

1 Introduction

Mg2Si is the only intermetallic alloy formed in the Mg-Si
system (Eq. 1) [1]. In recent years, it has attracted an
increasing amount of interest for a wide range of applica-
tions in various fields, such as thermoelectrics and optics
and in lithium-ion batteries, largely due to its low toxicity,
unique optical and electrical properties, low costs of pro-
duction, and environmental compatibility [2–8].

2Mgþ Si ! Mg2Si ð1Þ
It has been proven that nanostructuring of materials for

thermoelectric applications, e.g., as nanofibres, results in
improved performances compared to their bulk counterparts
[9, 10]. Nanostructured thermoelectric materials are
designed to introduce nanometer-sized polycrystallites and
interfaces into bulk materials, which can improve the figure
of merit ZT1 for thermoelectric materials [11–14].

Adding a second phase, such as a metal oxide, into the
system also reduces the lattice thermal conductivity by
enabling an additional scattering mechanism and thus,
improving thermoelectric performance [15, 16]. Cederk-
rantz et al. [17] investigated the influence of the addition of
TiO2 nanoparticles to Mg2Si grains of > 100 nm on the
thermoelectric properties of the latter. The addition of only
1 vol% TiO2 nanoparticles to Mg2Si resulted in a significant
improvement of ZT at 300 °C, reaching ZT values of 0.042.
This is a factor 2.75 higher than for pure Mg2Si at the same
temperature. Similar effects can be expected from using
MgO instead of TiO2 as a dielectric component in Mg2Si,
which seems to be easily achievable through magne-
siothermic reduction of silica with an excess of magnesium
(see equations 2 and 3). This has been shown by Szczech
et al. [18] who converted diatomaceous earth particles to
Mg2Si/MgO composite powders via a gas-solid displace-
ment reaction with magnesium vapor. Not only the micro-
meter sized morphology of the diatoms was preserved, but
both components were also homogeneously mixed with
MgO crystallites within a nanometer size range (~30 nm).
This reaction represents a possible method for the

production of large quantities of low-cost nanoscale ther-
moelectric materials with enhanced thermoelectric perfor-
mance. Furthermore, for optimization of the thermoelectric
performance an adjustment of the ratio of thermoelectric to
dielectric phase is highly desirable [17].

SiO2þ2Mg ! Siþ 2MgO ð2Þ

SiO2þ4Mg ! Mg2Siþ 2MgO ð3Þ

Nanostructured composites are typically fabricated by
hot pressing or spark plasma sintering of fine powders
prepared by grinding, milling, or wet chemical processing
[11]. Such an approach creates a large number of interfaces
between neighboring nanoparticles, thereby improving the
thermoelectric performance [19]. However, typical draw-
backs of these methods are that (1) a deliberate tailoring of
the nanostructure is difficult to achieve, (2) the reaction is
often incomplete, and (3) the final product is often con-
taminated with side-products [20]. In a previous study, we
showed that magnesiothermic reduction of porous, hier-
archically organized silica produced similarly structured
meso/macroporous silicon, which could be converted to
monolithic porous magnesium silicide via a specifically
designed set-up for the gas-solid displacement reaction [20].

In the present study, we have developed a two stage
synthesis strategy to prepare monolithic Mg2Si/MgO com-
posite materials comprising a macroporous network and an
adjustable ratio of both components. This approach opens a
simple route towards a variety of Mg2Si/MgO materials
with respect to chemical composition and morphology
compared to previously described processes [19]. By
magnesiothermically reacting hierarchically structured
macro/mesoporous silica with a low amount of Mg vapor, a
mixture of Si and remaining silica is obtained. If this
material is reacted with Mg vapor again a complete con-
version to Mg2Si and MgO is obtained according to the
parallel reactions given in Eqs. 1 and 3. The overall process
has the following advantages:

● Easily adjustable ratio of Mg2Si and MgO
● Nanosized MgO particles homogeneously embedded in

a macroporous Mg2Si network
1 ZT defined as dimensionless scalar: ZT = S2 ρ-1 κ-1 T with S
(Seebeck coefficient), ρ (electrical resistivity), κ (thermal con-
ductivity), and T (absolute temperature)
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● Low equipment cost
● No further purification steps are required

2 Experimental procedure

2.1 Materials

Ethylene glycol (Sigma-Aldrich) was purified by drying
over Na2SO4 (Prolabo) and filtering. Tetraethoxysilane
(Merck), trimethylchlorosilane (TMCS, Sigma-Aldrich),
Pluronic P123 (EO20PO70EO20, BASF), petroleum ether
(40–60 °C, Prolabo), magnesium powder (for synthesis,
Merck), hydrochloric acid (37%, Merck), and acetic acid
(glacial, Merck) were used without further purification.

