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Geographical masking is the conventional solution to protect the privacy of individuals involved in confidential
spatial point datasets. The masking process displaces confidential locations to protect individual privacy while
maintaining a fine level of spatial resolution. The adaptive form of this process aims to further minimize the dis-
placement error by taking into account the underlying population density. We describe an alternative adaptive
geomasking method, referred to as Adaptive Areal Elimination (AAE). AAE creates areas of a minimum
K-anonymity and then original points are either randomly perturbed within the areas or aggregated to the me-
dian centers of the areas. In addition to the masked points, K-anonymized areas can be safely disclosed as well
without increasing the risk of re-identification. Using a burglary dataset from Vienna, AAE is compared with an
existing adaptive geographical mask, the donut mask. The masking methods are evaluated for preserving a
predefined K-anonymity and the spatial characteristics of the original points. The spatial characteristics are
assessed with four measures of spatial error: displaced distance, correlation coefficient of density surfaces,
hotspots' divergence, and clusters' specificity.Masked points frompoint aggregation of AAE have the highest spa-
tial error in all the measures but the displaced distance. In contrast, masked points from the donut mask are
displaced the least, preserve the original spatial clusters better, have the highest clusters' specificity and correla-
tion coefficient of density surfaces. However, when the donut mask is adapted to achieve an actual K-anonymity,
the random perturbation of AAE introduces less spatial error than the donut mask for all the measures of spatial
error.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The growing tendency of releasing data on the Internet, technologi-
cal developments, and open data policies may be in conflict with the in-
dividuals' right to information privacy (Kulk & Van Loenen, 2012). For
example, revealing users' locations through Geo-social networks
(GeoSNs) (e.g. Twitter) may cause privacy threats and requires
privacy-protection methods (Vicente, Freni, Bettini, & Jensen, 2011).
Geo-social networks reveal current or past locations of individuals, loca-
tion based services (LBS) collect spatial trajectories of users, and Web-
services map confidential locations of health or crime related informa-
tion. As the availability and use of confidential and sensitive data in-
creases, new methods are being developed to allow the dissemination
of information while protecting the privacy of individuals.

This paper deals with confidential discrete location data. This type of
spatial datasets appear in scientific publications as thematic point maps
(Kounadi & Leitner, 2014) and as dynamic maps on the internet to
adi), mleitne@lsu.edu

. This is an open access article under
disseminate information to the public (police.uk, 2015). Furthermore,
confidential location data are released for research studies
(dhsprogramm, 2015). Hampton et al. (2010) argue that health-
related thematic point maps are used extensively because they allow
the assessment of spatial heterogeneity in one area, they lead decisions
regarding policy prevention and intervention programs, and provide in-
formation to allocate resources. Nevertheless, these datasets have to be
protected and comply with current regulations and restrictions on the
individuals' right to privacy. For example, the Health Insurance Portabil-
ity andAccountability Act (HIPAA) requires the de-identification of geo-
graphic units that do not meet specific population thresholds (Nass,
Levit, & Gostin, 2009). Also, several reports provide guidelines on the is-
sues of sharing or publishing spatial crime data (Graham, 2012; ICO,
2012; Wartell & McEwen, 2001). However, general regulations on pri-
vacy, such as acts and directives, do not address the particulars of the
spatial re-identification risk. Cottrill (2011) reveals the absence of loca-
tion specific directives in four international privacy regulations for
Europe, Australia, Canada, and Japan.

Despite the absence of location specific directives, research findings
revealed that published locations onmaps can be re-engineered back to
identify their actual locations (Brownstein, Cassa, Kohane, & Mandl,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2006; Cassa, Wieland, & Mandl, 2008; Leitner, Mills, & Curtis, 2007).
Furthermore, re-engineered locations from maps can be linked with
other sources to collect additional private information (Kounadi,
Lampoltshammer, Leitner, & Heistracher, 2013; Krumm, 2007). Hence,
a plethora of location protection methods has been developed by the
scientific community to prevent the spatial re-identification risk that
arises with such types of disclosures. This paper continues on the
existing literature of location protection methods and proposes an
adaptive geographicalmasking technique that is best applicable for con-
fidential discrete location data. Themethod allows masked confidential
points to be disclosed, yet the actual locations cannot be de-identified
among k-cases even after a successful reengineering process.

The following sections discuss the current literature on the location
protection methods for discrete point data (Section 2) and the adaptive
geographical masking techniques that this study is built upon
(Section 3). Next, we present an alternative protection method, which
is called “Adaptive Areal Elimination” (Section 4), and by using a real-
world dataset we apply and evaluate its effectiveness (Section 5).

