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Imprecise Uncertain Reasoning:
A Distributional Approach
Gernot D. Kleiter*

Fachbereich Psychologie, Universität Salzburg, Salzburg, Austria

The contribution proposes to model imprecise and uncertain reasoning by a mental

probability logic that is based on probability distributions. It shows how distributions

are combined with logical operators and how distributions propagate in inference

rules. It discusses a series of examples like the Linda task, the suppression task,

Doherty’s pseudodiagnosticity task, and some of the deductive reasoning tasks of Rips.

It demonstrates how to update distributions by soft evidence and how to represent

correlated risks. The probabilities inferred from different logical inference forms may be so

similar that it will be impossible to distinguish them empirically in a psychological study.

Second-order distributions allow to obtain the probability distribution of being coherent.

The maximum probability of being coherent is a second-order criterion of rationality.

Technically the contribution relies on beta distributions, copulas, vines, and stochastic

simulation.

Keywords: uncertain reasoning, judgment under uncertainty, probability logic, imprecise probability, second-order

distributions, coherence

1. INTRODUCTION

1.1. Logic, Probability, and Statistics in Models of Human
Reasoning
Fifty years ago Peterson and Beach (1967) wrote a paper with the title “Man as an intuitive
statistician.” In the time before the heuristics-and-biases paradigm human judgments and decisions
were seen on the background of Baysian statistics. In the same time human reasoning was
exclusively seen on the background of classical logic. The Wason task became a prototypical
experimental paradigm. One might have written a paper with the title “The human reasoner as
an intuitive logician.” This changed from the middle of the 1990s when probability entered the
scene of human reasoning research. In 1993 Cognition published a special issue on the interaction
between reasoning and decision making (Johnson-Laird and Shafir, 1993) with contributions,
among others, by Johnson-Laird, Tversky, or Evans. Shortly afterwards Oaksford and Chater
(1995) proposed to model the Wason task in terms of probabilistic information seeking. In the
same year Over investigated the suppression task in terms of probabilities (Stevenson and Over,
1995). Before that time reasoning research was exclusively done on the background of logical
benchmarks, while judgment under uncertainty, however, was investigated on the background of
probabilistic and decision theoretic benchmarks. Reasoning investigated the human understanding
of material implications (like in the Wason task), propositional inference rules (like the MODUS

PONENS), inferences with quantifiers (like syllogisms), and the validity of inference forms.
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The MODUS PONENS, for example, was not cast into a
probabilistic format (except by George Boole more than 100
years earlier). The judgment under uncertainty community
investigated updating probabilities via Bayes’ theorem,
calibration, and later on the heuristics and biases. Logicians had
already started probability logic and default reasoning in the
1960s (Adams, 1965, 1966; Suppes, 1966)1.

In judgment under uncertainty logical rules like the MODUS

PONENS or theMODUS TOLLENS were not investigated. Inference
forms of classical logic could not directly be cast into a
probabilistic format. First, there was the problem of conditionals.
In classical logic a conditional is a material implication. In
probability logic the conditional is a conditional event to which
a conditional probability may be assigned. Conditional events,
however, are outside of classical logic. Second, probabilistic
inference is not “truth-functional” in a way that is analog to
classical logic. In classical logic the truth values of the premises
determine the truth-value of the conclusion. If A is true and
A → B is true, then B is true. In probability theory the
probabilities of the premises of a MODUS PONENS do not exactly
determine the probability of its conclusion; the premises only
constrain the probability of the conclusion by lower and upper
probabilities. If P(A) = x and P(B|A) = y, then xy ≤

P(B) ≤ 1 − x + xy. Research on mental probability logic and
the new (probabilistic) paradigm after the middle of the 1990s
might have been published under the title “The human reasoner
as an intuitive probabilist.” At conferences one could follow
discussions on questions like “should binary truth values be basic
ingredients in models on human reasoning?”

No doubt, the adoption of probability extended and
enriched the research on human reasoning. However, probability
combined with some logic is still insufficient to model reasoning
and decision making in a complex and uncertain environment.
The reasoner as an “intuitive statistician” is missing. The
intuitive statistician is required when it comes to learning, to
prediction, and to decision making. A typical problem that
cannot be handled in elementary probability logic but than
can conveniently be handled in statistics is the distributional
precision. By distributional precision I mean the spread-out and
dispersion of a continuous distribution around a favorite value.
Mental probability logic assumes precise point probabilities or
probability intervals where the lower and upper bounds are again
precise. Representing imprecise uncertainties by distributions
opens the door to invoke an interface to frequencies observed in
the outside world. We will borrow the tool of beta distributions
from Bayesian statistics. Their use in psychological modeling
has the advantage of providing the possibility to update beliefs
in the light of new evidence and observed frequencies. “... the
true power of a probabilistic representation is its ability not only
to deal with imprecise probability assessments, but to welcome
them as providing a natural basis for the system to improve with
experience” (Spiegelhalter et al., 1990, p. 285). In Pfeifer and
Kleiter (2006a) we used mixtures of beta distributions to model
inferences with imprecise probabilities.

1For Adam’s probabilistic validity in the more recent research on human reasoning

see Kleiter (2018).

The present paper proposes first steps toward a mental
probability logic based on distributions. It employs second-
order probability distributions and somemore recent concepts of
modeling probabilistic dependence by copulas and vines. Human
reasoners and decision makers should be seen as a combination
of intuitive logicians, of intuitive probabilists, and of intuitive
statisticians. All three levels should be addressed in the basic
research questions, in the experimental paradigms, and in the
normative models.

Imprecision may be expressed by various distributions. One
option, for example, is the family of log-normal distributions.
We made a different choice and decided for beta distributions,
a family of distributions that seems to be simpler and more
flexible than the log-normal. So let us, at the outset, give a short
characterization of the beta family.

1.2. Beta Distribution
Throughout the contribution we will express imprecise
probabilities by beta distributions. Beta distributions build a rich
and flexible family of probability density functions (Johnson and
Kotz, 1970; Gupta and Nadarajah, 2004). An uncertain quantity
X is (standard) beta distributed in the interval [0, 1] with shape
parameters α and β if

p(x) =
Ŵ(α + β)

Ŵ(α)Ŵ(β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1. (1)

For integer values the ratio of gamma functions simplifies to
(α+β − 1)!/[(α− 1)!(β − 1)!]. We write for short X ∼ Be(α,β).
The mean and the variance of the distribution are

E(X) =
α

α + β
and Var(X) =

αβ

(α + β)2(α + β + 1)
. (2)

In the present context the random variable X is a first-order
probability and p(X) is a second-order probability density
function. In Bayesian statistics the shape parameters α and β are
related to the frequencies of success and failure. α and β may
be interpreted as weights of evidence, the pros and contras for
a binary event, or as real or hypothetical samples sizes. Be(1, 1) is
the uniform distribution. If α > 1 and β > 1 the distributions is
uni-modal, if either α < 1 or β < 1 it is J-shaped, and if α < 1
and β < 1 it is U-shaped. Figure 1 shows uni-modal examples.

While beta distributions do not arise exclusively in Bayesian
statistics, Bayesian statistics is the field in which they are
most prominent. For the assessment of subjective probability
distributions Staël von Holstein proposed to fit beta distributions
to quantiles 1970 and before (Staël von Holstein, 1970;
Kleiter, 1981). Thomas Bayes was actually the pioneer of beta
distributions in his investigation of an uncertain probability
(Bayes, 1958).

