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Abstract: Terraces are typical artificial landforms on the Loess Plateau, with ecological functions
in water and soil conservation, agricultural production, and biodiversity. Recording the spatial
distribution of terraces is the basis of monitoring their extent and understanding their ecological
effects. The current terrace extraction method mainly relies on high-resolution imagery, but its
accuracy is limited due to vegetation coverage distorting the features of terraces in imagery.
High-resolution topographic data reflecting the morphology of true terrace surfaces are needed.
Terraces extraction on the Loess Plateau is challenging because of the complex terrain and diverse
vegetation after the implementation of “vegetation recovery”. This study presents an automatic
method of extracting terraces based on 1 m resolution digital elevation models (DEMs) and 0.3 m
resolution Worldview-3 imagery as auxiliary information used for object-based image analysis
(OBIA). A multi-resolution segmentation method was used where slope, positive and negative terrain
index (PN), accumulative curvature slope (AC), and slope of slope (SOS) were determined as input
layers for image segmentation by correlation analysis and Sheffield entropy method. The main
classification features based on DEMs were chosen from the terrain features derived from terrain
factors and texture features by gray-level co-occurrence matrix (GLCM) analysis; subsequently, these
features were determined by the importance analysis on classification and regression tree (CART)
analysis. Extraction rules based on DEMs were generated from the classification features with a
total classification accuracy of 89.96%. The red band and near-infrared band of images were used
to exclude construction land, which is easily confused with small-size terraces. As a result, the
total classification accuracy was increased to 94%. The proposed method ensures comprehensive
consideration of terrain, texture, shape, and spectrum characteristics, demonstrating huge potential
in hilly-gully loess region with similarly complex terrain and diverse vegetation covers.

Keywords: terraces; digital elevation model (DEM); high-resolution imagery; object-based image
analysis (OBIA); terrain factor; terrain texture

1. Introduction

The Loess Plateau is one of the areas in the world that experience severe soil erosion due to
its structured terrain and loose loess substrate, and it is a major agricultural production region in
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China [1]. The sloping farmlands, accounting for 83.38% of the total arable area in the Loess Plateau (no
statistics for Henan and Qinghai provinces), are the main source of surface water runoff and soil loss [2].
Changing sloping fields into agricultural terraces is one of the main measures for conserving water
and soil and improving agricultural production in the Loess Plateau because terracing enhances water
infiltration, reduces soil erosion risks, and improves biodiversity by increasing landscape diversity [3].
The European Common Agricultural Policy also emphasizes the importance of terraces as an integrated
system of land and natural resource management [4]. A series of studies reported on the effects of
terraces on soil and water processes, which is an important research field regarding terraces [5–8];
many of these studies were carried out on the Loess Plateau [9–12]. However, these studies mainly
focused on individual slopes or small watersheds [6,11], thus having finite applicability and providing
limited guidance for large-scaled regions. The effects of terracing are complex problems influenced
by topography, soil, precipitation, vegetation cover, and land use. They are also associated with
difficulties in obtaining the precise spatial distribution of terraces at a large scale. Moreover, the
premise for terraces exhibiting a positive ecological function is that they are properly constructed
and managed [12]. Conversely, terraces will collapse and aggravate erosion, generating a negative
ecological effect [12,13]. Therefore, monitoring terraces is of great significance in understanding
their ecological value. Obtaining the accurate areas and boundaries of terraces are essential tasks for
understanding the large-scale regional ecological effects and land use management of terraces.

With high-resolution imagery, which is necessary for extracting terraces due to the small size
of single terraces, manual visual interpretation from high-resolution images [12,14] has gradually
become a common method for terrace identification, which was also applied in monitoring the soil
and water conservation measures in the loess hilly-gullied region on the Loess Plateau [15]. At the
same time, an automatic extraction method using spectral, shape, and textural features from imagery
was developed [12,16].

Although terraces could be extracted automatically by using imagery, the ability and validity
of extraction are affected by terrace covers, which may lead to confusion between terraces and
non-terraces with similar covers. Topographic information reflecting the relief of true terrace
topographies and excluding the effect of vegetation coverage is therefore necessary. The development
of high-resolution digital elevation model (DEM) made it possible to identify terraces through terrain
features. Moreover, research aimed at the automatic extraction of agricultural terraces based on
topographic information is receiving increased attention [17,18]. However, research on the Loess
Plateau with its extremely complex terrain has not yet been carried out. Moreover, with the
implementation of the vegetation recovery program “Grain for Green” for conserving water and
soil, a large number of agricultural terraces on the Loess Plateau have been changed to grassland or
forestland. Thus, the discrimination of terraces and non-terraces from the spectral characteristics of
image was reduced because of the relatively high vegetation coverage. The terrace extraction of the
Loess Plateau after vegetation recovery needs more detailed terrain data reflecting the actual terrace
morphology, which is a challenging direction of research.

