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Log traceability in the timber based industries is a basic requirement to fulfil economical, social and legal
requirements. This work introduces biometric log recognition using digital log end images and explores
the robustness to a set of log end cross-section (CS) variations. In order to investigate longitudinal and
surface CS variations three tree logs were sliced and captured in different sessions. A texture feature-
based technique well known from fingerprint recognition is adopted to compute and match biometric
templates of CS images captured from log ends. In the experimental evaluation insights and constraints
on the general applicability and robustness of log end biometrics to identify logs in an industrial
application are presented. Results for different identification performance scenarios indicate that the
matching procedure which is based on annual ring pattern and shape information is very robust to log
length cutting using different cutting tools. The findings of this study are a further step towards the
development of a biometric log recognition system.
� 2015 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Many efforts had been made in the past in order to investigate
illegal logging, its associated causes and how to prevent from ille-
gal logging in future. Besides corruption on different governmental
authority levels and land reclamation for mining, plantations or
agriculture, illegal logging is known to be one of the main driving
forces promoting deforestation (Richards et al., 2003; Smith et al.,
2003; Kuemmerle et al., 2009). Deforestation is a phenomenon
comprising timber harvesting, timber trade and disposal occurring
around the world and affects biodiversity, hydrological cycles and
contributes considerably soil erosion.

These problems were officially addressed at the UN Conference
on Environment and Development (UNICED) held in Rio de Janeiro
in 1992 and concluded in a document called Agenda 21. This
document provides voluntary commitments on sustainable
forest management and development and offers a basis for
non-governmental, independent forest certification (United
Nations, 1992). According to a report supported by the World Bank
in 2003, illegal logging is still considered a major threat to the envi-
ronment (Dykstra et al., 2003). Efforts in fighting illegal logging on
the EU level led to the Forest Law Enforcement Governance and
Trade Action Plan (FLEGT) defined in 2003 and the EU Timber Reg-
ulation (EUTR) prohibiting the trade of illegally harvested timber
and wood products derived therefrom. This regulation, initially
proposed by the Commission in 2008, is legally binding on all EU
member states, each being responsible for national implementa-
tion, and has come into force since March 2013. This regulation
claims traceability of timber and timber products throughout the
supply chain providing information on operators, traders and, if
possible, of retailers (EuropeanParliament, 2010).

Traceability of timber and wood products is generally expected
to restrict illegal logging and is supposed to benefit companies and
consumers (Tzoulis and Andreopoulou, 2013). In fact empirical
information on quantities, and links to internationally traded wood
are indispensable in order to assess causal relationships for illegal
logging and to take effective steps preventing deforestation in
future (Kastner et al., 2011). A contemporary managed database
in conjunction with log labelling would certainly provide this
information and serves as basis to impede illegal logging, fraud
and misuse in future.
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Fig. 1. Exemplary enrolment and identification schemes for a biometric log
recognition system. The enrolment can be done in the forest using a digital camera
mounted on a harvester.
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A wide variety of log traceability systems have been applied in
order to identify and track logs in the past. Each method so far has
shown limitations due to costs, practical implementation or
weather conditions. The applications range from punching, color-
ing or barcoding log ends to more recently developed techniques
as DNA fingerprinting and usage of RFID transponders (Tzoulis
and Andreopoulou, 2013).

Another approach is to track logs using biometric log character-
istics. Investigations on the hypothesis that logs are separate
entities on the basis of biometric log characteristics were pre-
sented in the works of Chiorescu and Grönlund (2003, 2004),
Flodin et al. (2007, 2008a,b), which highlight the potential of bio-
metric log recognition. The approaches presented in Chiorescu
and Grönlund (2003, 2004) and Flodin et al. (2008a) utilized 2D
and 3D scanners to extract geometric wood properties for tracking
logs within the sawmill environment. The utilized capturing
devices are however, not applicable at forest site. Furthermore,
Flodin et al. (2007, 2008b) showed that knot positions as biometric
features are suited to enable traceability between logs and the cut
boards, reaching a recognition rate of 95%. On account of the fact
that timber offers characteristics on log end faces in terms of
annual rings, pith position, shape and dimension it is assumed that
cross-section images of log ends can be used as biometric charac-
teristic for log identification. Approaches for pith estimation and
annual ring measurements in images of rough log ends were pre-
sented in Norell and Borgefors (2008), Schraml and Uhl (2013),
Marjanen et al. (2008) and Norell (2009), respectively. Images
containing a cross-section (CS) of a wood log are denoted as
cross-section images (CS-Images) throughout this work.

A first work on log biometrics using CS-Images (log end biomet-
rics) was presented in Barrett (2008) as an effort to curb poaching
of trees. In the experimental evaluation digital images of tree
stumps and the corresponding log ends are utilized, both showing
up strong saw kerf patterns. Results show that the combination of
log end shape and saw cut pattern information, represented by
Zernike polynomials, achieves a high accuracy for log to stump
recognition. In Schraml et al. (2014) temporal and longitudinal
annual ring pattern variations were investigated based on
time-delay captured CS-Images of 35 slices from a single log.

By using CS-Images from 150 different logs (Schraml et al.,
2015a) showed that fingerprint based and iris-recognition based
approaches are suited to achieve 100% identification accuracy. It
turned out that, in addition to annual ring pattern information
shape information is required to achieve this accuracy. Based on
this observation in Schraml et al. (2015b) the discriminative power
for a set of geometric log end features was validated.

In this study we elaborate the robustness of log end biometrics
to practical issues of an industrial application. Different CS-Images
of the same log end show up strong variations. For example,
CS-Image capturing and weather conditions may lead to strong
variations: e.g. varying image quality caused by motion blur or dif-
ferent lighting conditions and snow or dirt which covers parts of the
CS. These variations are not considered in this work. Furthermore,
industrial log processing causes specific types of CS variations. For
this work we focus on longitudinal and surface variations of
cross-sections (CSs). Longitudinal variations result from log end
cutting and surface variations arise when different cutting tools
are utilized for the first cut, in the forest, and the clearance cut,
by further processing company (e.g. chain-saw and circular-saw).

