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Abstract: Conventionally, agent-based modelling approaches start from a conceptual model capturing
the theoretical understanding of the systems of interest. Simulation outcomes are then used “at the
end” to validate the conceptual understanding. In today’s data rich era, there are suggestions
that models should be data-driven. Data-driven workflows are common in mathematical models.
However, their application to agent-based models is still in its infancy. Integration of real-time
sensor data into modelling workflows opens up the possibility of comparing simulations against
real data during the model run. Calibration and validation procedures thus become automated
processes that are iteratively executed during the simulation. We hypothesize that incorporation
of real-time sensor data into agent-based models improves the predictive ability of such models.
In particular, that such integration results in increasingly well calibrated model parameters and rule
sets. In this contribution, we explore this question by implementing a flocking model that evolves in
real-time. Specifically, we use genetic algorithms approach to simulate representative parameters to
describe flight routes of homing pigeons. The navigation parameters of pigeons are simulated and
dynamically evaluated against emulated GPS sensor data streams and optimised based on the fitness
of candidate parameters. As a result, the model was able to accurately simulate the relative-turn
angles and step-distance of homing pigeons. Further, the optimised parameters could replicate loops,
which are common patterns in flight tracks of homing pigeons. Finally, the use of genetic algorithms
in this study allowed for a simultaneous data-driven optimization and sensitivity analysis.
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1. Introduction

Traditionally, agent-based models (ABM) have been formulated from a hypothesis (or rules of
behaviour) of the systems of interest [1]. Empirical data are introduced at later stages to facilitate
calibration and validation of the model in an iterative process of exploration [2]. The result is a set
of state variables that produce a realistic representation of processes and behavioural mechanisms of
the underlying system and therefore can be used to check the validity of the presumed mechanism of
the system. An impediment to the use of ABM in investigating spatio-temporal systems has been the
lack of fine-scale data [3] to describe the behaviour of individual agents and to be used for calibration,
verification, and validation of such models. Recent improvements in data collection and transmission,
particularly due to the advent of sensor technologies, present an opportunity for the incorporation of
the rich data emanating from such platforms into modelling and simulation environments [4].

Emergence of miniaturized sensors and intelligent sensor networks [5] provides an opportunity
of deploying sensors in remote environments and using the resulting sensor data streams to capture
dynamic local characteristics of individual drivers of geographic processes. These data can be used to
monitor, investigate, and to understand the influence of such individual behaviours on the overall
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system level outcomes. Additionally, wireless sensor networks can facilitate transparent and efficient
transfer of sensor resources, hence reducing turnaround time between data collection and analysis,
and visualization of the results. The ability of sensors, particularly those deployed under the “breed”
of wireless sensor networks (WSN) [6], to dynamically capture spatio-temporal characteristics of the
systems at hand and to transfer the information in real-time also raises the question on the suitability
of traditional methods in model specification [7] and geospatial analysis. One suggestion to efficient
utilization of sensor resources has been to shift from centralized, desktop-based applications towards
a distributed web-based geospatial services [5,6]. This has led to extensive interest and research
with an aim of developing open standards to facilitate a standardized means of implementation,
documentation, discovery, and access of sensor oriented services [7,8]. Consequently, sensor networks
have been applied to a great variety of domains, including environmental [4,9,10], public health [11,12],
hydrology [13], and mobility [14]. In the same context, scientists in the field of animal movement ecology
have developed standardized online animal movement data repositories such as Movebank [15,16],
Wireless Remote Animal Monitoring (WRAM) database [17], and Information System for Analysis and
Management of Ungulate Data (ISAMUD) [18] among others [19]. As a result, sensor observations
have become an integral part of research on movement behaviours [14,20,21].

These initial successes in the implementation of sensor and related data management technologies
have led to an interest in dynamic incorporation of data into simulation models. The most prominent
attempt at dynamic assimilation of sensor data into simulation models was made through the
framework of Dynamic Data-Driven Application Simulation (DDDAS) [22–26]. An implementation
of DDDAS methods in agent-based modelling environment was investigated by [27] who executed
a bi-directional communication between a camera system and a model of animal movements. In an
attempt to address the challenges related to data management and dynamic visualization of the results
of dynamic data-driven ABMs, parallel simulation under the framework of Distributed Dynamic
Data-driven Simulation and Analysis System (4D-SAS) has been proposed [28]. Furthermore, there
is evidence that behaviour patterns of agents as captured by sensor observations can facilitate and
improve data assimilation in dynamic data driven simulation models [29]. Whereas dynamic-data
assimilation has largely been successful in mathematical models [30,31], there have only been limited
attempts to implement data-driven ABMs [32]. In a related study, emulated sensor data streams
were used in a model-sensor framework to evaluate agent decisions against “sensor” data during
the model runs [33]. An outstanding aspect of research that is yet to be explored conclusively is on
how dynamic data can be used to improve specification of the behaviour of agents in rule-based and
spatially explicit ABMs.

