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Abstract

Recently, a multi-level hp-version of the finite element method (FEM) was proposed to
ease the difficulties of treating hanging nodes, while providing full hp-approximation
capabilities. In the original paper, the refinement procedure made use of a-priori
knowledge of the solution. However, adaptive procedures can produce discretizations
which are more effective than an intuitive choice of element sizes h and polynomial
degree distributions p. This is particularly prominent when a-priori knowledge of the
solution is only vague or unavailable. The present contribution demonstrates that
multi-level hp-adaptive schemes can be efficiently driven by an explicit a-posteriori
error estimator. To this end, we adopt the classical residual-based error estimator. The
main insight here is that its extension to multi-level hp-FEM is possible by considering
the refined-most overlay elements as integration domains. We demonstrate on several
two- and three-dimensional examples that exponential convergence rates can be
obtained.
Keywords: High-order FEM, hp-Adaptivity, Explicit error estimation

Background
Thefinite elementmethod (FEM)has been shown toproduceparticularly efficient approx-
imations when both refinement in element size h and polynomial degree p are considered
(hp-FEM). In this way, exponential convergence can be attained also in presence of sin-
gularities [1–3]. However, the implementation of hp-FEM is challenging. This is due to
the fact that local refinements produce hanging nodes, edges and faces. The associated
degrees of freedoms destroy the requiredC0-continuity of the approximations [4,5] if not
treated appropriately. To this end, it is a common approach to constrain the concerned
degrees of freedom. However, it turns out that constraining becomes extremely complex,
especially in caseswheren-irregularmeshes have to be handled in three dimensions. Thus,
many codes only allow for 1-irregular meshes [3–5].
To overcome these difficulties,multi-level approaches have been developed, e.g., [6–12].

For a in-depth review, see, e.g., [13]. Along this line of research, the recently introduced
multi-level hp-method allows to remove the hanging nodes by construction [14], while
allowing the approximation capabilities comparable to the classical hp-FEM [15]. The
underlying idea concerns the refinement procedure in which the refinement is not per-
formed by replacement of elements, but by hierarchically overlaying a finer mesh. This
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technique is extensively explained in [13,14] and briefly recaptured in “Multi-level FEM”
section.
In previous contributions, themulti-level hp-refinement proceduremade use of a-priori

knowledge of the solution, e.g. singularities given by re-entrant corners.However, adaptive
procedures can automatically producediscretizations that aremore effective than intuitive
choices of element sizes h and polynomial degree distributions p. This is particularly
prominent when a-priori knowledge of the solution is only vague or unavailable.
The present contribution demonstrates that multi-level hp-adaptive schemes can be

driven by an explicit a-posteriori error estimator as well. This kind of estimator was intro-
duced, analyzed theoretically andused for adaptive computations in [16–20]. Successively,
error estimation and adaptivity have become to be broadly researched and proven to be
robust, see, e.g., [21–27]. Furthermore a first extension to high-order was given in, e.g,
[18,28,29]. For a comprehensive survey, see, e.g., [30–34].
In the rest of the paper, “Estimated error-based hp-adaptivity” section briefly introduces

the multi-level hp-method and the explicit error estimator. It is then demonstrated that
the simple extension of viewing the refined-most elements as integration domains suffices
for this classical method to drive multi-level adaptivity. Next, “Implementational aspects”
section discusses some important implementational aspects. The article then proceeds
with various numerical example in two- and three-dimensions in “Numerical examples”
section.

Estimated error-based hp-adaptivity
Model problem

We consider the Poisson’s Equation on a d-dimensional bounded domain � ⊂ R
d . We

assume the boundary � of � to be Lipschitz and consisting of two disjoint parts �D
and �N , representing the Dirichlet- and Neumann-Boundary, respectively, where �D is
assumed to be closed. We denote by nnn the vector normal to the boundary �N . The strong
form of the considered problem reads

−�u = f on �,

∇u · nnn = g on �N , (1)

u = 0 on �D.

Instead, its weak formulation reads

Find u ∈ H1
D(�) such that B(u, v) = F (v), ∀v ∈ H1

D (�), (2)

where

B(u, v) =
∫

�

∇u · ∇v d�,

F (v) =
∫

�

f · v d� +
∫

�N

g · v d�, ∀v ∈ H1
D (�),

H1
D (�) = {

φ ∈ H1(�),φ = 0 on �D
}
.