2. Location protection methods for discrete point data

Masking such as record transforming, attribute transforming, or
displacing are disclosure limitation techniques that were initially creat-
ed to protect the confidentiality of tabular and non-spatial databases
(Duncan & Pearson, 1991). These techniques were later on developed
to include individual level location data (Armstrong, Rushton, &
Zimmerman, 1999). Armstrong et al. (1999) introduced the term
“geographical masking”, which was further adopted by other scholars
to develop several location protection methods for discrete point data.
Geographicalmasking is based on concepts of imprecision (lack of spec-
ificity in information) and inaccuracy (lack of correspondence between
information and reality). An example of imprecision is spatial aggrega-
tion where confidential locations are aggregated into areal units.
Methods based on inaccuracy introduce an error to the original loca-
tions by displacing them within a study area (Kwan, Casas, & Schmitz,
2004; Leitner & Curtis, 2004, 2006). Moreover, these types of geograph-
ical masking techniques (also referred to as geographical isomasks)
seem to be preferred by scientists when confidential data are visualized
in scientific publications (Kounadi & Leitner, 2014).

Recent geographical isomasks adapted the displacement error by
taking into account the underlying population density (Cassa, Grannis,
Overhage, & Mandl, 2006; Gruteser & Grunwald, 2003; Hampton et al.,
2010; Wieland, Cassa, Mandl, & Berger, 2008). The advantage of the
adaptive geomasking is that it enables “maskers” to define a desirable
level of K-anonymity. A K-anonymity protection means that each
Fig. 1. A) hypothetical area and locations of households, B) uncertainty areas of confidential loc
represented by red dots are being displaced to masked locations C and E represented by green
person or record in a masked dataset cannot be distinguished from at
least k-1 persons or records whose information also appears in the
dataset (Sweeney, 2002). For spatial datasets K-anonymity ensures
that each location (e.g. locations of individuals, households, addresses)
cannot be distinguished from at least k-1 locations.

3. Adaptive geographical masking: the current approach

Geographical isomasks ensure privacy protection by displacing origi-
nal points within uncertainty areas produced by themasks. In particular,
uncertainty area is the area where a masked point may lie within
(e.g. circle or torus). For instance, “donut geomasking” randomly dis-
places the coordinate of each data point within a torus based on a uni-
form distribution (Hampton et al., 2010). “Population-density-based
Gaussian spatial blurring” displaces a point within a circle in a direction
and distance that is randomly selected from a normal distribution
(Cassa et al., 2006). To illustrate how K-anonymity is achieved with
adaptive geographical maskingwe use a simpler approach. In this exam-
ple a point is displaced within a circle in a direction and distance that is
randomly selected from a uniform distribution (adaptive variable radius
mask). Fig. 1a shows a hypothetical area and the locations of ten house-
holds (A toK). Point C and E are also household locations of a confidential
dataset that need to be masked. To simplify the example, locations are
plotted on a squared grid, where the distance from node to node equals
to 1 unit and K-anonymity equals to three households. Fig. 1b shows the
uncertainty areas of confidential locations C and E. Point C can be
displaced anywhere within the small circle of a 2 units radius, whereas
point E can be displaced anywherewithin the larger circle of a 5 units ra-
dius. The size of the radius has been adjusted so as to contain at least
three households including the households of points C and E.

A limitation of current methods is the resolution that was used for
the disclosure information (e.g. population). For instance, Hampton
et al. (2010) and Cassa et al. (2006) used population informationwithin
administrative boundaries such as census block groups. Hence, in order
to calculate the displacement error they relied on the assumption of a
homogeneously distributed population within the areas. This approach
can lead to masked points having smaller actual k-anonymity (Kact)
than estimated k-anonymity (Kest), especially in areas with high popu-
lation distribution heterogeneity (Allshouse et al., 2010).

As illustrated in Fig. 1 an accurate K-anonymity can be achieved if
disclosure information is available at a point level (e.g. locations of
households). However, there is still a re-engineering possibility associ-
ated with current methods, which may lead to the Kact be less than
whatwas originally aimed for (Kest). Fig. 1c shows themasked locations
of C and E (green dots). If the masking method and the K-anonymity is
ations C and E based on a K-anonymity equal to three, and C) original locations of C and E
dots using the adaptive variable radius mask.
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disclosed, then someone that possesses a households' point file could
possibly try to estimate the original locations (red dots) from the
masked locations (green dots). This can be done by calculating the
nearest neighbors of the masked locations. For example, if a masked
point is not moved into households' locations (as it happens in this ex-
ample), then the first three household nearest neighbors could be a pos-
sible set of the original point. If a masked point is moved into
households' locations, then the first two household nearest neighbors
and the masked point could be a possible set of the original point.
Based on this logic, the three nearest neighbors of the masked location
C are A, B, and C and therefore masked location C cannot be re-
identified among three households. The three nearest neighbors of the
masked location E are C, D, and E. However C cannot be the original lo-
cation of masked location E because C will be displaced only within the
small circle. Hence masked location E cannot be re-identified among
two households, D and E, and the actual K-anonymity for this point is
smaller than three. The example shows that with overlapping uncer-
tainty areas there is a possibility of the Kact being smaller than the Kest.