To dynamically improve the spatial and temporal behaviour of agents, it is important to consider
how such agents adapt to variations in the characteristics of their environment. Adaptation is an
important attribute of ABMs and relies on the ability of agents to sense their environments, to learn
about possible actions to take in different circumstances, and respond to stimuli from other agents
or from their environments [34]. Learning within ABMs has been achieved through methods of
reinforcement learning [35], evolutionary (genetic) algorithms [36,37] and machine learning [38].
Spatial learning in particular is the precursor to successful adaptation [39,40] and has been identified
as one of the challenges to representation of spatially aware agents [35]. Reinforcement learning is
particularly useful in cases where the environment is represented in simple, discrete, and deterministic
states [41]. Machine learning has been used in agent-based models for data mining to recognize
patterns in data [42]. Genetic algorithms are best suited for ABMs where learning and adaptation
are integral attributes of the agents in the system of interest. Moreover, genetic algorithms have been
suggested as suitable heuristic algorithms for various aspects of ABM design including; directed
parameter search [43], calibration [44], parameter optimization, and sensitivity analysis [45].

Conceptually, genetic algorithms are computer-based techniques that borrow from rules of natural
selection to solve difficult optimisation problems [37]. The basic concepts of genetic algorithms and
their framework for adaptation were initially defined by John Holland in the 1960s [46,47]. As in natural
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selection, candidate solutions to a problem are coded as “chromosomes” [48]. The algorithms then
evolve populations of candidate solutions to discrete problems by using tools of natural selection [38].
In the simplest form, evolution is achieved by applying three genetic operators of selection, mutation,
and crossover (recombination) [48,49]. Selection operators use a measure of fitness to select a set of
chromosomes in a population as candidates for reproduction. The choice of a realistic fitness function
to measure how well candidate chromosomes simulate behaviours evident in the real world remains
an outstanding challenge in implementing genetic algorithms [50]. Mutation operators on the other
hand, randomly flip or vary a gene/locus within the chromosome and can either have negative or
positive influence on the performance of the resulting offspring. Crossover or recombination operators
swap portions of candidate chromosomes from the parents involved in reproduction in order to create
new sets of chromosomes of the offspring. Apart from the three basic operators of selection, mutation
and crossover, a replacement operator specifies the mechanism of evolution of generations within
a population. In a generational genetic algorithm, all parent solutions are replaced at the end of each
generation while in steady-state/overlapping algorithms only a percentage (which is usually less
than 100%) of the parents are eliminated in each generation and replaced by offspring bred during
reproduction [37]. Genetic algorithms have been applied to agent-based models of spatially explicit
systems with most examples being in the area of ecology [36,51,52]. In the documented cases, their
application has been in optimization or to tune model parameters [50,53] and to identify behaviours of
interest from parameter space [43]. However, the question remains, how to combine fine-grained sensor
observations and evolutionary methods to enhance ABM specification, calibration, and validation in
a data-driven approach.

In this contribution, we hypothesize that dynamic integration of sensor data into spatially explicit
ABMs improves the specification of such models. Additionally, we believe that using sensor data
to dynamically evaluate and to optimise model parameters improves the predictive ability of the
models. In particular, sensor observations about the local level spatial behaviour of agents are critical
for understanding spatio-temporal heterogeneity of different phenomena and processes. We reason
that a combination of dynamic sensor data streams and evolutionary algorithms can provide the
necessary components for model specification, verification, and automated calibration. We therefore
used Global Positioning System (GPS) tracks of pigeons from a real experiment to emulate dynamic
sensor data streams. The dynamic sensor data streams were fed into an ABM used to dynamically
evaluate navigation decisions of simulated homing pigeons on the fly. Additionally, we used genetic
algorithms to evolve navigation and flocking parameters of homing pigeons. This was intended to
identify an optimal range of parameters that can be used to reproduce realistic navigation paths of
pigeon agents from a release site to a home loft.

Related Work

Data-driven ABMs that are related to the one that we present here have been the subject of
investigation by a number of researchers. Real-time measurements have been injected dynamically
into fire simulation models to improve the specification of such models [23,54,55]. In the same line,
dynamic-data driven genetic algorithms have been used to automatically adjust input values of fire
simulators in order to take advantage of real fire behaviour [56]. Other studies have used real-time data
to augment crowd simulation models [57]. In particular, behaviour detection models have been used
to facilitate data assimilation in ABMs of smart environments [29]. Attempts to improve management
and visualization of results of models that rely on dynamic spatial data are also of note [28]. Within
animal movement ecology, navigation and flocking behaviour of pigeons have been found to govern
the routing decisions of pigeons on their homing flights [58]. Additionally, GPS experiments have
revealed that pigeons use topography-induced detours and cognitive navigation maps to find their
targets [59].

