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Abstract: Motivated by the nice characterization of copulas A for which d∞(A, At) is maximal as established
independently by Nelsen [11] and Klement & Mesiar [7], we study maximum asymmetry with respect to the
conditioning-based metric D1 going back to Trutschnig [12]. Despite the fact that D1(A, At) is generally not
straightforward to calculate, it is possible to provide both, a characterization and a handy representation
of all copulas A maximizing D1(A, At). This representation is then used to prove the existence of copulas
with full support maximizing D1(A, At). A comparison of D1- and d∞-asymmetry including some surprising
examples rounds o� the paper.
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1 Introduction
A pair (X, Y) of random variables is called exchangeable (or symmetric), if (X, Y) and (Y , X) have the same
distribution. Obviously exchangeable random variables are necessarily identically distributed but not vice
versa. Trying to quantify asymmetry of identically distributed (continuous) random variables, copulas natu-
rally come into play. In fact, if X, Y have both distribution function F and F is continuous, by Sklar’s theorem
(X, Y) is exchangeable if, and only if, the copula A coincides with its transpose At (see Section 2). Indepen-
dently of each other, Nelsen [11] as well as Klement & Mesiar [7] proved in 2006 that d∞(A, At) ≤ 1

3 with
equality if, and only if, A(23 ,

1
3 ) =

1
3 and A(13 ,

2
3 ) = 0 or At(23 ,

1
3 ) =

1
3 and At(13 ,

2
3 ) = 0 holds (At as usual

denoting the transpose, de�ned by At(x, y) = A(y, x)). As direct consequence, a copula A has maximal d∞-
asymmetry if, and only if,

µA([0, 13 ] × [
1
3 ,

2
3 ]) = µA([

1
3 ,

2
3 ] × [

2
3 , 1]) = µA([

2
3 , 1] × [0,

1
3 ]) =

1
3

or
µAt ([0, 13 ] × [

1
3 ,

2
3 ]) = µAt ([

1
3 ,

2
3 ] × [

2
3 , 1]) = µAt ([

2
3 , 1] × [0,

1
3 ]) =

1
3

is ful�lled, implying that the area of the support supp(A) of each such copula A is at most 1
3 . For a discussion

of the multivariate case we refer to [5].
In the current paper we replace d∞ by the metric D1 on the family of all two-dimensional copulas C as

introduced in [12] and study analogous questions. Working with (mutually) completely dependent copulas
we �rst show maxA∈C D1(A, At) = 1

2 and then provide a surprisingly simple and handy representation of all
copulas A ful�lling D1(A, At) = 1

2 . Based on this representation we then provide examples showing that,
contrary to the case of maximal d∞-asymmetry, copulas with maximal D1-asymmetry can have full support,
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and study the interrelation of maximal d∞- and D1-asymmetry. In particular, we prove that for each A with
maximal D1-asymmetrywe have d∞(A, At) ∈ [0, 14 ] and that for each Awithmaximal d∞-asymmetrywe have
D1(A, At) = 4

9 .
The rest of the paper is organized as follows: Section 2 gathers some preliminaries and notations that

will be used throughout the paper. Section 3 �rst solves a minimization problem in the class of all completely
dependent copulas and provides a characterization of all mutually completely dependent copulas with max-
imal D1-asymmetry. The afore-mentioned general handy characterization/representation of all copulas with
maximal D1-asymmetry is presented in Section 4. Section 5 contains the comparison of the two notions quan-
tifying asymmetry and the Appendix complements some tedious calculations concerning the minimization
problem in Section 3.

2 Notation and Preliminaries
For everymetric space (Ω, d) the Borel σ-�eld onΩwill be denoted byB(Ω), δx will denote the Diracmeasure
(concentrated) at x ∈ Ω. λ and λ2 will denote the Lebesguemeasure onB(R) andB(R2) respectively. For every
probability measure ν onB(Ω) the support of ν, i.e. the complement of the union of all open sets U ful�lling
ν(U) = 0, will be denoted by supp(ν).

In the sequelCwill denote the family of all two-dimensional copulas,PC the family of alldoubly stochastic
measures, i.e. the family of all probability measures onB([0, 1]2) whose marginals are uniformly distributed
on [0, 1]. For every C ∈ C the corresponding doubly stochastic measure will be denoted by µC, d∞ will denote
the uniform metric on C, given by

d∞(A, B) = sup
(x,y)∈[0,1]2

|A(x, y) − B(x, y)|.

As usual,M denotes the minimum copula, Π the product copula,W the lower Fréchet-Hoe�ding bound, and
At the transpose of A ∈ C, de�ned by At(x, y) = A(y, x). For every A ∈ C the diagonal δA : [0, 1] → [0, 1] is
de�ned by δA(x) = A(x, x). For further background on copulas we refer to [2] and [10].

To keep notation simple and consistent throughout the paper we will let A, B, C (and the corresponding
versions with subindices) denote copulas, E, U, V , S will denote Borel sets, H will denote two-dimensional
distribution functions, F and G univariate distribution functions.

Suppose that (Ω1, d1) and (Ω2, d2) are metric spaces. A Markov kernel from Ω1 to B(Ω2) is a mapping
K : Ω1 ×B(Ω2)→ [0, 1] such that x 7→ K(x, E) is measurable for every �xed E ∈ B(Ω2) and E 7→ K(x, E) is a
probability measure for every �xed x ∈ Ω1. Given real-valued random variables X, Y on a probability space
(Ω,A, P), a Markov kernel K : R ×B(R)→ [0, 1] is called a regular conditional distribution of Y given X if for
every E ∈ B(R)

K(X(ω), E) = E(1E ◦ Y|X)(ω) (1)

holds P-a.e. It is well known that for each pair (X, Y) of real-valued random variables a regular conditional
distribution K(·, ·) of Y given X exists, that K(·, ·) is unique PX-a.s. (i.e. unique for PX-almost all x ∈ R) and
that K(·, ·) only depends onPX⊗Y . Hence, given C ∈ C and (X, Y) ∼ C, wewill denote (a version of) the regular
conditional distribution of Y given X by KC(·, ·), directly view it as Markov kernel from [0, 1] toB([0, 1]), and
refer to KC(·, ·) simply as regular conditional distribution of C or as Markov kernel of C. Note that for every
C ∈ C, its regular conditional distribution KC(·, ·), and every Borel set E ∈ B([0, 1]2) we have the following
disintegration (here Ex := {y ∈ [0, 1] : (x, y) ∈ E} denotes the x-section of E for every x ∈ [0, 1])∫