2.2 Preparation of hierarchically organized silica

Hierarchically organized meso/macroporous silica (SiO2)
was prepared according to Brandhuber et al. by sol–gel
processing of tetrakis(2-hydroxyethyl)orthosilicate (EGMS)
combined with a templating approach in an aqueous med-
ium containing Pluronic P123™ and 1M hydrochloric acid
(HCl), with a composition by weight of Si/P123/0.1 M HCl
= 8.4/30/70 [21, 22]. The surface hydrophobization con-
comitant with surfactant extraction was performed by
immersing the gel bodies in TMCS (10% in petroleum ether
(PE)). After washing with PE three times, the wet silica gels
were cut into small, monolithic slices (with 2–3 mm in
height and 3–4 mm in diameter (c.f. Fig. 2)). After drying at
80 °C the slices were calcined at 550 °C for 4 h.

2.3 Reaction of SiO2 with Mg with various molar
ratios to obtain Mg2Si/MgO or Si/SiO2
composites

Magnesiothermic reduction [1, 23, 24] was performed using
a “mesh-boat” set-up to ensure spatial separation of silica

and Mg (see Fig. 2). The silica slices were placed on a
stainless steel mesh with the magnesium powder beneath in
a small boat, and together these were inserted into a stain-
less steel tube filled with an argon atmosphere. This was
then placed in a tube furnace under a slight argon stream
and heated to 650 °C with a heating rate of 1 Kmin−1 and 2
h holding time. In order to obtain Mg2Si/MgO composites
in a direct one-step reaction, silica and Mg were used in a
molar ratio of 1:4. In this case no further purification
treatment was performed. To prepare three different Si/SiO2

composite materials for further treatment as described in
“Synthesis of Mg2Si/MgO composites” section, the amount
of Mg was kept below 2 moles (0.50–1.61) in relation to
SiO2 (see detailed calculated values in Table 1 for samples
A1, B1, and C1). Removal of the by-product (MgO) was
conducted by immersing the reaction product in 1 mL of
degassed water, followed by addition of 20 mL of 2M
hydrochloric acid and 10 mL of diluted acetic acid for 3 h at
40 °C. Afterwards, washing with degassed water was
repeated until a neutral pH-value was achieved. The
resulting brown monoliths were dried in vacuum.

2.4 Synthesis of Mg2Si/MgO composites

To prepare three different Mg2Si/MgO composite samples
(A2, B2, and C2), the same set-up as described before was
used. The silica/silicon monoliths (A1, B1, or C1) were
placed on a mesh and separated from Mg powder in the boat
beneath (see detailed amounts in Table 2). Afterwards, the
set-up was placed in a stainless steel tube, which was heated
in a tube furnace under argon atmosphere to 650 °C with 1
Kmin-1 heating rate and 2 h holding time.

3 Methods

Powder X-ray diffractograms (PXRD) were recorded using
a Bruker D8 diffractometer with a DaVinci Design and

Table 1 Calculated amounts of
reactants and content after
magnesiothermic reduction of
Si/SiO2 composites

Sample SiO2 [mol] Mg [mol] Product SiO2 [mol] Product Si [mol]

Mg2Si: MgO A1 1.00 0.50 0.75 0.25

Mg2Si: MgO B1 1.00 1.12 0.44 0.56

Mg2Si: MgO C1 1.00 1.61 0.20 0.80

Table 2 Calculated amounts of reactants and content after reaction of the Mg2Si/MgO composites

Sample SiO2 [mol] Si [mol] Mg [mol] Product Mg2Si [mol] Product MgO [mol] Mg2Si/MgO molar ratio

Mg2Si: MgO A2 0.75 0.25 3.50 1.00 1.50 0.66

Mg2Si: MgO B2 0.44 0.56 2.88 1.00 0.88 1.14

Mg2Si: MgO C2 0.20 0.80 2.39 1.00 0.40 2.50
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CuKα radiation. Evaluation of crystallite sizes was done
according to the Scherrer equation and Rietveld refinement
was performed using TOPAS V4-2 software (Bruker).