The experimental evaluation is based on a testset which con-
sists of 99 CS-Slices from three different tree logs. In addition to
the 35 CS-Slices from the single log used in Schraml et al. (2014),
64 CS-Slices from further two logs are utilized. By assessing two
objectives this work contributes to the ongoing research on log
end biometrics.
The first objective is to investigate the verification performance
with respect to the impact of surface and longitudinal variations on
the intraclass variability and the separability between the intra-
and interclass score distributions. In this context we also assess
whether the CS surface has an impact on the longitudinal
variations of each log.

The second objective is to investigate the identification perfor-
mance. Initially, the basic impact of surface and longitudinal vari-
ations on the identification performance is assessed. Second,
different real world-like identification scenarios are evaluated.

First, Section 2 introduces the computation and matching of
biometric templates from CS-Images. The experimental setup is
presented in Section 2.4 followed by the results in Section 3.
Section 4 concludes this work and in Section 5 directions for future
work are outlined.

2. Materials and methods

By superficially comparing the patterns of human fingerprints
to annual ring patterns of wood log ends, one finds a close resem-
blance. Human fingerprint recognition is well-investigated and
there exist mainly three groups of approaches: Minutiae-based,
Correlation-based and Feature-based approaches (Maltoni et al.,
2009). Apart from the presence of the pith as detectable feature,
CS patterns do not exhibit further constant features like minutia’s
in fingerprints. Hence, minutiae-based approaches are not quali-
fied for log CSs.

Basically, the scheme of a biometric recognition system is set up
on five components: Data acquisition, Preprocessing, Feature
Extraction, Template Generation and Template Matching. In case
of log end biometrics, data acquisition is the capturing of digital
CS-Images of log ends. For preprocessing the CS in the CS-Image
is separated from the background, aligned and subsequently the
CS is enhanced. Due to the ability of feature-based methods to cap-
ture information of the fingerprint ridge pattern they can be
extended to work with CS patterns. We have adopted the texture
feature-based FingerCode approach by Jain et al. (2000, 2001) to
extract features from CS-Images. The extracted features of a CS-
Image are stored as feature vector into the biometric template
which we denote as cross-section code (CS-Code). The CS-Code of
a CS-Image is composed by a set of feature vectors which are
computed for differently rotated versions of the CS-Image.

Finally, templatematching is the task of verificationor identifica-
tion of an individual or subject. In case ofwood logs, identification is
required. For this purpose, the individual/subject must be enrolled
in the biometric system. In Fig. 1 exemplary enrolment and identifi-
cation schemes are depicted. Enrolment could be done during the
harvesting procedure in the forest. A digital camera mounted on a



Temp ate Generation

n

0° 22.5° 45° 67.5° 90° 112.5° 135° 157.5°

 G
abor  #1 - 6

#48 Standard Deviation Maps 

  = (Feature vector composed by all StDev values)i

Enhanced CS-Image   

Input CS-Image Pith Estimation/ Segmentation

Rotate & Scale

Registration and Enhancement

Feature Extraction

Preprocessing

            CS-Code (      , .... ,        )0 358
i

0
358

Compute  the  gray 
value standard 
deviation blockwise

Subdivide into
smaller blocks

Feature extraction 
for different rotations 

i

Section - filtered CS-Image Section - StDev Map

Filter CS-Image with each filter and compute the StDev Map

Fig. 2. Log template/CS-Code computation illustration.

114 R. Schraml et al. / Computers and Electronics in Agriculture 119 (2015) 112–122
harvester (e.g. Mattila and Viittanen, 1999) could be utilized to cap-
ture one end of each fresh cut log. Subsequently, the first four steps
of the biometric system chain are completed and the computed log
template (CS-Code) is stored in a database. Additionally, informa-
tional meta data can be assigned to each log template: On the one
hand the harvester operator can assign visually observed informa-
tion and the ownership of each log. Furthermore, geometric mea-
surements of the harvester head and the geospatial position of the
log origin can be appended. On the other hand automated CS analy-
sis can be performed to estimate properties related to the quality of
each log, e.g. annual ring counting to estimate the strength or detec-
tion of quality related wood properties like reaction wood.

Now identification of each log can be performed at each stage of
the log processing chain. CS-Images for identification in the sawmill
could be captured at the sorting station, at the sawmill yard or at any
conveyor belt equipped with a capturing device. Subsequently, the
CS-Image is processed by the biometric system and a log template
is computed which is matched to all log templates in the database.
If the matching score (MS) exceeds a certain system threshold the
best match specifies the identity of the log. Furthermore, additional
meta data can be retrieved or appended from/to the log record in the
database. Templates of logs which were further processed and are
no longer required should be removed from the database. May the
log template is passed to another biometric system which enables
board tracking (biometric approach: Pahlberg et al., 2015) and con-
nects each board to the log template from which it descends. How-
ever, for chain of custody certification specific log template
information has to be linked or passed through to the final product.

In the next three sections a detailed introduction on preprocess-
ing (Section 2.1), CS-Code computation (Section 2.2) and three
matching procedures (Section 2.3) between two CS-Codes is given.
Finally, in the last Section 2.4 basics for the experimental evalua-
tion are introduced.

2.1. Cross-section registration & enhancement

Due to the cutting pattern annual ring enhancement is a crucial
task for any subsequent feature extraction procedure. As opposed
to human fingerprints, the frequency of the annual ring pattern
is strongly varying. Similar as in our previous works (Schraml
et al., 2014, 2015a) enhancement is based on the fingerprint
enhancement approach presented by Hong et al. (1998). In
Schraml et al. (2015a) we showed that a slight variation of the pro-
cedure utilized in Schraml et al. (2014) further improves the bio-
metric system performance and is thus also used in this work.