Here, H1(�) ⊂ L2(�) denotes the classical Sobolev space of functions in L2(�) with
weak-derivatives up to order one.
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Let n ∈ N, n > 0, and T (�) = {Te}ne=1 be a finite partition of � into quadrilaterals, if
d = 2, or hexahedra, if d = 3. T is assumed to be regular, i.e., without hanging nodes.
Considering polynomial high-order approximations, we associate to each element T a
polynomial degree pT and a diameter hT . In the sequel, the polynomial degree distribution
is denoted as p = {pT }T∈T (�). In the FEM, it is natural to consider each element Te to
be the image of a standard reference element T̂ under a mapping FTe : T̂ → Te [34]. For
simplicity, assume FTe to be invertible. Furthermore, let ST (�),p denote the corresponding
finite element solution space [34].

ST (�),p :=
{
φ ∈ C0(�) | ∀T ∈ T (�) : φ|T = φ̂ ◦ F−1

T , for some φ̂ ∈ PpT (T̂ )
}
.

Here, PpT (T̂ ) is the space of polynomials of degrees at most pT on T̂ .

Multi-level FEM

In the standard FEM, the discretization is based on a mesh T (�) = {Te}ne=1. The multi-
level FEM generalizes this framework by allowing for an overlay of meshes, as depicted in
Fig. 1a.
Starting from a base mesh T 0(�) = {Te0}n0e0=1, additional meshes can be superimposed

on domains of interest. Namely, one element Ta ∈ T 0(�) can be refined by an overlay
mesh T 1(Ta) = {Ta,e1}n1e1=1. In the following, Ta,e1 will be called the sub-elements of
Ta, while Ta is the parent element of Ta,e1 . Any element Ta,b ∈ T 1(Ta) can be further
refined by superimposing an additional mesh T 2(Ta,b). For example, T1 ∈ T 0 in Fig. 1a is
overlaid by T 1 = {T1,1, T1,2}, while T1,1 is overlaid by T 2 = {T1,1,1, T1,1,2}. This procedure
of mesh-overlaying can be carried out an arbitrary number of times for each element of
each overlay mesh. Finally, a polynomial degree has to be assigned to every element of
each level to define its local basis. In this manner, a multi-level hierarchical structure of
elements in defined.
The refinement-by-overlay procedure requires some precautions in order to ensure

linear independence of the global shape functions and C0-continuity of the numerical
solution. See [14] for details. For example, in one-dimensional domains C0-continuity
can be guaranteed by requiring the local shape functions to vanish at the nodes of the
underlying levels (c.f. Fig. 1a). Linear independence can be guaranteed by allowing high-
order modes only on the leaf elements, i.e. the elements without any further refinement
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Fig. 1 Example of one-dimensional multi-level mesh and basis functions. aMulti-level mesh. b Basis
functions for analysis
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(c.f. Fig. 1a). Other polynomial degree distributions are possible, see [14] for details. The
described multi-level mesh defines a set of global basis functions defined on the same
domain �. For example, Fig. 1b shows the basis functions on � = [0, 1] from Fig. 1a
collapsed to one level. This global basis can be used for classic analysis and a element-
local basis point-of-view will be considered later in “Error estimator for multi-level FEM”
and “Implementational aspects” sections.

Explicit error estimator

Many different techniques in error estimation can be found in the literature. A compre-
hensive survey is given in e.g. [30–34]. For the paper at hand, we follow the strategy of
a-posteriori residual-based error estimators.
Let uT ∈ ST (�),p be a numerical approximation to u ∈ H1

D computed by solving Eq. (2).
According to [35,36] estimates η to the analytical error e(uT ) = u − uT in the energy
norm ‖ · ‖B can then be computed as

‖e(uT )‖2B ≤ Cη2, η2 :=
∑
T∈T

η2T , (3)

η2T := h2T
p2T

‖RT (uT )‖2L2(T ) + hT
pT

‖R∂T (uT )‖2L2(∂T ),

for some constantC . The functionsRT (uT ),R∂T (uT ) denote the interior- and boundary-
residuals of the element T with respect to the strong form (1):

RT (uT ) = �uT + f on T , (4)

R∂T (uT ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 [∇uT · nnn] on ∂T\�,
g − ∇uT · nnn on �N ,