Our position to the requirements of adaptive geomasking is that
a) K-anonymity should be accurate (estimated anonymity= actual an-
onymity) and b) the masking method and its parameters should be
disclosed. This means that K-anonymity is ensuredwhen the protection
method and its parameters are disclosed, yet the actual locations cannot
be de-identified among k-cases even after a successful reengineering
process. We also support the disclosure of the masks' parameters as a
proof of a transparent policy and to ensure that privacy is adequately
protected. Examples of transparent policies for privacy protection are
the Police.UK website (Data.police.uk, 2015) and the Demographic
and Health Survey (DHS) Program (Burgert, Colston, Roy, & Zachary,
2013). Both examples release masked confidential information and ex-
plain in detail the masking methods they employ.
4. Adaptive areal elimination (AAE)

K-anonymity can be calculated accurately when a predefined
K-anonymity is processed at an equal or lower level of the resolution
than it is available and when uncertainty areas do not overlap. To
achieve thiswe use existing techniques in an adaptive form tominimize
the displacement error. The first technique is point aggregation
(Armstrong et al., 1999) where a new symbolic point represents the lo-
cation of several original points. This technique has been used by snap-
ping each latitude and longitude of confidential points to the nearest
point on a square grid (Krumm, 2007) to the nearest street intersection
(Leitner & Curtis, 2004), or at the midpoint of a street segment (Leitner
& Curtis, 2004). The second technique is random perturbation of confi-
dential points within non-overlapping areas. This technique has been
used by randomly translating original points within grid cells (Leitner
& Curtis, 2006).
Fig. 2. Adaptive areal elimination (A
More specifically, this adaptive masking technique can either
a) displace confidential points to points that are the centroids of
K-anonymized areas, or b) randomly displace confidential pointswithin
K-anonymized areas. Each centroid (i.e. centre of gravity) is calculated
by the polygon's n vertices (set of geographic coordinates Xi, Yi) as
shown below:

Centroid of X coordinate : Cx ¼ 1
6A

∑
n�1

i¼0
xi þ xiþ1ð Þ xiyiþ1 � xiþ1yi

� �

Centroid of Y coordinate : Cy ¼ 1
6A

∑
n�1

i¼0
yi þ yiþ1
� �

xiyiþ1 � xiþ1yi
� � ð1Þ

where A is the area of the polygon (Bourke, 1988; Waller & Gotway,
2004).

Random displacement means that the confidential points have an
equal chance of being relocated at any set of coordinates within their
K-anonymized areas. This was accomplished by using the “random
point” tool of the ArcGIS 10.0 program. The tool selects two random
numbers from a uniform distribution with a minimum and maximum
X value and a minimum and maximum Y value, in order to restrict the
random set of coordinates to a specified extent (the extent here is
the K-anonymized area). To create the K-anonymized areas we first
define an attribute of a spatial database named “RoRi” (risk of re-
identification) that is used to calculate and ensure a minimum
K-anonymity for a masked dataset. RoRi can include information such
as: population, households, or addresses. Second, spatial features con-
taining the RoRi attribute can be points, administrative units, and grid
cells (i.e. points or polygons). Third, the masking process operates on
areas (any type of polygon) and is called “Adaptive Areal Elimination”
(AAE).

4.1. Method: Data and steps

To perform the AAEmaskingmethod two datasets are required: a) a
spatial feature that either represents RoRi (e.g. addresses point file), or
contains RoRi information (e.g. administrative units with an attribute
field of the number of addresses), and b) a confidential point file. The
steps of the method are presented in Fig. 2. The first step is data pre-
processing. If an address point file is available, the points have to be ag-
gregated into polygons. The next step is to define a disclosure value for
the RoRi field. Disclosure value is the minimum K-anonymity that con-
fidential information can be disclosed. To choose an appropriate disclo-
sure value the current practices or regulations about a specific type of
confidential information have to be considered. For example the
Police.UK website presents crime information aggregated into “anony-
mous” map points that have a catchment area, which contains at least
eight postal addresses (Data.police.uk, 2015). A minimum of eight ad-
dresses may not be a sufficient K-anonymity for health data or even
for crime data in countries outside of the UK where such publications
AE): the steps of the method.
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are not allowed. In the third step the dissolving process starts. Based on
a predefined disclosure value every polygon that has a RoRi value less
than the disclosure value is being dissolved with its neighbor or neigh-
bors until all polygons have RoRi values that are equal or greater than
the disclosure value. The general spatial rule is that each polygon is
merged with the neighboring polygon that has the longest shared bor-
der, unless a polygon is equilateral. In this case, the dissolving process
occurs with the equilateral polygon and all adjacent polygons. This
step creates the K-anonymized areas (dissolved polygons). The process
ensures that the areas are reproducible for the same dataset and disclo-
sure value. As a result of this process theminimumK-anonymity aswell
as the K-anonymized areas can be disclosed. In the last step the “mask-
er” can either aggregate the confidential points to the centroids of the
dissolved polygons or randomly displace the confidential points within
the dissolved polygons. Hereafter, point aggregation based on AAE is ab-
breviated as “APA” (adaptive point aggregation), and similarly random
perturbation based on AAE is abbreviated as “ARP” (adaptive random
perturbation).

