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Abstract: Motivated by the nice characterization of copulas A for which dw.(4, A?) is maximal as established
independently by Nelsen [11] and Klement & Mesiar [7], we study maximum asymmetry with respect to the
conditioning-based metric D; going back to Trutschnig [12]. Despite the fact that D;(A4, A?) is generally not
straightforward to calculate, it is possible to provide both, a characterization and a handy representation
of all copulas A maximizing D, (4, AY). This representation is then used to prove the existence of copulas
with full support maximizing D, (4, A?). A comparison of D1 - and de.-asymmetry including some surprising
examples rounds off the paper.
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1 Introduction

A pair (X, Y) of random variables is called exchangeable (or symmetric), if (X, Y) and (Y, X) have the same
distribution. Obviously exchangeable random variables are necessarily identically distributed but not vice
versa. Trying to quantify asymmetry of identically distributed (continuous) random variables, copulas natu-
rally come into play. In fact, if X, Y have both distribution function F and F is continuous, by Sklar’s theorem
(X, Y) is exchangeable if, and only if, the copula A coincides with its transpose A‘ (see Section 2). Indepen-
dently of each other, Nelsen [11] as well as Klement & Mesiar [7] proved in 2006 that de(4, A?) < % with
equality if, and only if, A(3,1) = 3 and A(3, 2) = 0or A'(3, 3) = 1 and A'(3, 2) = 0 holds (A’ as usual
denoting the transpose, defined by A’(x, y) = A(y, x)). As direct consequence, a copula A has maximal de.-
asymmetry if, and only if,

Ha(l0, 31x (3, 3D = ua((3, 31x[3, 1D = pa((3, 11x[0, 3D = 3

or
Ha(10, 1% [5, 5D = pae(3, 31 %[5, 1) = uue([3, 11 <00, 3D = §

is fulfilled, implying that the area of the support supp(A) of each such copula A is at most % For a discussion
of the multivariate case we refer to [5].

In the current paper we replace d-. by the metric D; on the family of all two-dimensional copulas € as
introduced in [12] and study analogous questions. Working with (mutually) completely dependent copulas
we first show max, e D1(4, AY) = % and then provide a surprisingly simple and handy representation of all
copulas A fulfilling D1(4, AY) = % Based on this representation we then provide examples showing that,
contrary to the case of maximal de.-asymmetry, copulas with maximal D,-asymmetry can have full support,
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and study the interrelation of maximal de- and D;-asymmetry. In particular, we prove that for each A with
maximal D1-asymmetry we have de(4, A) € [0, 1] and that for each A with maximal de.-asymmetry we have
D1(4,AY = g.

The rest of the paper is organized as follows: Section 2 gathers some preliminaries and notations that
will be used throughout the paper. Section 3 first solves a minimization problem in the class of all completely
dependent copulas and provides a characterization of all mutually completely dependent copulas with max-
imal D;-asymmetry. The afore-mentioned general handy characterization/representation of all copulas with
maximal D1 -asymmetry is presented in Section 4. Section 5 contains the comparison of the two notions quan-
tifying asymmetry and the Appendix complements some tedious calculations concerning the minimization
problem in Section 3.

2 Notation and Preliminaries

For every metric space (2, d) the Borel o-field on Q will be denoted by B(Q), 6x will denote the Dirac measure
(concentrated) at x € Q. and A, will denote the Lebesgue measure on B(R) and B(R?) respectively. For every
probability measure v on B(Q) the support of v, i.e. the complement of the union of all open sets U fulfilling
v(U) = 0, will be denoted by supp(v).

In the sequel € will denote the family of all two-dimensional copulas, P the family of all doubly stochastic
measures, i.e. the family of all probability measures on B([0, 1]>) whose marginals are uniformly distributed
on [0, 1]. For every C € C the corresponding doubly stochastic measure will be denoted by p, d- Will denote
the uniform metric on €, given by

d-(A,B)= sup |A(x,y)-B(x,y).
(x,y)€l0,1]2
As usual, M denotes the minimum copula, IT the product copula, W the lower Fréchet-Hoeffding bound, and
A the transpose of A € @, defined by Af(x, y) = A(y, x). For every A € € the diagonal 64 : [0, 1] — [0, 1] is
defined by 6,4(x) = A(x, x). For further background on copulas we refer to [2] and [10].

To keep notation simple and consistent throughout the paper we will let A, B, C (and the corresponding
versions with subindices) denote copulas, E, U, V, S will denote Borel sets, H will denote two-dimensional
distribution functions, F and G univariate distribution functions.