This paper is organized as follows: the types of data that we used to design the model and
the details of the parameters, procedures and sub-models as specified in the model are presented in
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Section 2. The results from the model specification and those of the data analysis are presented in
Section 3. In Section 4, we provide a discussion of the results and briefly outline what we consider to
be the next frontier for dynamic sensor data integration into agent-based models. In the final section,
we provide a conclusion to summarize on the achievements, challenges, and future research directions
that can build on this study.

2. Materials and Methods

2.1. Data

GPS tracks containing flight details of homing pigeons (Columba livia) provided the main dataset
in this study. The data were sourced from an experimental research on leadership among homing
pigeons in Seuzach, Switzerland [60,61]. We accessed the data from Movebank, which is an online
platform to report and share animal tracking data (www.movebank.org) [15,16]. Specifically, the data
contained information on five separate homing flights. In each flight, tracks of a flock containing at
least seven pigeons were captured. GPS coordinates, speed, flight altitude, and tag identifiers of each
bird were recorded at a time interval of 0.25 s during the experimental flights. A digital elevation
model (DEM) of the area of research with a 25 m spatial resolution was also used in the study as will
be explained in the subsequent sections.

2.2. The Model

We designed a flocking and navigation model of the homing pigeons to simulate the flight of
pigeon flocks from a release site to the home loft. We followed “ODD” (Overview, Design concepts,
and Details) protocol [62] in model description and implemented the model in Netlogo software [63].
The ODD protocol aims at simplifying the process of writing and reading model descriptions and has
been broadly embraced within the agent-based modelling community [64,65]. The specific aspects of
the ODD protocol that we captured in our model are as outlined in the subsequent sections.

2.2.1. Purpose

The purpose of the model was to gain a better understanding of the navigation behaviour of
homing pigeons by identifying an optimal range of parameters that govern their navigation decisions.

2.2.2. Entities, State Variables and Scales

The entities represented in the model include pigeon agents, homing loft, and the environment.
Two sets of pigeon agents are represented in the model; “real” agents that derive their navigation
rules from empirical data as captured in the emulated GPS tracks and “simulated” birds that use
flocking and navigation rules to navigate to the homing loft. The number of pigeon agents (“real”
or “simulated”) represented in the model ranged from 7 to 9 depending on the number of pigeons
captured in the respective empirical flight tracks. A single homing loft is specified in this model and is
represented as a stationary agent. The environment is represented as a topographic surface as derived
from the DEM. The spatial extent of the area of study is approximately 17 km by 17 km. A single time
step in the model represents 0.25 s in the real world. The temporal scale of 0.25 s was chosen because it
is the same interval at which the GPS tracks were archived. An entire flight from the release site to the
homing loft is approximately 20 min which is approximately 4800 time steps in the model. In order
to conclusively capture the state variables that are necessary for this kind of model, we relied on the
literature on ABMs for animal movement [66]. The state variables of the pigeon agents include their
coordinates, current heading, number of flock mates, step-distance which is variable in each time step,
relative turn-angle (in degrees) in the latest time step, sinuosity of the current flight path, and the
cumulative flight distance from the release site to the current location. The state variables of the home
loft are its coordinates which remain constant throughout the simulation. The state variables of the
environment are the coordinates of patches and their associated elevation.

www.movebank.org
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2.2.3. Process Overview and Scheduling

A summarised workflow of the key processes that are implemented in the model are shown
in Figure 1; the main processes include initialization of model entities, execution of navigation and
flocking procedures, and the evolution of model parameters through genetic algorithms. Navigation
behaviours include a map turn and a compass turn. The map turn procedure ensures that the flight
routes of pigeon agents are guided by the landscape forms. This behaviour is implemented so that
pigeon agents fly along a regular topographic contour. Compass turn borrows from the assumption
that pigeons can generally sense the bearing towards their home loft. The compass turn procedure
ensures that agents fly towards a general bearing towards their home loft. The flocking behaviour is
controlled by separation, alignment and coherence rules as originally defined in the boids model [67].
Genetic algorithm is used to evolve the navigation and the flocking parameters after each time step.
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Figure 1. Flow diagram of critical steps in the model including initialization, navigation, flocking, and
genetic algorithm implementation within the model.

During the training runs of the model, “real” and “simulated” agents are initialized and
simultaneously simulated in the model. In general, simulation encompassed the following processes.

• State variables of pigeon agents are updated (or initialized if at the beginning of the model).
• Agents execute navigation decisions; specifically, “real” agents use values of relative turn angle

(mean-turn) and step-distance which are attributes that are captured in the empirical GPS data
streams to orient their heading by an angle equivalent to the mean-turn and to move forward by
a distance equivalent to the step-distance. On the other hand, “simulated” agents choose their
navigation behaviours on the basis of two sub-models, which are specified as map-turn and
compass-turn. The aim of the map-turn parameter, alternatively referred to as the elevation-turn is to
re-orient agent headings and allow agents to fly along a controlled topographic contour. On the
other hand, compass-turn ensures that an agent dynamically maintains a general bearing towards
a known home loft during navigation.