We created an example of a hypothetical confidential dataset to vi-
sually illustrate the outputs of themethod's steps. The example is locat-
ed in a small area in Vienna of a 22.4 km2 size (the area is provided as a
polyline file).We also use addresses and street network files fromOpen
Street Map (OpenStreetMap, 2015; OpensStreetMap, 2015). For this
example, the address point file (in total 1231 addresses) is the spatial
feature that represents RoRi. The disclosure value is 20 addresses
(K-anonymity = 20) and the confidential dataset consists of 50 ran-
domly distributed points within the area. Fig. 3 — step 1 shows the
pre-processing steps for this example. First, the clipped streets enclosed
in the area were merged with the outline of the area (a periphery of
street segments). This results in the final polylines that represent the
street blocks of the area. The polylines are then converted into polygons
that define the boundary of each block. These steps are specific to the
input data and would be redundant if an alternative polygon was used
(e.g. squared grid). Then, the sum of the addresses in each polygon fea-
ture was calculated in the RoRi field and the disclosure value was set to
20 addresses (Fig. 3— step 2). The addresses' calculation in each feature
will also be redundant if the “masker” decides to use a polygon spatial
feature that already contains RoRi information (e.g. administrative
units). The input and output of the dissolving process for a disclosure
value of 20 addresses is shown in Fig. 3— step 3. The input is the blocks
polygon file and the output the final dissolved polygons. The map at
the bottom of Fig. 3 — step 3 shows that the process returned 28
K-anonymized areas. Each area (dissolved polygon) contains 21 to
162 addresses. Last, the hypothetical confidential locations and the
masked confidential locations were displaced with the APA and the
ARP methods, and are shown in Fig. 3 — step 4.
4.2. Adjusting RORI and K-anonymity based on the confidential dataset

For certainmasking scenarios RoRi is the K-anonymity of a confiden-
tial dataset. This may not be the case for every type of information. To
explain how RoRi can be used to ensure a minimum K-anonymity we
provide several examples, without excluding the possibility that other
types of information, not listed here, may require a different masking
treatment.

A first group of datasets are those that pinpoint individuals. Exam-
ples are: patients' residencies or individuals with particular private at-
tributes and their residencies (e.g. residencies of drug users). In this
case RoRi can be a population, households or residential addresses. Let
us assume that a confidential dataset contains locations of breast cancer
patients and RoRi is based on a grid file with population information. If
one aggregation point represents the location of 100people and two pa-
tients are aggregated to this point, then the disclosure risk is 2%. The two
patients are not identified among 100 people and K-anonymity equals
to 50 people. Since we want a minimum K-anonymity to be defined
from the beginning of the masking process, the RoRi attribute has to
be divided by the number of patients in each polygon.

A different approach is required for residential burglaries or do-
mestic violence. For these data RoRi should be either households or
residential addresses because the disclosed information pinpoints,
or indirectly affects, all members of a family and not only one person.
Furthermore, RoRi equals to K-anonymity because the same location
can be burglarized multiple times. Hence, if one aggregation point
represents the location of 100 households and two burglaries are ag-
gregated to this point, the disclosure risk is still 1%. The two burglar-
ies are not identified among 100 households and the K-anonymity
equals to 100 households.

For an “all burglaries” dataset an entire address point file is needed
since burglaries cannot be distinguished between commercial or resi-
dential locations. As before, RoRi equals to K-anonymity. Last, some
crime types can occur in any geographical location (including parks,
public buildings, residencies, and streets). Examples of these types
are: violence and sexual offenses, homicide, and arson. Nevertheless,
these datasets still need to be protected since some locations may be
mapped to commercial or residential buildings. Therefore we can treat
these datasets as in the previous example and use an address point
file for calculating the RoRi.