0 on �D,

(5)

where nnn is the normal to ∂T and [∇uT · nnn] is the inter-element flux jump. Specifically,
[∇uT · nnn] = limt→0 (∇uT · nnn) (xxx + tnnn)−(∇uT · nnn) (xxx − tnnn) ∀xxx ∈ ∂T\�. See for example
[33,37], among others.
In general, the constant C is unknown and this makes it difficult to use Eq. (4) alone

for assessing the quality of the numerical approximation. However, the element error
indicators η2T can identify the elements accounting for the highest error contributions. As
illustrated later in “Smoothness indicator for the multi-level hp-adaptivity” section, this
will be used to drive adaptivity.
Note that in [35,36] Neumann boundary conditions were not considered. In the present

paper, a direct heuristic generalization is formulated and investigated numerically.
Note also that it was proven for even degrees, that an explicit error estimator can be

constructed just in terms of interior residuals [31,38]. Instead, for odd degrees an explicit
error estimator can be constructed using only the inter-element jumps [31,39].

Error estimator for multi-level FEM

The first step towards using the error estimator (3) together with the multi-level FEM is
to define what an element is. The estimator (3) employs a sum over all elements T of a
traditional mesh T . However, as described above, multi-level meshes define a hierarchical
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structure of overlaid elements. Therefore, it is necessary to translate appropriately the
multi-level structure to conventional finite elements. In this context, we will refer to the
set T to be used in (3) as the “partition” of the multi-level mesh Tml.
In the standard derivation of the explicit error estimator for themodel problem, Green’s

theorem is applied to express the energy norm of the approximation error in terms of
interior- and boundary-residuals of each element [35,37,40]. This requires at least C2-
continuity of the element local shape functions. In case of multi-level meshes, the local
shape functions of a partition element T are the functions of all the levels T k

ml that are
non-zero onT . Thus, not all choices for the partition of amulti-levelmesh are suitable. For
example, choosing {[0, 0.5], [0.5, 1]} as partition of Tml in Fig. 1a only gives C0-continuity
at x = 0.25.
The coarsest partition of � ensuring C2-continuity of the local shape functions is the

set of leaf elements, i.e., the set of elements of any level that are not further refined by
a superimposed mesh. This set is denoted by T leaf

ml . Note that the leaf elements T leaf
ml do

not overlap each other and their union covers the whole domain. For example, T leaf
ml =

{[0, 0.25], [0.25, 0.5], [0.5, 1]} in Fig. 1a. Considering T leaf
ml as partition T , an explicit error

estimator for the multi-level FEM can be defined as follows:

‖e(uT )‖2B ≤ Cη2, η2 :=
∑

T∈T leaf
ml

η2T . (6)

Note that the error indicator is associated to the domains defined by each leaf element
and not divided into the different levels.
It is noteworthy that this definition of partition as the traditional “elements” of the hier-

archicalmulti-levelmesh also complies with the set of sufficient conditions for the conver-
gence of a finite element discretization given in [41]. Namely, for second-order problems
the shape function shall represent exactly all polynomials of orderup toone (completeness),
beC1-continuouswithin each element (smoothness) andbeC0-continuous across element
boundaries (continuity). Despite the fact that these are just sufficient conditions, most of
the finite element bases satisfy these requirements. Therefore, the above definition of ele-
ments of a multi-level mesh reveals to bemeaningful in amore general sense, as it satisfies
the smoothness requirement.
Note that, while each overlay mesh T k is assumed to be regular, T leaf

ml allows for an
arbitrary level of hanging nodes (n-irregular mesh). These irregularities do not need com-
plicated constraining algorithms, as C0-continuity of the numerical solution is ensured
by construction [14].