[0,1]

KC(x, Ex) dλ(x) = µC(E), (2)

so in particular ∫
[0,1]

KC(x, U) dλ(x) = λ(U) (3)
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for every U ∈ B([0, 1]). On the other hand, every Markov kernel K : [0, 1] × B([0, 1]) → [0, 1] ful�lling
(3) induces a unique element µ ∈ PC via (2). For more details and properties of conditional expectation,
regular conditional distributions, and disintegration see [6] and [8]. For examples underlining the usefulness
of Markov kernels in the copula setting we refer, for instance, to [3, 13, 14] as well as to [2] and the reference
therein.

Twill denote the family of all λ-preserving transformations on [0, 1],Tb the subclass of all bijections inT.
A copula C will be called completely dependent (mutually completely dependent) if there exists a transforma-
tion h ∈ T (h ∈ Tb) such that K(x, E) = 1E(h(x)) = δh(x)(E) is a Markov kernel of C. Cd will denote the family
of all completely dependent copulas, Ah will denote the completely dependent copula induced by h ∈ T. For
alternative characterizations of (mutual) complete dependence we refer to [12] and the reference therein.

The metric D1 on C is de�ned by

D1(A, B) =
∫

[0,1]

∫
[0,1]

∣∣KA (x, [0, y]) − KB (x, [0, y])∣∣ dλ(x)
︸ ︷︷ ︸

=:ΦA,B(y)

dλ(y).

According to [12] (also see [2, 3]) the resulting metric space (C, D1) is complete and separable, convergence
with respect to D1 implies convergence with respect to d∞ (but not vice versa) and maxA,B∈C D1(A, B) = 1

2 .

3 Maximal D1-asymmetry of completely dependent copulas
As alreadymentioned in the introduction, according to [7, 11] maxA∈C d∞(A, At) = 1

3 holds.We are now going
to prove maxA∈C D1(A, At) = 1

2 and proceed in several steps: First we minimize the function α 7→ D1(αA1 +
(1 − α)A2, Π) for every pair A1, A2 of completely dependent copulas, concentrate on completely dependent
copulas A1, A2 for which D1(A1, A2) is maximal, and then characterize all h ∈ Tb such that D1(Ah , Ath) is
maximal.

Fix A1, A2 ∈ Cd, let h1, h2 denote the corresponding λ-preserving transformations and consider α ∈
[0, 1]. Setting Cα = αA1 + (1 − α)A2 with α ∈ [0, 1] we have

fh1 ,h2 (α) := D1(Cα , Π) =
∫

[0,1]

∫
[0,1]

∣∣KCα (x, [0, y]) − KΠ (x, [0, y])∣∣ dλ(x)dλ(y)
=
∫

[0,1]

∫
[0,1]

∣∣α1[0,y](h1(x)) + (1 − α)1[0,y](h2(x)) − y∣∣ dλ(x)dλ(y).
A straightforward calculation (see Appendix) yields

fh1 ,h2 (α) =
1
3(1 − 3α + 3α

2) + 2
∫

[0,1]

Ch1 ,h2 (y, y)dλ(y) − 2
∫

[0,1]

yCh1 ,h2 (y, y)dλ(y)

− 2α
∫

[0,α]

Ch1 ,h2 (y, y)dλ(y) + 2
∫

[0,α]

yCh1 ,h2 (y, y)dλ(y)

− 2(1 − α)
∫

[0,1−α]

Ch1 ,h2 (y, y)dλ(y) + 2
∫

[0,1−α]

yCh1 ,h2 (y, y)dλ(y),
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where Ch1 ,h2 denotes the copula de�ned by Ch1 ,h2 (x, y) = λ(h
−1
1 ([0, x]) ∩ h−12 ([0, y])) for all x, y ∈ [0, 1] (see

[9]). Obviously fh1 ,h2 ∈ C
1([0, 1]) and we get

f ′h1 ,h2 (α) = 2α − 1 − 2

αCh1 ,h2 (α, α) + ∫
[0,α]

Ch1 ,h2 (y, y)dλ(y)

 + 2αCh1 ,h2 (α, α)

− 2

−(1 − α)Ch1 ,h2 (1 − α, 1 − α) − ∫
[0,1−α]

Ch1 ,h2 (y, y)dλ(y)


− 2(1 − α)Ch1 ,h2 (1 − α, 1 − α)

= 2α − 1 − 2
∫

[0,α]

Ch1 ,h2 (y, y)dλ(y) + 2
∫

[0,1−α]

Ch1 ,h2 (y, y)dλ(y).

Hence f ′h1 ,h2 ∈ C
1([0, 1]) and

f ′′h1 ,h2 (α) = 2 − 2Ch1 ,h2 (α, α) − 2Ch1 ,h2 (1 − α, 1 − α) ≥ 2 − 2α − 2(1 − α) = 0,

so fh1 ,h2 is convex on [0, 1]. Considering f ′h1 ,h2 (
1
2 ) = 0 it follows that fh1 ,h2 attains its global minimum at the

point 1
2 , and we get

min
α∈[0,1]

D1(Cα , Π) =
1
12 + 2

∫
[0,1]

(1 − y)Ch1 ,h2 (y, y)dλ(y) − 2
∫

[0, 12 ]

(1 − 2y)Ch1 ,h2 (y, y)dλ(y). (4)

Remark 3.1. The minimum can also be attained at a point α ≠ 12 . Consider t ∈ (0, 12 ) and let h1, h2 ∈ Tb be
de�ned by h1(x) = x and h2(x) = (t − x)1[0,t)(x) + x1[t,1](x). Then Ch1 ,h2 (y, y) = y for all y ∈ [t, 1] and for every
α ∈ (t, 12 ) we get

f ′h1 ,h2 (α) = 2α − 1 + 2
∫

[α,1−α]

y dλ(y) = 2α − 1 + (1 − α)2 − α2 = 0.