Preliminary to enhancement the CS in a CS-Image has to be reg-
istered. For registration, the CS border and pith position have to be
determined (e.g. Schraml and Uhl, 2014, 2013; Norell and
Borgefors, 2008). Subsequently, the CS-Image is rotated around
the pith position, cropped to the CS bounding box and finally
scaled to 512 pixels in width (see Fig. 2). Rotation can be per-
formed to generate rotated versions of each CS-Image or to align
the CS to a unique position (e.g. according to the center of mass).

For enhancement three consecutive stages are performed: Local
orientation estimation, local frequency estimation and local adap-
tive filtering. First, the CS is subdivided in half-overlapping blocks
(e.g. 32 � 32 pixels). Half-overlapping blocks are used to reduce
boundary effects caused by local filtering. For each block principal
component analysis of the local Fourier spectrum is performed to
determine its local orientation (see Schraml and Uhl, 2013). Com-
monly, CSs are disturbed, due to cutting,which leads to faulty orien-
tation estimates. For this purpose the local orientation is compared
to the direction given by the block-centre to pith position vector
(block-pith vector). If the angular distance between the local
orientation estimate and the block-pith vector orientation
exceeds a certain threshold (t) the local orientation estimate is
considered being wrong. For each block t is defined by
t¼ k � logðpith distanceÞ, where k is an arbitrary value and the pith
distance is the length of the block-pith vector. Thus, the threshold
increases with an increasing pith distance which takes into account
that annual rings close to pith are more circular. Local orientation
estimates which exceed this threshold are replaced by the block-
pith vector orientation.

Next, for each block and its local orientation the dominant
frequency is determined. For this purpose, the local Fourier spec-
trum of each block is subdivided into sub-bands and sectors. For
each sector and each particular sub-band the integral of the con-
tained magnitudes is computed. The sector sub-band which shows
the maximum sum of magnitudes represents the dominating
frequency. If the local orientation which corresponds to this sector
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sub-band is not the same as the previously determined block ori-
entation it is neglected. In this case the local frequency is interpo-
lated using a Gaussian.

Finally, in the filtering stage the Fourier spectrum of each block
is filtered with a Log-Gabor (introduced by Knutsson and Granlund,
1983) which is tuned to the local orientation and frequency of the
corresponding block. Similar as in Schraml et al. (2014, 2015a) a
bandwidth of three times the variance of the Fourier spectrum
and a spread value of blocksize/4 are utilized. The filtered Fourier
spectra are inverse Fourier transformed and the results are subse-
quently used as new block values. An exemplary result of the reg-
istration & enhancement procedure is depicted in Fig. 2.

2.2. Cross-section code computation

The CS-Code computation is based on the FingerCode approach
proposed in Jain et al. (2000, 2001). This technique utilizes a
Gabor-based descriptor which extracts local ridge orientations of
a fingerprint. Because of the constant ridge frequencies in human
fingerprints a single Gabor filter and its rotated versions are suffi-
cient. The frequencies of annual ring patterns are strongly varying
and thus different Gabor filters are required to capture additional
information from the annual ring frequencies in different orienta-
tions. For a CS-Image width of 512 pixels six different Gabor filters
are suggested. For each Gabor filter eight rotated versions are cre-
ated. Consequently, the Gabor filterbank consists of 48 filters:

Gðk; h;r; cÞ ¼ Gðk;rÞ
¼ ðð1:5;1Þ; ð2:5;2Þ; ð3:5;3Þ; ð4:5;3Þ; ð5:5;3Þ; ð6:5;3ÞÞ;

h ¼ f0;22:5; . . . ;135;157:5g; c ¼ 0:7

Feature extraction (Fig. 2) is performed in three stages. In the
first stage the enhanced CS-Image is filtered with each filter in the
filterbank. Each filtered image is subdivided into blocks (8 � 8 pix-
els). For all blocks of each filtered image the gray value standard
deviations are computed and stored into amatrix, which is denoted
as Standard Deviation (StDev) map. Altogether 48 StDev maps are
computed and are stored as one-dimensional feature vector (h) in
the CS-Code. Blockswhich are not within the CS border are assigned
a marker value which is relevant for CS-Code matching. Further-
more, two CS-Images of the same log end or CS-Slice can be rotated
differently. Rotational differences are compensated by computing
feature vectors for rotated versions of the input CS-Image in the
expected misalignment range. Although the misalignment range
in this work is much smaller, feature vectors for 180 rotations in
two degree steps are computed and used for matching. Hence, it
can be evaluated if there exist rotated versions of two CS-Slice
images from different tree logs which are incidentally similar to
each other. All feature vectors computed for different rotations
(h0; h2; . . . ; h356; h358) compose the CS-Code of a CS-Image (see
Template Generation in Fig. 2).

2.3. Cross-section code matching

In contrast to fingerprints where the shapes are commonly not
utilized, the CS shape is obviously a biometric feature itself. By
investigating three different matching procedures the discrimina-
tive power of the annual ring pattern, the shape and a fusion of
both is evaluated.

Thefirst procedurewhich just considers annual ring pattern infor-
mation is denoted as annual ring patternMS (MSAP) and is defined as
the minimumMS between the feature vectors of both CS-Codes:

MSAPðCS-Code1;CS-Code2Þ ¼ minMSðhi; hjÞ
where hi 2 CS-Code1ðh0; . . . ; h358Þ;
hj 2 CS-Code2ðh0; . . . ; h358Þ

ð1Þ
Due to interpolation in the registration procedure (rotation and
scaling) the best MS is achieved when comparing all feature vec-
tors of both CS-Codes. The MS between two feature vectors of
two CS-Codes is computed by:

MSðhi; hjÞ ¼ 1
M

Xn
k¼0

DðhiðkÞ; hjðkÞÞ ð2Þ

where hi; hj are two feature vectors of the CS-Codes which are com-
pared, k specifies the index of the feature value in both vectors, n is
the max. number of feature values and M is a normalization factor.
The utilized distance function is given by:

D ¼ jhiðkÞ � hjðkÞj if k 2 MCSi \MCSj
0 otherwise

�
ð3Þ

As noted in Section 2.2, background feature values are specified
by a certain marker. Hence, we define MCSi and MCSj as the corre-
sponding masks of the feature vectors which allow to differentiate
between background and CS. Just feature vector value pairs which
are in the intersection of both CSs are utilized for computing MSAP
and the score is normalized by the amount of the considered fea-
ture value pairs: M ¼ jMCS1 \MCS2j.