The next section gives a motivating example of the application
of beta distributions. Imprecision is contained in the verbal
uncertainty phrases we use in everyday conversation and beta
distributions may be used to represent the imprecision in a
mathematical form.
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FIGURE 1 | Beta distributions for the verbal phrases of the Lichtenstein and

Newman data in Table 1. From (left) to (right): Very unlikely, unlikely, about as

likely as not, likely, very likely.

1.3. Verbal Uncertainty Phrases
Practically all human probability judgments are imprecise.
Take the following phrases in everyday communication: “very
probably,” “pretty sure,” “highly unlikely,” and so on. Verbal
phrases are not only used to express degrees of belief in
everyday conversation, they are also used to communicate expert
knowledge, for example in geopolitical forecasting (Friedman
et al., 2018) or in climate research. The Climate Science Special
Report of the United States Government’s (Wuebbles et al., 2017)
reports a list of Key Findings. In the Climate Report each Key
Finding is weighted by a verbal phrase for its likelihood. The
“semantics” given to each of the phrases are shown in Table 1.

“The frequency and intensity of extreme heat and heavy

precipitation events are increasing in most continental regions

of the world (very high confidence). These trends are consistent

with expected physical responses to a warming climate. Climate

model studies are also consistent with these trends, although

models tend to underestimate the observed trends, especially for

the increase in extreme precipitation events (very high confidence

for temperature, high confidence for extreme precipitation). The

frequency and intensity of extreme high temperature events are

virtually certain to increase in the future as global temperature

increases (high confidence). Extreme precipitation events will

very likely continue to increase in frequency and intensity

throughout most of the world (high confidence). Observed and

projected trends for some other types of extreme events, such as

floods, droughts, and severe storms, have more variable regional

characteristics” Wuebbles et al. (2017, p. 35).

One of the first empirical studies on the interpretation of
verbal uncertainty phrases in terms of numerical probabilities
was performed by Lichtenstein and Newman (1967). Table 1
shows the medians and standard deviations of the distributions

of the responses of 180 persons. We represent the verbal
uncertainty phrases by beta distributions. Figure 1 shows the beta
distributions fitted to the medians and standard deviations of the
data.

There are two different directions in which imprecise
uncertainty can be modeled, by down-shifting or by up-shifting.
Down-shifting relaxes the precision of the description and works
with qualitative or comparative probabilities. Baratgin et al.
(2013), for example, investigated human reasoning in terms
of qualitative probabilities. Up-shifting refines the level of the
description on a meta-level. Describing imprecise uncertainty
by distributions, as proposed in the present contribution, is an
example of up-shifting.

The elementary theorems of probability theory propagate
precise probabilities of the premises to precise probabilities of
the conclusions. If, for example, A and B are two probabilistically
independent events and P(A) = x and P(B) = y, then P(A∧B) =
z = x · y. If probabilities are introduced in elementary logical
operators or theorems, however, precise probabilities of the
premises propagate to imprecise probabilities of the conclusions.
If the two events A and B are not probablistically independent
then the probability ofA∧B is an interval probability, P(A∧B) =
z ∈ [max{0, x+ y− 1}, min{x, y}].

The theory of imprecise probabilities (Walley, 1991;
Augustin et al., 2014) expresses imprecision by lower
and upper probabilities, i.e., by interval probabilities. For
psychological modeling, however, interval probabilities have
several disadvantages. The iteration of conditional interval
probabilities leads to theoretically complex solutions (Gilio
and Sanfilippo, 2013). Moreover, empirically checking the
endorsement of inferences may become too permissive because
the responses of the participants may fall into very wide intervals.
Another, more principal and theoretical difficulty poses the
question how to base decisions on probability intervals. This
problem was especially raised by Smets (1990) (for a review see
Cuzzolin, 2012). Smets distinguished credal and pignistic degrees
of belief, the first one for contemplation and the second one for
action. We will tackle the question below and propose a new
criterion, the maximum probability of being coherent. But let us
first turn to the question of how to incorporate and propagate
distributions in the framework of basic logical operators.

2. PROPAGATING IMPRECISION IN
LOGICAL INFERENCES FORMS

2.1. Elementary Logical Operators
If our knowledge about the probability of an event A is
represented by the beta distribution P(A) ∼ Be(α,β), then
our knowledge about its negation ¬A should be expressed by
P(¬A) ∼ Be(β ,α). The parameters α and β just switch positions.

In many investigations (see for example Kleiter et al., 2002)
it was observed that probability assessments of A and ¬A do
not add up to 1. If the participants of an experiment assess the
probability of A and after a while give an assessment of ¬A then
usually P(A)+P(B) 6= 1.0. Probability judgments of “Is NewYork
north of Rome?” and “Is Rome north of New York?” may easily
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TABLE 1 | Verbal uncertainty phrases (Row A) and their numerical interpretation (Row B) as used in the US Government’s climate report [Wuebbles et al. (2017, p. 35)].

A Exceptionally Extremely Very Unlikely About as Likely Very Extremely Virtually

unlikely unlikely unlikely likely as not likely likely certain

B 0–1% 0–5% 0–10% 0–33% 33–66% 66–100% 90–100% 95–100% 99–100%

C 10% (7%) 16% (10%) 50% (13%) 75% (11%) 90% (4%)

D Be(6, 25) Be(5,14) Be(7,7) Be(12,6) Be(66, 12)

Row C, Medians and standard deviations (in parentheses) of the interpretation of the same verbal phrases as in Row A by 180 persons in the study of Lichtenstein and Newman (1967).

Row D, Shape parameters of the fitted beta distributions shown in Figure 1.

lead to superadditivity, P1 + P2 > 1. Deviations from 1.0 may be
systematic or random. Poor experimental conditions contribute
to low reliability and next-best judgments. Erev et al. (1994) have
shown that low reliability of probability judgments may lead to
overconfidence and hyper-precision.

Let us next consider logical conjunction. For precise
probabilities of the premises we have

If P(A) = x and P(B) = y,

then P(A ∧ B) = z ∈ [max{0, x+ y− 1}, min{x, y}].
(3)

The lower and the upper bounds are known as the two Fréchet-
Hoeffding copulas (Nelsen, 2006). Any probability assessment z
in the interval is coherent. A probability assessment is coherent
if it does not lead to a Dutch book (losing for sure). The
top left panel in Figure 2 shows lines for equal lower (upper)
probabilities as functions of the marginals P(A) and P(B). At
(0.8, 0.6) the probabilities “project” to the interval [0.4, 0.6].

Next we replace the precise probabilities x and y by the two
random variables X and Y , where X ∼ Be(α1,β1) and Y ∼
Be(α2,β2). Moreover, we specify the kind and the degree of
dependence between X and Y by a copula C(x, y). To keep the
contribution as simple as possible we will use Gaussian copulas,
that is, Pearson’s correlations. The coefficients will be denoted
by ρ. There are many other copulas (Nelsen, 2006). The two
marginal distributions of X and Y , together with the copula
C(x, y), determine the joint distribution with the densities p(x, y)
on the unit square [0, 1]2. The bivariate Gaussian copula with the
correlation coefficient ρ is given by

C(u, v) = Nρ (8
−1(u),8−1(v))

=
1

2π
√

1− ρ2

∫ 8−1(u)

−∞

∫ 8−1(v)

−∞
exp

[

−
1

2

(

s2 − 2ρst + t2

1− ρ2

)]

dsdt

(4)

with s = u−µu
σu

and t = v−µv
σv

and 8−1(u) and 8−1(u) denote the
inverse of the univariate standard normal distribution function.