5. Application and comparison of the method

We use a burglaries dataset from the city of Vienna in Austria to
apply the AAE method. The burglaries dataset was provided by the
Criminal Intelligence Service Austria (Federal Criminal Police Office).
Reported crime data in Austria are stored in the so-called “Security
Monitor” database (SIMO) since 2004. Each reported crime incident is
geocoded in a local Austrian projection system (MGI Austria Lambert).
The dataset was available for the first trimester of 2009 (January to
March), and consists of 5806 incidents. The incidents include all types
of burglaries (i.e. single family houses, apartments, basements, and
businesses). Since this type of information requires an entire address
point file for the RoRi attribute, we used the Open Street Map addresses
as previously (77,862 points). Visual observations of the study area
showed that Open Street Map addresses are somehow incomplete for
some suburbs of Vienna. This issue is not in conflict with preserving
the privacy in the dataset because in these neighborhoods the “real”
K-anonymity will be higher due to the missing addresses. However, a
complete as possible datasetwould have been preferred, if it were avail-
able, because it would yield smaller spatial errors (more addresses im-
plies more and smaller K-anonymized areas). Also, we used the blocks
of the entire city of Vienna as the polygon units for the method
(22,139 polygons). The pre-processing of the data was performed sim-
ilarly to the method's example in the previous section.

The burglaries were masked using the APA and the ARP masking
methods. Additionally, we used the donut geomasking method
(Hampton et al., 2010), which is available as a Python code
(DonutGeomask, 2015). In order to select a K-anonymity we looked at
current practices and guidelines with regards to crime data. First, a re-
port by the Information Commissioner's Office (ICO, 2012) visualizes
in a scale bar the number of households' as disclosure thresholds for pri-
vacy protection of spatial crime data. The report suggests that a number
of households from 1 to 10 impose high re-identification risk, 10 to 30 a
medium re-identification risk, andmore than 30 a lower risk. Second, as
alreadymentioned, the “LocationAnonymization” technique that is cur-
rently employed by the Police.uk website uses a minimum of eight ad-
dresses as a disclosure threshold value (Data.police.uk, 2015). Last, the
respondents of a survey, which was carried out in London with regard
to privacy and crime mapping, would opt for a medium-risk protection
method in terms of risk of privacy violation (Kounadi, Bowers, & Leitner,
2014). More specifically, the majority of the respondents preferred the
“Location Anonymisation” technique that is currently employed by the
Police.uk website or a protection method with a disclosure threshold



Fig. 3. Example of a hypothetical masking scenario. Step 1: initial processing of input data. Step 2: selection of the disclosure value. Step 3: the dissolving process of the AAE masking
method. Step 4: masked points from adaptive point aggregation (APA) and masked points from adaptive random perturbation (ARP) within K-anonymized areas.
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value that ranges from 8 to 20 postal addresses. Hence, for all the
masking methods (APA, ARP, and donut) a disclosure value of 20 ad-
dresses was selected. An additional minimum disclosure value was re-
quired for the donut mask, which defines the inner radius of the torus.
This was set to 2 addresses (10% of the maximum disclosure value).
The uncertainty areas for the APA and ARPmasks are dissolved poly-
gons (K-anonymized areas). The uncertainty areas for the donut mask
are donuts (toruses) that may or may not be “eaten”. A donut appears
“eaten” because a part of it fell outside its polygon file and it was
excluded. Polygons can be administrative areas. Hence, with donut



Table 1
The percentage of original points that achieve an actual k-anonymity (kact) equal or great-
er than 20 addresses for several values of minimum K-anonymity (Kmin) and maximum
K-anonymity (Kmax) using the donut mask.

Kmin Kmax % Kact ≥20

2 20 66.10%
5 50 93.70%
10 100 98.05%
15 150 99.30%
20 200 99.60%
25 250 99.65%
30 300 99.74%
35 350 99.79%
40 400 99.86%
45 450 99.93%
50 500 99.98%
55 550 100.00%
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geomasking original points are relocated in a random direction by at
least a minimum distance and less than a maximum distance, while
retaining the original points within their geopolitical boundaries. The
geopolitical boundary that is selected here is the “Zählbezirk”, which
is similar to a registration district. In total there are 245 “Zählbezirk” re-
gions in Vienna with an average size of 1.69 km2. Different types of
uncertainty areas are shown in Fig. 4. The figure depicts a small area
in Vienna. For privacy reasons the area has been rotated and does not in-
clude the “Zählbezirk” regions, whichwould allow localizing the area in
Vienna. Also, since address-level crime data are not currently published
in Austria, the actual crime locations are not presented here. To account
for limitations of the donut mask, we calculated the number of overlap-
ping donuts and the number of original burglaries that achieved an ac-
tual K-anonymity lower than 20 addresses. Actual K-anonymity was
defined as the number of points that were closer to the original location
than the maximum distance of displacement (outer radius). The vast
majority of the donuts overlapped (98.5%) and 33.9% of the burglaries
achieved a K-anonymity that ranges from 0 to 19 addresses.