The second procedure (MSF) is a measure describing the similar-
ity of the shapes of two CSs. MSF is defined as the minimum False
Negative Rate (F) between the masks of the feature vectors of both
CS-Codes:

MSFðCS-Code1;CS-Code2Þ ¼ min FðMCSi;MCSjÞ ð4Þ
The False Negative Rate (F) between two different masks

(MCSi;MCSj) is computed by:

F ¼ MCSiDMCSj
minðjMCSij; jMCSjjÞ ð5Þ

Finally, the last procedure (MSAP;F) is based on score level fusion
(Jain et al., 2011, p. 225) of MSAP and MSF . For score level fusion
both scores are combined using different scaling factors (see Eq.
(6)). The scaling factors (rAP;rMSF ) are determined from their score
distributions to ensure that both contribute equally to the com-
bined MS.

MSAP;F ¼ MSAP � rAP þMSF � rF ð6Þ
2.4. Experimental setup

2.4.1. Testset
The experimental evaluation is based on cross-section slices

(CS-Slices) from three different European spruce logs (Log 1 – L1,
Log 2 – L2, Log 3 – L3). For L1 and L2, a section of 40 centimetres
was cut into 16 CS-Slices. The CS-Slices were cut with a bandsaw
and the thickness of each CS-Slice is approximately 2.5 centime-
tres. The sections of L1 and L2 were showing a diameter of around
230 mm and 290 mm respectively.



Table 1
Testset overview.

3 Logs # CS-Slices # CS-Images Illustration

Log 1 – L1 16 2 (Rough & Sanded) Fig. 4a
Log 2 – L2 16 2 (Rough & Sanded) Fig. 4b
Log 3 – L3 35 4 (Time delay) Fig. 5

Fig. 5. Temporal variations: L3 CS-Slice #34, sessions 1–4 (Schraml et al., 2014).
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Subsequently, just one surface of each CS-Slice was captured
two times (Nikon D90). The first CS-Image was taken from the
fresh cut CS-Slices. For the second CS-Image, the surfaces of the
CS-Slices were polished using a sandpaper (P 150). In the first
row of Fig. 4 the two captured CS-Images of one CS-Slice from L1
and L2 are depicted.

To increase the number of interclass scores, a third log (L3) with
a total of 35 CS-Slices with 2 cm spacing is utilized. Each CS-Slice
was captured with four different time delays (Fig. 5). For a detailed
dataset description we refer to Schraml et al. (2014) (see Table 1).
For all CS-Images in the testset the pith position and the border of
the were determined manually and are utilized for CS registration
and defining the CS-Masks in the experiments. The CS-Images in
Fig. 4 illustrate the preprocessing steps for the CS-Images of the
CS-Slices L1 #2 and L2 #10. In the first row the original images
are depicted. The second and third row show the registered and
enhanced versions of the CS-Images, respectively. The four time-
delay captured CS-Images of CS-Slice L3 #10 are depicted in Fig. 5.

2.4.2. Evaluation background
Before presenting the results, relevant basics for the experimen-

tal evaluation are introduced. First, a short introduction on biomet-
ric performance evaluation is presented. Subsequently, three types
of wood log CS variations are defined and the construction of
the intra- and interclass score distributions (SDs) used in the
evaluation is described.
(a) L1 #2 rough (b) L1 #2 sanded

Fig. 4. Testset examples: Slices #2 and #10 from L1 and L2, respectively. The CS-Images i
and enhanced CS-Images used for CS-Code computation are illustrated.
Biometric performance evaluation. Commonly, a biometric
system operates either in verification or identification mode and
the term recognition is used universally.

For verification the system compares a query template to just
one template of the database (1:1 comparison). This template is
specified by the claimed identity of the query template. The system
accepts or rejects the claimed identity of the individual/object. For
identification a query template is compared to all templates in the
database (1:N comparison) and if the best match exceeds a certain
system threshold it specifies the identity of the query template.

Generally, a biometric system is assessed based on the errors it
produces (Maltoni et al., 2009). Two major verification system
errors (False Match Rate (FMR) and False Non Match Rate (FNMR))
result from the calculation of the intra- and interclass SDs which
are commonly denoted as genuine and impostor SD, respectively.
The intraclass SD contains all MSs computed between a set of tem-
plates of the same individual. The interclass SD contains the MSs
between templates of different individuals. Consequently, the
FMR includes all MSs between different individuals which are
incorrectly accepted by the system. On the other hand the FNMR
gives the proportion of MSs which were rejected although the
score is computed between templates of the same individual. For
verification performance evaluation the equal error rate (EER) is
a general benchmark. The EER is defined as the error where FMR
and FNMR are equal.
(c) L2 #10 rough (d) L2 #10 sanded

n the first row depict the original CS-Images and in row two and three the registered



Table 2
Intraclass SD groups.

CS variation SD group details

Longitudinal SD L1 & L2: MSs between the rough or sanded
CS-Images of their CS-Slices

Surface SD L1 & L2: MSs between the rough and sanded
CS-Image of each CS-Slice
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The identification performance is evaluated by matching a set of
probe templates to all templates enrolled in the database (Jain
et al., 2007). We refer to closed-set identification where it is
assumed that all individuals/objects of the probe templates are
enrolled in the system. The MSs between each probe template
and all database templates are ordered according to the MS. The
ordered MSs of each probe template are used to compute
the probability that the correct template is ranked within the
top k-ranked MSs. The probabilities for each rank are illustrated
in a curve which is denoted as Cumulative Match Characteristic
(CMC).