The unit square is analog to the 2 × 2 truth table in classical
logic. While a truth table has only the two values 0 and 1 on its
margins, the unit square has the real numbers between 0 and
1 along its two margins. In logic an operator maps the entries
from the 2 × 2 table into {0, 1}. In the distributional approach
an operator maps the densities on the unit-square to densities on
the [0, 1]-interval. The two place operators require twomappings,
one for the lower bound and one for the upper bound.

Each fixed value of the lower probability in (3) determines
a contour line in the joint distribution on the unit square.

FIGURE 2 | Lower and upper probabilities for the conjunction, the disjunction,

the conditional with P(A) = X and P(B) = Y , and the MODUS PONENS with

P(A) = X and P(B|A) = Y . Numerical example for x = 0.8 and y = 0.6 (for the

MODUS PONENS slightly above 0.6). The yellow shadowed areas indicate the

projections to the intervals [0.4, 0.6], [0.8, 1], [0.5, 0.7], and [0.5, 0.7].

Collecting the densities along such a contour line gives the
probability density for a fixed value of the lower probability.
And the same holds for the upper probability. So we get
two distributions, one for the lower and one for the upper
probabilities. Technically in most cases these steps cannot be
performed analytically in closed form. We use a stochastic
simulation method implemented in the VineCopula package
(Mai and Scherer, 2012; Schepsmeier et al., 2018) of the statistical
software R (R Development Core Team, 2016). The R code of
program for the analysis of the four inference forms discussed
below is contained in the Supplementary Material.

We applied the stochastic simulation method to the
conjunction, the disjunction, to the conditional event
interpretation of the conditional (if A, then B means B|A)
and to the exclusive disjunction. Figure 3 shows a numerical
example for each one of the four operators. The distributions
of the probabilities of X ∼ Be(30, 3) and of Y ∼ (20, 20) are
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FIGURE 3 | Basic logical operators. (Top row, Left) Premises P(A) ∼ Be(30, 3) and P(B) ∼ Be(20, 20). (Right) Scatter diagram of the joint distribution with Gaussian

copula ρ = 0.5. (Middle and Bottom row) Histograms of the lower and upper probabilities for AND, OR, IF-THEN, and XOR operators together with the bold lines

showing the probability of being coherent. The upper probability of the disjunction degenerates at 1.

plotted in the left panel of the top row. The two first-order
probabilities are correlated with the Gaussian copula ρ = 0.5.
The scatter diagram shows the simulation of 10,000 points of the
joint distribution on the unit square.

The histograms in the four panels show the relative
frequencies of the lower and upper bounds resulting from the
simulations. The continuous distributions approximate the
probability density of being coherent. This is a meta-criterion.
It corresponds to the probability that the value of a first-order
probability assessment falls into the coherent interval between
the two Fréchet-Hoeffding bounds. The concept will be explained
below.

To consider correlations between probabilities may require
a short comment. Probabilities may provide information about
other probabilities. Take as an example co-morbidity in age-
related diseases. Diabetes, Parkinson’s and Alzheimer’s disease
often come together (Bellantuono, 2018). If we are 90% sure that
an elderly person gets diabetes we infer that the probability that
the person gets Parkinson’s disease rises to a value above average.
The probabilities of having the two diseases are correlated. Risks
may be correlated. Assume the father of a male person suffers

from prostate cancer. Knowing that the probability of having
inherited some of the critical gens is high, increases the risk that
the person will get prostate cancer.

Figure 3 shows a stunning result: The conjunction and
the conditional (with conditional event interpretation) lead to
nearly the same results2. It will not be possible to distinguish
the two operators empirically in a psychological study. For a
speaker who expresses imprecise uncertainties the if-then and
the and have practically the same “meaning.” This throws a
new light on the conjunctive interpretation of conditionals.
In Fugard et al. (2011) and Kleiter et al. (2018) we observed
that about twenty percent of the participants give conjunctive
interpretations of the conditional. We also observed a higher
frequency of conjunctive interpretations in female participants.
In real life communication, where most content is uncertain
and the uncertainty is imprecise, this may not make a practical
difference. We will come back to this question below after we will
have introduced the distribution of being coherent.

2From Equation (6) is may be seen that as x approaches 1 the bounds of the

conditional approach the bounds of the conjunction in Equation (3).
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FIGURE 4 | Logical operators applied to rectangular distributions Re(0.60, 0.90) and Re(0.10, 0.30) and ρ = 0.7. The modes of the four probability-of-coherence

distributions are 0.101, 0.901, 0.157, and 0.701, respectively.

Figure 4 shows the results for an example with rectangular
distributions. It assumes rectangular distributions of X and Y on
the intervals Re[l1, u1] and Re[l2, u2]. Again, the conjunction and
the conditional are so similar that they cannot be distinguished
empirically.

Before we proceed with a discussion of the conjunction fallacy
we introduce the concept of the probability of being coherent.
The conjunction fallacy focuses on errors. The probability of
being coherent focuses on coherent probability assessments.

2.2. The Probability of Being Coherent
Probabilistic inferences that mimic logical inferences lead from a
set of precise coherent probabilities of the premises to coherent
interval probabilities of the conclusion. Coherence means to not
allow a Dutch book, i.e., a bet where you lose for sure3. Denote
the inferred interval by [w,m]. All values between w and m are
coherent.

3If the premises are specified by interval probabilities the situation gets more

complicated and requires the concepts of g-coherence (Gilio, 1995) or the

avoidance of sure loss (Walley, 1991). We do not need the concepts here.

In the present approach w and m are realizations of random
variables. The probability for an assessment z to be coherent is
equal to the probability that z is greater than w and less than m,
i.e., p(z ∈ [w,m]). The distribution cannot be obtained in closed
form. Numerical results are determined by stochastic simulation.
Consider for example the conjunction of A and B with P(A) =

X ∼ Be(α1,β1), P(B) = Y ∼ Be(α2,β2), and the copula C(x, y).
We perform the following steps:

1. Discretize the real numbers between 0 and 1 into n steps; we
rescale the [0, 1] interval by [0, 1, . . . , 1000].

2. Initialize an array f [0], f [1], . . . , f [n] of length n + 1 with all
values equal to 0. The array will collect frequency counts.

3. Sample two random probabilities x and y from the two beta
distributions of A and B; for doing this use the copula C(x, y).
Independence is a special case.

4. Determine the lower and upper bounds w = max{0, x+y−1}
andm = min{x, y}.

5. Add 1 to the frequency count of each discretized value between
w andm, f [i] = f [i]+ 1, i = 1000 · w, . . . , 1000 ·m.

6. Repeat the steps 3 to 5 N times. N may, for example, be
50,000.
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7. Divide the frequency counts of the discretized values by N.
The result approximates the distribution of the probability of
being coherent.

We implemented these steps in R (R Development Core Team,
2016) using the package VineCopula (Schepsmeier et al., 2018).
The package offers a multitude of different copulas that may be
used to specify the kind and the strength of dependencies (see
also Mai and Scherer, 2012).