Suppose that (Q1, dy) and (Q,, d,) are metric spaces. A Markov kernel from Q1 to B(Q,) is a mapping
K : Qq x B(Q,) — [0, 1] such that x — K(x, E) is measurable for every fixed E € B(Q,) and E — K(x, E)isa
probability measure for every fixed x € Q. Given real-valued random variables X, Y on a probability space
(Q, A, P), a Markov kernel K : R x B(R) — [0, 1] is called a regular conditional distribution of Y given X if for
every E € B(R)

K(X(w), E) = E(1g o Y|X)(w) 6]

holds P-a.e. It is well known that for each pair (X, Y) of real-valued random variables a regular conditional
distribution K(, -) of Y given X exists, that K(-, -) is unique PX-a.s. (i.e. unique for PX-almost all x € R) and
that K(-, -) only depends on PX®Y, Hence, given C € Cand (X, Y) ~ C, we will denote (a version of) the regular
conditional distribution of Y given X by K¢(:, -), directly view it as Markov kernel from [0, 1] to B([0, 1]), and
refer to K¢ (-, -) simply as regular conditional distribution of C or as Markov kernel of C. Note that for every
C € @, its regular conditional distribution K¢(:, -), and every Borel set E € B([0, 1]?) we have the following
disintegration (here Ex := {y € [0, 1] : (x, y) € E} denotes the x-section of E for every x € [0, 1])

/ K, Ex) dAGY) = pc(E), @
[0,1]
so in particular
/ Ke(x, U) dAG) = A(D) 3)
[0,1]
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for every U € B([0, 1]). On the other hand, every Markov kernel K : [0, 1] x B([0, 1]) — [0, 1] fulfilling
(3) induces a unique element y € Pe via (2). For more details and properties of conditional expectation,
regular conditional distributions, and disintegration see [6] and [8]. For examples underlining the usefulness
of Markov kernels in the copula setting we refer, for instance, to [3, 13, 14] as well as to [2] and the reference
therein.

T will denote the family of all A-preserving transformations on [0, 1], T, the subclass of all bijections in 7.
A copula C will be called completely dependent (mutually completely dependent) if there exists a transforma-
tion h € T (h € Tp) such that K(x, E) = 1g(h(x)) = 6, (E) is a Markov kernel of C. C; will denote the family
of all completely dependent copulas, A; will denote the completely dependent copula induced by h € T. For
alternative characterizations of (mutual) complete dependence we refer to [12] and the reference therein.

The metric D; on C is defined by

Dy(A, B) - / / K4 (x, [0, Y1) - K5 (x, [0, y1)| dAG) dA®Y).
[0,1][0,1]

=:Dy p(y)

According to [12] (also see [2, 3]) the resulting metric space (C, D1) is complete and separable, convergence
with respect to D; implies convergence with respect to de (but not vice versa) and max, gce D1(4, B) = %

3 Maximal D;-asymmetry of completely dependent copulas

As already mentioned in the introduction, according to [7, 11l max ¢ ¢ dee(4, AY = % holds. We are now going
to prove max,ce D1(4, AY) = % and proceed in several steps: First we minimize the function a — D{(aA; +
(1 - @)A,, IT) for every pair A1, A, of completely dependent copulas, concentrate on completely dependent
copulas A, A, for which D;(44, A,) is maximal, and then characterize all h € T}, such that D{(4, Aﬁl) is
maximal.

Fix A1, A, € @y, let hy, h, denote the corresponding A-preserving transformations and consider a €
[0, 1]. Setting Cq = aA1 + (1 — a)A, with a € [0, 1] we have

fin (@) 1= Dy (Cay T = / / IKe, (%[0, Y1) - Ky (x, [0, ¥1) | dACOdAY)
[0,1]]0,1]

- / / |10, (1 () + (1 - @110, (2 (X)) - y| dACIAAY).
[0,1][0,1]

A straightforward calculation (see Appendix) yields

1
e @) = 303030942 [ Cop @)D =2 [ Yo 0 1AAY)
[0,1] [0,1]

~2a / Coos (2 Y)AA(Y) + 2 / YCh, (2 Y)AA)
[0,a] [0,a]

2(1-a) / Chyoa (> Y)AA) + 2 / YCiy 1y (> VAR,
[0,1-a] [0,1-q]
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where Cy, j, denotes the copula defined by Cy, 5,(x, y) = A(h1*([0, x]) N h3*([0, y])) for all x, y € [0, 1] (see
[9]). Obviously fy,, », € C*([0, 1]) and we get

fron@) =20~ 1-2 | aCyy g, (@, a) + / Ch 0, AAQY) | + 2aCh, 1, (@ @)
[0,a]

2w -a1-a)- / Chu (s Y)AAW)
[0,1-a]
- 2(1 - a)Ch1,h2(1 -a,1- a)

=2a-1-2 / Chy,n, (v, Y)AA(Y) + 2 / Chy.n, v, Y)AA(Y).
[0,a] [0,1-a]

Hence f; ,. € C*([0, 1]) and
fin (@ =2=2Cp p,(,0) = 2Cp, p,(1-a,1-a) 22 -2a-2(1-a) =0,

SO f, n, is convex on [0, 1]. Considering f; , (3) = 0 it follows that f;, p, attains its global minimum at the
point 3, and we get

. 1
arer%(l)nﬂDl(Ca, = 5 *2 / (1 -y)Chy .1, (v, )A(Y) - 2 / (1= 2y)Chy 1, (v, Y)dA(Y). (4)
’ [0,1] [0,1]

Remark 3.1. The minimum can also be attained at a point a # % Consider t € (0, 1) and let hy, h, € T}, be
defined by h;(x) = x and hy(x) = (t - x)1g »(x) + X1} 1)(x). Then Cp, ,(y,y) = y forally € [t, 1] and for every
a € (t, 3) we get

fhon(@=2a-1+2 / ydA(y) =2a-1+1-a)’-a®=0.
[a,1-a]

Hence D{(Cq, IT) is minimal for every a € [t, %].