Wood log cross-section variability. Two basic requirements for
biometric recognition are uniqueness and permanence of the uti-
lized biometric characteristic. Uniqueness expresses that the bio-
metric characteristic and the computed templates of different
individuals are strongly varying and permanence is the require-
ment that they do not change over time. Related to those require-
ments there are two basic issues which a biometric system must
handle: Intraclass variability and Interclass similarity which con-
tribute to the F NMR and FMR, respectively. Interclass similarity
is the problem that different individuals may show up similar bio-
metric characteristics. Intraclass variability is an issue due to inter-
nal and external caused variations between a set of templates of
the same individual. External variations occur due to irregularities
in the template generation procedure, e.g. different sensors or cap-
turing environments. Furthermore, the visual appearance of the
biometric characteristic is affected or modificated by external
influences, e.g. the saw cut pattern. Internal variations are eventu-
ally caused by an intrinsic modification or change of the biometric
characteristic itself, e.g. temporal variations caused by the ageing
process. In case of human biometrics, it is attempted to overcome
external and internal changes/modifications by updating the
stored templates in the database.

In case of wood logs, several external and internal caused vari-
ations/modifications of CSs of a single log have an impact on the
intraclass variability. So far, three different variation types
emerged from our research:

� Temporal variations correspond to the issue of ageing in
human biometrics. In case of wood log ends, the visual appear-
ance of a CS changes rapidly. Due to the rapidly changing mois-
ture content at the log end faces and the sun exposure the CS
shows up discolourations or deformations (e.g. cracks). In
Fig. 5 four time-delay captured CS-Images of a CS-Slice from
L3 illustrate temporal variations.

� Longitudinal variations are caused by the changing CS pattern
along the longitudinal axis of a single tree log. Consequently,
they address the issue of length-cutting a log in the sawmill.
Cut-off lines are utilized in many sawmills for different reasons.
For example, clean log end faces (no stones and sand) are ben-
eficial to protect the cutting blades and to aid the log quality
assessment. On the other hand, log end cutting leads to a loss
of material and is not tolerable in certain fields of the sawmill
industry. An illustration for longitudinal variations of the CSs
from a single log is presented in Fig. 6.
Fig. 6. Longitudinal variations: L2 CS-Slices #1, 4, 8, 16.
� Surface variations result from differently finished or cut sur-
faces of a particular CS. In this work surface variations between
saw cut CS surfaces and the sanded CS surface counterparts are
assessed (see Fig. 4). Another scenario which is closely related
to industrial biometric log recognition involves CS surface vari-
ations caused by different cutting tools (e.g. chain-, band- or cir-
cular saw). Probably the first cut in the forest and the cleansing
cut in the sawmill are performed with different devices. This
results in a mixture of longitudinal and surface variations.

For the testset CS-Images of the CS-Slices from L1, L2 and L3 we
tried to avoid external variations which are caused by the captur-
ing procedure.

Intra-/interclass score distributions (SDs). For the evaluation,
the MSs between all CS-Images of L1, L2 and L3 are computed
using the proposed matching procedures. The intra-/interclass
SDs for a single matching procedure are constructed by grouping
the MSs into the respective SD. Hence, the interclass SD contains
all MSs computed between the CS-Images of L1, L2 and L3. The
intraclass SD is built up on the MSs between CS-Images of the same
log and is further subdivided into two SD groups corresponding to
the variation type (see Table 2). Temporal variations which are rep-
resented by the MSs between the four time-delay captured CS-
Images of each CS-Slice from L3 were investigated in Schraml
et al. (2014) and are not treated in this work. The longitudinal SD
shows the similarity between CS-Images which were captured at
different longitudinal positions of the same log. In this work we
consider the longitudinal variations of L1 and L2. For this purpose,
the longitudinal SD is built up on the MSs between the CS-Images
of rough or sanded CS-Slices from L1 and L2. The surface SD
includes all MSs between the saw cut CS surfaces and the sanded
CS surface counterparts of each CS-Slice from L1 and L2.

3. Results and discussion

The results of the experiments are subdivided into two sections.
Section 3.1 presents investigations on the separability between the
intra- and interclass SD. For this purpose, the verification perfor-
mance of the biometric system for different matching procedures
is assessed and the EERs are considered.

Because of the manifold structure of the intraclass SD an
exhaustive analysis of the longitudinal and surface SD group is pre-
sented in Section 3.2. Based on the results, fundamental conclu-
sions on the intraclass variability and the impact on the
separability between the intra- and interclass SD are drawn.
Finally, Section 3.3 treats the identification performance for differ-
ent real world scenarios.

3.1. Intra-/interclass SD separability

In Fig. 7 the intra-/interclass SDs for all three matching proce-
dures are illustrated. Most important, the charts show that the best
EER is achieved by MSAP;F which uses both annual ring pattern and
shape information. Furthermore, the EERs for MSAP and MSF
illustrate that for the considered three logs shape information is
less discriminative compared to annual ring pattern information.
In addition, Table 3 depicts EERs for different intra-/interclass SD
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Fig. 7. Intra-/interclass score distributions (SD) for different matching procedures. [X-Axis: Matching Score, Y-Axis: Probability].

Table 3
EERs [%] for all matching procedures and different subsets of L1, L2, L3.

Logs MSAP MSF MSAP;F

L1–L2 5.6 12.79 12.85 6.21
L1–L3 0.11 0.48 0.0 0.0
L2–L3 3.57 5.07 0.0 0.0
L1–L2–L3 3.12 5.38 4.96 2.23
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subsets of the three logs. The results for MSF and L1–L2 illustrate
that L1 and L2 have a similar shape which causes a bad EER of
12.85%. In case of L1–L3 and L2–L3 the shapes are very distinctive
which leads to a zero EER. Considering MSAP and the annual ring
pattern distinctiveness the results show that the pattern of L1 is
more similar to L3 than the pattern of L2 to L3. It can be concluded
that for different tree logs the discriminative power of the annual
ring pattern and the shape varies significantly. Consequently, the
robustness of log end biometrics benefits from using shape and
annual ring pattern information together.

