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Abstract

The study of Diophantine triples taking values in linear recurrence sequences is a
variant of a problem going back to Diophantus of Alexandria which has been studied
quite a lot in the past. The main questions are, as usual, about existence or finiteness of
Diophantine triples in such sequences. Whilst the case of binary recurrence sequences
is almost completely solved, not much was known about recurrence sequences of
larger order, except for very specialised generalisations of the Fibonacci sequence.
Now, we will prove that any linear recurrence sequence with the Pisot property
contains only finitely many Diophantine triples, whenever the order is large and a few
more not very restrictive conditions are met.
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1 Introduction
The problem of Diophantus of Alexandria about tuples of integers {a1, a2, a3, . . . , am}
such that the product of each distinct two of them plus 1 always results in an integer
square has already quite a long history (see [8]). It is easy to see that there are infinitely
many such sets with m = 2 since {a, b} = {r − 1, r + 1} is a Diophantine pair for every
r ≥ 2. One of the main questions was, how many such Diophantine m-tuples exist for a
fixedm ≥ 3. Already Euler proved that there are infinitely many Diophantine quadruples,
demonstrating it with the family

{a, b, a + b + 2
√
ab + 1, 4(a +

√
ab + 1)(b +

√
ab + 1)

√
ab + 1}

for a and b such that ab+1 is a perfect square. For {a, b} = {r−1, r+1} Euler’s extension
reduces to {a, b, c, d} = {r−1, r+1, 4r, 16r3 −4r}. Much later Arkin, Hoggatt and Strauss
[5] proved that every Diophantine triple can be extended to a Diophantine quadruple.
More precisely, let {a, b, c} be a Diophantine triple and

ab + 1 = r2, ac + 1 = s2, bc + 1 = t2,

where r, s, t are positive integers. Define

d+ := a + b + c + 2abc + 2rst.

Then {a, b, c, d+} is a Diophantine quadruple. Dujella proved in [9], that there are no
Diophantine sextuples and also that there are only finitely many Diophantine quintuples.
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This result is even effective, since an upper bound of the form log10(log10(max{ai})) <

26 was given on the members of such a quintuple. It is conjectured, that there are no
quintuples at all and, even stronger, that if {a, b, c, d} is a Diophantine quadruple and
d > max{a, b, c}, then d = d+. The “weaker” conjecture has recently been settled by He,
Togbé and Ziegler (cf. [19]), whereas the stronger conjecture still remains open.
Now it is an interesting variation of the original problem of Diophantus to consider

a linear recurrence sequence instead of the sequence of squares. So we ask for bounds
m on the size of tuples of integers {a1, a2, a3, . . . , am} with aiaj + 1 being members of a
given linear recurrence for 1 ≤ i < j ≤ m. We shall call this set a Diophantine m-tuple
with values in the linear recurrence (or a Diophantine m-tuple in the recurrences, for
short). Here, the first result was due to Fuchs, Luca and Szalay, who proved in [12] that
for a binary linear recurrence sequence (un)n≥0, there are only finitely many Diophantine
triples, if certain conditions are met. The Fibonacci sequence and the Lucas sequence
both satisfy these conditions and all Diophantine triples with values in these sequences
were computed in [22] and [23]. Further results in this direction can be found in [2,20]
and [21]. Moreover, in [1] it is shown that there are no balancing Diophantine triples; see
also [3] for a related result. In [4] it is shown that there are no Diophantine triples taking
values in Pellans sequence.
The first result on linear recurrence sequences of higher order than 2 came up in 2015,

when the authors jointlywith Irmak and Szalay proved (see [13]) that there are only finitely
many Diophantine triples with values in the Tribonacci sequence (Tn)n≥0 given by

T0 = T1 = 0, T2 = 1, Tn+3 = Tn+2 + Tn+1 + Tn for n ≥ 0.