As a next step the donut mask was modified to achieve an actual
K-anonymity of at least 20 addresses for all points. First, the restriction
that the masked points should retain their geopolitical boundaries was
removed. Then further runs of the donut mask algorithm were per-
formed by increasing every time the maximum K-anonymity until the
desired actual K-anonymity (Kact) was reached. Similarly to Allshouse
et al. (2010) the parameter for the minimum K-anonymity (Kmin)
was adjusted accordingly to the 10% of the maximum K-anonymity
(Kmax). The results of Table 1 show that with a Kmax of 550 addresses
all burglaries achieved a Kact equal or greater than 20 addresses.
Furthermore, with a Kmax of 150 addresses or more the vast majority
of the burglaries achieved the desired K-anonymity with less than 1%
of burglaries having lower Kact than 20 addresses.

5.1. Measures of spatial error

Thefinal part of this analysis is to compare the spatial error that is in-
troduced tomasked datasets with the use of the geographical masks. To
calculate the error we use four measures. The first measure is the
displaced distance in meters, which is the distance from the original
Fig. 4. Uncertainty areas for the APA and ARP masks are the K-anonymized areas and the
uncertainty areas for the donut mask are different types of donuts.
point to the masked point. The second measure is the correlation coeffi-
cient between density surfaces created using original and masked points.
Shi, Alford-Teaster, and Onega (2009) performed a kernel density esti-
mation (KDE) using a series of bandwidths to create density surfaces
from original points and masked points. The points were masked
using a random translation geographical mask with a fixed maximum
distance and the bandwidths were chosen as portions and multiples of
that distance. Then the Pearson's correlation coefficients between the
density surfaces were calculated. The statistic shows the effect of the
geomasking process on the KDE analysis and with which parameters
masked points will provide similar KDE results to the KDE results of
the original points. In our application there is no fixed maximum
displaced distance and it can also vary by method. Therefore, we used
the average displaced distance for all pairs of original andmasked points
in all methods. Then we selected one bandwidth that is equal to the av-
erage displaced distance, one that is 0.25 times the distance, and one
that is four times the distance. The KDE was calculated using a normal
distribution function as shown below:

g xj
� � ¼ Σ Wi � Ii½ � � 1

h2 � 2π

�
� e

�
d2
ij

2�h2

h i9=
; ð2Þ

where dij is the distance between a point and any reference point in the
area, h is the bandwidth,Wi is a weight at the point and Ii the intensity
(equation adopted by Levine (2004)).

The third measure is the Hotspots' Divergence (Kounadi & Leitner,
2015a). Hotspots' Divergence is an index that calculates how much
dissimilar are the spatial clusters that are created from masked points
compared to spatial clusters that are created from original points. The
index ranges from 0 to 100 and calculates the non-overlapping areas
(symmetrical difference) of masked and original spatial clusters. A
value of 0 means that masked clusters are identical to original clusters
and a value of 100means that masked and original clusters are disjoint-
ed (their areas do not overlap). The index can be calculated using the
following formula:

Local divergence ¼ Symmetric difference of A and B
Aþ B

� 100 ð3Þ

where A = area of original hotspots and B = area of masked hotspots.
This index was employed with the nearest-neighbor hierarchical

clustering method (Everett, 1974) and is denoted as Nnh.di. Kounadi
and Leitner (2015b) compared the Nnh.di with hotspots divergence in-
dexes that use other spatial clustering techniques such as the Getis-Ord
Gi* statistic (Gi*.di) and the Anselin Local Moran's I statistic (Ans.di).
The Nnh.di had the highest correlation with the perceived similarity of
a pair of point pattern. Thus, it is preferred as ameasure that can predict
howdissimilar amasked point patternwould be perceived compared to



Fig. 5. A snapshot of the study area that illustrates the three measures of spatial error: a) displaced distance, b) hotspot's divergence, and c) clusters' specificity.
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the original one. To allow further comparisons and the predictability of
the perceived similarity, we used the parameters that were used in the
aforementioned study, including two standard deviational ellipses to
outline clusters, a minimum of five points per cluster, only first-order
clusters, and a search radius based on the random nearest neighbor
distance.

The fourthmeasure is the clusters' specificity, which calculates the
percentage of masked points that originate from non-clustered orig-
inal points and are still non-clustered. This measure was also used
previously to evaluate the error of adaptive geographical masks
(Cassa et al., 2006; Hampton et al., 2010). The four measures were
calculated for the three initial masks (APA, ARP, donut mask with
Kmax= 20). Since the donut mask with Kmax= 20 does not protect
satisfactorily the vast majority of the original points, we also includ-
ed in the analysis the donut mask with Kmax = 150 where 99.3% of
the points have a Kact ≥ 20 (less than 1% error rate). The first, third,
and fourth measures are visualized in a small snapshot of the study
area in Fig. 5.