Example 3.2. Consider C4 = aM + (1 — @)W. Then h;(x) = x and h,(x) = 1 — x for all x € [0, 1] and we get
Chyn, 0, ¥) = A([0,yIN[1 -y, 1]) = W(y, ). So

min Dl(Ca,H) = Dl <M,H)
a€c(0,1] 2

=T12+2 /(1_)’)W(y’y>d’1()’)‘2 /(1-2y)W(y,y)d/1(y)

[0,1] [0,4]
- L2 [ a-yey-nde) - -
12 6
(1]
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The value % attained by the copula C 1 in Example 3.2 is as close as we can possibly get to II. In fact, for
arbitrary A1, A, € €4 with corresponding transformations hy, h, € T we have

D (H1522,m) - 2 [ @0 a10) -2 [ @-2)0,00)000)

0.1 [0,3]
1
2 1542 [ =900 0 000) -2 [ @ -9)C,0:9)00)
0.1 [0,3]
1
“12t? / (1= Y)Chy.n, (v, Y)AAR)
[%,1]
Lo (1-y)Qy-1)dA(y) = 1 o
12 c
[1,1]

with equality if and only if Cy, 5,(y,y) = 0 on [0, 3] and Cp, 4,(y,y) = 2y -1 ony € [3, 1]. The following
theorem adds some equivalent conditions to this observation.

Theorem 3.3. Suppose that hy, h, € T. Then the following conditions are equivalent for the corresponding
completely dependent copulas A, := Ap,, Ay := Ap,.

@ Dy (4, -

(b) Ch, 1, (y,y) = 6w(y),

(©) [[hy = Rally = [ 4 1h1(0) — B () dAG) = &,

(d) D1(A1,Ay) = % (i.e. A1 and A, have maximum D1 -distance).

Proof. The equivalence of (a) and (b) has already been shown, the fact that (c) and (d) are equivalent was
proved in [12]. It therefore suffices to show that (b) and (c) are equivalent, which can be done as follows:
Using Proposition 15 in [12] (saying that the D -distance of two completely dependent copulas coincides with
the L!-distance of the corresponding A-preserving transformations) we get

=Rl = [ [ (10, (hi00) - 15(ta(x) dAAAG)

[0,1][0,1]
= / / (1h;1([o,y1>(x)—2'1h;l([o,y])mhgl([o,yn(x)+1h;1([o,y1>(x)) dA()dA(y)
[0,1][0,1]
=2/yd/1(y)—2 / Chy,n, (v, ¥)dA(y)
[0,1] [0,1]
: 1
-1-2 [ swo)aAw) - 5. ©
[0.1]

so (b) implies (c). To complete the proof set §1,(y) := Cp, p,(v, ¥) and assume that 8y (yo) < §12(yo) holds for
some Yo € (0, 1). Considering continuity of §;, the fact that ||k — h,||; < % holds follows immediately. [
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Figure 1: Completely dependent copula Ay, with maximal D1-asymmetry as considered in Example 3.4.

We now turn to the situation hy = h € T, hy = h~! and start with the following example.

Example 3.4. Let h € T}, be defined by h(x) = x + 3 for x € [0, ;] and h(x) = x - } for x € (, 1] (see Figure
1). In this case we easily get ||h - h™! | L= 1, implying D1(Ay, AL) = D1(Ay, Ap1) = 1, where the last equality
follows from (see Lemma 10 in [12])

A506y) = Anly.2) = A (10.y] ([0, D) = A (10,1 ([0, x])
= A (([0, YD) N[0, x1) = A+ (x. ).

Example 3.4 implies

sup D1(Ap, A}) = supD1(4, A") =
heT, Ace

N| =

In other words, referring to the quantity x(4) := 2D1(4, A?) as Di-asymmetry of A € €, the maximum D;-
asymmetry of a copula is 1 and there exists a mutually completely dependent copula A, with k(4;) = 1.
Notice that the definition of x : € — [0, 1] implies that x(4) = 0 if, and only if, A = A, i.e. if A is symmetric.

The subsequent theorem builds upon Theorem 3.3 and provides an easy characterization of all mutually
completely dependent copulas Aj; having maximal D;-asymmetry.

Theorem 3.5. Consider h € T},. Then the following conditions are equivalent:
(a) Ay has maximal D1-asymmetry (i.e. k(Ap) = 1),

®) ||h -], =3,
(c) A(h™*([0, 3D N h([0, 3D) = 0.