• Agents find flock mates with whom to navigate; flocking rules are adopted from Reynolds flocking
model [67] and are guided by separation, alignment, and coherence procedures. These procedures
are controlled by model parameters which are specified as minimum separation distance,
maximum separation turn, maximum alignment turn, and maximum cohere turn. The separation
procedure supersedes the other procedures under the flocking behaviour and by it, an agent
changes its direction of flight to avoid colliding with nearby flock mates. An implementation
of the flocking model is included as one of the library models within NetLogo package [68]
and this is what we modified and adopted to fit the specifications and objectives of the model
presented herein.

• Apart from the navigation and flocking behaviours, agents can also turn randomly to their left
(turn-random-left) or to their right (turn-random-right) based on a probability (random-turn-prob).

• A genetic algorithm is implemented to evolve the initial population of candidate parameters and
to optimize the range of flight parameters.

• Output is produced; this includes coordinates of agents, step-distances, cumulative turn in the
respective time step, sinuosity of the flight path, chromosome of the current agent, and the fitness
value associated with the current chromosome of the agent.
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2.2.4. Design Concepts

• Emergence: We are interested in a range of parameters that reproduce realistic flight paths and
observable navigation behaviours of homing pigeon agents. Specifically, we are looking for
observable corridors and possible loops in the flight paths that emerge from navigation, flocking,
and random decisions of the pigeons.

• Adaptation: Agents make adaptive decisions during flocking as well as in identifying optimal
flight directions by considering the limits of navigation and flocking parameters.

• Objectives: The goal of “simulated” agents is to successfully navigate to the homing loft by
following efficient tracks. This is achieved by avoiding areas with abrupt changes in elevation
and preferably by navigating in flocks.

• Sensing: Pigeon agents can sense other agents (flock mates) in their neighbourhoods. An agent
neighbourhood is specified by visible distance (vision-distance) and a view angle (vision-angle).
Additionally, agents can perceive the differences in elevation between their current locations and
the surrounding patches in their environments.

• Collectives: Pigeon agents prefer to navigate in flocks, which is a social group of pigeon agents.
• Observation: Apart from the flight paths of agents that are plotted during simulation, additional

charts are plotted to show the variation in mean-turn angles, average step-distance, fitness of
candidate chromosomes, and sinuosity of flight paths. In addition, a monitor is used to report the
cumulative travel time of agents. The flight time (in minutes) is as shown in Equation (1).

t = 0.25
(

ticks
60

)
(1)

2.2.5. Input Data

Emulated sensor data streams, which were derived from experimental GPS tracks of homing
pigeons, provided the navigation parameters for “real” agents. These data were dynamically loaded
into the NetLogo modelling environment as GIS point vector data in shapefile format. Table 1
represents the number of data points and the number of sample birds that were captured in each of
the five homing flights in the empirical (experimental) data. Apart from the GPS tracks, a DEM was
used in the model to represent the spatial variability in the elevation of the navigation environment.

Table 1. Number of data points and number of birds in each empirical homing flight.

Homing Flight Number of Data Points Number of Birds

1 4667 8
2 2788 8
3 3500 7
4 3496 8
5 3844 9

2.2.6. Sub-Models

We used a number of sub-models to implement the main processes in the model. Table 2 outlines
a list of the sub-models that are specified and implemented in the model. The sub-models of the
flocking processes were modified from the NetLogo flocking model [68]. Similarly, we adopted and
modified ideas for the create-new-generation and mutate sub-models from Robby the Robot model in
NetLogo [69]. Apart from the specified sub-models (Table 2), we also defined a number of reporter
procedures (functions) to generically and iteratively compute different parameters that are important
for successful implementation of different model processes and sub-models. These included reporters
to calculate state variables such as sinuosity, elevation heading, compass heading and agent fitness
among others.
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Table 2. Individual sub-models and their purposes.

Sub-Model Purpose

read-GPS-sensor? Uses emulated GPS points to create and to guide navigation of “real” agents.

create-birds-agents Uses the first set of coordinates in the emulated GPS tracks to create “simulated” pigeon agents.
Additionally, sets the initial state variables of simulated agents.

display-elevation Imports the DEM, transforms its coordinates to the model coordinate system, and specifies how
the environment is displayed.

map-turn Uses a defined elevation turn (max-elevation-turn) and the variation of elevation in the locality of
an agent to re-orient the heading of the agent.

compass-turn

An agent uses trigonometric functions to determine the bearing to the home loft. The result is
compared to the allowable compass turn (max-loft-turn), if the bearing is less than max-loft-turn
then the agent reorients its heading to face the direction of the home loft otherwise the agent
turns by an angle that is equivalent to the max-loft-turn in the direction of the home loft.

encode-chromosome
Uses a predefined set of model parameters to encode a vector of candidate chromosomes;
stochasticity is introduced in the chromosomes by using a normal distribution with a mean of
0.0 and standard deviation of 0.01 to randomly vary the individual chromosome parameters.

create-new-generation Implements genetic algorithm operators of selection, crossover, mutation, and replacement.

mutate Randomly selects a gene within the candidate (intermediate) chromosome and uses a normal
distribution with a mean of 0.0 and standard deviation of 0.1 to vary the selected gene.

export-results Generates a tabular output of the agent properties at each time step.