It is rational to require that a precise probability assessment
in a probabilistically imprecise world maximizes the probability
of being coherent. The second-order probabilities do not lose the
Dutch book criterion as claimed by Smets and Kruse (1997, p.
243). If there is a set of bets, it is reasonable to prefer that one
that maximizes the probability to avoid losses. The hierarchical
construction of first- and second-order probabilities goes hand in
hand with a multi-level rationality criterion.

Smets (1990) distinguished two levels of uncertainty
representation: The credal level—beliefs are entertained—and
the pignistic level—beliefs are used to act. Interval probabilities
are typical of the credal level. They may be entertained in the
cognitive representation of uncertainty. Practical decisions,
however, require the selection of precise point values that
maximize, e.g., expected utility. Smets’ pignistic probabilities are
different from the maximum probability of being coherent. We
note that point probabilities are not always required for decision
making. In decision theory, economics, and risk management
distributions and not only exact probabilities are compared.
The criterion of stochastic dominance (Sriboonchitta et al.,
2010) may, for example, be applied to two distributions of being
coherent.

The discriminatory sensitivity of the logical connectives may
be studied by measuring the distance between two distributions
of being coherent. A well known measure for the distance
between two distributions is the Kullback-Leibler distance.
Because of the stochastic simulation the distributions of the
probability of being coherent are discrete, in our case having
N = 1, 000 increments. The Kullback-Leibler distance between
two probability distribution P and Q is given by

D(P;Q) =

N
∑

i=1

P(xi) log
P(xi)

Q(xi)
, (5)

where x1 = 1/N, x2 = 2/N, . . . , xN = 1.

Numerical probabilities equal to zero were set equal to 0.0001.
Table 2 shows the distances between ten pairs of distributions,
three kinds of beta distributions, and the two correlation
coefficients ρ = 0.5 and ρ = −0.5.

The left side of Table 2 contains distances from the uniform
distribution (UFD). These distances are all high and relative
insensitive to the kind of the distributions of P(A) and P(B) and
the correlation coefficients ρ. The greatest distances are between
OR and UFD and between AND and UFD.

On the right side of Table 2 small distance indicate that
the probabilistic semantics of the two operators is similar. The
smallest value of D(P;Q) = 0.14 is obtained for the distance
between IF and AND for P(A) ∼ Be(30, 3) and P(B) ∼ (20, 20),

that is, for one distribution with a high mean of 0.91 and one
distribution with a mean of 0.5. This may be related to the
empirical finding that about twenty percent of the interpretations
of if-then sentences are conjunction interpretations (Fugard
et al., 2011; Kleiter et al., 2018).

The conclusion that may be drawn from this analysis is:
The difference or the similarity of the probabilistic meaning
of two logical operators depends on the high, middle, or low
probabilities of the events and on the copula between the
two. This makes the empirical investigation of the semantics
of the logical operators in reasoning and everyday language
more difficult than often assumed. This holds, for example,
for our own experiments where we used truth-table tasks in
which relative frequencies were selected that may discriminate
conjunctions, disjunctions, conditionals etc. This is only possible
if the frequencies presented to the participants in the truth tables
are close to being equally distributed and not rather high or
low.

We next turn to the conjunction fallacy, one of the best known
fallacies in the heuristics and biases paradigm. We will see that
imprecision is a factor that may explain the fallacy at least to some
degree.

2.3. Conjunction Fallacy
In the same way as we asked for the probability of being coherent,
wemay ask for the probability of being incoherent. A prototypical
example for incoherent probability judgments is the Linda task
(Tversky and Kahneman, 1983):

Linda is 31 years old, single, outspoken and
very bright. She majored in philosophy. As a
student, she was especially concerned with issues
of discrimination and social justice, and also
participated in anti-nuclear demonstrations. Rank
order the probabilities for

• Linda is a bank teller.
• Linda is active in the feminist movement.
• Linda is a bank teller and is active in the

feminist movement.
Many people think the conjunction is more probable than one
or even both its conjuncts. They are victims of the conjunction
fallacy.

Like many other tasks in the literature on fallacies and biases,
the Linda task is an example for highly imprecise probabilities.
Denote “Linda is a bank teller” by A, “Linda is a feminist” by B
and assume P(A) = X ∼ Be(α1,β1), P(B) = Y ∼ Be(α2,β2), and
a Gaussian copula with ρ = 0.7.

You create two vague ideas of the probabilities of A and
B, modeled here by two beta distributions. Next you think
about reasonable values for the probabilities of the conjunction,
modeled here by the distribution of the probability of being
coherent. In the terminology of Smets the three distributions
belong to the credal level. The beliefs are just “entertained” and
their imprecision is part of their representation. When it is time
for judgment one value x is sampled from the distribution for A
and one value y from the distribution for B. Now if you really
think hard you infer the third value z on the basis of x and y and
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TABLE 2 | Logical operators: Kullback-Leibler distances between the second order distributions of the probability of being coherent and the uniform distribution (UFD)

and between the distributions of the conjunction (AND), the disjunction (OR), the conditional (IF) and the exclusive disjunctions (XOR).

P(A) P(B) ρ AND OR IF XOR OR IF XOR IF XOR XOR

UFD UFD UFD UFD AND AND AND OR OR IF

Be(30,3) Be(20,20) 0.5 7.80 8.78 7.80 7.74 11,06 0.14 0.63 9.94 9.30 0.21

Be(30,3) Be(20,20) −0.5 8.77 7.80 7.80 7.74 11,06 0.47 0.19 9.40 9.77 0.21

Be(100,10) Be(20,2) 0.5 8.22 9.10 8.45 8.17 6.78 3.16 10.43 0.716 10.47 10.46

Be(100,10) Be(20,2) −0.5 8.55 9.34 8.54 8.33 8.86 4.80 10.63 1.35 10.63 10.63

Be(20,100) Be(5,20) 0.5 8.55 7.88 6.91 7.67 6.41 6.18 3.25 3.13 1.46 0.68

Be(20,100) Be(5,20) −0.5 8.66 8,12 6.92 7.77 8.73 6.51 4.82 4.16 1.98 0.74

ρ denotes the value of the Gaussian copula.

TABLE 3 | Probability of a conjunction error.

Beta distribution Be(1,1) Be(2,2) Be(4,2) Be(8,2) Be(16,2)

Probability of a

conjunction error

0.50 0.50 0.33 0.22 0.15

The beta distribution of one conjunct is held constant at Be(30, 5); Gaussian copula

ρ = 0.5.

the inferred value may be coherent. If you are lazy you sample a
third time, now a value z from the distribution for being coherent.
You come up with a judgment z that is decoupled from x and y.
If you think hard your judgment of z is coupled to the precise
values x and y, with less strain it is sampled from a distribution. In
this case z may easily exceed the upper bound of the conjunction
probability, i.e., the minimum of x and y and the result is a
conjunction error. The probability of this one-sided incoherence
corresponds to the probability that z is in the interval between the
upper boundm and 1, P(z ∈ [m, 1]).

Applying simulationmethods again gives a surprising result. If
my probability assessment of “Linda is a bank teller” is close to 0.5
or if my assessment of “Linda is active in the feminist movement”
is close to 0.5, the probability of a conjunction error may be as
high as 50%. Imprecise probabilities may induce a high percentage
of conjunction errors. If the location of the central tendency of
one of the marginals is close to 0.5, then the probability of a
conjunction error is close to 0.5. The probability decreases when
both means move away from 0.5. The size of the correlation (or
the copula parameter) does nearly not matter. Table 3 gives a few
numerical examples.