Proof. Condition (c) implies Cy »-1(3, ) = 0, from which Cp, j-1(y,y) = W(y,y) forall y € [0, 1] follows
immediately. The remaining implications are a direct consequence of Theorem 3.3. O
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4 Maximal D,-asymmetry of general copulas

We now turn to the general situation and provide necessary and sufficient conditions for a copula A € C to
have maximal D-asymmetry (@ 2,4t as at the end of Section 2).

Theorem 4.1. For A € C the following statements are equivalent:

(a) A has maximum D-asymmetry,
(b) @y a(3)=1,
(c) There exists a Borel set U € B([0, 1]) with the following properties:

AU N[0, 3D =AUN[5,1D) = 4, pa(U %[0, 31) = 3, pa((0, 31x U) = 0. @)

Proof. The equivalence of the first and the second assertion is a direct consequence of the results in [12] (for
all copulas A, B the function @4 p is Lipschitz-continuous with Lipschitz constant 2 and bounded from above
by the tent map T(y) = min{2y, 2(1 - y)}).

The fact that the second condition implies the third one can be proved as follows. Considering

1= 0 (3) = [ [Ka (. [0, 3]) =K (x, [0, 1)) dAGo)
[0.1] —:g(x)€l0,1]

it follows immediately that the set A = {x € [0, 1] : g(x) = 1} fulfills A(A) = 1. Setting U := {x € [0,1] :
Ka(x, [0, 3]) = 1}, applying Scheffé’s theorem ([1]) and disintegration we get

1= 0 (3) = [ [Ka (0 [0, 3]) ~Kar (x, [0, 4]) [ dAG0)

[0,1]
-2 [ (Ka (x. [0, 3]) = K (x. [0, 3])) a0
U
= 2ua(U %[0, 3]) - 2pa (U x [0, 3). )
Additionally considering
paUx10,1]) = /KA (x, [0, 1]) dAGO) = / 1dA =AU N 4) = AU),
unA unA
a0, 11x 1) = pa(Ux[0, 1)) = /KA[ (x, [0, 1]) dAGY) = /om:o

unA unA

the last two identities in eq. (7) and A(U) = % follow immediately and it remains to show that U fulfills A(U N
(3,1]) = #.Eq. (7) implies u (Ux[0, 3D\([0, 3]1xU)) = 3. Hence, using ([0, 1]1xV)° = (3, 1]1xU)u([0, 1]xU°)
and the fact that p, is doubly stochastic we get

3 =ua((Wx[0, 3D\ ([0, 31x 1))
=pua((UNG, 1) xWUN[0,3D) +ua(Ux ([0, 31N TY)
<min{A(U N (3, 1), A(U N0, 3D} + A([0, 31N U°)
=min{r, 3 —r} +r=:£0r)

wherer = A(UN(3, 1]). Incase of r < } we would get £(r) = 2r < 1, sor > ; holds. Considering pus (Ux(3, 1]) =
0, ua((3, 1] x U) = 3 and proceeding analogously yields r < %, from which we finally get A(U N (3, 1]) = 7.
In case assertion three is fulfilled, disintegration implies that both K,(x,[0,1]) = 1y(x) and

K4¢(x, [0, 31) = 1yc(x) hold A-a.e., from which, considering

Dy pe(d) = / IKa(x, [0, 11) - K (x, [0, 1D]dAGY) = / 11500 - 10 (IdA) = 1
[0,1] [0,1]
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the second assertion follows immediately. O

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 2: Shuffles with maximum D;-asymmetry. For the shuffle in the left panel the set U is given by U = [0, ] U [%, %] U
[5,2101Z,1].

Figure 2 depicts some shuffles with maximum D;-asymmetry. Interpreting these shuffles as checkmin
copulas and replacing the minimum copula M by any other copula B, as direct consequence of Theorem
4.1 the resulting copulas have maximum D;-asymmetry too. Assertion three in Theorem 4.1 can further be
simplified, the following lemma holds:

Lemma 4.2. Suppose that k(A) = 1 and that U is a Borel set fulfilling eq. (7). Then there exists a measurable
partition of [0, 1] into sets U,, V1, U, V>, of length % fulfilling the following properties:

1. U C [O’ %]9 Vi = [09 %] \ U, Up C (%9 1]’ Vy = (%’ 1] \ Ua,
2. ua(Uy x V1) = pa(Vy x V) = pa(Uy x Up) = pa(V2 x U3) = .