2.2.7. Model Parameters

Model parameters define the limits of capabilities of agents that are represented in a model.
Table 3 represents a list of model parameters that were specified in the model. Whereas most of the
initial parameters can be adjusted by user, min-step-distance and max-step-distance were mathematically
defined within the model. Specifically, min-step-distance is defined from random normal function
(random-normal) with a mean of 2.0 and standard deviation of 0.5 while max-step-distance is calculated as
the sum of min-step-distance and random number generated from a normal distribution with a mean of
5.0 and standard deviation of 1.0. The values of mean and standard deviation that were used estimate
min-step-distance and max-step-distance variables were pre-calculated in the observed trajectory data.

Table 3. Model parameters.

Parameter Description Base Values

max-align-turn Maximum turning angle that an agent can execute to align to flight direction of
flock mates. 8.0

max-cohere-turn Maximum turning angle that an agent can implement to be in coherence with its
flock mates. 11.0

max-elevation-turn Maximum turning angle that an agent can perform in order to fly along a
controlled topographic contour. 3.7

max-loft-turn Maximum turn angle that an agent can make in order to fly in a general bearing
towards the home loft. 1.9

max-separation-turn Maximum turning that an agent performs in order to be in separate from nearby
flock mates. 3.5

max-step-distance Maximum distance that an agent can traverse in a single time step.

minimum-separation-m Least distance that is necessary to avoid collision between pigeons in a flock. 1.25

min-step-distance Least distance that an agent can traverse in a single time step in order to continue
with navigation.

mutation-rate Rate at which mutation in candidate chromosomes occur. 0.01

random-turn-prob Probability of an agent making a random turn. 0.3

replace-proportion Proportion of candidate agents that are replaced in each time step. 0.6

view-angle Maximum angular radius that is viewable to an agent at any instance. 340

vision-m Maximum distance that is visible to an agent at any instance. 100
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Apart from the mutation rate and replacement proportion parameters which were arbitrarily
specified by the authors, the remaining initial model parameters in Table 3 were obtained by
specifying and calibrating a conventional model. The purpose of the conventional model was to
identify a suitable range of parameters for simulating flocking and navigation behaviour of homing
pigeons [33]. Calibration was carried out against GPS tracks of first homing flight (homing flight 1) in
the experimental data.

2.2.8. Initialization

At the beginning of the simulation, the number of birds in the empirical data, which is used
as the basis of specifying the behaviour of “real” agent, is similarly used to specify the number of
“simulated” agents to be created and simulated in the model. This was done to have the simulated
agents as a mirror of their real (observed) counterparts. The first set of coordinates of the “real” agents
was used to position the “simulated” agent in the model world. Each “simulated” agent was assigned
a chromosome specifying the parameters for navigation. The chromosomes were encoded as linear
vectors of the flocking and navigation parameters which included: maximum alignment turn (At),
maximum coherence turn (Ct), maximum separation turn (St), maximum loft turn (Lt), maximum
elevation turn (Et), vision distance (Vd), maximum view angle (Va), minimum step distance (Sn),
maximum step distance (Sm), and random turn angle (Rt). Figure 2 is an illustration of how the model
parameters are organized within a chromosome of an agent. This specification is actualized using list
data structures in NetLogo.
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A random disturbance is applied to the parameters by adding a random value from a normal
distribution with a mean of 0.0 and standard deviation of 0.1 to each of the elements of a chromosome.
This ensured that each agent is assigned a unique initial chromosome upon which to base its flocking
and navigation decisions.

2.3. Parameter Estimation and Optimization

At each time step, a number of state variables are estimated to describe the state of different
agents during the life of the model. State variable of interest in this task included, the step distance,
the flight distance, relative turn angle, sinuosity of the flight path, and the fitness of candidate agents
(in the training runs of the model). Step distance (Sdi

) is the discrete distance traversed by an agent in
a single time step. This is estimated as a function of minimum step distance (Sni ) and maximum step
distance (Smi ) as shown in Equation (2).