We next turn to uncertain conditionals, the salt in the soup of
probability logic. The interpretation of conditionals by humans
was and is an especially important topic in human reasoning
research. Imprecise conditionals were studied in terms of lower
and upper probabilities. In the next section we will turn to
distributional imprecision.

2.4. Conditional
Modeling conditioning with imprecise probabilities is an
intricate problem. This is seen from the many different proposals
made in many-valued logic, in work on lower probabilities and

the Dempster-Shafer belief functions, or in work on possibilistic
and fuzzy approaches. In the coherence approach inferences
where the conclusion is a conditional require special methods.
The extension of the Fundamental Theorem of de Finetti to
conditional probabilities is due to Lad (1996). He also explains
how numerical results are found by linear in-equalities and
fractional programming (Lad, 1996).

The psychological literature reports many experiments on the
interpretation of uncertain conditionals.The truth table method is
used to distinguish between the material implication of classical
logic and the conditional event interpretation. Especially the
“new probabilistic paradigm” (Over, 2009; Elqayam, 2017) in
reasoning research has used this task. The task is based on
the truth values of the antecedent and the consequent. I, the
experimenter, show you, the participant, the four combinations
of the binary truth values of A and of B together with their
associated probabilities. You tell me the probability you assign
to “If A then B.” I infer on which truth values you were attending
and this allows me to reconstruct your logical interpretation of
the conditional.

Given P(A) = x and P(B) = y the probability of P(B|A) = z is
in the interval

z ∈

[

max

{

0,
x+ y− 1

x

}

, min
{

1,
y

x

}

]

, x > 0. (6)

The Figures 3, 4 show examples for the distribution of P(B|A),
the probability of a conditional. We have already pointed out that
the results for the conjunction and the conditional can be very
similar.

For the material implication (denoted by A → B) this is
different. Given P(A) = x and P(B) = y the probability of
P(A → B) = z is in the interval

z ∈ [1−min{y, 1− x}, min{1− y+ x, 1}]. (7)

The lower and upper probabilities are equivalent to those of the
disjunction ¬A ∨ B. If the probability of the antecedent P(A) is
high then the distribution of the lower and upper probabilities
and the probability of being coherent are very similar to the
disjunction A ∨ B. With increasing P(A) the distributions of
¬A ∨ B and A ∨ B get more and more indistinguishable. In
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FIGURE 5 | Four inferences rules. (Upper panels) Probability distribution of the minor premise and the major premises P(B|A). Histograms of the lower and upper

probabilities of the four rules. The continuous distributions show the distributions of the probability of being coherent.

an imprecise probabilistic environment the question “material
implication or disjunction?” does not matter. The question
“conditional event or material implication?”, however, makes
a big difference: The conditional event interpretation leads to
much lower probabilities than the material implication. This is
a highly relevant aspect for the interpretation of if-then sentences
in the context of risk assessment.

The interpretation of conditionals leads us to the next section,
to logical inference rules. Psychologists have often investigated
the MODUS PONENS along with the MODUS TOLLENS and two
logically non-valid argument forms.

2.5. The MP-quartet
Four inference rules were often investigated in the psychology
of human reasoning: The quartet of the MODUS PONENS,
the MODUS TOLLENS (both logically valid) and the argument
forms of DENYING THE ANTECEDENT and AFFIRMING THE

CONSEQUENT (both logically nonvalid), here called “the
MP-quartet” for short. The MODUS PONENS

From {if A then B, A} infer B

is the best known andmost important inference rule in deductive
logic. It is endorsed by practically all people (Rips, 1994). If the
premises are uncertain and the conditional is interpreted as a
conditional event we have in terms of point probability:

From {P(B|A) = x, P(A) = y} infer P(B) = z, and z ∈ [xy, 1− y+ xy].

(8)
For the lower and upper bounds for the three other rules see for
example (Pfeifer and Kleiter, 2005).

Figure 5 shows the results for the four inference rules for a
numerical example. The premises have the distributions X ∼

Be(15, 3), Y ∼ Be(6, 3), and the Gaussian copula ρ = 0.54.
The MODUS PONENS has a maximum probability of being

coherent that is close to the distribution of the minor premise
P(A). For the MODUS TOLLENS the maximum probability is at
1.0. The MODUS TOLLENS is the strongest inference rule (Pfeifer
and Kleiter, 2005, 2006b). Psychologically theMODUS TOLLENS is
difficult and complex; it’s a “backwards” rule and it involves two

4Denying the antecedent and affirming the consequent degenerate at 0; theMODUS

TOLLENS degenerates at 1.
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negations. Usually the endorsement is much lower than for the
MODUS PONENS.

The two logically non-valid inference forms lead to
probabilities of being coherence that are close to uniform
distributions. In a psychological investigation the two rules
should stick out by the variance of the probability judgments.
More or less any probability judgment in [0, 1] is coherent.

The following section applies distributional imprecision to
a series of examples. Most of them are well-known from the
psychological literature but the inclusion of imprecision into
their analysis leads to new properties and results.

3. APPLICATIONS AND EXAMPLES

3.1. Natural Sampling
One of the best known fallacies in judgment under uncertainty is
the base rate neglect (Kahneman and Tversky, 1973; Bar-Hillel,
1980; Koehler, 1996). A doctor may, for example, neglect the
prevalence of a disease and concentrate only on the likelihood of
a symptom given the disease. While this is often a major fallacy,
there are situations in which base rate neglect is completely
rational. This holds also for beta distributions: Assume the shape
parameters α and β of a distribution Be(α,β) are equal to the
frequency of a binary feature in a sample of n observations,
n = α + β . Split the total sample into two subsamples so that
the sample sizes add-up to n. So the subsample sizes are not pre-
planned. In statistics this is called natural sampling (Aitchison
and Dunsmore, 1975). We have Be(α1,β1), Be(α2,β2) and α =

α1+α2 and β = β1+β2, and n = α1+α2+β1+β2. For natural
sampling it was proven (Kleiter, 1994) that the base rates in Bayes’
Theorem are “redundant” and may be ignored. The result for
precise probabilities has often been used by Gigerenzer within his
frequentistic approach (Gigerenzer and Hoffrage, 1995; Kleiter,
1996).

Ignoring base rates may not only be rational for precise but
also for imprecise probabilities. For natural sampling it holds
that if the knowledge about the prevalence of a disease H is
represented by the beta P(H) ∼ Be(α,β) and the conditional
probabilities of a symptom D are represented by the betas
P(D|H) ∼ Be(α1,β1) and P(D|¬H) ∼ Be(a2, b2), then the
posterior distribution of the disease given the symptom D is
simply

P(H|D) ∼ Be(α1,α2),

mean = α1
α1+α2

, variance = α1α2
(α1+α2)2(α1+α2+1)

.
(9)

If frequencies are used to update subjective probabilities and
if (and only if) natural sampling conditions hold, the resulting
degrees of belief remain in the family of beta distributions,
i.e., the distributions are natural-conjugates. Note that (relative)
frequencies and probabilities are not the same. The frequencies
are used to estimate probabilities and the representation of
the imprecision of these estimates is an integral part of any
statistical approach. The property of natural sampling extends
to multivariate Dirichlet distributions and is thus helpful
to represent imprecise degrees of belief in more complex
environments. If the natural sampling assumption is dropped,

then vines and copulas offer elegant methods to model the
representation and propagation of degrees of belief.