Furthermore, setting F;(x) := 4A(U; N[0, x]) and G;(x) := 4A(V;N[0, x]) fori € {1, 2} and x € [0, 1], there exist
copulas C1, C», C3, C4 € C such that the following identity holds for all x, y € [0, 1]:

Ax,y) = 3 (C1(F1(x), G1(1) + C2(G1(x), G2(1) + C3(F2(x), F1(¥)) + C4(G2(x), F2(¥))) )

Proof. SetU; =UNJ0,3], U, =UN(3,1],V=[0,1]\U, V1 = VN[0, 3]land V, = VN (3, 1]. Then eq. (7)
implies A(U1) = A(U>) = = A(V1) = A(V,) as well as

0 =pa([0, 31 x U) = pa(Uy x Uy) + ua(Uy x Ua) + pa(Vy x Uy) + pa(Vy x U) (10)
0 =pa(V x[0, 31) = ua(Vy x Ur) + ua(Vy x V1) + pa(Va x Up) + pa(V x V). (11)

Considering # = ua(Uy x [0, 3]) = ua(Uy x Uy) + ua(Uy x V4) and using eq. (10), ua(Uy x V1) = % follows
immediately. Additionally, p4 (V1 x V5) = 7 is a direct consequence of ; = (V1 x (3,1]) = pa(Vy x Up) +
1a(Vy x V) and eq. (10).
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Using the fact that K4(x, [0, 3])(x) = 1y(x) and K4 (x, (%, 1]) = 1y(x) hold A-a.e. and applying disintegration
we get

pa0, 319 = [ Kax,10, 3DaAG0 = [ Rac,10, 3DdAG0 = AU) = § = pa(Us x V)
03] i
Having this, p4((3, 1] x [0, 3]) = # follows and, using eq. (11), we get
7 = 1a((3,11x[0, 3]) = pa(Uz x Uy) + ua(Uy x V).
Since u, (U, x V1) > 0 would imply
3 = AV1) 2 pa(Ux V) = up(Uy x Vq) + pa(Uy x Vi) > pa (U x Vi) = 4

ua(Us x Uy) = 7 follows. To show py(V, x U,) =  we proceed analogously, use 7 = s (V> x (3, 1]) and the
fact that py (V5 x V3) > 0 would imply % 2 u (V1) > %, a contradiction.

The proof of eq. (9) is now a straightforward application of Sklar’s Theorem and the fact that the sets U; x
Vi, V1 xV,, Up x Uy, V;, x U, are pairwise disjoint:

A(x,y) = pa([0, x] x [0, y]) = %(ZHJA(Ul N[0, x]x Vi N[0, y]) + 4pua(Vi N[0, x] x V2 N[0, y])

+ 4 (Uy N[0, X] x Uy N[0, y]) + 4ua (V5 1[0, x] x Uy N [0, y]))

= % (C1(F1(x), G1(1)) + C2(G1 (%), G2 (1)) + C3(F2(x), F1(y)) + C4(G2(x), F2(y)))

The reverse implication of Lemma 4.2 holds as well:

Lemma 4.3. Suppose that U, U, € B([0, 1]) fulfill U; C [0, 3], U, C (3,11, A(U1) = A(U,) = %, and let

C1, C2, C3, Cy be arbitrary copulas. Set V1 = [0, 31\ Uy, V; = (3, 1]\ U, as well as F;(x) := 4A(U; N [0, x]) and
Gi(x) := 4A(V; N [0, x]) fori € {1, 2} and x € [0, 1]. Then the function A : [0, 1]> — [0, 1], defined by

A(x,y) = § (C1(F1(x), G1() + C2(G1(x), G2()) + C3(F2(x), F1(¥)) + C4(G2(x), F2(y))) , (12)

is a copula with maximum D1-asymmetry.

Proof. First of all notice that the distribution functions Fy, F,, G1, G, are absolutely continuous and let
VE,» VF,, VG, VG, denote the corresponding probability measures on B([0, 1]). It is clear from eq. (12) and
Sklar’s theorem that A is two-dimensional distribution function. Since A also fulfills the boundary condi-
tions of a copula, A € € follows and it suffices to prove k(A) = 1, which can be done as follows: Setting
A1(x,y) := C1(F1(x), G1(y)) yields a continuous distribution function A;, whose corresponding probability
measure 9, fulfills 94, ([0, 1]?) = 1 as well as

94, (6, XIx [y, ¥]) = A1(X,y) - A1(x,7) - A1(X, y) + A1(x, y)
= C1(F1(x), G1(y)) - C1(F1(x), G1(y)) - C1(F1(x), G1(y))
+ C1(F1(0), G1(y)

for all [x, X] x [y, y] € [0, 1]?. Specializing to ly, y1 = [0, 1] we get

9, (Ix, x]x[0,1]) = C1(F1(%), 1) - C1(F1(%), 1) = F1(X) - F1(%) = vF, ([x, X])

for all [x,x] c [0, 1], implying 94,(U; x [0,1]) = vg,(U;) = 1. Proceeding in the same manner yields
94,([0,1] x V1) = vg, (V1) = 1, from which altogether we get 94,(U; x V1) = 1. Setting Ay(x,y) :=
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CZ(G]_(X)’ GZ()’)), AB(X’ Y) = C3(F2(X)a Fl()’)), A4(X’ )/) = Cl}(GZ(X)s FZ(y))’ and proceeding in the same man-
ner shows v, (V1 x V) = vg, (U, x Up) = v4,(V, x Uy) = 1. Using the fact that Uy, Us, V4, V, are pairwise
disjoint yields

pa(Uy x V1) = ua(Vy x V) = pa(Uy x Uy) = ua(Va x U2) = £,

from which, setting U = U; U U, the assertion follows as direct consequence of Theorem 4.1. O

Summing up, we have proved the following handy characterization of all copulas with maximum D;-
asymmetry.