Hence D1(Cα , Π) is minimal for every α ∈ [t, 12 ].

Example 3.2. Consider Cα = αM + (1 − α)W. Then h1(x) = x and h2(x) = 1 − x for all x ∈ [0, 1] and we get
Ch1 ,h2 (y, y) = λ

(
[0, y] ∩ [1 − y, 1]

)
= W(y, y). So

min
α∈[0,1]

D1(Cα , Π) = D1

(
M +W

2 , Π
)

= 1
12 + 2

∫
[0,1]

(1 − y)W(y, y)dλ(y) − 2
∫

[0, 12 ]

(1 − 2y)W(y, y)dλ(y)

= 1
12 + 2

∫
[ 12 ,1]

(1 − y)(2y − 1)dλ(y) = 1
6 .
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The value 1
6 attained by the copula C 1

2
in Example 3.2 is as close as we can possibly get to Π. In fact, for

arbitrary A1, A2 ∈ Cd with corresponding transformations h1, h2 ∈ T we have

D1

(
A1 + A2

2 , Π
)
= 1
12 + 2

∫
[0,1]

(1 − y)Ch1 ,h2 (y, y)dλ(y) − 2
∫

[0, 12 ]

(1 − 2y)Ch1 ,h2 (y, y)dλ(y)

≥ 1
12 + 2

∫
[0,1]

(1 − y)Ch1 ,h2 (y, y)dλ(y) − 2
∫

[0, 12 ]

(1 − y)Ch1 ,h2 (y, y)dλ(y)

= 1
12 + 2

∫
[ 12 ,1]

(1 − y)Ch1 ,h2 (y, y)dλ(y)

≥ 1
12 + 2

∫
[ 12 ,1]

(1 − y)(2y − 1)dλ(y) = 1
6 . (5)

with equality if and only if Ch1 ,h2 (y, y) = 0 on [0, 12 ] and Ch1 ,h2 (y, y) = 2y − 1 on y ∈ [12 , 1]. The following
theorem adds some equivalent conditions to this observation.

Theorem 3.3. Suppose that h1, h2 ∈ T. Then the following conditions are equivalent for the corresponding
completely dependent copulas A1 := Ah1 , A2 := Ah2 .

(a) D1
( A1+A2

2 , Π
)
= 1

6 ,
(b) Ch1 ,h2 (y, y) = δW (y),
(c) ‖h1 − h2‖1 =

∫
[0,1] |h1(x) − h2(x)|dλ(x) =

1
2 ,

(d) D1(A1, A2) = 1
2 (i.e. A1 and A2 have maximum D1-distance).

Proof. The equivalence of (a) and (b) has already been shown, the fact that (c) and (d) are equivalent was
proved in [12]. It therefore su�ces to show that (b) and (c) are equivalent, which can be done as follows:
Using Proposition 15 in [12] (saying that the D1-distance of two completely dependent copulas coincides with
the L1-distance of the corresponding λ-preserving transformations) we get

‖h1 − h2‖1 =
∫

[0,1]

∫
[0,1]

(
1[0,y](h1(x)) − 1[0,y](h2(x))

)2 dλ(x)dλ(y)
=
∫

[0,1]

∫
[0,1]

(
1h−11 ([0,y])(x) − 2 · 1h−11 ([0,y])∩h−12 ([0,y])(x) + 1h−12 ([0,y])(x)

)
dλ(x)dλ(y)

= 2
∫

[0,1]

ydλ(y) − 2
∫

[0,1]

Ch1 ,h2 (y, y)dλ(y)

= 1 − 2
∫

[0,1]

δW (y)dλ(y) =
1
2 , (6)

so (b) implies (c). To complete the proof set δ12(y) := Ch1 ,h2 (y, y) and assume that δW (y0) < δ12(y0) holds for
some y0 ∈ (0, 1). Considering continuity of δ12 the fact that ‖h1 − h2‖1 < 1

2 holds follows immediately.
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Figure 1: Completely dependent copula Ah with maximal D1-asymmetry as considered in Example 3.4.

We now turn to the situation h1 = h ∈ Tb , h2 = h−1 and start with the following example.

Example 3.4. Let h ∈ Tb be de�ned by h(x) = x + 3
4 for x ∈ [0, 14 ] and h(x) = x −

1
4 for x ∈ (14 , 1] (see Figure

1). In this case we easily get
∥∥h − h−1∥∥1 = 1

2 , implying D1(Ah , Ath) = D1(Ah , Ah−1 ) = 1
2 , where the last equality

follows from (see Lemma 10 in [12])

Ath(x, y) = Ah(y, x) = λ
(
[0, y] ∩ h−1([0, x])

)
= λh

−1 (
[0, y] ∩ h−1([0, x])

)
= λ
(
h([0, y]) ∩ [0, x]

)
= Ah−1 (x, y).

Example 3.4 implies
sup
h∈Tb

D1(Ah , Ath) = sup
A∈C

D1(A, At) =
1
2 .

In other words, referring to the quantity κ(A) := 2D1(A, At) as D1-asymmetry of A ∈ C, the maximum D1-
asymmetry of a copula is 1 and there exists a mutually completely dependent copula Ah with κ(Ah) = 1.
Notice that the de�nition of κ : C→ [0, 1] implies that κ(A) = 0 if, and only if, A = At, i.e. if A is symmetric.

The subsequent theorem builds upon Theorem 3.3 and provides an easy characterization of all mutually
completely dependent copulas Ah having maximal D1-asymmetry.

Theorem 3.5. Consider h ∈ Tb. Then the following conditions are equivalent:

(a) Ah has maximal D1-asymmetry (i.e. κ(Ah) = 1),
(b)

∥∥h − h−1∥∥1 = 1
2 ,

(c) λ
(
h−1([0, 12 ]) ∩ h([0,

1
2 ])
)
= 0.

Proof. Condition (c) implies Ch,h−1 (12 ,
1
2 ) = 0, from which Ch,h−1 (y, y) = W(y, y) for all y ∈ [0, 1] follows

immediately. The remaining implications are a direct consequence of Theorem 3.3.
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4 Maximal D1-asymmetry of general copulas
We now turn to the general situation and provide necessary and su�cient conditions for a copula A ∈ C to
have maximal D1-asymmetry (ΦA,At as at the end of Section 2).