Object-based image analysis (OBIA) has been widely used over the last decade [19]. Blaschke
and Strobl pointed out that compared with the traditional pixel-based methods, the OBIA method is
superior because the analysis unit transfers from pixels to meaningful objects [20]. Compared with
pixel-based methods that do not use any spatial concepts [20], OBIA could determine object classes
more accurately [21] by combining spectral information with spatial information of target features [22].
More important, OBIA is more effective than pixel-based approaches in classifying high-resolution
data, which are necessary in terraces extraction to cluster grid elements into objects; high-resolution
data have high spectral variety between pixels, which often results in oversampling of the scene [23,24].

On the basis of the above considerations, this study was performed to explore the terrace
extraction. The objectives of this study were as follows: (1) to propose a method for algorithmically
identifying terraces on the Loess Plateau from integrating high-resolution DEMs and imagery using
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the OBIA method; (2) to discuss the validity and application of the method integrating terrain features
and satellite imagery.

2. Data Sets and Methods

2.1. Study Area

The study area, Qingshuigou, is located in Suide County of the Northern Shaanxi Province of
China, and it covers an area of 1.9 km2 (Figure 1). Suide County is situated in the key soil erosion
region of the Loess Plateau and is one of the focal areas of soil loss and erosion control. In addition, an
experimental scientific station for ecology and environment is set up in the study area, thus facilitating
field works.
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Figure 1. Location of the study area: (a) location of the Loess Plateau in China; (b) location of the
study area and cities in the Loess Plateau; (c) digital terrain map of the study area and the location of
the sample plot for displaying the result of the terrain index analysis and segmentation; (d) terrace
distribution (red region) in the sample plot.

The study area is located in the hilly and gully region of the Loess Plateau. It has elevations that
range from 784 m to 988 m above sea level, 66.1% of which has slopes steeper than 25◦ and slopes
averaging 33◦ overall. On the top of loess hills and above the full shoulder line, most of the land
is terraced farmland, much of which has been converted to shrub land, grass land, or abandoned
cropland since the implementation of the Grain to Green project in 1999. Sloping farmland and many
shallow gullies are observed between the shoulder line and the bottom of the gully.
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2.2. Data Acquisition

In this study, DEMs and WorldView-3 imagery were used to extract terraces. 1 m resolution
DEMs were generated by unmanned aerial vehicles (UAVs) and digital aerial photogrammetry
method [25]. A digital system camera, Sony ILCE-7R (Sony Corporation, Tokyo, Japan) with a sensor
of 7360 × 4912 pixels, was mounted on the UAV. The acquisition process of DEM was as follows:
first, 49 ground control points were obtained by the GPS-RTK (Global Positioning System, Real-time
Kinematic) method; second, aerial triangulation based on control points was implemented; third,
digital surface model (DSM) with 0.2 m resolusion including the vegetation and manmade features
above the bare earth surface) were extracted using photogrammetric software; finally, DEMs were
generated from DSMs by removed building and vegetation manually [26].

The dataset of WorldView-3 imagery with a cloud cover of about 1% and an off nadir angle
of less than 15◦, contained a panchromatic band with 0.31 m resolution and multispectral bands
(red, green, blue, and near-infrared bands) with 1.24 m resolution. The pan-sharpening process was
done to transform 1.24 m resolution multispectral images to higher spatial resolution color images
by fusing 0.31 m resolution panchromatic images. The WorldView-3 “basic level” imagery has been
corrected for radiometric distortions, internal sensor geometry, and optical and sensor distortions.
The orthorectification was made using the the ground control points [27] which was obtained in the
acquisition process of DEM.

For the accuracy assessment of terraces extraction, an actual terrace map was digitalized by visual
interpretation based on WorldView-3 images, aerial photographs, and field photographs.