In [17] it was shown that a Tribonacci Diophantine quadruple does not exist. A related
result can be found in [18]. One year later in [14], this result was generalized to k-
generalized Fibonacci sequences: For any integer k ≥ 3, define (F (k)

n )n≥0 by F (k)
0 = . . . =

F (k)
k−2 = 0, F (k)

k−1 = 1 and

F (k)
n+k = F (k)

n+k−1 + · · · + F (k)
n for n ≥ 0.

Then for any fixed k , only finitely many Diophantine triples with values in {F (k)
n ; n ≥ 0}

exist. None of these results are constructive, since the proof uses a version of the Subspace
theorem. It is not clear, whether there are any Diophantine triples with values in those
sequences at all.
The result in this paper deals with a significantly larger class of linear recurrence

sequences:
Let (Fn)n≥0 be a sequence of integers satisfying a linear recurring relation. Assume

that the recurrence is of Pisot type, i.e., that its characteristic polynomial is the minimal
polynomial (over Q) of a Pisot number. We denote the power sum representation (Binet
formula) by Fn = f1αn

1 + · · · + fkαn
k . Assume w.l.o.g. that α = α1 is the Pisot number;

i.e., α is a real algebraic integer of degree k satisfying α > 1 and if α2, . . . ,αk denote
the conjugates of α over Q then max{|α2|, . . . , |αk |} < 1. We remark that by a result of
Mignotte (cf. [24]) it immediately follows that the sequence is non-degenerate, and that
the characteristic roots are all simple and irrational.
We show that there are only finitely many triples of integers 1 ≤ a < b < c such that

1 + ab = Fx, 1 + ac = Fy, 1 + bc = Fz

if at least one of the following conditions holds:
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• Neither the leading coefficient f1 nor f1α is a square in K = Q(α1, . . . ,αk ).
• k ≥ 2 and α is not a unit.
• k ≥ 4.

The previously treated k-generalized Fibonacci sequences satisfy this Pisot property and
neither their leading coefficient f1 nor f1α1 is a square. However, the new result in this
paper helps us to obtain finiteness for many more linear recurrence sequences.
For example, let us consider the irreducible polynomial X3 −X − 1, which has the Pisot

property. Its Pisot root θ := 1.3247179572 . . . is the smallest existing Pisot number by [6].
This number is also known as the plastic constant. Its corresponding linear recurrence
sequence (Fn)n≥0, given by Fn+3 = Fn+1 + Fn, is of Pisot type. If the initial values are not
F0 = 6, F1 = −9, F2 = 2, then neither the leading coefficient nor the leading coefficient
times θ are squares in the splitting field ofX3−X−1 overQ. So the theorem can be applied
and we obtain, that there are only finitely many Diophantine triples with values in this
sequence. However it is yet not clear, what happens in the case F0 = 6, F1 = −9, F2 = 2.
Another example for which the theorem can be applied is the polynomial

X2k+1 − X2k − 1
X − 1

.

This polynomial defines a Pisot number of degree 2k + 1 by a result of Siegel (see [25])
and its corresponding linear recurrence sequence is of Pisot type. Independently of its
initial values, the result applies to all k ≥ 2 since the degree is sufficiently large. The same
applies to

X2k+1 − X2k+2 − 1
X2 − 1

,

for k ≥ 2.
Furthermore, all polynomials of the form

Xk (X2 − X − 1) + X2 + 1

are known to define Pisot numbers. So, again for k ≥ 2 the theorem applies.
We quickly discuss themain shape of the recurrences we study in this paper. Let (Fn)n≥0

be a recurrence of Pisot type as described above. Let us denote K = Q(α1, . . . ,αk ). Since
Fn ∈ Z it follows that each element of the Galois group of K over Q permutes the
summands in thepower sumrepresentationofFn.Moreover, each summand is a conjugate
of the leading term f1αn

1 overQ and each conjugate of it appears exactly once in the Binet
formula. Therefore Fn is just the trace TrK/Q(f1αn