Theorem 4.1. For A ∈ C the following statements are equivalent:

(a) A has maximum D1-asymmetry,
(b) ΦA,At (12 ) = 1,
(c) There exists a Borel set U ∈ B([0, 1]) with the following properties:

λ(U ∩ [0, 12 ]) = λ(U ∩ [
1
2 , 1]) =

1
4 , µA(U × [0,

1
2 ]) =

1
2 , µA([0,

1
2 ] × U) = 0. (7)

Proof. The equivalence of the �rst and the second assertion is a direct consequence of the results in [12] (for
all copulas A, B the functionΦA,B is Lipschitz-continuouswith Lipschitz constant 2 and bounded from above
by the tent map T(y) = min{2y, 2(1 − y)}).

The fact that the second condition implies the third one can be proved as follows. Considering

1 = ΦA,At
(1
2
)
=
∫

[0,1]

∣∣KA (x, [0, 12 ]) − KAt (x, [0, 12 ])∣∣︸ ︷︷ ︸
=:g(x)∈[0,1]

dλ(x)

it follows immediately that the set Λ = {x ∈ [0, 1] : g(x) = 1} ful�lls λ(Λ) = 1. Setting U := {x ∈ [0, 1] :
KA(x, [0, 12 ]) = 1}, applying Sche�é’s theorem ([1]) and disintegration we get

1 = ΦA,At
(1
2
)
=
∫

[0,1]

∣∣KA (x, [0, 12 ]) − KAt (x, [0, 12 ])∣∣ dλ(x)
= 2
∫
U

(
KA
(
x,
[
0, 12

])
− KAt

(
x,
[
0, 12

]))
dλ(x)

= 2µA(U × [0, 12 ]) − 2µAt (U × [0,
1
2 ]). (8)

Additionally considering

µA(U × [0, 12 ]) =
∫

U∩Λ

KA
(
x,
[
0, 12

])
dλ(x) =

∫
U∩Λ

1 dλ = λ(U ∩ Λ) = λ(U),

µA([0, 12 ] × U) = µAt (U × [0, 12 ]) =
∫

U∩Λ

KAt
(
x,
[
0, 12

])
dλ(x) =

∫
U∩Λ

0 dλ = 0

the last two identities in eq. (7) and λ(U) = 1
2 follow immediately and it remains to show that U ful�lls λ(U ∩

(12 , 1]) =
1
4 . Eq. (7) implies µA((U×[0, 12 ])\([0,

1
2 ]×U)) =

1
2 . Hence, using ([0, 12 ]×U)

c = (( 12 , 1]×U)∪([0, 1]×U
c)

and the fact that µA is doubly stochastic we get
1
2 = µA

(
(U × [0, 12 ]) \ ([0,

1
2 ] × U)

)
= µA

(
(U ∩ (12 , 1]) × (U ∩ [0,

1
2 ])
)
+ µA

(
U × ([0, 12 ] ∩ U

c)
)

≤ min{λ(U ∩ (12 , 1]), λ(U ∩ [0,
1
2 ])} + λ([0,

1
2 ] ∩ U

c)
= min{r, 12 − r} + r =: `(r)

where r = λ(U∩(12 , 1]). In case of r < 1
4 wewould get `(r) = 2r < 1

2 , so r ≥
1
4 holds. Considering µA(U×(12 , 1]) =

0, µA((12 , 1] × U) =
1
2 and proceeding analogously yields r ≤ 1

4 , from which we �nally get λ(U ∩ (12 , 1]) =
1
4 .

In case assertion three is ful�lled, disintegration implies that both KA(x, [0, 12 ]) = 1U(x) and
KAt (x, [0, 12 ]) = 1Uc (x) hold λ-a.e., from which, considering

ΦA,At (12 ) =
∫

[0,1]

|KA(x, [0, 12 ]) − KAt (x, [0,
1
2 ])|dλ(x) =

∫
[0,1]

|1U(x) − 1Uc (x)|dλ(x) = 1
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the second assertion follows immediately.
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Figure 2: Shu�les with maximum D1-asymmetry. For the shu�le in the left panel the set U is given by U = [0, 18 ] ∪ [ 38 ,
1
2 ] ∪

[ 58 ,
3
4 ] ∪ [ 78 , 1].

Figure 2 depicts some shu�es with maximum D1-asymmetry. Interpreting these shu�es as checkmin
copulas and replacing the minimum copula M by any other copula B, as direct consequence of Theorem
4.1 the resulting copulas have maximum D1-asymmetry too. Assertion three in Theorem 4.1 can further be
simpli�ed, the following lemma holds:

Lemma 4.2. Suppose that κ(A) = 1 and that U is a Borel set ful�lling eq. (7). Then there exists a measurable
partition of [0, 1] into sets U1, V1, U2, V2 of length 1

4 ful�lling the following properties:

1. U1 ⊆ [0, 12 ], V1 = [0, 12 ] \ U1, U2 ⊆ (12 , 1], V2 = ( 12 , 1] \ U2,
2. µA(U1 × V1) = µA(V1 × V2) = µA(U2 × U1) = µA(V2 × U2) = 1

4 .

Furthermore, setting Fi(x) := 4λ(Ui ∩ [0, x]) and Gi(x) := 4λ(Vi ∩ [0, x]) for i ∈ {1, 2} and x ∈ [0, 1], there exist
copulas C1, C2, C3, C4 ∈ C such that the following identity holds for all x, y ∈ [0, 1]:

A(x, y) = 1
4
(
C1(F1(x), G1(y)) + C2(G1(x), G2(y)) + C3(F2(x), F1(y)) + C4(G2(x), F2(y))

)
(9)

Proof. Set U1 = U ∩ [0, 12 ], U2 = U ∩ (12 , 1], V = [0, 1] \ U, V1 = V ∩ [0, 12 ] and V2 = V ∩ (
1
2 , 1]. Then eq. (7)

implies λ(U1) = λ(U2) = 1
4 = λ(V1) = λ(V2) as well as

0 =µA([0, 12 ] × U) = µA(U1 × U1) + µA(U1 × U2) + µA(V1 × U1) + µA(V1 × U2) (10)
0 =µA(V × [0, 12 ]) = µA(V1 × U1) + µA(V1 × V1) + µA(V2 × U1) + µA(V2 × V1). (11)