The results of the measures are presented in Table 2. The mask that
outperforms all others, for all measures of spatial error, is the donut
mask with Kmax = 20. The mask with the second smallest
mean displaced distance is APA (244.11 m), followed by the ARP
(316.94 m), and the donut mask with Kmax=150 (365.18 m). The av-
erage displaced distance for all pairs of original andmasked points for all
methods was found to be 264m andwas used to select the bandwidths
of 66 m, 264 m, and 1056 m for calculating the correlation coefficient
Table 2
The spatial error of masked datasets for four masks (APA, ARP, donut − Kmax = 20, and donu
density surfaces, divergence of nearest neighbor hierarchical clusters — Nnh.di, and clusters' sp

Displaced distance (meters)

Mean Min Max RMSE

APA 244.11 1.85 6436.06 430.15
ARP 316.94 1.83 6056.73 562.40
Donut (Kmax = 20) 130.40 18.88 1858.97 190.12
Donut (Kmax = 150) 365.18 51.48 4908.61 539.22
between density surfaces. For a bandwidth of 1056 m the surfaces
of masked and original points were almost identical for all masks.
For the smaller bandwidths, the ARP had the second highest correla-
tion coefficient (0.76 and 0.98), followed by the donut mask with
Kmax = 150 (0.62 and 0.97). Our results show that by using band-
widths that are close to or higher than the displaced distance the
produced masked density surface will be highly correlated to the
original density surface. Also, for both clusters' specificity and
Nnh.di the mask with the second smallest error is ARP (Nnh.di =
51.55 and clusters' specificity = 84.26%) and is followed by the
donut mask with Kmax=150 (Nnh.di = 53.70 and clusters' specific-
ity = 78.85%). The APA performs the worst in terms of the KDE (cor-
relation coefficients are 0.46 and 0.94), retaining original locations of
spatial clusters (Nnh.di = 63.60), as well as misclassifying non-
clustered points as clustered points (clusters' specificity = 35.90%).
Furthermore, Kruskal–Wallis tests were applied to the results of
the first and second measures to find out whether the displaced dis-
tances and density surfaces are statistically different by masking
method. The results of the test show that displaced distances are sta-
tistically different among the masks (H= 4092, p b 0.001), that den-
sity surfaces produced with a 66 m bandwidth are statistically
different among the masks (H = 311.1, p b 0.001), and that density
surfaces produced with a 264 m bandwidth are statistically different
among the masks (H = 53.43, p b 0.001). However, density surfaces
produced with a 1056 m bandwidth are not statistically different
among the masks (H = 3.34, p = 0.34).
t − Kmax= 150) and four measures (displaced distance, correlation coefficient between
ecificity).

Correlation coefficient between
density surfaces by bandwidth

Nnh.di
(0–100)

Clusters'
specificity
(%)

66 m 264 m 1056 m

0.46 0.94 1.00 63.60 35.90%
0.76 0.98 1.00 51.55 84.26%
0.85 0.99 1.00 42.45 85.46%
0.62 0.97 1.00 53.70 78.85%
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6. Discussion

The preferment and use of geographical masking techniques like
AAE against other techniques such as spatial aggregation lies in the
fact that the latter yields a substantial spatial information loss compared
to geographical masking. Although privacy can be guaranteed through
aggregation there is little potential for further quantitative analysis
(Fefferman, O'Neil, & Naumova, 2005). For example, Luo, McLafferty,
and Wang (2010) disaggregated cancer cases from zip code to census
block to examine the relationship between late-stage breast cancer
and risk factors using logistic regression. The results of the coefficients
showed that the disaggregation of spatially aggregated units may lead
to inaccurate findings on health risk factors. Further drawbacks of ag-
gregation compared to geomasking are the reduced sensitivity to cluster
detection and that clusters crossing administrative boundaries cannot
be identified (Cassa et al., 2006).

This paper presented the AAE geographical masking method as an
alternative approach to protect spatial datasets with a user-defined
level of k-anonymity. Additionally, the K-anonymity quantifies the
maximum level of disclosure risk accurately, while allowing the param-
eters of the method to be disclosed (e.g. K-anonymized areas, point ag-
gregation or random perturbation). Our approach differs from previous
techniques since it is adapted based on the resolution that the disclosure
information (RoRi) is available and thus, subject to the accuracy of the
RoRi information, reports the risk of re-identification accurately. To an-
alyze the effectiveness of themethod a real datasetwas used (burglaries
in Vienna). However the proposed method is generally applicable to
other types of confidential datasets such as health and demographic
data. Furthermore, the Adaptive Areal Elimination approach has been
automated with a Python code for the ArcGIS program. Further queries
about the code may be addressed directly to the corresponding author
of this paper.