Generally, an EER of �2% for MSAP;F is astonishing because the
intraclass SD includes all longitudinal MSs for all slice distances.
Our experiments in Schraml et al. (2014) showed that the similar-
ity between different CS-Slices of a log deteriorates with an
increasing distance between the considered CS-Slices. A detailed
analysis of the intraclass SD groups (Longitudinal and Surface SD)
allows to gather further insights.

3.2. Intraclass SD analysis

In this section the longitudinal and surface SD groups of which
the intraclass SD is build up are assessed in detail.
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Fig. 8. Intraclass SD: Rough and Sanded longitudinal MSs of L1 and L2 grouped b
3.2.1. Longitudinal SD
The longitudinal SD contains the MSs between the rough or

sanded CS-Images of the CS-Slices from L1 and L2. Four subsets
of the longitudinal SD are assessed in detail: Rough & Sanded lon-
gitudinal MSs of L1 and L2. The MSs of each subset are grouped
according to the neighbourhood distance of the compared CS-
Slices. In case of 16 CS-Slices for each log the distance between
two CS-Slices ranges from 1 to 15 which leads to 15 slice distance
groups (SDGs). For example, SDG 1 contains all MSs of each CS-
Slice to the adjacent neighboured CS-Slices.

In Fig. 8 the mean values of each subset and SDG for all match-
ing procedures are depicted. For MSAP it is expected that the longi-
tudinal MSs increase the higher the slice distance between two CS-
Slices is. An increase or change of the MSs for higher slice distances
can also be expected forMSF andMSAP;F . In Schraml et al. (2014) our
experiments based on CS-Slices from L3 confirmed this
expectation.

Let’s consider MSAP: At a glance, the results for MSAP (Fig. 8a)
raise doubt on the correctness of the previous results and the basic
assumption. Considering the longitudinal MSs of the first log
(SANDED L1, ROUGH L1) the expected increase is interrupted for
both subsets. This interrupt is also shown for the second log
(SANDED L2, ROUGH L2) for the SDGs 14, 15. Interestingly, these
interrupts can be recognized for MSF and the fusion procedure
MSAP;F too.

A closer examination of the CS-Slices of L1, L2 and L3 provides
an answer for the differing results. For L3 just the CS-Slices at the
log ends show up knots. Hence, for larger distances the longitudi-
nal MSs (MSAP) increase additionally and the expected trend
becomes strengthened. In contrast to L3, L1 and L2 show up knotty
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y the slice distance. [X-Axis: Slice Distance Group, Y-Axis: Matching Score].
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Fig. 9. Longitudinal variance analysis excluding knotty CS-Slices – L1(#9, 10, 14), L2(#1, 2, 10, 11, 15, 16). [X-Axis: Slice Distance Group, Y-Axis: Matching Score].
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Fig. 10. Interclass fractions for the slice distance groups (SDGs) of each longitudinal SD subset. [X-Axis: Slice Distance Group, Y-Axis: Interclass Fraction (%)].
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CS-Slices situated in the middle of each log. For L1 three (#9, 10, 14
– see Fig. 4d) and for L2 six CS-Slices (#1, 2, 10, 11, 15, 16) show up
between one and four knots. By omitting MSs from those knotty
CS-Slices the results in Fig. 9 approximately show the expected
trend. Quite interesting is the good MS at SDG 15 for SANDED L2
(MSAP) which results from one equally located knot in the CS-
Slices #1 and #16.

This leads to two major conclusions: Less surprising, the results
demonstrate that MSs between non-knotty (NK) and knotty CS-
Slices are remarkably worse. Second, the results indicate that knots
do not introduce any propagative effects to the annual ring pattern
and the CS shape.

In comparing the results from L1 to L2 it is visible that the
ranges of the longitudinal MSs for different logs vary. Figs. 8 and
9 illustrate that the MSs of L2 are worse compared to L1, especially
when considering larger slice distances. However, it can be stated
that the longitudinal MSs of each log are getting worse with an
increasing slice distance.

Longitudinal SD/interclass fractions. The longitudinal increase of
the MSs leads to the conjecture that for higher slice distances it
is not possible to separate between longitudinal MSs and interclass
MSs. This conjecture is validated by considering the interclass frac-
tion of the MSs of all SDGs for each longitudinal SD subset. The
interclass fraction of a SDG is specified as the percentage of MSs
(within a longitudinal SD subset and SDG) which intersect with
the interclass SD. The interclass fractions of each longitudinal SD
subset and SDG are illustrated in Fig. 10. For MSAP and MSF the
results confirm the expectation that for larger slice distances the
fraction of MSs which intersects with the interclass SD increases.
The differences between the knot-including and knot-free SDs
are not significant. Just for the Longitudinal-L2-NK SD and MSAP
the fractions of the first three SDGs (1–3) are pushed down to zero.

Most important, the results for MSAP;F illustrate that by the
fusion of pattern and shape information the interclass fractions
decrease for all subsets. The robustness to longitudinal variations
is improved significantly by feature fusion.

3.2.2. Surface SD
The surface SD is examined in context of the previously anal-

ysed longitudinal SD subsets and the interclass SD. Again, the main
objective is to assess the separability between the surface SD sub-
sets and the interclass SD. In case of the CS-Images of L1 and L2 the
surface MSs are the only MSs between CS-Images from equal CS-
Slices in our experiments. The surface MSs between the rough
and sanded CS-Images are considered for L1 and L2, separately.
For all SDs the cumulative distribution functions (CDF) are com-
puted and illustrated for each matching procedure (see Fig. 11).
The CDF of a SD gives the probability that a certain MS exists that
is ranged less or equal to that MS. Furthermore, the CDF illustrates
the median value at a probability of 0.5 – half of the MSs are lower
and half of the MSs are higher than the median. The CDFs of a cer-
tain intraclass SD group/subset and the interclass SD are used to
observe their overlap and to draw conclusions about their
separability.