Considering 1
4 = µA(U1 × [0, 12 ]) = µA(U1 × U1) + µA(U1 × V1) and using eq. (10), µA(U1 × V1) = 1

4 follows
immediately. Additionally, µA(V1 × V2) = 1

4 is a direct consequence of 1
4 = µA(V1 × (12 , 1]) = µA(V1 × U2) +

µA(V1 × V2) and eq. (10).
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Using the fact that KA(x, [0, 12 ])(x) = 1U(x) and KA(x, (12 , 1]) = 1V (x) hold λ-a.e. and applying disintegration
we get

µA([0, 12 ]
2) =

∫
[
0, 12
] KA(x, [0, 12 ])dλ(x) =

∫
U1

KA(x, [0, 12 ])dλ(x) = λ(U1) = 1
4 = µA(U1 × V1).

Having this, µA((12 , 1] × [0,
1
2 ]) =

1
4 follows and, using eq. (11), we get

1
4 = µA((12 , 1] × [0,

1
2 ]) = µA(U2 × U1) + µA(U2 × V1).

Since µA(U2 × V1) > 0 would imply

1
4 = λ(V1) ≥ µA(U × V1) = µA(U1 × V1) + µA(U2 × V1) > µA(U1 × V1) = 1

4

µA(U2 × U1) = 1
4 follows. To show µA(V2 × U2) = 1

4 we proceed analogously, use 1
4 = µA(V2 × (12 , 1]) and the

fact that µA(V2 × V2) > 0 would imply 1
4 ≥ µA(V × V2) >

1
4 , a contradiction.

The proof of eq. (9) is now a straightforward application of Sklar’s Theorem and the fact that the sets U1 ×
V1, V1 × V2, U2 × U1, V2 × U2 are pairwise disjoint:

A(x, y) = µA([0, x] × [0, y]) =
1
4

(
4µA(U1 ∩ [0, x] × V1 ∩ [0, y]) + 4µA(V1 ∩ [0, x] × V2 ∩ [0, y])

+ 4µA(U2 ∩ [0, x] × U1 ∩ [0, y]) + 4µA(V2 ∩ [0, x] × U2 ∩ [0, y])
)

= 1
4
(
C1(F1(x), G1(y)) + C2(G1(x), G2(y)) + C3(F2(x), F1(y)) + C4(G2(x), F2(y))

)

The reverse implication of Lemma 4.2 holds as well:

Lemma 4.3. Suppose that U1, U2 ∈ B([0, 1]) ful�ll U1 ⊆ [0, 12 ], U2 ⊆ (12 , 1], λ(U1) = λ(U2) = 1
4 , and let

C1, C2, C3, C4 be arbitrary copulas. Set V1 = [0, 12 ] \ U1, V2 = ( 12 , 1] \ U2 as well as Fi(x) := 4λ(Ui ∩ [0, x]) and
Gi(x) := 4λ(Vi ∩ [0, x]) for i ∈ {1, 2} and x ∈ [0, 1]. Then the function A : [0, 1]2 → [0, 1], de�ned by

A(x, y) = 1
4
(
C1(F1(x), G1(y)) + C2(G1(x), G2(y)) + C3(F2(x), F1(y)) + C4(G2(x), F2(y))

)
, (12)

is a copula with maximum D1-asymmetry.

Proof. First of all notice that the distribution functions F1, F2, G1, G2 are absolutely continuous and let
νF1 , νF2 , νG1 , νG2 denote the corresponding probability measures on B([0, 1]). It is clear from eq. (12) and
Sklar’s theorem that A is two-dimensional distribution function. Since A also ful�lls the boundary condi-
tions of a copula, A ∈ C follows and it su�ces to prove κ(A) = 1, which can be done as follows: Setting
A1(x, y) := C1(F1(x), G1(y)) yields a continuous distribution function A1, whose corresponding probability
measure ϑA1 ful�lls ϑA1 ([0, 1]

2) = 1 as well as

ϑA1

(
[x, x] × [y, y]

)
= A1(x, y) − A1(x, y) − A1(x, y) + A1(x, y)

= C1(F1(x), G1(y)) − C1(F1(x), G1(y)) − C1(F1(x), G1(y))

+ C1(F1(x), G1(y))

for all [x, x] × [y, y] ⊆ [0, 1]2. Specializing to [y, y] = [0, 1] we get

ϑA1

(
[x, x] × [0, 1]

)
= C1(F1(x), 1) − C1(F1(x), 1) = F1(x) − F1(x) = νF1 ([x, x])

for all [x, x] ⊂ [0, 1], implying ϑA1 (U1 × [0, 1]) = νF1 (U1) = 1. Proceeding in the same manner yields
ϑA1 ([0, 1] × V1) = νG1 (V1) = 1, from which altogether we get ϑA1 (U1 × V1) = 1. Setting A2(x, y) :=
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C2(G1(x), G2(y)), A3(x, y) := C3(F2(x), F1(y)), A4(x, y) := C4(G2(x), F2(y)), and proceeding in the sameman-
ner shows νA2 (V1 × V2) = νA3 (U2 × U1) = νA4 (V2 × U2) = 1. Using the fact that U1, U2, V1, V2 are pairwise
disjoint yields

µA(U1 × V1) = µA(V1 × V2) = µA(U2 × U1) = µA(V2 × U2) = 1
4 ,

from which, setting U = U1 ∪ U2 the assertion follows as direct consequence of Theorem 4.1.

Summing up, we have proved the following handy characterization of all copulas with maximum D1-
asymmetry.