Smoothness indicator for the multi-level hp-adaptivity

In the context of adaptive refinement procedures, the error estimator allows to identify
the elements that account for the highest error. Various methods exist to decide whether
these elements should be p- or h-refined, see [2] for a comprehensive overview. In the
sequel, the smoothness indicator proposed in [42] is employed. Its underlying idea is that
for regions with a non-smooth solution, h-refinement ismore effective than p-refinement,
while areas with a smooth solution can be better approximated by p-refinement.
For one-dimensional problems, the Legendre coefficients of the numerical approx-

imation uT |T local to T = [−1, 1] are used to indicate its smoothness. Denoting
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the i-th Legendre polynomial by Pi, the Legendre coefficients can be computed as
αi = (2i+1)/2

∫ 1
−1 Pi(x)uT |T (x) dx, for 0 ≤ i ≤ pT . The decay rate τT of these coefficients

is estimated by a best fit of |αi| = ceτT i. The decision between h- or p-refinement is then
carried out depending on a parameter Cdecay ∈ R as follows. If τT ≤ Cdecay, then uT |T is
considered to be smooth and a p-refinement is performed. Otherwise, uT |T is classified
as non-smooth and a h-refinement is chosen.
For higher-dimensional problems, we follow the anisotropic approach proposed in [43,

44]. In a two-dimensional problem, for example, the Legendre expansion coefficients are
computed by

αij = 2j + 1
2

2i + 1
2

1∫

−1

1∫

−1

uT |T (x, y)Pi(x)Pj(y) dx dy, (7)

for 0 ≤ i ≤ pTx, 0 ≤ j ≤ pTy. Here, pTx and pTy denote the polynomial degree in the
x- and y- direction, respectively. From this second-order tensor of coefficients a one-
dimensional sequence of coefficients which represents one spatial direction is obtained
by accumulating the coefficients of the other directions. For example, for the x-direction
|α̃i| = ∑pTy

j=0 |αij|
√

2
2j+1 . This allows to compute the decay rate τTx in x-direction by

applying the one-dimensional technique laid out above to |α̃i|. Analogously this is carried
out for the y-direction. Once a smoothness indicator for each spatial direction is obtained,
anisotropic refinements can be performed.
In the context of this work, only isotropic refinements are considered. In particular,

p-refinements are performed if τT = max{τTx, τTy} ≤ Cdecay. Otherwise, a multi-level
h-refinement is carried out, as described below.
The error estimator (6) and smoothness indicator are then combined to drive adaptivity

as laid out in Algorithm 1. Here, Cerror ∈ [0, 1] is a chosen parameter representing the
refinement threshold of the normalized element error. Note that Cerror 
= C . Moreover,
we allow high-order shape functions just on leaf elements, while non-leaf element are
always linear. The p-refinement can be performed by local degree elevation on any leaf.
The multi-level h-refinement of an element T̄ of order p is performed by superimposition
on T̄ by smaller elements, all of order p. Namely, the children element inherit the order of
the parent. Element T̄ has then superimposed children elements and is not a leaf anymore,
therefore its order is set to 1. We assume that for any leaf element T in the mesh T leaf

ml
produced after the i-th step of Algorithm 1, the ratio of its diameter hT to the diameter
ρT of the largest ball inscribed into T is bounded independently of T and i.
In the following, we consider as multi-level h-refinement of an element T̄ , the superim-

position on T̄ by by 2d elements obtained by spatial bi-section of T̄ in all the d directions.

Implementational aspects
The multi-level FEM is implemented by defining a sequence of nested reference-spaces,
each defining local shape functions, as depicted in Fig. 2. This approach furnishes a struc-
ture suitable for many recursive algorithms. In this section we present an approach on
how to compute the derivative of the numerical solution and the inter-element flux jump
in such a recursive setting.
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Algorithm 1Multi-Level hp-Adaptivity
1: procedureMulti-Level hp-Adaptivity
2: Construct an initial mesh Tml
3: k = 0
4: for k < max_iterations do
5: Solve problem on Tml
6: Compute ηT ∀T ∈ T leaf

ml
7: Mark elements T̃ such that ηT ≥ Cerror maxT∈T leaf

ml
{ηT }

8: for each marked element T̃ do
9: Compute decay rate τT of the Legendre coefficients on T̃

10: if τT ≤ Cdecay then
11: Update Tml by performing p-refinement on T̃
12: else
13: Update Tml by performing multi-level h-refinement on T̃
14: end if
15: end for
16: end for
17: end procedure

Differentiation recursive formulas

The definition of nested reference-spaces involves the usage of a sequence of mappings
u(x(ξ0(ξ1(. . . ξn)))) that have to be considered when evaluating derivatives. See Fig. 2.
Here, xi (i = 1, . . . , d) denotes the physical coordinates, while ξ ki (i = 1, . . . , d) denotes
the coordinates in the reference space of level k . In order to compute the residuals (4) and
(5), first- and second-order derivatives have to be computed. Using Einstein’s notation, a
direct application of the chain rule yields