Sample morphology was examined using a Zeiss Ultra Plus
scanning electron microscope (SEM) operated at an accelerat-
ing voltage of 2 kV with an in-lens detector. Silica samples
were sputtered with gold to provide an electrically conductive
surface. An Oxford Instruments X-Max energy dispersive X-
ray (EDX) detector was used for elemental analysis.

The microstructure of the samples was studied with
transmission electron microscopy (TEM) using a TECNAI
F20 field emission microscope operated at an accelerating
voltage of 200 kV. Images were recorded with a Gatan
Orius SC 600 charge-coupled device (CCD) camera.

Nitrogen sorption isotherms were recorded at 77 K using
a sorption porosimeter (Micromeritics, ASAP 2420). Prior
to the measurement, samples were degassed for 3 h at 100 °
C in vacuum. The Brunauer-Emmett-Teller (BET) surface
area was evaluated using adsorption data in a relative
pressure range p/p0 0.05–0.25. The mesopore size dis-
tribution was calculated on the basis of the desorption
branch using the Barrett–Joyner–Halenda (BJH) model.

4 Results and discussions

Based on the experiments by Szczech et al. [18] with dia-
tomaceous earth SiO2, and also on our own previous
experiments [20], we reacted hierarchically structured silica,
consisting of a cellular network comprising struts with
hexagonally ordered mesopores with a diameter of 8 nm and
a pore wall thickness of 3–5 nm (see Supplementary Fig. S1
ESI), directly with four moles of Mg vapor at a temperature
of 650 °C for 2 h following Eq. 3. The PXRD pattern in Fig.
1b confirms the complete conversion to a Mg2Si/MgO
composite with a ratio of 44:56 by weight (molar ratio
Mg2Si/MgO= 0.41). Starting with amorphous silica, indi-
cated by a very broad peak in the PXRD diffraction pattern
at 22° 2 Theta (Fig. 1a), a product with crystallite sizes of
73 ± 5 nm (Mg2Si) and 21 ± 5 nm (MgO) was obtained
according to the Scherrer equation. Mg vapor can easily
diffuse into and through the macroporous network, followed
by condensation and reaction with the SiO2 on the struts
(see Supplementary Fig. S1 ESI), which are typically of
about 1 µm in length and 100 nm in diameter. This build-up
of a pure crystalline material upon the magnesiothermic
conversion is accompanied by the destruction of pores in
the mesoscopic range. However, a perfect preservation of
the macroporous network of Mg2Si/MgO is observed (see
Fig. 1b). Similar results were obtained recently for the
reaction of Si with Mg to yield pure Mg2Si [20].

Fig. 1 PXRD pattern of a (1) hierarchically structured, amorphous silica and (2) Mg2Si/MgO composite material after reaction at 650 °C for 2 h
(molar ratio SiO2/Mg 1:4); b SEM image of the Mg2Si/MgO composite material of (2)

Fig. 2 Schematic presentation of the two-step process to yield a
composite material with adjustable ratio of Mg2Si/MgO (upper part);
photographs of the precursor silica gel (bottom left), the Si/SiO2

monolith (bottom middle) and the (Mg2Si/MgO) monolith (bottom
right)
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It is very likely that the presence of MgO mitigates the
locally released heat from the exothermic reaction helping
to preserve the macro-morphology [23]. Elemental analysis
by EDX confirmed a homogeneous distribution of Mg2Si
and MgO in the macroporous network (see Supplementary
Information, Fig. S2) again supporting the contention of the
benefit of the better diffusion in a highly porous precursor
material. The loss of mesopores is indicated by a decrease
of the specific surface area (SSA) from 700 m2g−1 in silica
to less than 50 m2g−1 in the composite sample. This data
proves that we can successfully prepare a monolithic, but
nanosized, Mg2Si/MgO composite material via a direct one-
step magnesiothermic reaction. However, any adjustment of
the ratio of the components to each other does not seem to
be possible. Variations in the amounts of Mg for the mag-
nesiothermic reaction would result in either silica and/or
silicon containing samples or residual unreacted Mg.