AAE overcomes the main limitation of other adaptive masking tech-
niques, which is the assumption of a homogeneous region for the calcu-
lation of the masking displacements. When a donut mask with a
Kmax = 20 addresses is used, a considerable amount of original points
(33.9%) have a Kact between 0 and 19 addresses. By increasing the
K-anonymity from 20 to 150 less than 1% of the original points (0.7%)
have a Kact between 0 and 19 addresses. Nevertheless, our results differ
from the results of Allshouse et al. (2010) that also examined the Kest
(Kmin or Kmax) against the Kact of the donut mask. Allshouse et al.
(2010) suggested that for heterogeneous population the Kmin should
be tripled to protect privacy with less than 1% error rate. According to
our results a Kmin = 15 (5 times higher than 3) is required to achieve
the desired level of anonymity (20 addresses). The results seem to be
highly dependent on the study area and the distribution of the
population. Therefore a single correction factor (such as tripling the
parameters) may not guarantee a required level of privacy.

Using four measures of spatial error and by comparing the results of
the AAEwith those of the donutmask, we evaluated the effectiveness of
the masks in terms of preserving the original spatial characteristics of
the point pattern. Apart from the displaced distance, the APA performs
considerably worse than the ARP and the donut mask. The correlation
coefficients of density surfaces are the smallest among the masks, the
clusters' specificity is only 35.9% while the divergence of the hotspots
is much higher than the divergence of the other masks (63.6). Our re-
sults agree with the results of previous studies suggesting that aggrega-
tion results in higher errors compared to other geographical masks
(Hampton et al., 2010; Wieland et al., 2008). On the other hand, for an
equal user-defined level of K-anonymity (20 addresses) the donut
mask yielded the smallest spatial error for all three measures. However,
as already mentioned, the donut mask with Kmax = 20 preserves the
desired anonymity only for 66.1% of the original points. Hence, a fair
comparison should include the APA, the ARP, and the donut mask
with Kmax = 150, all of which preserve the desired anonymity for
more than 99% of the original points. The results demonstrate that
masked points from the ARP preserve the original spatial clusters better
and have the highest clusters' specificity compared to the donut mask
with Kmax = 150 or the APA. The APA retains the smallest displaced
distance but the divergence of the ARP is 2.15 units lower than the di-
vergence of the donut mask and 12.05 units lower than the divergence
of the APA. Furthermore, considering the prediction models of the per-
ceived similarity of point patterns by Kounadi and Leitner (2015b), for a
K-anonymity of 20, the masked pattern of the APA will be perceived as
less similar to the original one compared to the patterns produced by
the ARP and the donut masks. Additionally, the masked pattern of the
APA is the only pattern that is not perceived as similar or very similar
to the original pattern for all predicationmodels. Also the ARP increases
the clusters' specificity, which is 5.41% higher than the donut mask and
48.36% higher than the APA.

A possible limitation of our approach is that it is examined for one
study area. Nonetheless, Vienna is characterized by a variety of popula-
tion densities (0–1416 addresses per km2) and seems to be a good ex-
ample for heterogeneous areas. For more homogenous areas a Kest of
the donut mask will be closer to a Kact than the Kact in the analysis of
this study. Thus, the donut mask could lead to less spatial information
loss than ARP. Since this conclusion requires further investigation, we
suggest that ARP performsbetter than the donutmask inheterogeneous
areas. Also, an assumption of the method is that location information
(e.g. geographical coordinates) is the only available information within
the confidential dataset. If other variables are included in the dataset
(i.e. age, ethnicity, sex) and the data “masker” wants to disclose them
as well, a different de-identification strategy has to be developed. For
example if a K-anonymity of 20 is required for a dataset that consists
of ethnicity and location information, an original point has to be
displaced within a K-anonymized area that contains at least 20 or
more people of the same ethnicity. This moves the spatial K-
anonymity closer to its original K-anonymity approach (Sweeney,
2002) and all quasi-identifiers have to be examined for each original
point.

Last, two additional steps are required before applying the AAE
maskingmethod to a confidential dataset. The first is to select an appro-
priate RoRi file. The finer the resolution of the RoRi file, the more
K-anonymized areas will be created, thus the overall spatial error of
themasking processwill be decreased. In respect to the types of RoRi in-
formation, several examples arementioned in Section 4.2 that cover the
majority of confidential discrete location datasets for which a masking
process may be required. The second issue considered is the selection
of the disclosure value (a minimum of K-anonymity). Different thresh-
olds should be applied for different types of confidential data according
to the regulations or guidelines posed by respective agencies (e.g. health
or crime related organizations). Finally, we suggest using the random
perturbation form of AAE that involves less spatial error than the
point aggregation. The application of the method could be to either
anonymize publicly available data on Web-services or single case
anonymization such as a map presented on a scientific publication.
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