2.3. Overview of Extraction

The proposed method of terrace extraction based on OBIA includes the following stages (Figure 2):
(1) selection of terrain indexes derived from DEMs for segmentation; (2) segmentation based on the
selected terrain indexes; (3) determination of the classification features considering the terrain and
texture information from DEMs and the spectral information from the images; and (4) classification
of terraces based on the classification features and accuracy assessment. Two classifications and
evaluations were performed to clarify the validation of the method. The first one was based solely on
DEMs, and the second one was based on DEMs and images.
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2.4. Selection of Terrain Indexes

According to the Chinese national standard, “comprehensive control of soil and water
conservation–technical specification–technique for erosion control of slope land” (GB/T 16453.1-2008),
elevation is not a factor in restricting the construction of terraces; thus, the DEMs were not directly
used for segmentation in this study. The standard requires the construction of terraces to follow certain
requirements on hillside slope.

The pattern of positive and negative loess terrain is typical topographic characteristics of the
Loess Plateau. The loess shoulder lines, as crucial feature lines of loess geomorphy, are the boundaries
of positive and negative terrains [28]. The positive terrain is the area up the shoulder line, and the
negative terrain is the area under the shoulder line. Typically, the negative terrain is characterized
by steep slopes, high erosion, and weak light; thus, it is not suitable for terrace building. As terraces
consist of steps with obvious and regular mutations, the topographic features of the terrace surface,
such as altitude variation, curvature, and roughness, clearly differ from those of other natural slopes.

The combination of terrain indexes derived from DEMs can express landscape and morphological
characteristics comprehensively [29] and was thus used for a multi-layer image segmentation. The
above characteristics of terraces motivated us to pre-select the following terrain indexes: positive and
negative terrain index (PN, Equation (1), accumulative curvature (AC, Equations (2)–(6)), coefficient
of variation in elevation (CVE, Equations (7) and (8)), slope (Equation (9)), slope of slope (SOS,
Equation (10)), and terrain roughness (TR, Equation (11)).

PN = Hmax − Hmean (1)

where
Hmax = the maximum elevation in the neighborhood
Hmean = the mean elevation in the neighborhood

AC = Kp − Kc (2)

Kp =
zxxz2

x + 2zxyzxzy + zyyz2
y

pq3/2 (3)

Kc =
zxxz2

y − 2zxyzxzy + zyyz2
x

p3/2 (4)

p = z2
x + z2

y (5)

q = p + 1 (6)

where
AC = accumulative curvature
Kp = profile curvature
Kc = planiform curvature
zxx, zxy, zyy are the second-order derivatives that describe the rate of elevation change with

direction along the x and y axes.

CVE =
SD
z

(7)

SD =

[
1

n− 1

n

∑
k=1

(zk − z)2

] 1
2

(8)

where
SD = standard deviation
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z = average elevation in the neighborhood

Slope =
√

z2
x + z2

y (9)

where
zx = the first-order derivative that describes the rate of elevation change in the x direction
zy = the rate of elevation change in y direction.

SOS = Slope(s) (10)

TR = 1/ cos(s) (11)

where
S = slope
The black rectangular box zone in the study area (Figure 1c), was chosen to display the results

of the extraction of terrain indexes and that of the segmentation. The comparison of the calculation
results of the six pre-selected terrain indexes (Figure 3) with the real terrace distribution (Figure 1d)
revealed that these terrain indexes all contributed to terrain segmentation. Terraced fields were mostly
distributed in the positive terrain areas, thus indicating that PN is a good indicator of terrace lands. The
SOS figure showed that terrace areas had a large SOS value due to the terraces having two mutations,
namely, that under the ridgeline and that over the ridgeline. However, not all the high values of SOS
corresponded to terrace ridgelines because the shoulder line of the valley and rough gaps might also
have high SOS values. Therefore, the SOS value could be used to roughly exclude some non-terraces.
The values of CVE and TR were all high on the shoulder line of the valley and relatively smooth in
other regions. The high values of AC and slope were distributed on the shoulder line and terrace
ridge. The texture of these terrain index maps showed that the indexes facilitated the interpretation of
terraces and that the texture of terraces on the AC map was much clearer than that on the other maps.
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Figure 3. Calculation results of the terrain indexes. PN—positive and negative terrain index;
AC—accumulative curvature; CVE—the coefficient of variation in elevation; SOS—slope of slope;
TR—terrain roughness. White—for high values; black—for low values.