Given Sni , Smi ∈ R, Sdi
= Sni + rand (2)

where rand ∈ [0, |Smi − Sni |] .
Flight distance (S fi

) is the cumulative length of the flight path traversed by an agent and is
estimated as the sum of individual step distances from the beginning of the model to the current time
step. Relative turn angle is estimated as the sum of the navigation, flocking, and random turns that
are made by an agent at each time step. Sinuosity is a measure of the efficiency of the path that is
followed by an agent and is calculated as the ratio of the flight distance and the Euclidean distance
between the release sight and the current location of the agent. Fitness in the context of this work
is a measure of how well the candidate navigation parameters simulate the flight paths of homing
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pigeons and is computed as a function of sinuosity of the flight path and proximity of the simulated
agent locations to the location of “real” agents in the model. Specifically, we estimated instantaneous
fitness of the candidate parameters ( fi) as a sum of the component of fitness ( fd) resulting from the
Euclidean distance (d) between the locations of “simulated” agents and the emulated GPS locations
at a point in time and the component of fitness ( fs) resulting from the difference in sinuosity (s)
of the paths of “simulated” agents and the paths of the “real” agents. Equations (3) and (4) show
how the two components of fitness function are estimated. Our choice of sinuosity as one of the
variables in the fitness function was motivated by the fact that sinuosity is a composite navigation
parameter. Specifically, sinuosity encompasses the influence of random behaviour, relative turn angles
and step-distances to the navigation behaviour of a moving agent. Additionally, sinuosity and locations
of the simulated flight paths are functions of turn angles and step distances. As such, we considered
a fitness function derived from a combination of sinuosity and positional differences of flight paths to
be appropriate for testing the sensitivity of our model parameters during simulation.

fd =


1, i f d = 0

d−1, i f 0 <d ≤ 1000
−0.01d, i f d > 1000

(3)

fs =


1, s = 0

0.01s−1, 0 <s ≤ 0.5
0.01(s− 1), s > 0.5

(4)

In the implementation of genetic algorithm, flocking and navigation decisions of “simulated”
agents are guided by the parameters as specified in the elements of their respective chromosomes.
The decisions made by simulated agents at each time step were evaluated by their associated fitness
values which were calculated according to the fitness function as specified in Equations (3) and (4).
Depending on a predefined replacement rate (replace-proportion), a proportion of simulated agents,
characterised by low fitness values at the end of each time step were eliminated from the model.
An elitist selection method was used to select two parent agents from the remaining proportion of
the agents. The selected parents hatch offspring in place of the eliminated agents. Elitist selection
operators which include ranking and tournament selection have been found be more efficient when
compared to proportional and roulette based selection schemes [70,71]. The chromosomes for the
new generation of agents were created through a single-point crossover of the parent chromosomes.
The crossover/recombination process was achieved with the help of create-new-generation procedure
in the model. Additionally, a mutation procedure (mutate) was implemented to randomly vary the
genes of chromosomes of the simulated agents. This process was executed iteratively for as long as
there were emulated sensor data streams against which to evaluate the fitness of simulated agents.
Fifty simulations were executed; in each run, chromosomes of agents in the final generation of agents
and the associated fitness values were recorded. The parameters in these final set of chromosomes of
each model run were considered as the optimized set of parameters from the respective model run
and were subjected to further analysis in R statistical package. The goal of further statistical analysis
was to identify the statistical distribution and patterns of optimised parameters.

We validated the results of the model against the emulated sensor data streams from homing
flights 3, 4, and 5 of the empirical GPS tracks data. Specifically, validation was carried out against
three state variables including relative turn angles, step distance, and sinuosity of flight paths. We
used geometric means and standard deviation of the optimized parameters to generate parameters
that were used in the validation runs of the model. Specifically, this involved executing a random
normal function (random-normal) in NetLogo to generate respective validation parameters based on the
estimated mean and standard deviation of optimised parameters. BehaviorSpace tool within NetLogo
was used to iteratively execute the validation runs of the model while using the optimised range as
the boundaries of the parameter space. We then used Student’s t-test at 95% confidence interval to
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compare values of step distance (step-distance) and the relative turn angles (mean-turn) of simulated
and the empirical flight tracks. Additionally, we plotted the sinuosity of the simulated tracks and
the empirical tracks to provide a visual comparison in the characteristics of the flight paths of the
simulated agents and the real agents. Results of this analysis are presented in the next section. Finally,
we used coordinates of agents in the validation runs to map the flight paths of simulated agents and to
estimate the tentative corridors emerging from the respective flight paths.

3. Results

An important output from this study is the set of optimized parameters upon which pigeon agents
can navigate from a release site to a known loft. Table 4 represents a summary of the means and the
confidence interval of optimized parameters of navigation of homing pigeons as implemented in this
study. It should be noted that flocking is an important aspect of this model and so are the associated
parameters as these are important to ensure that pigeons navigate in flocks. All angular parameters are
in degrees (◦) while the distance related parameters are presented in meters (m). With the exception of
the random turn angle (±2.5◦), a majority of the angular parameters were characterized within the
narrow width of the confidence intervals (±0.3◦).

Table 4. Average of flocking and navigation parameters as calculated from the model.