∂ u
∂ξ k−1

i
= ∂ u

∂ξ kj

∂ξ kj

∂ξ k−1
i

, (8)

∂2 u
∂ξ k−1

i ∂ξ k−1
j

= ∂ξ ks

∂ξ k−1
i

∂2 u
∂ξ ks ∂ξ kt

∂ξ kt

∂ξ k−1
j

+ ∂u
∂ξ kr

∂2ξ kr

∂ξ k−1
i ∂ξ k−1

j
. (9)

These formulas are recursive and based on quantities directly computable on the element
of level n. Iterating the computation until level x = ξ−1 produces the desired result.
However, in general the backward mapping ξ k (ξ k−1) is not always available. Therefore,

it is indispensable to express the differentiation by only using forward mappings. To this

Physical space

Level 0

Ω̂0

x(ξ0)

Level 1

Ω̂1

ξ0(ξ1)

. . .

Level k

Ω̂k

ξk−1(ξk)

Fig. 2 Example of nested reference-spaces
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end, the chain-rule can be applied to ∂2u/∂ξ ks ∂ξ kt , yielding

∂2 u
∂ξ ks ∂ξ kt

= ∂ξ k−1
i

∂ξ ks

∂2 u
∂ξ k−1

i ∂ξ k−1
j

∂ξ k−1
j

∂ξ kt
+ ∂u

∂ξ k−1
r

∂2ξ k−1
r

∂ξ ks ∂ξ kt
. (10)

Here, at thekth level, almost all quantities are knownwith the exceptionof ∂2 u/∂ξ k−1
i ∂ξ k−1

j
for which the following tiny systems have to be solved:

∂ u
∂ξ k−1

i
· ∂ξ k−1

i
∂ξ kj

= ∂ u
∂ξ kj

, (11)

∂ξ k−1
i

∂ξ ks

∂2 u
∂ξ k−1

i ∂ξ k−1
j

∂ξ k−1
j

∂ξ kt
= ∂2 u

∂ξ ks ∂ξ kt
− ∂u

∂ξ k−1
r

∂2ξ k−1
r

∂ξ ks ∂ξ kt
. (12)

In vector notation, Eqs. (11) and (12) read:

∇∇∇k−1u = ∇∇∇ku ·
[
JJJ kξ k−1

]−1
, (13)

HHHk−1u =
[
JJJ kξ k−1

]−1 ·
[
HHHku − ∇∇∇k−1u ·HHHkξ k−1

]
·
[
JJJ kξ k−1

]−�
, (14)

where

[
∇∇∇ku

]
i
= ∂u

∂ξ ki
,

[
HHHku

]
ij

= ∂2 u
∂ξ ki ∂ξ kj

,

[
JJJ kξ k−1

]
ij

= ∂ξ k−1
i

∂ξ kj
,

[
HHHkξ k−1

]
rst

= ∂2ξ k−1
r

∂ξ ks ∂ξ kt
.

Note that the term ∇∇∇k−1u in (14) can be computed locally to each level by (13). This
completes the necessary ingredients to use (14) in the setting of a non-linear mapping
x(ξ0).
Usually, the mappings ξ k−1(ξ k ) for k = 1 . . . n are linear transformations. In this case

Eq. (14) can be simplified to

HHHk−1u =
[
JJJ kξ k−1

]−1 ·HHHku ·
[
JJJ kξ k−1

]−�
. (15)

Evaluation of the flux jump

In this section, it is illustrated how the multi-level definition of the basis functions can
be exploited in the computation of the inter-element flux jump (5). Consider Fig. 3 and
recall the definition of the entities T leaf

ml regarded as partition of a multi-level mesh Tml, as
explained in “Error estimator for multi-level FEM” section. First, observe that edges can
contain edges of levels above. For example, the edge AC of T1,2,1 contains the edge AB of
T1,2,1,1. We refer to AC as a parent-edge of AB, while AB is a sub-edge of AC . The edges
without sub-edges are called leaf edges.Moreover, given an elementT ∈ T k

ml of an overlay
mesh, edges shared by sub-elements of T are called internal to T . These internal edges
are identified by dashed lines in Fig. 3, whereas boundary edges are marked by solid lines.
Finally, we denote as ancestor of an edge as the edge itself, if it does not posses a parent,
or (recursively) the ancestor of its parent-edge.
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C
Ω1,2,1,1Boundary Edge