Correlation analysis was used to select a set of low-correlation terrain indexes from the six
pre-selected indexes, avoiding the overlap and redundancy of information. The correlation coefficient
of 0.9 was the correlation threshold. The indexes with coefficients greater than 0.9 were determined
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to be strong-correlation indexes. Only one index out of the strong-correlation indexes could be used.
Different strong-correlation factors and all the non-strong-correlation factors constituted different
index combinations. The Sheffield entropy method was adopted to calculate the entropy of the terrain
index combinations and finally determine the optimal index combination. This method, which was
proposed by Sheffield [30], is commonly used in feature selection optimization and can be calculated
with Equation [12]. The greater value of the entropy value, the more information the terrain indexes
combination has. The optimized terrain index combination selected with this method can effectively
reflect terrain characteristics and be taken as the input data for image segmentation [31].

SE =
n
2
+

n
2
· ln(2n) +

1
2
· ln|Ms| (12)

where
SE = Sheffield entropy
n = dimension
|Ms| = the determinant value of the covariance matrix

2.5. Segmentation

Segmentation is the basic step for extracting terraces in OBIA. Multi-resolution segmentation,
considered as an optimization approach for high-quality image segmentation that is widely used in
image classification [32–35], was applied in this analysis. Segmentation was based on a bottom-up
iterative spatial aggregation of objects with low spatial entity to minimize heterogeneity and was
weighted by the final segment size [35].

The input layers, namely, the selected terrain indexes, were equally weighted by 1 in the
segmentation. The determination of an optimal segmentation scale for the final segment size was the
key to multi-resolution segmentation [36]. The optimal scale was selected in two steps, namely, rough
choice and fine choice. First, with the default shape and compactness values of 0.1 and 0.5, respectively,
the segmentations for the rough choice of scale were tested by repeated experiments with different
scales from 25 to 125, with the interval of 25. Second, the estimation of a scale parameter (ESP) method,
as developed by Dragut et al. [37], was used to obtain an objective segmentation scale, which was just
the fine choice. The ESP method is an automated approach to test different scale parameters by the
rate of local variance (LV) change with fixed shape and compactness values in an image. This tool
uses the LV as the value of standard deviation in a small neighborhood (3 × 3 moving window) and
then computes the mean of this value over the entire image [38]. Then the rate of change was used to
measure the dynamics of LV from an object level to another [32]. The segmentation scale corresponding
to the peak value of the rate of LV change was considered an optimal segmentation scale. Shape and
compactness values were determined by a trial-and-error procedure, and visual inspection was used
to facilitate these parameter decisions, adjusting the parameters until the segmented objects fit the real
target objects well [17].

2.6. Classification

2.6.1. Selection and Calculation of Classification Features

After segmentation, the determination of classification features is the next key step in the OBIA
process. Topographic and geometric information from DEMs and spectral information from the image
were taken into account for classifying terraces and non-terraced lands in this study. Topographic
information was considered as the basis of classification because it does not contain the effect of land
cover on terrain while spectral information does not.

The topographic features used in this study were selected on the basis of the analysis of terrain
indexes and topographic-based texture. First, the mean and variance of the terrain indexes, the
importance of which was proven in the segmentation step, were also pre-selected as topographic
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classification features. Second, a gray-level co-occurrence matrix (GLCM), which was presented by
Haralick [39] and is commonly used in topographic research [40,41], was used for texture feature
calculation. GLCM characterizes the image texture by analyzing combinations of gray-level occurrences
considering the relationships of two neighboring pixels. The matrix defines the probability that
gray-level i occurs at a distance d in the direction θ from gray-level j in the texture image [39]. These
probabilities created the co-occurrence matrix M (i, j, d, θ), where L is the number of gray scale and
the direction θ generally takes values of 0◦, 45◦ and 90◦, 135◦ starting from the Ox axis and computed
in a counter-clockwise direction [32]. In this research, a set of GLCM variables was considered as the
pre-selected classification feature indexes; the set includes (1) GLCM contrast, measuring diversity and
dominance; (2) GLCM correlation; and (3) GLCM homogeneity, measuring similarity; and (4) GLCM
entropy; and (5) GLCM angular second moment (ASM), assessing chaos and order lines (Table 1).
These texture variables were based on a calculation over all directions. In this study, the GLCM features
were calculated on topographic data rather than imagery because compared with the texture from
imagery, the texture from topographic data reflects the topographic relief of the real terrace morphology
without vegetation cover. Among the topographic indexes, AC with clear texture determined by visual
inspection in the terrace region (see Figure 3 in Section 2.4) was used to calculate the GLCM features.

Table 1. Variables of GLCM [39].

Feature Equation Explanation

Angular Second
Moment (ASM)

L−1
∑

i=0

L−1
∑

j=0
P(i, j)2

Angular second moment (ASM) is a measure of the
homogeneity of an image. High values of ASM or energy

occur when the window is highly orderly.