Parameters Mean (95% CI)

maximum alignment turn angle 8.01 (7.87–8.16)
maximum cohere turn angle 10.93 (10.81–11.04)
maximum separation turn angle 2.36 (2.22–2.51)
maximum compass turn angle 1.94 (1.82–2.06)
maximum elevation turn angle 3.63 (3.47–3.78)
vision distance 100.05 (99.9–100.2)
view angle 340 (339.8–340.1)
minimum step distance 2.45 (2.34–2.56)
maximum step distance 7.07 (6.8–7.35)
random turn angle 14.72 (12.29–17.16)

We further plotted density distribution charts of optimal range of navigation parameters (Figure 3)
to provide a visual demonstration of the spread of the respective parameters. The mean value of the
optimised parameters is indicated by the dotted lines. Once again, we observed that, in all cases,
the optimized range of parameters were generally leptokurtic with a concentration of optimized values
around the mean.
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In addition to the optimised parameters, we also plotted the temporal changes of fitness values
of best performing parameters in each of the experimental model scenarios. The variation of fitness
values against the model time (ticks) is shown in Figure 4. This graph was plotted from aggregated
values of 50 exemplary simulation runs. We observed sharp increases in the fitness values of best
performing chromosomes in the first 500 time steps (0–2 min), followed by moderate improvement of
fitness in the period between 500–2600 time steps (2–10 min), and thereafter another period of rapid
rise in the fitness values as agents inch closer to the homing loft.ISPRS Int. J. Geo-Inf. 2017, 6, 27  11 of 18 
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Figure 4. Variation of fitness of candidate parameters during model execution.

The optimized range of parameters provided the input for validation runs of the model.
The output of validation runs included instantaneous coordinates of simulated agents, values of
relative turn angles, step-distances, and estimated sinuosity of the flight path at each time step.
Maps of simulated flight tracks against the validation data are presented in Figure 5. Apart from
the simulated locations of birds that were captured in the validation runs, we used a kernel density
estimation (KDE) surface to reveal the probable flight corridors in the area of study. Our choice of
KDE as a method to estimate the flight corridor was motivated by the fact that the method has been
used extensively [72,73] to estimate home range of different organisms. Additionally, we observed
that, by using the optimized range of parameters in simulation, it was possible to replicate loops in
flight paths. This is a pattern that was also evident in the empirical pigeon flight tracks; an example is
highlighted in Figure 6.

A statistical comparison of the simulated state variables of step distance and relative turn angles
was achieved in two parts; firstly, we used box and whisker plots to represent the median and the
distribution of the observed and simulated variables as shown in Figure 7. We noted that whereas the
median of the observed value of step distance was approximately 4.5 m, the median of the simulated
step distance was slightly higher at approximately 4.7 m. The mean values of the observed and
simulated values of relative turn angles during navigation were in both cases approximately equal
to 0◦. Additionally, for both the step distance and the relative turn angles, the range of simulated
values was slightly wider in comparison to the range of the observed values (3 m to 6.4 m against
3.6 m to 5.3 m the case of step distances and −10◦ to 10◦ against −5◦ to 5◦ in the case of relative turn
angles). Results of T-test showed that the mean values of step distance of pigeon agents as simulated
from the optimised navigation parameters (4.74 m ± 0.25 m) and those recorded in the empirical data
(4.47 m ± 0.27 m) were not statistically different (p-value = 0.012). Similarly, the mean value of the
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simulated relative turn angle (0.02◦ ±0.02) was statistically equal to the mean value from the observed
data (−0.07◦ ± 0.15) with a p-value < 0.005.
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and relative turn angles (b).

The final set of outputs that we considered from this study was the temporal variation in sinuosity
of flight paths, a graphic representation of which is shown in Figure 8. In the results, we observed that
the chart of sinuosity of the flight paths of real pigeons that we generated by aggregating individual
values of birds in homing flights 3, 4, and 5 was generally above the simulated values indicating that
the refined navigation parameters result in agents following slightly more efficient routes. Additionally,
whereas real pigeons spend approximately the first two minutes (≈500 ticks) after release to re-orient,
the optimized parameters did not take this into account, hence underestimating sinuosity of flight
paths in the initial stages of the simulation.
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4. Discussion

In this study, we used emulated sensor data streams to provide a continuous mechanism of
evaluating agent decisions during the life of a model. The result is a set of optimized model parameters
that can be used to simulate the navigation behaviour of homing pigeons. In contrast to conventional
models, whose output are stand-alone sets of calibrated parameters which can be considered as the
most realistic representation of the system of interest, the implementation of genetic algorithms for
optimisation resulted in a range of values for each parameter. This allowed for a wider scope of
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parameters space on which to the model can be validated. Our model was particularly accurate in
simulating key state variables in the model including step-distances and relative turn angles of agents.
Optimisation also has the benefit of resulting in robust parameters that can replicate emergent patterns
in the behaviours of agents. In this work, optimized parameters successfully replicated loops in the
flight paths of homing pigeons, a pattern that has been observed in other studies [74]. This success
was initially not possible by means of the conventional ABM paradigm [33]. Even though it is difficult
to establish a mathematical relationship between the model parameters and patterns such as loops,
such patterns do provide qualitative evidence that can be used in pattern-oriented modelling [75].