1 ). Since f1 might not be integral, we
write f1 = f /d with d ∈ Z and f being an integral element in K . Thus, conversely starting
with a Pisot number α, an integer d ∈ Z and an integral element f in the Galois closure K
of α over Q such that dFn = TrK/Q(f αn) for every n ∈ N, we can easily construct further
examples for which our result applies.
The proof will be given in several steps: First, a more abstract theorem is going to be

proved, which guarantees the existence of an algebraic equality, that needs to be satisfied,
if there were infinitely many Diophantine triples. This works on utilizing the Subspace
theorem (cf. [10]) and a parametrization strategy in a similar manner to that of [14]. If
the leading coefficient is not a square in Q(α1, . . . ,αk ), we obtain the contradiction quite
immediately from this equality. In a second step, we will use divisibility arguments and
algebraic parity considerations in order to show that this equality can also not be satisfied
if the order k is large enough. Let us now state the results.
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2 The results
We start with a general and more abstract statement which gives necessary conditions in
case infinitely many Diophantine triples exist. It is derived by using the Subspace theorem
(cf. [10]).

Theorem 1 Let (Fn)n≥0 be a sequence of integers satisfying a linear recurrence relation of
Pisot type of order k ≥ 2. Denote its power sum representation as

Fn = f1αn
1 + · · · + fkαn

k .

If there are infinitely many positive integers 1 < a < b < c, such that

ab + 1 = Fx, ac + 1 = Fy, bc + 1 = Fz (1)

hold for integers x, y, z, then one can find fixed integers (r1, r2, r3, s1, s2, s3) with r1, r2, r3
positive, gcd(r1, r2, r3) = 1 such that infinitely many of the solutions (a, b, c, x, y, z) can be
parametrized as

x = r1� + s1, y = r2� + s2, z = r3� + s3.

Furthermore, following the parametrization of x, y, z in �, there must exist a power sum c(�)
of the form

c(�) = α
(−r1+r2+r3)�+η
1

⎛

⎝e0 +
∑

j∈Jc
ej

k∏

i=1
α
vij�
i

⎞

⎠

with η ∈ Z ∪ (Z + 1/2), Jc an index set, ej being coefficients in Q(α1, . . . ,αk ) and integers
vij with the property that vij ≥ 0 if i ∈ {2, . . . , n} and vij < 0 if i = 1, all independent of �,
such that

(Fx − 1)c(�)2 = (Fy − 1)(Fz − 1).

Similarly there are a(�) and b(�) of the same shape with

(Fz − 1)a(�)2 = (Fx − 1)(Fy − 1) and (Fy − 1)b(�)2 = (Fx − 1)(Fz − 1).

The proof is given in Sect. 4.
This theorem looks quite abstract. However, it can be applied to a huge family of lin-

ear recurrences. Firstly, it can be applied to all linear recurrences, in which the leading
coefficient is not a square:

Theorem 2 Let (Fn)n≥0 be a sequence of integers satisfying a linear recurring relation
Fn+k = A1 Fn+k−1 + A2 Fn+k−2 + · · · + Ak Fn of Pisot type of order k ≥ 2, that is, the
characteristic polynomial

Xk − A1 Xk−1 − A2 Xk−2 − · · · − Ak = (X − α1) (X − α2) · · · (X − αk )

is an irreducible polynomial of degree k, has integer coefficients Ai, and has roots satisfying
α1 > 1 and max{|α2|, . . . , |αk |} < 1. If furthermore neither f1 nor f1α1 are squares in
Q(α1, . . . ,αk ), then there are only finitely many Diophantine triples with values in {Fn; n ≥
0}.
The proof of this theorem is given in Sect. 5.
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Another consequence of Theorem 1 applies to linear recurrences of sufficiently large
order. Namely if k ≥ 4, the existence of such a c(�) leads to a contradiction. The same
holds already for k = 2, 3, if we assume that the Pisot element α1 is not a unit in the ring
of integers of Q(α1, . . . ,αk ). Thus, we obtain the following result.