Contrast
L−1
∑

n=0
n2

{
L−1
∑

i=0

L−1
∑

j=0
P(i, j)

}
This measure of contrast or local intensity variation favors
contributions from P(i, j) away from the diagonal, i.e., i! = j.

Homogeneity
L−1
∑

i=0

L−1
∑

j=0

P(i,j)
1+(i−j)2

Homogeneity measures the closeness of the distribution of
elements in the GLCM to the GLCM diagonal.

Entropy −
L−1
∑

i=0

L−1
∑

j=0
P(i, j) log P(i, j) Inhomogeneous scenes exhibit low first-order entropy,

whereas homogeneous scenes exhibit high entropy.

Correlation
L−1
∑

i=0

L−1
∑

j=0

ijP(i,j)−u1u2
σ1σ2

2
Correlation is a measure of gray-level linear dependence

between pixels at specified positions relative to each other.

To optimize the selection of topographic classification features, the classification and regression
tree (CART) algorithm [42] was used to calculate the importance of the mean and variance of the
selected terrain indexes and the five GLCM features based on AC. On the basis of the segmentation
result obtained through visual comparison between segmented objects and real objects, 5% of the total
number of segmented terrace objects and 5% of the total number of segmented non-terrace objects
were interpreted and used as training samples for the classification importance test. The features
with high importance scores served as inputs in the classification step. The importance analysis was
implemented with the Salford Systems® data mining and prediction analysis tool [40]. The boxplot
method, which could show the distribution of feature variable values and thereby reflect the function
of these features in distinguishing between terrace and non-terrace objects, was used to validate further
the rationality of the topographic classification features. The boxplot of the topographic classification
features was calculated on the basis of the above training samples.

In addition to topographic features, shapes, area, and brightness were also obtained from DEMs
and used as auxiliary features in classification. Extracting terraces only with topographic features might
cause some artificial ground objects with surface terrain features like terraces to be misinterpreted
as small and narrow terraces, such as roads and buildings. Therefore, spectral features, including
R-value and NIR value from images (WorldView-3), were adopted as auxiliary information to exclude
the non-terrace areas more accurately.
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2.6.2. Classification Rules and Validation

After the selection of the optimal features for classification, the threshold value of the classification
features was set. The threshold value of the topographic features based on the DEMs was set by their
value distribution in the boxplot. The threshold value of the spectral features based on imagery was
set by performing a trial-error test. Thereby the rule of terrace extraction was ultimately set up and
run in the eCognition software.

The terrain extraction was validated by the confusion matrix [41] of the extracted terrace areas
and actual terrace; this matrix stated user accuracy, producer accuracy, omission, and commission error
per class. The boundary and area comparison between the classified objects and the actual objects
facilitated the understanding of extraction accuracy. These statistical values of the confusion matrix
were calculated by comparing the actual terrace/non-terrace areas and classified terrace/non-terrace
areas. These areas were derived by spatially overlaying the extracted terrace/non-terrace boundaries
and the actual terrace/non-terrace boundaries. For discussing the importance of DEM data and images
in terrace extraction, two hierarchies of validation of terrain extraction were adopted: assessment of
the accuracy of the extraction based on DEMs and assessment of the accuracy of the extraction based
on the combination of DEMs and images.

3. Results

3.1. Results of Terrain Indexes Selection

The selection of terrain indexes as input layers was the basis of segmentation. Among the six
terrain indexes, slope, CVE, and TR, showed strong inter-correlation (Table 2), which indicated that
only one of these three indexes could be selected for combination with the indexes PN, AC, and
SOS without strong inter-correlation for segmentation. Thus, three combinations were tested. The
combination of PN, SOS, slope, and AC showed the highest entropy value of 13.189 (Table 3) and was
selected as the input for segmentation.

Table 2. Correlation coefficient matrix of terrain indexes.

AC Slope CVE SOS TR PN

AC 1
Slope −0.003 1
CVE 0.004 0.913 1
SOS −0.011 0.212 0.247 1
TR −0.001 0.931 0.936 0.231 1
PN −0.387 −0.010 −0.009 0.002 −0.029 1

PN—positive and negative terrain index; AC—accumulative curvature; CVE—coefficient of variation in elevation;
SOS—slope of slope; TR—terrain roughness.

Table 3. Entropy values of terrain index combinations.