We observed that fitness values of the candidate model parameters improved with the progress
of the models (Figure 4), indicating a refinement in the model parameters towards an optimal
representation of the underlying system. While this underscores the suitability of evolutionary
methods in modelling and simulating dynamic phenomena in data-rich environments, such methods
also run the risk of creating “super-fit” solutions. This is one of the challenges that we faced in our
model implementation. In particular, while our model captured the trend of changes in sinuosity of
the flight path, the same were generally lower than the observed values. One suggestion to dealing
with model overfitting when using genetic algorithms is to have a proper parental selection that
limits the chance of superfit solutions from taking over the evolution process [76]. Additionally,
other studies [77] have suggested the adoption of hybrid approaches that use conventional modelling
methods to complement genetic algorithms by providing provisional calibrated parameters for the
initial formulation candidate solution in genetic algorithms. This is the approach that we adopted in
our implementation. As an alternative, initial parameters can also be obtained from well documented
research and from domain experts [78]. Such an approach has the advantage of providing an anchor
between existing knowledge and new research. As an example, hybridity attained by combining
genetic algorithms and local optimisers has been used to improve the calibration of cellular automata
models [79].

Our findings are in agreement with other studies that have found that data assimilation into ABMs
can improve the predictive ability of such models by facilitating agent behaviour specification [80]
and model calibration [81]. Additionally, by choosing a fitness function that is sensitive to the various
model parameters [82], the use of genetic algorithms made it possible to simultaneously carry out
optimization and sensitivity analysis [45]. Choosing a method that incorporates sensitivity analysis
as part of optimization improves the efficiency of the models. The methods that we have presented
in this paper contribute towards finding alternatives to traditional simulation models. Specifically,
conventional rule-based models have been characterized by rigid parameter settings and minimal
use of the real time data from the systems under study [23]. We handled these challenges by using
genetic algorithms to improve the parameters of the model during the simulation. Additionally,
the methods allowed for an efficient and dynamic integration of spatio-temporal data into the model,
thus improving the predictive ability of the model.

In this study we did not keep a record of the memory of the individual agents, such an attempt
would be of interest especially as a way of investigating the actual triggers of adaptation and the
influence of local spatial characteristics to the learning and evolution process. Additionally, we did
not consider the influence of changes of the environment on the behaviour of agents. We see this as
an opportunity for future research. In particular, the integration of in-situ sensor observations and
dynamic environmental variables (including vegetation indices and climatic variables) from remote
sensing into ABMs should be considered. Additionally, we foresee additional opportunities particularly
in the integration of dynamic data assimilation [81] methods and evolutionary algorithms in the
implementation of self-calibrating and adaptive agent based models. This will be particularly useful
to take advantage of advanced sensor data capture methods and associated geosensor networks [83].
Additionally, animal tracking and data management endeavours like the upcoming International
Cooperation for Animal Research Using Space (ICARUS) initiative will also provide a good resource for
researchers with an interest in dynamic data assimilation in behavioural models of animal movement.
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The aim of ICARUS project is to observe/capture global migratory patterns of small animals and to
allow scientists to gain insight into vital functions and behaviour of animals [84]. We believe that
the knowledge from our study will be useful in implementing automated agent behaviour detection
models against real geospatial resources as those that will be captured by the ICARUS project.

5. Conclusions

In this study, we set out to investigate on how spatio-temporal data about a real world system can
be used to improve the specification of a rule-based ABM. We evaluated this objective by implementing
an evolutionary algorithm against data depicting the navigation of homing pigeons. Specifically,
emulated sensor data from GPS tracks provided a dynamic spatial and temporal representation of
the behaviour of autonomous agents. Consequently, these availed a basis of evaluating simulated
agent behaviour and thus giving credence to the hypothesis that dynamic data streams from sensor
observations can be incorporated into agent-based models to improve the formulation of agent
behaviours and facilitate the understanding of underlying systems. Our model showed that, even
though agents as specified in this study were not trained to remember all the possible states of their
environment, the optimised parameters were able to successfully simulate the core state variables
of the model. In particular, the optimised parameters accurately simulated relative turn-angle and
step-distance, which are vital for describing the trajectories of animal movement. Apart from predicting
the state variables, the optimised parameters also replicated loops in the flight paths of homing pigeons.
Loops are a distinctive pattern that are commonly observed in the flight paths of pigeons but have not
been easy to replicate using conventional ABMs. It is evident that using fine-grained spatio-temporal
data about the systems of interest to provide dynamic evaluation and optimization of the model
parameters results in robust parameters. Such data-driven paradigms can improve the transferability
of model parameters to other scenarios. More fundamentally, availability of dynamic and high
resolution data brings into question the possibility of using such data to develop plausible models
without overreliance on theories. This, we foresee as the next frontier for researchers with an interest
in rule-based agent-based models.
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