3.2. Rips Inference Tasks
To show that a wide range of logical inference tasks can be
modeled within the distributional approach we discuss very
briefly two examples from Rips (1994). Rips compared the
predictions of his proof-logical PSYCOP model with empirical
data. He investigated 32 inference problems of classical sentential
logic. Among them the following one:

IF Betty is in Little Rock THENEllen is in Hammond. Phoebe is in

Tucson AND Sandra is in Memphis. Is the following conclusion

true: IF Betty is in Little Rock THEN (Ellen is in Hammond AND

Sandra is in Memphis) (Rips, 1994, p. 105).

When we represent the conditional by a conditional event5 and
first introduce precise probabilities:

P(B|A) = x
P(C ∧ D) = y

P(B ∧ D|A) ∈ [0, x]

The interval probability of the conclusion, P(B∧D|A) ∈ [0, x], is
easily obtained after seeing that the probability of the conjunctive
premise is irrelevant. P(D) is greater than P(C ∧ D) and may
maximally be 1. The upper probability of the conclusion is thus

P(B∧D|A) = P(A∧B∧D)
P(A)

and P(B∧D|A) = P(D) P(A∧B)
P(A)

= P(B|A).

Analog relationships hold for the probability distributions.
In a second step beta distributions for the premises are

introduced, say X and Y , and by stochastic simulation the
distributions for the lower and upper probabilities and the
distribution of the probability of being coherent are determined.
The distribution of the probability of being coherent is practically
uniform over the range between 0 and the mean of X. For
high probabilities of the conditional premise the inference is
inconclusive. In classical logic and in the proof-logical approach
of Rips the inference is valid.

Here is a second example (Example M in Rips, 1994, p. 151):

¬A
B

¬(A ∧ C) ∧ (B ∨ D)

With P(¬A) = x and P(B) = y the probability of the conclusion
is in the interval z ∈ [max{0, x+y−1}, 1}]. The lower probability
is the same as the lower probability of a conjunction. If x and y
are less than 0.5, then the inference is noninformative and the
distribution of the probability of being coherent is a uniform
distribution. The inference was endorsed by only 22.2% of the
participants.

5Note that Rips (1994, p. 125) prefers the suppositional interpretation of the

conditional; the domain of a conditional consists only of those possibilities in

which the antecedent is true. PSYCOP rejects the paradoxes of the material

implication!
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We next turn to an example from the judgment under
uncertainty domain. It may be considered as an example of
Ockham’s razor (Tweney et al., 2010) where less is more.

3.3. The Doherty Task
For the conjunction of n events we have: If P(Di) = αi for
i = 1, . . . , n, then

P(D1 ∧ D2 ∧ . . . ∧ Dn) ∈

[

max

{

n
∑

i=1

αi − (n− 1)}, min{αi}

}]

.

(10)
This is a straightforward generalization of the elementary
conjunction rule. Such generalizations were first investigated
by Gilio (2012) and are also studied in Wallmann and Kleiter
(2012a,b, 2014a,b). There is a psychologically interesting property
of such generalizations. It is the phenomenon called degradation.
As n, the number of events in the generalization, increases the
inferences become less and less informative. More information
leads to less conclusive inferences.

An example in the field of judgment under uncertainty is
the so called pseudodiagnosticity task introduced by Michael
Doherty (Doherty et al., 1979, 1996; Tweney et al., 2010; Kleiter,
2013). It was analyzed with second-order distribution by Kleiter
(2015).

Assume you are a physician and you are 50% sure that one of your

patients is suffering from disease H, P(H) = 0.5. You know that

the probability that if the patient is suffering from H, the patient

shows symptom D1 is 0.7, P(D1|H) = 0.7. You may obtain just

one more piece of information. There are three options:

1. P(D2|H), the probability of a second symptom given the

presence of the disease,

2. P(D1|¬H), the probability of the first symptom given the

absence of the disease, or

3. P(D2|¬H), the probability of the second symptom given the

absence of the disease.

What is your choice?

Most people select P(D2|H). Actually P(D1|¬H) is the best
choice. With P(D1|¬H) Bayes’ theorem gives the posterior
probability

P(H|D1) =
P(H)P(D1|H)

P(H)P(D1|H)+ [1− P(H)]P(D1|¬H)
. (11)

Before any of the three options is selected, the posterior
probability is in the interval (Tweney et al., 2010)

P(H|D1) ∈

[

P(H)P(D1|H)

P(H)P(D1|H)+ 1− P(H)
, 1

]

. (12)

If however, as most participants do, P(D2|H) is selected, then the
interval is

P(H|D1,D2) ∈

[

P(H)P(D1,D2|H)

P(H)P(D1,D2|H)+ 1− P(H)
, 1

]

. (13)

FIGURE 6 | Degradation in the Doherty task. (Top left panel) The symmetric

beta distributions Be(5, 5) of P(H) (blue), Be(20, 10) for P(D|H) (red), and the

uniform distribution Be(1, 1) for P(D|¬H) (black). (Top right panel)

Second-order posterior distribution of the probability of H when the

distributions of the likelihoods P(D|H) and P(D|¬H) are known. (Bottom

panels) Lower and upper distributions of the probability of H when the

distributions of the likelihoods of three (Left panel) and four (Right panel)

symptoms are known; all likelihood distributions are Be(20, 10) and Be(1, 1),

respectively. The black line shows the probability of being coherent.

The interval in (13) is wider than the interval in (12) as

P(D1,D2|H) ≤ min{P(D1|H), P(D2|H)} ≤ P(D1|H).

Selecting P(D1|¬H) results in a precise point probability while
selecting P(D2|H) results in an interval that is wider than the
initial one.

If we continue to select only the “affirmative ” likelihoods
given H and not those given ¬H, then the intervals get wider
and wider and after a few more steps become noninformative,
that is, [0, 1]. The additional information imports noise. Figure 6
shows an example for P(H) ∼ Be(5, 5), P(Di|H) ∼ Be(20, 10),
and P(Di|¬H) ∼ Be(1, 1). For i = 1 there is one posterior
distribution, the lower and the upper distributions coincide;
for i = 3 and i = 4 the lower and upper distributions
get close to 0 and 1. The probability of being coherent
becomes a uniform distribution. One reason that contributes
to the degradation effect are the unknown probabilities of the
conjunctions P(D1|H) ∧ . . . ∧ P(Dn|H) and P(D1|¬H) ∧ . . . ∧

P(Dn|¬H).
The Doherty task demonstrates that we should compare the

results from experimental groups with those from control groups.
The preference for selecting the affirmative likelihood only is
seen as a confirmation bias: people do not consider alternative
hypotheses. The phenomenon thatmore informationmay induce
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more imprecision has been studied in Wallmann and Kleiter
(2012a,b, 2014a,b) and Kleiter (2013).

Technically the analysis of a multivariate problem like
the Doherty task requires stochastic simulation in vines.
“Vines are graphical structures that represent joint probabilistic
distributions. They were named for their close visual resemblance
to grapes ...” Kurowicka and Joe (2011, p. 1). Vines may
be compared to Bayesian networks. In psychology Bayesian
networks were used, for example, to model uncertain reasoning
(Oaksford and Chater, 2007), to model causal reasoning
(Tenenbaum et al., 2007), word learning (Xu and Tenenbaum,
2007), or to model cognitive development (Gopnik and
Tenenbaum, 2007). Bayesian networks encode conditional
independencies and represent the (usually precise) joint
probabilities in tables. Vines encode marginal probabilities and
(partial) correlations, or more generally, copulas. Psychologically
it is more plausible that humans encode multivariate uncertain
structures by their (conditional) dependencies and not by
their (conditional) independencies. Moreover, encoding
marginal probabilities is much easier than encoding multivariate
probability tables. There is no space here for further speculations.
For the mathematical treatment of vines the reader is referred to
Kurowicka and Cooke (2004, 2006), Kurowicka and Joe (2011),
and Mai and Scherer (2012).