Theorem 3 Let (Fn)n≥0 be a sequence of integers satisfying a linear recurring relation
Fn+k = A1 Fn+k−1 + A2 Fn+k−2 + · · · + Ak Fn of Pisot type of order k ≥ 2, that is, the
characteristic polynomial

Xk − A1 Xk−1 − A2 Xk−2 − · · · − Ak = (X − α1) (X − α2) · · · (X − αk )

is an irreducible polynomial of degree k, has integer coefficients Ai, and has roots satisfying
α1 > 1 andmax{|α2|, . . . , |αk |} < 1. Then there are only finitelymanyDiophantine triples
1 < a < b < c with

ab + 1 = Fx, ac + 1 = Fy, bc + 1 = Fz,

with values in {Fn; n ≥ 0} if one of the following conditions holds:
(i) k ≥ 2 and α1 is not a unit.
(ii) k ≥ 4.

This theorem is proved in Sect. 6.
Before we give the proofs we first start with several useful lemmas that will be used in

the sections afterwards.

3 Some useful lemmas
Assume that we have infinitely many solutions (x, y, z) ∈ N3 to (1) with 1 < a < b < c.
Obviously, we have x < y < z. First, one notices that not only for z, but for all three
components, we necessarily have arbitrarily “large” solutions.

Lemma 1 Let us assume, we have infinitely many solutions (x, y, z) ∈ N3 to (1). Then for
each N, there are still infinitely many solutions (x, y, z) ∈ N3 with x > N.

Proof It is obvious that we must have arbitrarily large solutions for y and for z, since
otherwise, a, b, c would all be bounded as well, which is an immediate contradiction to
our assumption.
If we had infinitely many solutions (x, y, z) with x < N , then there is at least one fixed

x which forms a solution with infinitely many pairs (y, z). Since Fx = ab + 1, we have a
bound on these two variables as well and can use the same pigeon hole argument again to
find fixed a and b, forming a Diophantine triple with infinitely many c ∈ N.
Using these fixed a, b, we obtain from the other two equations in (1), that bFy − aFz =

b−a and therefore, the expressions bf1α
y
1 and af1α

z
1 (having the largest growth rate) must

be equal. So

α
z−y
1 = b

a
,

which is a constant. Hence, z − ymust be some constant ρ > 0 as well and we can write
z = y + ρ for our infinitely many solutions in y and z.
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Using the power sum representations in bFy − aFy+ρ = b − a, we get

b
(
f1α

y
1 + · · · + fkα

y
k

)
− a

(
f1α

y+ρ

1 + · · · + fkα
y+ρ

k

)
= b − a. (2)

So the terms with the largest growth rate, which are bf1α
y
1 and af1α

y+ρ

1 , must be equal and
this gives us b = aαρ

1 . Inserting this into (2) and cancelling on both sides gives us

α
ρ
1

(
f2α

y
2 + · · · + fkα

y
k

)
−

(
f2α

y+ρ

2 + · · · + fkα
y+ρ

k

)
= α

ρ
1 − 1.

Now for y → ∞, the left hand side converges to 0. The right hand side is a constant
larger than 0. So this equality can not be true when y is large enough. This contradiction
completes the proof. �	

Next, we prove the following result, which generalizes Proposition 1 in [13]. Observe
that the upper bound depends now on k .

Lemma 2 Let y < z be sufficiently large. Then there is a constant C1 such that

gcd(Fy − 1, Fz − 1) < C1α
k

k+1 z
1 . (3)

Proof Denote g := gcd(Fy − 1, Fz − 1). Observe here and below that the numbers Fx −
1, Fy − 1, Fz − 1 are positive integers. Furthermore, let us assume that y (and hence z) is
large enough such that

max
{∣∣∣∣f2α

y
2 + · · · + fkα

y
k

∣∣∣∣,
∣∣∣∣f2α

z
2 + · · · + fkαz

k

∣∣∣∣

}
< 1/2.