Theorem 4.4. The following statements are equivalent for A ∈ C:

(a) A has maximum D1-asymmetry.
(b) There exist sets U1, U2 ∈ B([0, 1]) with U1 ⊆ [0, 12 ], U2 ⊆ (12 , 1], λ(U1) = λ(U2) = 1

4 , and copulas
C1, C2, C3, C4 ∈ C such that (with the notation of Lemma 4.3) the following identity holds:

A(x, y) = 1
4
(
C1(F1(x), G1(y)) + C2(G1(x), G2(y)) + C3(F2(x), F1(y))

+ C4(G2(x), F2(y))
)

Replacing the sets U1, U2 in Lemma 4.2 by Borel sets U′1 ⊆ [0, 12 ], U
′
2 ⊆ (12 , 1] with λ(U1∆U′1) = λ(U2∆U′2) = 0

obviously results in the same copula A (∆ denoting the symmetric di�erence). Considering the equivalence
relation ∼ induced via (U1, U2) ∼ (U′1, U′2) if and only if λ(U1∆U′1) = λ(U2∆U′2) = 0 and letting E denote the
induced equivalence classes in{

(U1, U2) : U1 ∈ B([0, 12 ]), U2 ∈ B((12 , 1]), λ(U1) = λ(U2) = 1
4
}

we get the following result (C4 := C × C × C × C):

Corollary 4.5. There is a one-to-one-correspondence between E × C4 and {A ∈ C : κ(A) = 1}.

Lemma 4.3 has the following consequence:

Corollary 4.6. Suppose that U1 ∈ B([0, 12 ]), U2 ∈ B((12 , 1]) ful�ll λ(U1) = λ(U2) = 1
4 and set V1 = [0, 12 ] \

U1, V2 = ( 12 , 1] \ U2 and S = U1 × V1 ∪ V1 × V2 ∪ U2 × U1 ∪ V2 × U2. Then there exists an absolutely continuous
copula A with κ(A) = 1 and µA(S) = 1.

Proof. De�ning f : [0, 1]2 → [0,∞) as f (x, y) = 4 · 1S(x, y) yields the probability density of a copula A with
the desired properties.

Remark 4.7. Given sets U1, U2 with the afore-mentioned properties, Theorem 4.4 allows not only to con-
struct absolutely continuous copulas A with κ(A) = 1 and µA(S) = 1 as mentioned in Corollary 4.6. In fact,
since the four copulas C1, C2, C3, C4 may be chosen arbitrarily, copulas B with κ(B) = 1, µB(S) = 1 and arbi-
trary singular mass µsingB ([0, 1]2) ∈ [0, 1] may easily be constructed (see [14] for the de�nition of the singular
component).

We conclude this section with an additional example illustrating that copulas with maximum D1-asymmetry
(contrary to copulas with maximal d∞-asymmetry) may distribute mass on the full unit square.

Example 4.8. There exists an absolutely continuous copula A with κ(A) = 1 and full support supp(A) =
[0, 1]2. In fact, letting Ω denote the set constructed in the proof of Lemma 3.1 (by starting with the Smith-
Volterra-Cantor set, pasting a�ne copies of the set in the holes of the set and proceeding in the samemanner)
in [4], setting U1 = 1

2 Ω as well as U2 = U1 + 1
2 , and applying Corollary 4.6 yields a set S with λ2(S) = 1

4 and
λ2(O ∩ S) > 0 for every open set O ⊂ [0, 1]2. As a consequence, the corresponding (absolutely continuous)
copula A ful�lls µA(O) > 0 for every open set O ⊂ [0, 1]2, implying that A has full support.
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5 The interrelation with maximal d∞-asymmetry
In this section we study the interrelation between maximal D1- and maximal d∞-asymmetry. We start with
an example of a sequence (Ak)k∈N of copulas with maximum D1-asymmetry that converges to Π with respect
to d∞. In other words: There are copulas with maximum D1-asymmetry whose d∞-asymmetry is arbitrarily
close to zero.

Example 5.1. Form ∈ N let the copula Am correspond to a uniform distribution on 4m segments as depicted
in Figure 3 for the cases m = 1, 2, 3, 4. More formally, if x ∈ [ 2j

2m+1 ,
2j+1
2m+1 ] for some j ∈ {0, 1, . . . , 2m−1 − 1},

then the Markov kernel KAm (x, E) of Am is given by

KAm (x, E) =
1

2m−1
2m−1−1∑
i=0

1E
(
x − 2j

2m+1 +
2i+1
2m+1

)
(13)

and for all other cases the formulas are analogous - the probability measure KAm (x, ·) is a uniform discrete
distribution on 2m−1 points. Theorem 4.4 implies that κ(Am) = 1 holds for every m ∈ N. Moreover the con-
struction of (Am)m∈N implies that for every point (x, y) ∈

{
0, 1

2k ,
2
2k , . . . ,

2k−1
2k , 1}2 with k ∈ N the sequence

(Am(x, y))m∈N is eventually constant. In fact, for (x, y) = ( i2k ,
j
2k ) we have Am(x, y) = ij

4k for every m ≥ k + 1.
Since the set Λ =

⋃∞
k=1 Λk with Λk =

{
0, 1

2k ,
2
2k , . . . ,

2k−1
2k , 1}2 is dense in [0, 1]2, the sequence (Am)m∈N

converges on a dense set to Π, from which limn→∞ d∞(Am , Π) = 0 follows.

In order to show that the d∞-asymmetry of copulas A with κ(A) = 1 is bounded from above by 1
4 we will use

the following simple lemma:

Lemma 5.2. Every copula A ∈ C with A(12 ,
1
2 ) =

1
4 ful�lls d∞(A, At) ≤ 1

4 .

Proof. Considering |A(x, y) − At(x, y)| = |A(y, x) − At(y, x)| it su�ces to prove the result for points (x, y) ∈
[0, 1]2 with y ≤ x. Additionally, without loss of generality, we may assume that A(x, y) ≥ At(x, y) holds (oth-
erwise A and At change place). Moreover, Lipschitz continuity of copulas implies |A(x, y) − At(x, y)| ≤ 1

4 for
all (x, y) ∈ [0, 1]2 \ [14 ,

3
4 ]

2. In fact, for (x, y) ∈ [0, 1] × [0, 14 ] we have A(x, y), At(x, y) ∈ [0, 14 ], from which
|A(x, y) − At(x, y)| ≤ 1

4 follows immediately. For (x, y) ∈ [34 , 1] × [
1
4 , 1] Lipschitz continuity of copulas yields

A(x, y), At(x, y) ∈ [y − 1
4 , y], implying |A(x, y) − At(x, y)| ≤ 1

4 . The remaining case (x, y) ∈ [0, 1] × [34 , 1] can
be handled analogously. Additionally, considering that A(x, y), At(x, y) ∈ [0, 14 ] holds for all (x, y) ∈ [0, 12 ]

2

(since A(12 ,
1
2 ) =

1
4 ) the proof is complete if A(x, y) − At(x, y) ≤ 1

4 is proved for all (x, y) ∈ Ω1 ∪ Ω2 where
Ω1 = [12 ,

3
4 ] × [

1
4 ,

1
2 ] and Ω2 denotes the set of all points in the triangle with vertices (12 ,

1
2 ), (

3
4 ,

1
2 ), (

3
4 ,

3
4 ).