A psychologically interesting difference between Bayesian
networks and vines is that vines encode dependencies “directly”
by (partial) correlations (actually copulas) and not by conditional
probabilities. It is highly plausible (but seldom investigated) that
humans encode the strength of a dependence not by a probability
table but by a one-dimensional quantity.

While Bayesian networks rely on (conditional) independence
assumptions, vines rely on copulas. Copulas encode
dependencies. To keep the present text simple we use Gaussian
copulas (correlations) only (see Equation 4). The recent advances
in the theory of copulas and vines, and the development of
software for the simulation methods allow to model multivariate
imprecise inference. There is not enough space here to discuss
a more complex example, but see the study of the Doherty’s
pseudodiagnosticity task in (Kleiter, 2015). The suppression task
in the following section involves three variables.

3.4. Suppression Task
The Suppression Task was introduced by Byrne (1989). She
observed that while a simple MODUS PONENS is endorsed by
nearly all people, the endorsement decreases substantially when
an additional conditional premise is introduced. The additional
premise suppresses the acceptance of the conclusion. Table 4
shows Byrne’s by now classical example: The simple MODUS

PONENS “from {P1, P3} infer C” is endorsed by 96% of the
participants in Byrne’s Experiment 1. When the additional
premise P2a is included, “from {P1, P2a, P3} infer C” the
endorsement drops to 38%. When the alternative premise P2b is
introduced, “from {P1, P2b, P3} infer C,” the endorsement is the
same as for the simple MODUS PONENS.

In an abstract formal system the second premise is logically
and probabilistically irrelevant. It has no impact upon the
conclusion, neither upon its truth nor upon its probability.

TABLE 4 | The various premises and the conclusion in the Suppression Task.

P1 Main conditional If Mary has an essay to write, then

she will study late in the library.

P2a Additional conditional If the library is open, then she will

study late in the library.

P2b Alternative conditional If Mary has some textbook to read,

then she will study late in the library.

P3 Categorical premise Mary has an essay to write.

C Conclusion Mary will study late in the library.

Attending to the semantic content of the conditional premises,
however, leads to a reinterpretation of the inferences. The
conditionals P1 and P2 have the same consequent and Mary can
only study late in the library if the library is open. Thus for
the additional conditional the semantic content (Byrne, 1989)
invites a conjunctive interpretation of the antecedent, {if A ∧ B
then C,A}. The alternative conditional P2b, however, invites a
disjunctive interpretation of the antecedent, {if A ∨ B then C,A}.

The distributional interpretation of the three different
inferences are:

1. Simple MODUS PONENS: P(C|A) = X, P(A) = Y .
2. Conjunctive antecedent: P(C|A∧ B) = X , P(A∧ B) = Y . We

note that if P(A) = x and P(B) is unknown and thus may have
any value between 0 and 1, P(A ∧ B) is in the interval [0, x].
The bounds for the MODUS PONENS are z ∈ [0, 1− x+ xy]

3. Disjunctive antecedent: P(C|A∨ B) = X , P(A∨ B) = Y . P(B)
is unknown and P(A ∨ B) may have any value in the interval
[x, 1]. The bounds for the MODUS POENS are z ∈ [xy, y].

Figure 7 shows the distributions of the lower and the upper
bounds and of the probability of being coherent. The example
uses the following distributions: (1) For the simple MODUS

PONENS P(A) = X ∼ Be(10, 5) and P(C|A) = Y ∼ Be(20, 5).
(2) For the conjunctive interpretation (additional conditional)
P(A ∧ B) = X ∼ Be(10, 5) and P(C|A ∧ B) = Y ∼ Be(20, 5)
(3) For the disjunctive interpretation (alternative conditional)
P(A ∨ B) = X ∼ Be(10, 5) and P(C|A ∨ B) = Y ∼ Be(20, 5).

In the figure the simple MODUS PONENS and the disjunctive
antecedent (IfMary has an essay to write or ifMary has a textbook
to read) lead to very similar results. The conjunctive antecedent
(If Mary has an essay to write and if the library is open) leads
to a very flat distribution. The distribution of the lower bound is
degenerate at zero. The probability of the conjunction is much
lower than the probability of the disjunction.

The distributional approach models the results of the
Suppression Task pretty well. Moreover, it provides quantitative
predictions for the differences in the various experimental
conditions.

The suppositional interpretation of an “if H then E” sentence
assumes H to be true. Also in a conditional probability P(E|H)
the event H is assumed to be true. Jeffrey pointed at cases where
observations are blurred. Under candle light the color of an object
may be ambiguous. How to condition on soft evidence? Jeffrey
was the pioneer of the analysis of soft evidence to which we will
turn next.
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FIGURE 7 | MODUS PONENS in the Suppression Task. (Top panels)

Probability distributions of the premises P(C|A) ∼ Be(15, 3) (Right) and

P(A) ∼ Be(6, 4) (Left). Simple MODUS PONENS: Lower and upper histograms of

the probability of the conclusion P(C). (Bottom panels, Left) The premises

are interpreted as a conjunction, P(C|A ∧ B) and P(A ∧ B). (Right) The

premises are interpreted as a disjunction , P(C|A ∨ B) and P(A ∨ B).

3.5. Soft Evidence
Usually conditioning updates probabilities in the light of hard
evidence, that is, the conditioning event is supposed to be
true. But what if the conditioning event is only uncertain?
Jeffrey introduced “Jeffrey’s rule,” a proposal of how to update
probabilities by soft evidence (Jeffrey, 1965, 1992, 2004).
Historically the problem was ready posed by Donkin (1851)
and his solution is equivalent to Jeffrey’s rule (for a proof see
Draheim, 2017). Draheim gives an overview of the literature in
Appendix A of his monograph. Jeffrey’s rule has been criticized
by several authors (Levi, 1967; Diaconis and Zabell, 1982;Wedlin,
1996; Halpern, 2003; Jaynes, 2003). The rule is non-commutative,
i.e., it is not invariant with respect to the order of updating.
Moreover, it involves an independence assumption. For a
psychological investigation of Jeffrey’s rule see Hadjichristidis
et al. (2014).

In the present approach it is straightforward to update
probabilities by evidence that is probable only. We have two
random variables X and Y (first-order probabilities). We want
to know the (second-order) distribution of Y given a fixed value
of X. The problem is analog to a regression problem in statistics:
The distribution of Y is predicted on the basis of a given value of
X = x . The distributional approach offers a direct representation
of Jeffrey’s problem.

Figure 8 shows a numerical example. On the left side the
unit square [0, 1]2 and the contour lines from the bivariate
joint distribution resulting from two beta marginals and a

FIGURE 8 | (Left panel) Contour lines of the joint distribution with the

marginals X ∼ Be(9, 3) and Y ∼ Be(4, 4), and Spearman correlation τ = 0.5.