Theorem 4.4. The following statements are equivalent for A € C:

(a) A has maximum D1-asymmetry.
(b) There exist sets Uy, U, € B([0,1]) with Uy C [0, 3], U» C (3,1], A(U1) = A(U,) = , and copulas
Cy, C,, C3, C4 € Csuch that (with the notation of Lemma 4.3) the following identity holds:

A(x,y) = #(C1(F1(x), G1(y)) + C2(G1(x), G2(y)) + C5(F2(x), F1(y))
+ C4(G2(x), F2(y)))

Replacing the sets Uy, U, in Lemma 4.2 by Borel sets U} C [0, 1], U; C (3, 1] with A(U;4U}) = A(U,AUS) = 0
obviously results in the same copula A (4 denoting the symmetric difference). Considering the equivalence
relation ~ induced via (Uy, U,) ~ (Uf, Uj) if and only if A(U;AU}) = A(U,AU%) = 0 and letting € denote the
induced equivalence classes in

{(U1,Uy) : Uy € B([0, 3]), U; € B((3, 1), A(U1) = A(U) = 7 }
we get the following result (C* := @ x € x € x @):
Corollary 4.5. There is a one-to-one-correspondence between & x C* and {A € € : k(A) = 1}.
Lemma 4.3 has the following consequence:

Corollary 4.6. Suppose that U; € B([0, 1), U, € B((3, 1]) fulfill A(U,) = A(Uy) =  and set V1 = [0, 3]\
U, V, = (%, 1J\U, and S = Uy x V1 U V1 x V, U U, x Uy UV, x U,. Then there exists an absolutely continuous
copula A with x(A) = 1 and p4(S) = 1.

Proof. Defining f : [0, 1] — [0, o0) as f(x, y) = 4 - 15(x, y) yields the probability density of a copula A with
the desired properties. O

Remark 4.7. Given sets Uy, U, with the afore-mentioned properties, Theorem 4.4 allows not only to con-
struct absolutely continuous copulas A with k(A) = 1 and p4(S) = 1 as mentioned in Corollary 4.6. In fact,
since the four copulas C1, C,, C3, C4, may be chosen arbitrarily, copulas B with k(B) = 1, up(S) = 1 and arbi-
trary singular mass ],lséi"g ([0, 11%) € [0, 1] may easily be constructed (see [14] for the definition of the singular
component).

We conclude this section with an additional example illustrating that copulas with maximum D; -asymmetry
(contrary to copulas with maximal de.-asymmetry) may distribute mass on the full unit square.

Example 4.8. There exists an absolutely continuous copula A with x(4) = 1 and full support supp(4) =
[0, 1]%. In fact, letting Q denote the set constructed in the proof of Lemma 3.1 (by starting with the Smith-
Volterra-Cantor set, pasting affine copies of the set in the holes of the set and proceeding in the same manner)
in [4], setting U; = 3 Q as well as U, = U; + 3, and applying Corollary 4.6 yields a set S with A,(S) = 1 and
A2(0 N S) > 0 for every open set O C [0, 1]%. As a consequence, the corresponding (absolutely continuous)
copula A fulfills p4(0) > 0 for every open set O C [0, 1]2, implying that A has full support.
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5 The interrelation with maximal d..-asymmetry

In this section we study the interrelation between maximal D;- and maximal d..-asymmetry. We start with
an example of a sequence (A4;)xcy of copulas with maximum D;-asymmetry that converges to II with respect
to des. In other words: There are copulas with maximum D;-asymmetry whose d..-asymmetry is arbitrarily
close to zero.

Example 5.1. For m € N let the copula A, correspond to a uniform distribution on 4™ segments as depicted

in Figure 3 for the cases m = 1, 2, 3, 4. More formally, if x € [zm, g{,ﬂ] for some j € {0,1,...,2™ ! -1},
then the Markov kernel K, (x, E) of Am is given by
1 2m1q
Kan (6 B) = ooy S 1 (x- 5k + 25 (13)
i=0

and for all other cases the formulas are analogous - the probability measure Ky, (x, -) is a uniform discrete
distribution on 2™~ points. Theorem 4.4 implies that k(A,) = 1 holds for every m € N. Moreover the con-
struction of (Am)men implies that for every point (x, y) € {0, zlk, - TR 2;;1, 1}? with k € N the sequence
(Am(x, y))men is eventually constant. In fact, for (x, y) = (zk, 2k) we have An(x,y) = % foreverym > k + 1.
Since the set A = (Ji2; Ay with Ay = {0, %, %,..., 2k 1,1}? is dense in [0, 1]?, the sequence (Am)men

converges on a dense set to I, from which limp—,cc doo(Am, IT) = O follows.

In order to show that the de.-asymmetry of copulas A with x(4) = 1 is bounded from above by ; we will use
the following simple lemma:

Lemma 5.2. Every copula A € Cwith A(3, 1) = 1 fulfills des(A, A") < 1.