Internal Edge

Fig. 3 Example of two-dimensional multi-level mesh

Consider an element T1 ∈ T 0
ml of level 0 and its multi-level structure of refinements, as

in Fig. 3. The key observation to evaluate the flux is that the ancestor γanc of each boundary
edge γ is internal to some element T̃ ∈ T k

ml of level k . Therefore, γanc is contained in the
volumeof T̃ . As explained in “Error estimator formulti-level FEM” section, basis functions
are assumed to be at least C1-continuous in the interior of T̃ . Hence, the shape functions
defined locally on T̃ do not give any contribution to the flux jump. Analogously, this
holds for all the parent-elements of T̃ of level l < k . Therefore, it is in general sufficient
to consider the contribution to the inter-element flux given by the sub-elements of T̃
belonging to the level l > k . For example, to evaluate the flux residual across AB, it is
sufficient to evaluate the shape functions defined in T1,1 and T1,1,2 for the left flux. While
to evaluate the right flux it is enough to consider the contribution given by T1,2, T1,2,1 and
T1,2,1,1. In particular, no shape function needs to be evaluated in T1.
A possible algorithm to compute the residual on edges internal to one element T is

given in Algorithm 2. This procedure is applied recursively to the sub-elements of T .

Algorithm 2 Flux Jump Integration Over Multi-Level Internal Edges
1: procedure InternalInterfacesResidual(Element T )
2: Let FT (x) be the flux at x obtained considering just the contributions of the element T

and its sub-elements recursively
3: for each edge γ internal to T do
4: Obtain the sub-elements T1, T2 adjacent to γ .
5: for each leaf sub-edge γsub of γ do
6: Obtain sub-elements Ta, Tb adjacent to γsub
7: Compute J = ∫

γsub
‖FT1 (x) − FT2 (x)‖2

2 dx
8: ηTa ← ηTa + 1

2 J
9: ηTb ← ηTb + 1

2 J
10: end for
11: end for
12: end procedure

Numerical examples
In this section, the adaptive scheme is tested on two- and three-dimensional problems
presenting singularities or steep gradients. In the following, the absolute error in the energy
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Fig. 4 L-shape domain: problem description and solution. a L-shaped domain with boundary conditions.
b Solution. c Gradient magnitude

norm is computed as ‖e(uT )‖2B = ‖u‖2B −‖uT ‖2B . Here, ‖uT ‖2B is computed numerically,
while ‖u‖2B is computed analytically whenever possible, or numerically otherwise. In case
an explicit form of u is not available, ‖u‖2B is estimated by an extrapolation method, as
in [45, section 4.2]. Moreover, the quality of the estimator is assessed by means of the
effectivity index θ = η/‖E(uT )‖B . In the following, themulti-level hp-adaptive procedure
is shown to achieve exponential convergence rates. In particular, error bounds of the form

‖e(uT )‖B ≤ α exp(β Nφ) (16)

are obtained, where N is the number of degrees of freedom and α,β ,φ ∈ R.

L-shaped domain (2D)

Consider the Poisson’s problem (1) on the L-shaped domain � depicted in Fig. 4a where
f = 0 and g is expressed in terms of the polar coordinates r, θ as

g = 2
3
r− 4

3

[
x sin( 23θ ) − y cos( 23θ )
y sin( 23θ ) + x cos( 23θ )

]
· nnn.

This problem has an analytical solution u = r
2
3 sin( 23θ ) with a singular gradient at r = 0.

See Fig. 4b, c.
The discussed adaptive procedure is used to solve the above problem using Cdecay =