Combination of Indexes PN, SOS, CVE, AC PN, SOS, Slope, AC PN, SOS, TR, AC

Entropy 3.278 13.189 10.680

PN—positive and negative terrain index; AC—accumulative curvature; CVE—coefficient of variation in elevation;
SOS—slope of slope; TR—terrain roughness.

3.2. Characteristics of Produced Segmentation

The segments of the scales 50, 75, and 100 were much closer to the actual boundaries of terraces
than others (Figure 4). Hence, the range scale of 50 to 100 was relatively reasonable scale. Given a fixed
scale of 75, which is the median value of the segmentation scale range of 50 to 100, different shape and
compactness values were tested, and the optimal shape and compactness values were determined to
be 0.1 and 0.5, respectively.
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On the basis of the optimal shape and compactness values and the range of reasonable
segmentation scale (50 to 100), the optimal segmentation scale was estimated with the ESP tools.
Figure 5 indicates that the four best scale parameters were 58, 64, 75, and 94 because their rates of
change of LV were at the peak. Given the four different scales, the segmentation results (Figure 6)
showed that the segments at the scale of 58 were most consistent with the true target; these segments
were considered to be the optimal scale.
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3.3. Characteristics of Topographic Classification Features

Figure 7 shows that the following indexes, including GLCM contrast, mean of PN terrains, mean
of slope, GLCM correlation, and GLCM entropy, had higher importance scores than the other indexes.
The above five indexes could therefore be chosen as the classification features for distinguishing
terraces and non-terraces.ISPRS Int. J. Geo-Inf. 2017, 6, 157  11 of 18 
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Figure 7. Importance of topographic classification features obtained by classification and regression tree
algorithm. GLCM ASM—gray-level co-occurrence matrix angular second moment; V_PN—variance of
positive and negative terrain indexes; V_SOS—variance of slope of slope; V_Slope—variance of slope;
M_AC—mean of accumulative curvature; M_SOS—mean of slope of slope; M_Slope—mean of slope;
M_PN—mean of positive and negative terrain indexes.

The boxplot of the GLCM features is shown in Figure 8. In comparison with the non-terrace
objects, the terrace objects have a smaller ASM and a larger GLCM contrast. The terrace objects
also showed a smaller average GLCM correlation than the non-terrace objects which is relative to
terraces having high correlation in a particular direction, but low correlation in other directions. The
entropy value showed that the terrace texture areas contained larger amounts of information than
the non-terrace areas. However, the GLCM homogeneity values of the terraces and non-terraces
showed no significant difference, thus indicating the similar texture. From the boxplot of the five
GLCM features, it could be indicated that GLCM contrast and GLCM correlation had the highest
differentiation on terraces and non-terraces.
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Figure 8. Boxplot of GLCM features, including GLCM ASM, GLCM contrast, GLCM contrast, GLCM
correlation, GLCM entropy, and GLCM homogeneity. “1”—terraces; “2”—non-terraces.

Figure 9 shows the distribution of the mean and variance values of the terrain indexes. The
mean curvature of the terrace area is mostly less than 0, which is obviously different from that of the
non-terrace area. The mean of the SOS of the terraces mostly ranged from 65◦ to 80◦, which is larger
than that of the non-terraces. The mean slope of the terraces mostly concentrated in the 18◦–30◦ range,
whereas that of the non-terraces was scattered. The mean of PN showed that the terraces were mostly
distributed in the positive terrain area. The variances of AC and PN were not significantly different,
whereas the variances of SOS and slope showed a slight difference. Overall, in comparison with
the variance values of terrain factors, their mean values are more conducive to distinguish between
terraces and non-terraces. The result of the boxplot analysis is consistent with that of the importance
analysis via CART. Thus, GLCM contrast, GLCM correlation, and the mean values of PN, slope, and
SOS were ultimately chosen as classification features for terrace extraction.ISPRS Int. J. Geo-Inf. 2017, 6, 157  12 of 18 
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Figure 9. Boxplot of the mean and variance values of the terrain indexes. M_AC—mean of accumulative
curvature; M_SOS—mean of slope of slope; M_Slope—mean of slope; M_PN—mean of positive
and negative terrain indexes; V_AC—variance of accumulative curvature; V_SOS—variance of
slope of slope; V_Slope—variance of slope; V_PN—variance of positive and negative terrain index.
“1”—terraces; “2”—non-terraces.