In order to gain better control over the molar ratio
between Mg2Si and MgO in the final composite material,
we developed a route based on two successive magne-
siothermic reductions making use of the two parallel reac-
tions as given in Eqs. 1 and 3. The aim is to first convert
silica with a very low amount of Mg to a silica/silicon
composite material, which is reacted in a second step with
Mg to give a Mg2Si/MgO composite (see Fig. 2).

In principle, the reaction of silica and Mg is performed as
described before with the exception that the amount of Mg
is now adjusted to values lower than four moles (thus sub-
stoichiometric with respect to Equation 2).

SiO2þ 2� 2xð ÞMg ! 1�xð ÞSiþx SiO2þ 2� 2xð ÞMgO

ð4Þ

xA ¼ 0:75; xB ¼ 0:44; xC ¼ 0:20

1�xð ÞSiþ 2� 2xð ÞMg ! 1�xð ÞMg2Si ð5aÞ

x SiO2þ 2xð ÞMg ! 2xð ÞMgOþ xMg2Si ð5bÞ

This leads to an incomplete reaction resulting in a
monolithic material consisting of silicon, MgO and
remaining silica. The given amount of Mg, indicated by “x”
in Eq. 4, is always adjusted to < 2. In this series, the values
have been set to (A, B, and C) xA = 0.75; xB = 0.44, xC =
0.20, and thus the amount of Mg determines the content of
residual silica. MgO is removed by HCl etching leaving a
macroporous silicon/silica network behind. Although the
distribution of Si and SiO2 in this network is unknown, we
conclude that it is homogeneous since it is homogeneously
distributed in the final product (see Supplementary Infor-
mation; EDX data in Fig. S3). MgO removal is necessary to
be able to adjust the desired ratios in the final product. The
dried Si/SiO2 composite monolith is then subjected to a
second reaction with Mg. The amount of Mg is calculated on
the basis of the calculated ratios of Si/SiO2 (see Table 1) and
the stoichiometry given in Eqs. 5a and b. While silica is now
converted to magnesium silicide and MgO (Eq. 5b), silicon
directly gives magnesium silicide according to Eq. 5a. In this
step, Si and SiO2 form the final macroporous Mg2Si network
with homogeneously distributed MgO crystallites. Depend-
ing on the amount of silica in this step, a number of different
compositions (A2, B2, and C2) are accessible without fur-
ther purification (see also photographs in Fig. 2).

The monolithic shape of the starting silica gel is pre-
served upon all processing steps to the final composite
material without significant shrinkage. As expected, the
color change from white to slight brownish and furthermore
to bluish demonstrates the transformation from silica to
silicon/silica and Mg2Si/MgO. Along with the transforma-
tion from silica to the Mg2Si/MgO composite materials, we
obtain a slight decrease in density overall: 0.35 g cm−3 for
silica and 0.10–0.20 g cm−3 for Mg2Si/MgO (A2 0.10; B2

Fig. 3 a PXRD patterns of the intermediate silica/silicon product A1, B1, and C1; b PXRD patterns of the final Mg2Si/MgO composite materials
A2, B2, and C2
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0.13; C2 0.20). Interestingly, the densities of the inter-
mediate stage of Si and silica (after removal of MgO) are
the lowest, with measured values of 0.067 g cm−3 for A1,
0.085 for B1, and 0.095 for C1. Considering the low den-
sities of amorphous silica (~2.20 g cm−3), silicon (2.32 g cm
−3) and Mg2Si (1.99 g cm

−3) compared to MgO (3.58 g cm
−3), this is not unexpected.

To prove our concept we prepared three different sam-
ples with theoretical Mg2Si/MgO ratios of 0.66, 1.14, and
2.50 indicated with A2, B2, and C2 (Table 2). For the first
reaction, we reacted (2 – 2x) mole of Mg and 1 mole of
SiO2, with x= 0.20, 0.44, and 0.75 being the amount of
remaining silica after the first step. A detailed overview of
the calculated reaction compositions is given in Table 2.
Since Mg powder contains traces of MgO impurities we
take advantage of the boat-mesh set-up, which ensures
spatial separation from the reactants, since MgO always

remains beneath the mesh. In addition, the chosen Ar
atmosphere avoids formation of MgO traces due to Mg
oxidation. We investigated the intermediate SiO2/Si com-
posites by PXRD diffraction as shown in Fig. 3a after
extraction of MgO. All three samples (A1, B1, and C1)
show an amorphous signal with a broad reflection at ~22° 2
Theta indicating remaining silica accompanied by Bragg
reflexes for crystalline silicon. Unfortunately, the amor-
phous character of silica made detailed calculations of the
composition by Rietveld refinement impossible.