For (x, y) ∈ Ω1 we obviously have

A(y, x) = y − µA
(
[0, y] × [x, 1]

)
≥ y − 1

4 ,

implying
A(x, y) − At(x, y) = A(x, y) − A(y, x) ≤ A(x, y) − y + 1

4 ≤
1
4 .

In case of (x, y) ∈ Ω2 (coordinate-wise) monotonicity yields A(y, x) ≥ A(12 , x) ≥ A(
1
2 , y). Considering

A(x, x) − A(x, y) − A(12 , x) + A(
1
2 , y) ≥ 0,

using Lipschitz continuity and coordinate-wise monotonicity we �nally get

A(x, y) − At(x, y) = A(x, y) − A(y, x) ≤ x − 1
2 + A(

1
2 , y) − A(

1
2 , y) = x −

1
2 ≤

1
4 ,

which completes the proof.

Having this, the proof of the following theorem is straightforward.
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Theorem 5.3. Every copula A having maximum D1-asymmetry satis�es d∞(A, At) ≤ 1
4 and the upper bound 1

4
is best possible.

Proof. Suppose that A ∈ C has maximum D1-asymmetry. Theorem 4.4 implies A(12 ,
1
2 ) =

1
4 , so Lemma 5.2

yields d∞(A, At) ≤ 1
4 . Since the completely dependent copula Ah considered in Example 3.4 obviously ful�lls

Ah(12 ,
1
4 ) =

1
4 as well as Ah(14 ,

1
2 ) = 0, the proof is complete.
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Figure 3: The copulas A1 , A2 , A3 , A4 used in Example 5.1; each of them concentrates its mass uniformly on the blue segments.

Due to the simple form of copulas with maximum d∞-asymmetry (see [7, 11]) it is possible to calculate
the D1-asymmetry for all these copulas.

Theorem 5.4. All copulas A ∈ C with d∞(A, At) = 1
3 ful�ll D1(A, At) = 4

9 .
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Proof. As mentioned in the introduction (also see [11]) d∞(A, At) is maximal if, and only if, A(23 ,
1
3 ) =

1
3 and

A(13 ,
2
3 ) = 0 or At(23 ,

1
3 ) =

1
3 and At(13 ,

2
3 ) = 0 holds. Without loss of generality we may consider the case

A(13 ,
2
3 ) =

1
3 and A(23 ,

1
3 ) = 0. Using the fact that µA is doubly stochastic,

µA([0, 13 ] × [
1
3 ,

2
3 ]) = µA([

1
3 ,

2
3 ] × [

2
3 , 1]) = µA([

2
3 , 1] × [0,

1
3 ]) =

1
3

follows, and we can �nd copulas A1, A2, A3 ∈ C such that µA = 1
3µ

f12
A1

+ 1
3µ

f23
A2

+ 1
3µ

f31
A3

holds. Thereby the
function fij : [0, 1]2 → [ i−13 , i3 ] × [

j−1
3 , j3 ] is given by

fij(x, y) = ( x+i−13 , y+j−13 )

for each (i, j) ∈ {1, 2, 3}2 and µfijA denotes the push-forward of µA via fij for every A ∈ C. In the samemanner
µAt = 1

3µ
f21
At1

+ 1
3µ

f32
At2

+ 1
3µ

f13
At3

follows.
For x ∈ [0, 13 ] we get

|KA(x, [0, y]) − KAt (x, [0, y])| =


0 if y ∈ [0, 13 ],
KA1 (3x, [0, 3y − 1]) if y ∈ (13 ,

2
3 ],

1 − KAt3 (3x, [0, 3y − 2]) if y ∈ (23 , 1],

for x ∈ (13 ,
2
3 ]

|KA(x, [0, y]) − KAt (x, [0, y])| =


KAt1 (3x − 1, [0, 3y]) if y ∈ [0, 13 ],
1 if y ∈ (13 ,

2
3 ],

1 − KA2 (3x − 1, [0, 3y − 2]) if y ∈ (23 , 1],

follows, and for x ∈ (23 , 1] we have

|KA(x, [0, y]) − KAt (x, [0, y])| =


KA3 (3x − 2, [0, 3y]) if y ∈ [0, 13 ],
1 − KAt2 (3x − 2, [0, 3y − 1]) if y ∈ (13 ,

2
3 ],

0 if y ∈ (23 , 1].

Using change of coordinates and disintegration we easily get

s1,2 :=
∫

[
1
3 ,

2
3

]
∫

[0, 13 ]

|KA(x, [0, y]) − KAt (x, [0, y])|dλ(x)dλ(y)

= 1
3

∫
[ 13 ,

2
3 ]

∫
[0,1]

KA1 (x, [0, 3y − 1])dλ(x)dλ(y) =
1
3

∫
[ 13 ,

2
3 ]

(3y − 1)dλ(y) = 1
18 .

Proceeding analogously for

si,j :=
∫

[ j3 ,
j+1
3 ]

∫
[ i3 ,

i+1
3 ]

|KA(x, [0, y]) − KAt (x, [0, y])|dλ(x)dλ(y)

with (i, j) ∈ {1, 2, 3}2 yields

s1,1 = 0, s1,3 = 1
18 , s2,1 =

1
18 , s2,2 =

1
9 , s2,3 =

1
18 , s3,1 =

1
18 , s3,2 =

1
18 , s3,3 = 0,

from which we immediately get D1(A, At) = 6
18 +

1
9 = 4

9 .