3.4. Characteristics of Two Classifications

3.4.1. DEM-Based Classification

Classification features and their thresholds constitute classification rules. In this study, the
threshold of the topographic classification features was set on the basis of the value of the classification
features in the terrace and non-terrace areas (Figures 8 and 9), trial and error as assistance. For example,
the threshold of the mean slope was determined as follows. If the mean slope was greater than 36,
this object was considered a non-terrace area. To avoid the misclassification, the upper threshold of
the slope was set to 40, excluding the objects with average slopes greater than 40. At the same time,
the objects with extremely low average slopes were not terraces but residential areas. Therefore, the
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low threshold of the average slope was set to 3 on the basis of repeated experiments; the objects with
an average slope less than 3 were excluded. In the same way, the objects with the mean SOS of 50
to 62 were removed from the terrace category. The low threshold of GLCM correlation, the upper
threshold of GLCM contrast, and the upper threshold of PN were set to be 0.568, 2215, and 0.07 to
exclude non-terrace areas. Additionally, the objects with a narrow shape or small size were deleted by
adjusting the shape index and area.

Through the execution of the above classification rules with consideration of topographic and
geometric characteristics (Figure 10), terraces were extracted based on DEMs (Figure 11a). The
confusion matrix (Table 4) showed that both the omission error (0.309) and the commission error (0.166)
of terraces classification were lower than those of classifying non-terraces. It means that there is still
space for improving the validation of identifying terraces. The cause of the omission and commission
can be found through the spatial overlay of the extracted and actual terrace areas (Figure 11c). For
instance, some areas on large terrace patches along the ditch were mistaken for terrace areas, and some
small patches of non-terraces with a flat surface were mistaken for terraces. Such errors were related to
the threshold of the area being too small to ensure that the very small terrace could be identified. The
overall accuracy was 89.96%, and the kappa coefficient was 0.70.
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Figure 11. Terrace distribution in the study area. (a) Terrace distribution via extraction based on DEMs;
(b) terrace distribution by the extraction based on DEMs and image; (c) actual terrace distribution.

Table 4. Confusion matrix and accuracy statistics of terrace extraction based on DEMs.

Classification
Reference Class.

Totals Prod. Ac. User. Ac. Omi. Er. Com. Er.
Terraces Non-Terraces

Terraces 260575 116343 376918 0.835 0.691 0.309 0.166
Non-terraces 51719 1245789 1297508 0.915 0.960 0.040 0.085

Ref. Totals 312293 1362135 1674428

Reference—ground truth frequencies (in columns). Classification—per-class classification frequencies (in rows);
Class. Totals—per-class classification totals; Ref. totals—per-class reference totals; Prod. Ac.—Producer accuracy;
User. Ac.—User accuracy; Omi. Er.—Omission error; Com. Er.—Commission error.

3.4.2. Dem and Image-Based Classification

The spectral information based on images was combined with the classification features based
on DEMs to extract terraces. A classification rule in which the objects with high R-values and low
NIR values were considered non-terraces was added to remove some artificial objects with surface
terrain feature like terraces. The lower threshold of R was 270, and the upper threshold of NIR was
140. The final classification result and its confusion matrix are shown in Figure 11b and Table 5,
respectively. With the addition of image information, the overall accuracy increased to 94%, and the
kappa coefficient was 0.80 because the buildings and roads located at the bottom of the gully were
effectively removed.

Table 5. Confusion matrix and accuracy statistics of the method based on DEMs and images.

Classification
Reference Class.

Totals Prod. Ac. User. Ac Omi. Er. Com. Er.
Terraces Non-Terraces

Terraces 257549 46198 303747 0.825 0.848 0.152 0.175
Non-terraces 54742 1316039 1370781 0.966 0.960 0.040 0.034

Ref. Totals 312293 1362135 1674428

Reference—ground truth frequencies (in columns). Classification—per-class classification frequencies (in rows);
Class. Totals—per-class classification totals; Ref. totals—per-class reference totals; Prod. Ac. —Producer accuracy;
User Ac.—User. accuracy; Omi. Er.—Omission error; Com. Er.—Commission error.
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4. Discussion

4.1. Rationality of the Proposed Method

The automatic classification method using high-resolution imagery and topographic data is a
promising approach for general landscape classification [43–45], mountain hazard monitoring [46–48],
and geomorphology mapping [49,50]; it is also advisable in agricultural terrace extraction [17]. In the
Loess Plateau, terraces have diverse vegetation cover and are located in an undulating and broken
landform environment. On the basis of these characteristics, high-resolution DEMs and imagery
were selected for the study data with consideration of the topographic and texture characteristics as
well as the spectral characteristics of coverage for terrace extraction. The method was implemented
with terrain indexes, GLCM texture, and spectral response. Compared with the pertinent studies on
the Loess Plateau, which relied solely on imagery [15,16] that lack terrain information, the overall
classification accuracy (94%) in this work was improved from about 85%, thus indicating the ability of
the method using integrated high-resolution elevation data along with satellite imagery. Moreover,
two hierarchies of extractions using DEMs only and using DEMs and imagery were performed in this
study; the corresponding overall accuracy results of 89.96% and 94% indicated that the topographic
information from DEMs played a key role in improving the accuracy of terrace extraction.