Generally, it is expected that the surface SD subsets consist of
very good MSs and their CDFs are thus aligned in front (=left hand
side) of the longitudinal SD CDFs. For all surface SD subsets and
matching procedures no overlaps with the interclass CDF are
shown. For MSF the surface SD subsets show very good MSs
because the shape difference between the rough and sanded
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Fig. 11. Cumulative distribution functions (CDFs) for different longitudinal and surface SD subsets and the interclass SD. [X-Axis: Matching Score, Y-Axis: Probability].
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CS-Image of a CS-Slice is very low. The overlaps between the lon-
gitudinal SDs and the interclass SD have been discussed in the pre-
vious section. Again, the results for MSAP;F show that fusion
improves the separability between the longitudinal SD subsets
and the interclass SD.
3.3. Identification performance

So far, all evaluations were related to the verification perfor-
mance of log end biometrics. Based on the gathered insights, two
investigations on the identification performance are presented:
First, the MSs for each CS-Slice of L1 and L2 are ordered and the
ranks for different intraclass MS groups/subsets and the interclass
MSs are analysed. Hence, general statements on the rank orders
can be presented.

Second, the identification rates for four specific identification
scenarios are presented. All scenarios illustrate the impact of cut-
ting the log end on the identification performance. As such, it is
elaborated how the width of the piece which is cut-off influences
the performance. Additionally, the impact of using different cutting
tools is assessed.
3.3.1. Cumulative CS-Slice matching score ranks
Commonly, the CMC depicts how the biometric system ranks

the MSs between a set of probe templates and all database tem-
plates. The CMC curve illustrates the probability that the correct
(intraclass) MS is ranked within the first k-ranks. In case of 100%
identification rate the CMC curve shows a detection rate of 100%
at the first rank. For this investigation, the SD-MS rankings of five
different intraclass groups/subsets and the first observation of an
interclass SD-MS are assessed.
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Fig. 12. Cumulative matching score ranks.
For each CS-Slice the MSs between each of its templates and all
other templates in the database are ordered in an ascending order.
In Fig. 12 the detection rates for four SD groups/subsets and the
interclass SD are depicted:

– SURFACE: Detection rate for the MSs between the rough and
sanded CS-Images of each CS-Slice.

– ROUGH-LONG, SANDED-LONG for L1 & L2: Detection rates for
longitudinal MSs from slice distance group 1 or 2. These are of
interest in an industrial application (e.g. cutting the log end
once or twice).

– INTER: Detection rate for observing the first interclass MS.

For example, in Fig. 12a the SURFACE curve shows that there is
�30% chance of finding the corresponding rough or sanded surface
as the best match and �95% chance to find it among the top 10
rankedmatches. The INTER curve shows that there is 0% risk of find-
ingaCS-Slice fromanother log as thebestmatchbut�5% riskoffind-
ing a CS-Slice from another log among the top 20 ranked matches.

Based on the CMC curves we can draw interesting conclusions
on the identification performance of the biometric system. Most
important, for all matching procedures and CS-Slices each consid-
ered intraclass SD group/subset shows up high detection rates at
the best (=lowest) ranks. On the other hand, the probability of
observing a well ranked (<15) interclass SD-MS is nearly zero. In
case of MSAP;F nearly all intraclass SD-MSs are ranked in front of
the first interclass SD-MS occurrence. Notice that a larger amount
of different logs in the testset could have a big impact on the results.

In comparing the surface SD ranks to the longitudinal SD subset
ranks the results lead to an interesting observation. The MSs (MSAP)
of the rough and sanded longitudinal SDs of L1 and L2 are ranked in
the range of the surface SD-MSs. Thus the results distinguish from
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the verification performance results in Fig. 11 where the surface
CDFs show better MSs than the longitudinal CDFs. This illustrates
that CS-Images of adjacent neighboured CS-Slices with the same
kind of surface show up a high annual ring pattern similarity to
each other. Because of longitudinal shape variations the results
for MSF show that the longitudinal MSs are ranked worse com-
pared to the SURFACE MSs.

Again, the results depict a higher longitudinal CS variability of
L2 which is demonstrated by the higher ranked (=worse) MSs for
the longitudinal SD subsets of L2.

Concluding, the results show that the first occurrence of an
interclass MS is worse ranked (=higher ranked) compared to the
intraclass MSs. The interclass CMC curves for MSAP;F show that for
feature fusion the interclass detection rates shift remarkably to
higher ranks.
3.3.2. Identification performance – test scenarios
Finally, the identification performance for different scenarios is

assessed. A test scenario requires to specify a probe set and a gallery
set. The gallery specifies the enrolled templates of the individuals/
objects contained in the database. The probe set is a set of templates
of individuals/objects which are used to query the biometric sys-
tem. For each probe template the matches/MSs to all database tem-
plates are computed. The computed matches/MSs for each probe
template are ordered and the rank of the correct match/MS is deter-
mined. Subsequently, for each rank the probability that the correct
match/MS is equal or better ranked is computed. For illustration
these probabilities are depicted in a CMC chart. The probability that
the correct match is ranked at the first position is denoted as iden-
tification rate or detection rate. Basically, all scenarios evaluate the
impact of cutting the log end in the sawmill.

Scenario #1, #2 – same cutting tool. For these scenarios it is
assumed that the first cut in the forest and the second cut in the
sawmill is performed with the same cutting tool. Hence, no surface
variations due to different cutting tools are introduced. For this
purpose Scenario #1 (Rough-Rough) is based on rough CS-Images
and Scenario#2 (Sanded-Sanded) is based on sanded CS-Images
Table 4
Scenario#1, #2 – Identification rates for different slice distance groups (SDGs) and
matching procedures (MPs).