Combining Theorem 5.3 and Theorem 5.4 shows that there exists no copula having both, maximum d∞-
asymmetry and maximum D1-asymmetry.
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Appendix
In the sequelwederive the formulas for fh1 ,h2 asmentionedat the beginningof Section 3.Doing sowe consider
four di�erent cases and consider

KCα (x, [0, y]) − y = α1[0,y](h1(x)) + (1 − α)1[0,y](h2(x)) − y

=


1 − y if x ∈ h−11 ([0, y]) ∩ h−12 ([0, y]),
α − y if x ∈ h−11 ([0, y]) ∩ h−12 ([y, 1]),
1 − α − y if x ∈ h−11 ([y, 1]) ∩ h−12 ([0, y]),
−y if x ∈ h−11 ([y, 1]) ∩ h−12 ([y, 1]).

Case 1: x ∈ h−11 ([0, y]) ∩ h−12 ([0, y]),∫
[0,1]

∫
[0,1]

(1 − y)1h−11 ([0,y])∩h−12 ([0,y])(x)dλ(x)dλ(y)

=
∫

[0,1]

(1 − y)λ(h−11 ([0, y]) ∩ h−12 ([0, y]))dλ(y)

=
∫

[0,1]

(1 − y)Ch1 ,h2 (y, y)dλ(y)

=
∫

[0,1]

Ch1 ,h2 (y, y)dλ(y) −
∫

[0,1]

yCh1 ,h2 (y, y)dλ(y).

Case 2: x ∈ h−11 ([0, y]) ∩ h−12 ((y, 1]),∫
[0,1]

∫
[0,1]

|α − y|1h−11 ([0,y])∩h−12 ((y,1])(x)dλ(x)dλ(y)

=
∫

[0,1]

|α − y|λ(h−11 ([0, y]) ∩ h−12 ((y, 1]))dλ(y)

=
∫

[0,1]

|α − y|
(
y − Ch1 ,h2 (y, y)

)
dλ(y)

=
∫

[0,α]

(α − y)
(
y − Ch1 ,h2 (y, y)

)
dλ(y) +

∫
(α,1]

(y − α)
(
y − Ch1 ,h2 (y, y)

)
dλ(y)

=
∫

[0,α]

(
αy − y2 − αCh1 ,h2 (y, y) + yCh1 ,h2 (y, y)

)
dλ(y) +

∫
(α,1]

(
y2 − αy + αCh1 ,h2 (y, y) − yCh1 ,h2 (y, y)

)
dλ(y)

= α
3

2 − α
3

3 − α
∫

[0,α]

Ch1 ,h2 (y, y)dλ(y) +
∫

[0,α]

yCh1 ,h2 (y, y)dλ(y)

+ 1 − α3
3 − α − α

3

2 + α
∫

(α,1]

Ch1 ,h2 (y, y)dλ(y) −
∫

(α,1]

yCh1 ,h2 (y, y)dλ(y)

= 1
6

(
2 − 3α + 2α3

)
+ α

∫
[0,1]

Ch1 ,h2 (y, y)dλ(y) − 2α
∫

[0,α]

Ch1 ,h2 (y, y)dλ(y)

−
∫

[0,1]

yCh1 ,h2 (y, y)dλ(y) + 2
∫

[0,α]

yCh1 ,h2 (y, y)dλ(y).
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Case 3: x ∈ h−11 ((y, 1]) ∩ h−12 ([0, y]),∫
[0,1]

∫
[0,1]

|1 − α − y|1h−11 ((y,1])∩h−12 ([0,y])(x)dλ(x)dλ(y)

=
∫

[0,1]

|1 − α − y|λ(h−11 ((y, 1]) ∩ h−12 ([0, y]))dλ(y)

=
∫

[0,1]

|1 − α − y|
(
y − Ch1 ,h2 (y, y)

)
dλ(y)

=
∫

[0,1−α]

(1 − α − y)
(
y − Ch1 ,h2 (y, y)

)
dλ(y) +

∫
(1−α,1]

(y − 1 + α)
(
y − Ch1 ,h2 (y, y)

)
dλ(y)

=
∫

[0,1−α]

(
(1 − α)y − y2 − (1 − α)Ch1 ,h2 (y, y) + yCh1 ,h2 (y, y)

)
dλ(y)

+
∫

(1−α,1]

(
y2 − (1 − α)y + (1 − α)Ch1 ,h2 (y, y) − yCh1 ,h2 (y, y)

)
dλ(y)

= (1 − α)3
2 − (1 − α)3

3 − (1 − α)
∫

[0,1−α]

Ch1 ,h2 (y, y)dλ(y) +
∫

[0,1−α]

yCh1 ,h2 (y, y)dλ(y)

+ 1 − (1 − α)3
3 − (1 − α) − (1 − α)3

2 + (1 − α)
∫

(1−α,1]

Ch1 ,h2 (y, y)dλ(y)

−
∫

(1−α,1]

yCh1 ,h2 (y, y)dλ(y)

= 1
6

(
1 − 3α + 6α2 − 2α3

)
+ (1 − α)

∫
[0,1]

Ch1 ,h2 (y, y)dλ(y) − 2(1 − α)
∫

[0,1−α]

Ch1 ,h2 (y, y)dλ(y)

−
∫

[0,1]

yCh1 ,h2 (y, y)dλ(y) + 2
∫

[0,1−α]

yCh1 ,h2 (y, y)dλ(y).

Case 4: x ∈ h−11 ((y, 1]) ∩ h−12 ((y, 1]),∫
[0,1]

∫
[0,1]

y1h−11 ((y,1])∩h−12 ((y,1])(x)dλ(x)dλ(y)

=
∫

[0,1]

yλ(h−11 ((y, 1]) ∩ h−12 ((y, 1]))dλ(y)

=
∫

[0,1]

y
(
1 − 2y + Ch1 ,h2 (y, y)

)
dλ(y)

=
∫

[0,1]

(
y − 2y2 + yCh1 ,h2 (y, y)

)
dλ(y)

= 1
2 −

2
3 +

∫
[0,1]

yCh1 ,h2 (y, y)dλ(y)

= −16 +
∫

[0,1]

yCh1 ,h2 (y, y)dλ(y).
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