High-resolution topographic data generated from UAVs have been widely applied in various
aspects of land inventory [51], environment monitoring [52,53], and terrain construction [54,55]. Our
study confirmed that the topographic data from UAVs meet the requirements of terraces extraction,
which was also found in 2014’s research by R.A. Diaz-Varela in Southern Spain [17]. In the agricultural
terrace extraction in Spain, DSMs containing vegetation and manmade features above the pure earth
surface were applied, and a high overall accuracy of 90% was achieved. However, these vegetation and
manmade features could decrease extraction accuracy. When applying DEMs processed by DSMs with
vegetation removal, the real ground surface could increase the success of extraction. High-resolution
DEMs could be obtained by UAVs with LiDAR [56] or just a single camera; however, LiDAR was
necessary in this work because the 1 m DEM generated by camera-based adequately fit the scale of
a terrace field in the Loess Plateau. Moreover, DEM generation from camera-based UAVs involves
more efficient mechanisms for processing data in comparison with DEM generation from LiDAR [17].
Therefore, the acquisition and adoption of terrain data in this study is reliable and reasonable.

The choice of study area was carefully considered. Small watershed is the basic unit of the
hydrology and geomorphology processes, soil and water conservation, and ecological comprehensive
management in the Loess Plateau [57]. Although the study area is very small, it is an approximately
complete small watershed that includes hills and gullies along the shoulder line as the boundary; such
characteristic indicates the basic terrain features of the hilly and gully region of the Loess Plateau. Such
a small catchment scale is conducive to creating a consistent method or a method system for terrace
extraction in the whole Loess Plateau.

4.2. Application of the Proposed Method

Terrace extraction is the basis for knowing the quantity, quality, and land cover of terraces and
is the basic requirement for knowing its effect on agriculture production and various earth surface
processes, e.g., soil process and hydrological process. This study focused on the extraction of terraces
with very complex terrain in the Loess Plateau. The proposed method not only made full use of
the characteristics of the size, morphology, surface textures, and distribution of the terraces but also
considered the effect of land cover on the topography; such consideration can provide support for
terrace extraction in other regions.

As for the specific classification features and rules, it is difficult to directly apply them in other
regions with different terrain characteristics, even in the whole Loess Plateau. It is attributed to that the
landform of the Loess Plateau has spatial heterogeneity, including different landform sub-types [58].
However, this heterogeneity has certain regularity [28,59]. Therefore, the proposed method can be
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applied to a certain area with a same landform sub-type due to the landform self-similarity. At the
same time, the automatic terraces extraction method in the whole Loess Plateau is a challenging task
that requires further exploration. For different sub-types of the Loess Plateau with regular variation,
we are optimistic about applying our method in automatic extraction.

5. Conclusions

The vegetation cover of terraces decreases the accuracy of image-based feature extraction,
especially in the Loess Plateau where a vegetation restoration policy has been implemented. Therefore,
we carried out research on automatically extracting terraces in the Loess Plateau using a combination
of high-resolution DEMs and imagery based on OBIA. This study put forward a segmentation method
using the terrain indexes of distinguishing terraces and non-terrace areas that were screened out by
statistical analysis. The classification features and rules considering topographic, textural, geometric,
and spectral characteristics were generated on the basis of a machine learning method.

The overall accuracies of the two-hierarcies classifications based on DEMs only vs. based on
DEMs and imagery combined were 89.96% and 94%, respectively, indicating the importance of terrain
information from DEMs in terrace extraction and the advantages of the proposed method. The
extraction accuracy meets the needs of terrace monitoring in small watershed scales in the Loess
Plateau. The study area location, which is in a hilly-gully loess region with the most complex terrain in
the Loess Plateau and diverse vegetation cover, demonstrates the successful application of the method
in identifying terraces. Given the complexity of landforms and overall heterogeneity, the extraction
rules of different landform types on the Loess Plateau will need further exploration.
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