MP/SDG 1 2 3 4 5

#1 Rough-Rough
MSAP 1.0 1.0 0.97 0.97 0.91
MSF 1.0 0.94 0.91 0.84 0.78
MSAP;F 1.0 0.97 0.91 0.81 0.75

#2 Sanded-Sanded
MSAP 1.0 0.97 0.94 0.91 0.69
MSF 1.0 0.94 0.91 0.88 0.66
MSAP;F 1.0 1.0 0.94 0.81 0.66
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Fig. 13. MSAP;F : CMC curves for the different scenarios and slic
of L1 and L2. As probe templates for Scenario#1, #2 the rough or
sanded CS-Images of each CS-Slice are utilized, respectively.

For each scenario and probe template it is assumed that just one
equally surfaced CS-Image of the same log which belongs to a cer-
tain slice distance group (SDG) is enrolled in the gallery set. For
evaluation the SDGs 1–5 are considered. Furthermore, templates
of all CS-Images from L3 and equally surfaced CS-Images of the
other log (L1 or L2) are included in the gallery. For each probe tem-
plate the rank of the correct match is computed and in Table 4 the
results for both scenarios are summarized. For each scenario the
identification rates for different SDGs and matching procedures
are illustrated.

The results for Scenario#1 and #2 in Table 4 show high detec-
tion rates for the first four SDGs. The results illustrate that for
SDG 4 and 5 the detection rates of MSF decrease to a higher degree
than for MSAP . Basically, it is recognizable that the identification
rates for both scenarios and matching procedures are somewhat
equal. Consequently, the CS shape has less impact on the identifi-
cation performance of Scenario#1 and #2. For MSAP;F and the SDGs
1, 2 the identification rates account 100% for both scenarios. These
results are a first indication that log end biometrics are probably
robust to cutting the log end in a range of five centimetres (2 CS-
Slices = 5 cm). In case of MSAP;F the rates for higher SDGs are still
in a range between 84% and 97%. In Fig. 13 the CMC curves for
MSAP;F and both scenarios are illustrated.

Scenario #3, #4 – different cutting tools. In difference to the first
two scenarios, Scenario #3 and #4 investigate the impact of differ-
ent surfaced CSs. Thus, it is assumed that the first cut in the forest
and the second cut in the sawmill are performed with different
cutting tools. Based on the CS-Images of L1 and L2 two scenarios
are constructed. Scenario #3 (Rough-Sanded) assumes that the first
cut is represented by a rough CS-Image of a CS-Slice and the second
cut is represented by a sanded CS-Image of a neighboured CS-Slice.
Scenario #4 (Sanded-Rough) assumes that the cuts are performed
in the reverse order. Consequently, these scenarios simulate a mix-
ture of longitudinal and surface CS variations. For both scenarios
the rank-orders for the correct matches are computed in the same
way as for the first two scenarios (see Table 5). The results for Sce-
nario #3 in Table 5 illustrate that for all matching procedures the
identification performance decreases for higher SDGs. Compared
to Scenario#1 and #2, the identification rates for MSAP are worse.
This is caused by the CS surface variations which cause a decrease
of the identification performance for MSAP . Nevertheless, the
results forMSAP;F are convincing and for SDG 1, 2 an error free iden-
tification performance is achieved (Fig. 13).

Finally, the results for all scenarios indicate that log end biomet-
rics are robust to longitudinal variations and mixtures of surface
and longitudinal variations to a certain degree. Furthermore, and
equal as in Schraml et al. (2015a) all evaluations showed that the
fusion of annual ring pattern and shape information is valuable
to increase the performance of the biometric system.
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Table 5
Scenario#3, #4 – Identification rates for different slice distance groups (SDGs) and
matching procedures (MPs).

MP/SDG 1 2 3 4 5

#3 Rough-Sanded
MSAP 0.97 0.91 0.91 0.72 0.69
MSF 0.94 0.88 0.91 0.63 0.56
MSAP;F 1.0 0.94 0.91 0.81 0.66

#4 Sanded-Rough
MSAP 0.94 0.88 0.84 0.78 0.69
MSF 0.91 0.81 0.84 0.66 0.56
MSAP;F 1.0 1.0 0.97 0.81 0.78
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4. Conclusions

The findings of this study show that log end biometrics are
promising to discriminate between different tree logs in an indus-
trial application. It can be concluded that the robustness of the bio-
metric system to CS variations depends to a high degree on the
template computation approach and the matching procedure.

In comparing the results for three different matching proce-
dures it is obvious that biometric feature fusion increases the
robustness significantly. In regard to the verification performance,
a combination of annual ring pattern and shape features increases
the robustness to longitudinal CS variations. Furthermore, the
analysis of the intraclass SD groups illustrates that CS surface vari-
ations are not crucial for the verification performance.

Based on the identification performance experiments we con-
clude that biometric log recognition is qualified to overcome the
issue of cutting log ends in the sawmill. Results show a successful
identification within cutting off slices up to �5 centimetres in
thickness, even if the second cut in the sawmill is performed with
another cutting tool.

The analysis of the longitudinal CS variations for different SDGs
shows that knots are disturbing factors. This is caused by the fact
that the current approach is not dealing with knots on CSs. Surpris-
ingly, the results indicate that knots do not introduce any propaga-
tive effects to the annual ring pattern and the CS shape. Thus,
future work should investigate the similarity between non-
knotty parts of knotty CSs and their neighboured knot free CSs.

5. Future work

Although the results of this study together with the results in
Schraml et al. (2015a,b) are very promising, further experiments
on a large set of tree logs are indispensable to assess the identifica-
tion performance in a real world environment. Furthermore, future
work has to deal with the impact of typical external CS surface
variations which are caused by dirt, snow or ice during transporta-
tion or storage. Regarding log template computation and matching,
the applicability of other feature extraction methods should be
assessed and new approaches should be developed. Finally, further
research should deal with the impact of automatic pith estimation
and CS segmentation approaches to the biometric system
performance.
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