Proof. Considering |A(x,y) - Al(x,y)| = |A(y, x) - Al(y, )| it suffices to prove the result for points (x, y) €
[0, 1] with y < x. Additionally, without loss of generality, we may assume that A(x, y) = A!(x, y) holds (oth-
erwise A and A change place). Moreover, Lipschitz continuity of copulas implies |A(x, y) - Al(x, y)| < 1 for
all (x,y) € [0, 1]%\ [4, 212, In fact, for (x,y) € [0,1] x [0, 1] we have A(x, y), A'(x,y) € [0, #], from wh1ch
|[A(x,y) - Al(x, V)| <7 follows immediately. For (x, y) € [ 1] x [1 W 1] Lipschitz continuity of copulas yields
A(x,y),A'(x,y) € ly - #,y], implying |A(x, y) - A'(x, )| < #. The remaining case (x, y) € [0, 1] x [3, 1] can
be handled analogously Addltlonally, considering that A(x, y) Al (x y) € [0, 1] holds for all (x, y) € [0, 5 112
(smce A(z, 1) = 1) the proof is complete if A(x,y) - A(x,y) < 4 is proved for all (x,y) € Q; U Q> where
04 2, 4] x [L 7 2] and Q, denotes the set of all points in the triangle with vertices (2, 2) ( ) 2 > 4

For (x y) € Q1 we obviously have

D=

Aly,x)=y-ua([0,ylx[x,1]) 2y -

implying
A Y) A y) = A, y) - Aly, ) < Alx,y) -y + L < L.
A(

In case of (x, y) € Q5 (coordinate-wise) monotonicity yields A(y, x) = A(%, x) = % y). Considering
A(x,x) - Ax,y)-AG, )+ AL, y) =20
using Lipschitz continuity and coordinate-wise monotonicity we finally get
ACGy) A G Y) = ACGY) - Ay, ) s x- 3+ AG, ) -AG, ) =x- 1<%,
which completes the proof. O

Having this, the proof of the following theorem is straightforward.
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Theorem 5.3. Every copula A having maximum D1-asymmetry satisfies ds(4, A?) < % and the upper bound %
is best possible.

Proof. Suppose that A € C has maximum D;-asymmetry. Theorem 4.4 implies A(3, 3) = #, so Lemma 5.2

yields deo(A4, AY) < % Since the completely dependent copula A;, considered in Example 3.4 obviously fulfills
Ay(3, %) = #+ aswellas Ap(}, 3) = 0, the proof is complete. 0O
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Figure 3: The copulas Ay, A, A3, A4 used in Example 5.1; each of them concentrates its mass uniformly on the blue segments.

Due to the simple form of copulas with maximum d..-asymmetry (see [7, 11]) it is possible to calculate
the D;-asymmetry for all these copulas.

Theorem 5.4. All copulas A € C with dw(A, A") = 1 fulfill D(A, A") = §.
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Proof. As mentioned in the 1ntr0duct1on (also see [11]) dso(A, A?) is maximal if, and only if, A(3, 3) =3 1 and
A(L 3 3) = O or Al (3, 3) =3 1 and A! (3, %) = 0 holds. Without loss of generality we may consider the case
AL 3> 3) =3 1and A(2 s, 3) 0. Using the fact that p4 is doubly stochastic,

1a(l0, 31 (3, 3D = ua((3, 31x[3, 1D = pa((3, 11x[0, 3D = §

follows, and we can find copulas Ay, A, A3 € Csuchthat uy = 3 yf 2+ ny +3 y{;l holds. Thereby the
function fj; : [0, 1> = [i ] x [’ L ’]13 given by

fl}(xa Y) = (%71) yg;l)

for each (i, j) € {1, 2,3}% and yﬁ" denotes the push-forward of 4 via f;; for every A € C. In the same manner

Mgt = 3ny1 + 1;1’;13} + “{415 follows.

Forx € [O, 11 we get

0 ify € [0, 1],
|I(A(X, [0, y]) _KAI(X’ [0’ )/])‘ = I(A1(3X’ [O’ 3)’_ 1]) lfy € 3’ 3]
1-KyBx[0,3y-2]) ifye(3,1],

forx € 3, 3]

KAa(ax_la [0’ 3)’]) lfye [O’ %],
[Ka(x, [0, y]D) = Kae(x, [0, yD)] = ¢ 1 ify e (3, 2],
1_I(A2(3X_13 [0, 3}’_2]) 1fy€ (%a 1]5

follows, and for x € ( , 1] we have

KA;(BX - 2) [O’ 3}’]) 1f)’ € [O’ %]a
[Ka(x, [0, ¥1) = K0, [0,yD] = § 1 - Ky Bx - 2,[0,3y - 1)) ify € (3, 31,
0 ify € (3,1].

Using change of coordinates and disintegration we easily get

S121 / /\KA(x,[o,yD—KAz(x,[o,y])|dA(x)dA(y)
[% 3J103]

/ / Ka,(x, [0, 3y - 1)dAG)AAY) = ~ / Gy - DdAG) = 5.