−1.75, Cerror = 0.8. Starting from a coarse mesh consisting of three elements of order
one, the mesh obtained after 85 multi-level hp-adaptive steps is illustrated in Fig. 5a,
b. Note the geometric h-refinement toward the re-entrant corner and linearly graded
polynomial degree distribution in Fig. 5c. This kind of mesh is known to be well suited
to resolve vertex singularities. Figure 6a compares the analytical error ‖e(uT )‖B to the
estimated error η demonstrating two important results. First, the multi-level hp-adaptive
procedure yields approximations converging exponentially to the analytical solution. In
particular, this is shown by choosing φ = 1/3 in Eq. (16), in accordance with the theory
of [46] for singular problems. Second, the error estimator tracks closely the behavior of
the analytical error. In particular, the efficiency index presents a converging behavior, as
depicted in Fig. 6b. Finally, in Fig. 6c, the adaptive procedure is compared to uniform
h-, manual hp- and p-refinements on a fixed geometric multi-level mesh. Such meshes
are obtained by iteratively performing multi-level h-refinement of the elements closer to
the singularity. The number of iterations is denoted as depth in the legend. The manual
hp-discretization is taken from [15].
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Fig. 6 L-shape domain: error estimates, effectivity index and convergence. a Error estimates and
convergence rate. b Effectivity Index. c Convergence comparison

Singular cube (3D)

To test adaptivity on three-dimensional singular solutions, the problem given by Eq. (1)
is considered on � = [0, 1]3 with �N = ∂�, �D = {000}. Moreover, f = λ(λ + 1)rλ−2 and
g = λrλ−2xxx · nnn, where λ ∈ R, λ > 0, r(xxx) = ‖xxx‖2. The analytical solution u = rλ has a
gradient singular at 000 for λ < 2.
The above problem is solved with λ = 2/3, Cdecay = −1.75, Cerror = 0.8 starting from

a single linear element. Figure 7a depicts the numerical solution and Fig. 7b, c illustrate
the discretization obtained after 67 adaptive steps. Note the geometrical h-refinement
toward the singularity and the linear-like distribution of the polynomial degree shown
in Fig. 7d. Furthermore, Fig. 8a shows exponential convergence of the analytical error,
along with the error estimates. For this problem which contains a vertex-singularity,



D’Angella et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:33 Page 12 of 18

0 5 10 15 20

2

3

4

5

6

7

8

9

10

11

Refinement Level

E
le

m
en

t
P
ol

yn
om

ia
l
D

eg
re

e

a b

c d

Fig. 7 Singular cube: solution and discretization. a Numerical solution gradient magnitude. b Ansatz order
close to singular corner. c Ansatz order on side. d Polynomial degree distribution on the line x = 0, y = 0

exponential convergence is attained forφ = 1/4 of Eq. (16). Thismatches the theory given
in [46]. Finally, the effectivity index presents a convergent behavior, as shown in Fig. 8b.
Convergence compared to uniform h-refinement, uniform p-refinement on graded mesh
and manual hp-refinement is shown in Fig. 8c. Here, the manual hp-discretization is
obtained by constructing for each value 1 ≤ D ≤ 9 a multi-level mesh geometrically
refined toward the singularity with geometric factor 0.5 and depth D and polynomial
degree distribution equal to D − L + 1, for each leaf-element of overlay-level 0 ≤ L ≤ D.
This is analogous to the description given in [15].

Shock cube (3D)

In this section, a problem with steep concentrated gradients is introduced. Let r(xxx) =
‖xxx − x0x0x0‖2 for x0x0x0 ∈ R

3 and α, r0 ∈ R, and consider the boundary value problem 1 on
� = [0, 1]3 with �N = ∂�, �D = {000}. Moreover, let

f = 2α(1 − α2r0(r − r0))
r(1 + α2(r − r0)2)2

,

g = α

r(1 + α2(r − r0)2)
(xxx − x0x0x0) · nnn.
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Fig. 9 Shock problem: solution and discretization. a Numerical solution. b Numerical gradient magnitude. c
Ansatz order

The analytical solution to the problem readsu = arctan(α(r−r0))−arctan(α(0−r0)). Note
that ∇u is concentrated on the sphere of radius r0 with a steepness controllable by α. The
problem is solved by the adaptive procedure starting from a coarsemesh of 2×2×2 linear
elements. Figure 9a shows the gradient of the numerical solution obtained after 60 multi-
level hp-adaptive steps for α = 80, r0 = √

3, x0x0x0 = [−1/4,−1/4,−1/4]T , Cdecay = −1 and
Cerror = 0.8. The obtained discretization is strongly refined in both h and p toward the
steep gradient. This is visualized in Fig. 9b, c. Similar discretizations were also obtained for
the same problem in [47]. Figure 10a, c show exponential convergence, while Fig. 10b plots
the converging behavior of the effectivity index. For smooth problems, a p-refinement on
a fixed mesh would produce error bounds as in Eq. (16) with φ = 1/3 [46]. The first part
of the plot in Fig. 10a does not depict a straight line, as in this phase the h-refinements are
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Fig. 10 Shock problem: error estimates, effectivity index and convergence. a Error estimates and
convergence rate. b Effectivity index. c Convergence comparison

performed. In the asymptotic part, the grid is fixed and just p-refinements are employed.
Here, a clear exponential behavior is shown.