The three Mg2Si/MgO composite samples were char-
acterized by PXRD diffraction (see Fig. 3b). For all three
samples only Mg2Si and MgO are present (reference pdf
files: Mg2Si-PDF-87-0651 and MgO-PDF-35-0773). For
comparison, we normalized the XRD patterns and calculated
the ratios of Mg2Si and MgO by Rietveld refinement. As
shown in Table 2, the obtained values for the molar ratio

Table 3 Product compositions of Mg2Si/MgO composites

Samples Product Mg2Si [mol] Product MgO [mol] Mg2Si crystallite size [nm] MgO crystallite size [nm] Mg2Si/MgO molar ratio

Mg2Si/MgO A2 0.76 1.17 193 37 0.65

Mg2Si/MgO B2 0.78 0.69 241 29 1.13

Mg2Si/MgO C2 0.85 0.35 269 24 2.45

Crystallite sizes were calculated by use of the Scherrer equation.

Fig. 4 SEM images of a Mg2Si/
MgO composite A2, b Mg2Si/
MgO composite B2, c Mg2Si/
MgO composite C2, and TEM
images of d Mg2Si/MgO
composite A2, e Mg2Si/MgO
composite B2, f Mg2Si/MgO
composite C2
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between Mg2Si and MgO match very well with the calcu-
lated contents of silica and Mg and show the great versatility
and reliability of the method. Expectedly, the absolute
experimental amounts obtained in the final product are lower
than the theoretically calculated ones (c.f. Tables 2 and 3)
due to material loss during washing, processing by use of the
mesh or even handling. The crystallite sizes calculated by
the Scherrer equation are in the range 193 to 269 nm (for
Mg2Si) and ~30 nm (for MgO) (see Table 2). The mor-
phology of the obtained composite samples was investigated
by SEM and TEM. Figure 4 shows the microstructure
indicating in all cases a preservation of the macroporous
cellular network. The TEM images in Fig. 4 reveal the fine
dispersion of Mg2Si and MgO crystallites in each strut with
the absence of pores in the mesoscopic range, which proves
the contention that Si and SiO2 are also homogeneously
distributed in the intermediate product. We examined the
distribution of Mg2Si and MgO also by EDX and obtained a
homogeneous distribution in an area of several square µm of
the sample (see Fig S3 ESI). The loss of mesopores during
processing is also supported by nitrogen sorption analysis
and very low SSAs ( < 50m2g-1) in comparison to the highly
porous silica precursor (700 m2g−1).

5 Conclusion

In summary, we developed a facile and versatile method
to prepare macroporous Mg2Si and MgO composite
materials with adjustable molar ratios of both compo-
nents. Magnesiothermic reduction of hierarchically
structured amorphous silica with an amount of Mg powder
that results in an incomplete reaction produced silicon/
silica composites. The latter could be reacted in a second
treatment with Mg to give Mg2Si/MgO composites. The
ratio between magnesium silicide and magnesium oxide is
easily controlled via the amount of Mg used in both
reactions.

Both components are homogeneously distributed in the
final product, implying good diffusion of Mg into the porous
scaffolds of SiO2 and Si/SiO2. From a structural point of
view, the monolithic shape as well as the macroporous
network are preserved during the reactions with magnesium.
Smaller mesopores, however, are lost in the reaction process.
Both components Mg2Si and MgO are obtained as crystal-
line materials with crystallite sizes in the upper nanometer
regime ( > 150 nm) and about 30 nm, respectively. Both
reaction steps can be conducted in the same set-up.

As a broad variety of porous silica structures are availi-
able, this approach can easily extended to many other
composite morphologies of Mg2Si and MgO in different
molar ratios. To overcome a low electrical conductivity of
the porous composite material in thermoelectric

applications, typically a sintering process (plasma sintering)
is followed up to yield a bulk form with homogeneous
distribution of MgO nano crystals.
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