Regression line at x = .9 (quantile at 0.5) together with 90 % confidence band

(quantile at 0.05 and 0.95). (Right panel) The two marginal betas and the

conditional distribution p(y|x0 = 0.9) along the vertical line in the contour plot.

Spearman copula6. On the right side the two marginals and
the distribution of Y at X = 0.9. The contour lines and the
distribution at the cutting point 0.9 is obtained by stochastic
simulation.

4. DISCUSSION

We have distinguished logical, probabilistic, and statistical
principles and argued that for a plausible model of human
reasoning ingredients from all the three domains are necessary.
We have seen that the constraints of probability logic induce
only lower and upper probabilities, or lower and upper
distributions in the case of imprecision; they do not lead to
exact point probabilities, or to just one distribution in the case
of imprecision. To overcome this kind of indeterminacy we
have introduced the concept of the probability of being coherent.
One may follow the proposal of Smets (1990) and distinguish
credal and pignistic degrees of belief, corresponding to the whole
distribution for the cognitive representation and the maximum
for selecting just one favorite value. It is rational to base one’s
decisions on values obtaining a maximum probability of being
coherent.

We have investigated the differences between the logical
conjunction and the conditional. For not too extreme
probabilities these differences may be small, so small that
it will be impossible to distinguish the two interpretations
empirically. We observed that in typical truth table tasks about
twenty percent of the participants interpret if-then sentences
as conjunctions (Fugard et al., 2011; Kleiter et al., 2018).
In the context of everyday conversation, say, the different
interpretations would not matter. We compared the sensitivity
of the differences between the logical operators by the Kullback-
Leibler distances between their distributions. The distance of an
inferred distribution, inferred from a logical argument, from the

6In the literature Spearman correlation copulas are often preferred to Gaussian

copulas as they keep the distribution of the marginals and the correlation

independent.
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uniform distributions, as a standard of ignorance, is an indicator
of the informativeness and strength of the argument.

We remembered that neglecting base rates may be rational
under natural sampling conditions. This property holds for
beta distributions, their expected values and variances. We
have demonstrated how typical tasks of deductive reasoning
(Rips, 1994) can be cast into a probabilistic format including
imprecision. A paradoxical property is observed in Doherty’s
information seeking task (Doherty et al., 1979; Tweney et al.,
2010; Kleiter, 2015): Sampling more and more information
from just one experimental condition, without sampling from
a control condition, leads to less and less precise conclusions.
The suppression task (Byrne, 1989) was among the first tasks
framed and analyzed in a probabilistic format (Stevenson and
Over, 1995). Expressing the implicit assumptions by second order
probability distribution predicts the empirical results reported in
the literature. Jeffrey’s proposal of how to update probabilities
by uncertain evidence is well known as Jeffrey’s rule (Jeffrey,
1965). In a bivariate model with two first order probabilities X
and Y treated as random variables the problem becomes a typical
regression problem, predicting the distribution of Y given a value
of X.

Gigerenzer et al. (1991) proposed a probabilistic mental
model (PMM) of confidence judgments. The model was
introduced and demonstrated by the experimental paradigm of
city size judgments. In the first of two experiments twenty five
German cities with more than 100,000 inhabitants were selected.
Participants were presented all 300 pairs of the cities and asked
to decide which one has more inhabitants. In addition, the
participants rated how sure they were that each of their choices
was correct.

Using just one quantitative property, city size, underlying
all questions in the experimental procedure introduced a big
difference with respect to the general knowledge almanac
questions widely used in other studies of overconfidence7.

The data may be looked at from the perspective of the
method of paired comparison (Thurstone, 1927). Processing the
data with Thurstone’s probabilistic model of paired comparison
one would introduce a normal distribution for the size of
each of the cities. Such a probability distribution models the
participant’s knowledge about the size of a city and the precision
of this knowledge. The confidence judgment then becomes
a function of the differences in the location and spread of
these distributions. The distributions are thus not second order
probability distributions, but distributions over a quantitative
property, here the number of inhabitants of a city. The property is
imprecise (compare the intervals in Figure 2 of Gigerenzer et al.,
1991), not the probability8. The same holds for the cues in the
PMMs.

7The study of overconfidence can be tricky as overconfidence for E goes hand in

hand with underconfidence for non-E. Scoring rules avoid this problem (Kleiter

et al., 2002).
8It may be mentioned that the evaluation of the data by the method of

paired comparison would allow to calculate several interesting statistics like item

characteristics, the consistency of the judgments, or interindividual differences.

I consider the analyses presented in this contribution as part
of a thorough task analysis of reasoning tasks. Task analysis
is a prerequisite for a good psychological investigation. The
results of our analyses show how difficult it may be to run
a good reasoning experiment. A major problem, e.g., is how
to manipulate and measure imprecision. Another problem
is that inferences with the same logical operators or the
same logical inference rules may be different for different
levels of the probabilities of the premises. High probabilities
may lead to one result, low probabilities to a different one.
Results may also not be invariant with respect to positive or
negative correlations of the involved uncertain quantities and
risks.

Modeling imprecise judgments has a long history. It
started with Gauss and his analysis of human judgment
errors in astronomical observations. It continued in the
nineteenth century with Weber’s and Fechner’s just noticeable
differences, thresholds and psychophysical functions. The
probabilistic modeling of sensory data by von Helmholtz
pioneered present day’s Free Energy Principle. Thorndike
introduced the law of comparative judgment. In the second
half of the twentieth century signal detection theory, stimulus
sampling theory, stochastic choice theory, Brunswick’s lens
model, stochastic response models, neural networks, and
decision theory took up the problem. At the beginning
of the twenty first century computational neuroscience
contributed substantially to model imprecision in information
processing.

Models of the functioning of the brain claim that the
neuronal processes underlying cognitive processes like memory,
perception, or decision making are inherently stochastic and
noisy. A good example is the work of Rolls andDeco (2010). Spike
trains of neurons follow Poisson distributions, cell assemblies are
modeled by mean-field analysis and the dynamics of elementary
decision processes are simulated by integrate-and-fire neural
networks. The authors observe that “... if a decision must be
made based on one’s confidence about a decision just made,
a second decision-making network can read the information
encoded in the firing rates of the first decision-making network
to make a decision based on confidence ...” (Rolls and Deco,
2010, p. 167). A probability assessment is a read-out of one’s own
confidence, the product of an auto-epistemic self-monitoring
process (Rolls and Deco, 2010, p.196ff.). The assessment might
correspond to the point of maximum probability of being
coherent.

Precision plays an important role in the theories of free
energy, active inference, and predictive coding (Friston, 2010;
Buckley et al., 2017). In a task in which the participants had
to decide on the direction of a set of systematically moving
dots in a set of randomly moving dots the precision of the
responses was related to the response times. It was shown that
the precision of the responses was controlled (among other
locations) in the posterior parietal cortex (FitzGerald et al., 2015).
Precision may be modulated by neurotransmitters. Friston et al.
(2012), for example, hypothesized that precision is related to
dopamin.
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In probability logic all operators and inference rules
infer interval probabilities. Using conclusions iteratively would
require to propagate lower and upper probabilities again and
again. For a human brain to keeping track of lower and
upper bounds will soon become too messy. One way out
of the exploding complexity is to simplify and process the
probability distributions of being coherent. To use a metaphor:
In a cell assembly the distributions may result from the
many single cell activations constrained by the coherence
criterion.
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