Geometrically complex example (3D)

Finally, we consider a problem with a more complex geometry taken from an industrial
application.TheFieldAssistedSinteringTechnology (FAST) is amanufacturingprocess to
produce dense artifacts frompowder by sintering. To this end, copper powder is contained
under pressure in a tool made of graphite and simultaneously heated by an electric field,
see Fig. 11a and [48] for further details. This process was simulated numerically in [49]
using electro-thermo-mechanically coupled fields. In the present paper, we only consider
the Poisson’s model problem on the original geometry to test the multi-level adaptive
procedure. Due to the symmetry of the tool, it is possible to simulate one eighth of the
whole structure only, as depicted in Fig. 11b. Therefore, we consider the problem 1 where
�N is the top surface of the structure (contained in the xy-plane at z = 67.55), �D is the
bottom surface (contained in xy-plane at z = 0) and g and f are constant: g = 1, f = 0.
The remaining faces are subject to homogeneous natural boundary conditions.
The initial mesh is obtained bymeans of the TUM.GeoFramemesh generator [50]. This

coarse mesh is composed of elements with a polynomial degree p = 2 and a second-
order polynomial mapping function describing the geometry, as presented in [51]. The
magnitude of the solution gradient is visualized in Fig. 11c alongwith themesh. Figure 11d
shows themesh and the solution after 30 adaptive steps withCerror = 0.75, Cdecay = −1.5.
Figure 11e, f illustrate the polynomial degree distribution after 30 and after 57 steps,
respectively. Interestingly, in this example the smoothness indicator happens to favor
h-refinements over p-extensions in regions where the solution is smooth. This suggests
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Fig. 11 Geometrically complex example: problem description, solution and discretization. a Schematic
sketch of the FAST process from [49]. b Geometry description in [mm]. c Solution gradient magnitude on
initial mesh. d Solution gradient magnitude on refined mesh. e Ansatz order after 30 steps. f Ansatz order
after 57 steps

that further improvements are likely to be possible by applying different smoothness
indicators. See, e.g., [2] for a comparison of different approaches found in the literature.
For this problem, no analytical solution is available such that the reference strain energy

is approximated by the extrapolation described in [45, section 4.2]. The energies used for
the extrapolation are obtained by uniform p-extensions using the trunk space [45] and
listed in Table 1. For this type of geometry with edge singularities, an optimal hp-adaptive
scheme is expected to achieve exponential convergence of the form (16) with φ = 1/4
[46]. This, however, requires anisotropic h-refinement which is still a subject of further
research in the context of the multi-level FEM. An exponential decay of the error can,
thus, not be expected. Nevertheless, the error estimator tracks closely the behavior of

Table 1 Energy extrapolation values

p #DOFs Energy

18 379448 677.30107590527268257

19 445830 677.31338863697760643

20 519669 677.32359980041076141

Extrapolated energy 677.39541370599670244
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Fig. 12 Geometrically complex example: error estimates, effectivity index and convergence. a Error
estimates and convergence rate. b Effectivity index. c Convergence comparison

the error and the adaptive procedure drastically improves the convergence rate of the
standard p-extension, as clearly shown in Fig. 12a–c.

Conclusions
This work demonstrates that the multi-level hp-adaptive scheme can be driven by means
of an explicit error estimator and provides reasoning as well as the necessary formulae
for its implementation. In this context, the decision between h- or p-refinement is carried
out according to the decay rate of the Legendre coefficients of the numerical solution.
The considered examples include singularities or concentrated steep gradients which

the error estimator tracks closely; the effectivity index also shows a converging behavior.
Moreover, exponential convergence rates of the multi-level hp-adaptive procedure are
shown. However, while the smoothness indicator performs excellently in the benchmark
with simple geometries, this was not observed for the example presenting with a complex
geometry. Nevertheless, efficient discretizations were found automatically also in this
example.
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