[4:3100.1]

w\»—-
w\m

Proceeding analogously for

with (i, j) € {1, 2, 3}? yields

1 1 1 1 1 1
S1,1 =0, S1,3 = 15, $2,1 = 18> 52,2 = §» 52,3 = 1g> S3.1 = 18> $3,2 = 18> 53,3 =0,

from which we immediately get D1(4, A") = & + 3 = 3. O

Combining Theorem 5.3 and Theorem 5.4 shows that there exists no copula having both, maximum do.-
asymmetry and maximum D -asymmetry.
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Appendix

In the sequel we derive the formulas for f;, ;, as mentioned at the beginning of Section 3. Doing so we consider
four different cases and consider

Kc,(x, [0, y]) -y = aljg ) (h1 (X)) + (1 - a)1jg (2 (X)) — ¥

1-y if x € h7'((0,y]) N k3 ([0, y]),
Ja-y  ifxen (0, yD N3y, 1D,
) 1-a-y ifxe iy, 1) N hst((0, D),

-y if x € hy'(ly, 1) N k3 Iy, 1]

Case 1: x € h71([0, y]) n h31([0, y]),

/ / (=Y 0,yD;2 10,y) VA AL
[0,1][0,1]

_ / (1 - AT (0, y]) N 31 ([0, yD)dAW)
[0,1]

_ /(1 ~ Y)Chy, 0, V)W)

[0,1]

- / Co o (v YAAQY) - / YCh, 1, (vs Y)AAQY).

[0,1] [0,1]

Case 2: x € h1*([0, y]) N h32((y, 1]),

/ |a - J’|1h;1([0,y])mh;1((y,1])(X)dA(X)d/‘(y)

[0,1]]0,1]

- / - y AT (10, yD) 1 13 (v, 11)AAG)

[0,1]
- [ a1 (= Ci 023) dA)

[0,1]
- / (@=Y) (¥ - Crys 0> )) dAQ) + / ¥ - @) (¥ - Cryma 3> ) dA)
[0,a] (a,1]
_ / (ay = = €Chy 1,0, 1) + YCho 0, ) dAO) + / (v* - ay + &Chy i, (2 1) = YCiy 1, 0,7 ) dAW)
[0,a] (a,1]

e ol
-5 =% a [ G0 @0)+ [ yen0,0.900)

0,4l [0,a]
1-a® a-d°
e Chy o, v, V)AAY) - | yChy o, (v, ¥)dA(Y)
(a,1] (a,1]
1
=g(2—3a+2a3)+a / Ch,.n, (v, Y)AA(Y) - 2 / Ch,.n, (v, Y)AAY)
[0,1] [0,a]
- / YChyn, (v, Y)AA(Y) + 2 / YCh, .1, v, Y)AA(Y).
[0,1] [0,a]

Bereitgestellt von | Universitaetsbibliothek Salzburg
Angemeldet
Heruntergeladen am | 27.03.18 11:48



DE GRUYTER Maximum asymmetry of copulas revisited —— 61

Case 3: x € h1((y, 1]) N h31([0, y]),

/ ‘1 - - y|1h11((y,1])ﬂh£l([O,y])(X)dA(X)dA(y)
[0,1][0,1]

- / 11— a -y (0, 11) N B3([0, y])dAG)
[0,1]

= / |1-a-y|(y-Ch,n,)) dA(y)
[0,1]

- / (1 -a=y) (¥ - Cnyon, (v, ¥)) dAY) + / =1+ (y = Cny,n, 5 ) dAY)
[0,1-a] (1-a,1]

- [ (A= @y =y - 0=, 020) YO, 02)) AAD)
[0,1-a]
o [ (-0 (1= 0 0.) YO 0.) dAD)
(1-a,1]

_(-a’ (a-o’
-2 3

-(1-a) / Chy ., (v, Y)AA(Y) + / YChy n, (v, Y)AA(Y)
[0,1-q] [0,1-a]

_(1-a)3 N (13
1 (13 a) (1-a) 2(1 a) +(1-a) / Chyi, 5 Y)AAY)
(1-a,1]

- / YChy,n, (v, y)dA(y)
(1-a,1]

- % (1 -3a+6a’- zoﬁ) +(1-a) / Chy.n, v, Y)AAY) - 2(1 - @) / Chy.n, v, YAAY)

[0,1] [0,1-a]

- / YChyn, (v, Y)AA(Y) + 2 / YChyn, (v, Y)AA(y).

[0,1] [0,1-a]
Case 4: x € h1*((y, 1) n h3*((y, 1)),

/ / YLy, 1t (,1) DA A(y)
[0,1][0,1]

- / YA (v, 1) 1 B3 (v, 1D)dAQ)

[0,1]
- / Y (1 =2y + Chy (v, ¥)) dAQY)
[0,1]
= / (J’— 2y +yCpyn, (v, y)) dA(y)
[0,1]
1 2
~27 3" / YChy,n, (v, y)dA(y)
[0,1]
1

_ 1, / YChym, (7 Y)AAY).
[0,1]

)}
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