Let κ be a constant to be determined later. If y ≤ κz, then

g ≤ Fy − 1 < |f1|αy
1 ≤ |f1|ακz

1 . (4)

Now let us assume that y > κz. We denote λ := z − y < (1 − κ)z. Note that

g | (Fz − 1) − αλ
1 (Fy − 1) in Q(α1).

Thus, we can write

gπ = (Fz − 1) − αλ
1 (Fy − 1),

where π is some algebraic integer in Q(α1). Note that the right-hand side above is not
zero, for if it were, we would get αλ

1 = (Fz − 1)/(Fy − 1) ∈ Q, which is false for λ > 0. We
compute norms fromQ(α1) to Q. Observe that

∣∣(Fz − 1)− αλ
1 (Fy − 1)

∣∣

= ∣∣(f1αz
1 + · · · + fkαz

k − 1
) − αλ

1
(
f1α

y
1 + · · · + fkα

y
k − 1

)∣∣

= ∣∣αλ
1
(
1 − f2α

y
2 − · · · − fkα

y
k
) − (

1 − f2αz
2 − · · · − fkαz

k
)∣∣

≤ 3
2
αλ
1 − 1

2
<

3
2
αλ
1 <

3
2
α
(1−κ)z
1 .
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Further, let σi be any Galois automorphism that maps α1 to αi. Then for i ≥ 2, we have

∣∣σi
(
(Fz − 1) − αλ

1 (Fy − 1)
)∣∣ = ∣∣(Fz − 1) − αλ

i (Fy − 1)
∣∣

< Fz − 1 + Fy − 1 < |f1|αz
1 + |f1|αy

1 − 1

< |f1|
(
1 + α−1

1

)
αz
1 ≤ C2α

z
1,

with C2 being a suitable constant (e.g. C2 = |f1|
(
1 + α−1

1

)
).

Altogether, we obtain

gk ≤ |NQ(α1)/Q(gπ )|
≤ ∣∣NQ(α1)/Q

(
(Fz − 1) − αλ

1 (Fy − 1)
)∣∣

=
∣∣∣∣∣∣

k∏

i=1
σi

(
(Fz − 1) − αλ

1 (Fy − 1)
)
∣∣∣∣∣∣

<
3
2
α
(1−κ)z
1 (C2α

z
1)

k−1 = C3α
(k−κ)z
1 ,

where C3 = 3Ck−1
2 /2. Hence,

g ≤ C4α
(1−κ/k)z
1 (5)

withC4 = C1/k
3 . In order tobalancebetween (4) and (5),we chooseκ such thatκ = 1−κ/k ,

giving κ = k/(k + 1) and

g ≤ max{|f1|, C4}α
k

k+1 z
1 = C1α

k
k+1 z
1 ,

where C1 = max{|f1|, C4}, which proves the lemma. �	

The next lemma states the irreducibility (over C) of a certain polynomial. This lemma
will be used in the proof of Theorem 3.

Lemma 3 Assume that k ≥ 1. For n ≥ 3, and non-zero complex numbers c1, . . . , cn the
polynomial

c1Xk
1 + · · · + cnXk

n ∈ C[X1, . . . , Xn]

is irreducible.

Proof For n = 2, we have the factorization c1Xk
1 + c2Xk

2 = c1
∏k

I=1(X1 − diX2), where
d1, . . . , dk are all the roots of zk + c2/c1 = 0. This polynomial is square-free, that is it does
not have multiple factors of degree ≥ 1. In particular, for n = 3,

c1Xk
1 + P(X2, X3) ∈ C[X2, X3][X1],

is such that P(X2, X3) = c2Xk
2 + c3Xk

3 is square-free. Let p be some irreducible factor of
P(X2, X3). Then the polynomial above is Eisenstein with respect to p (since p2 does not
divide P(X2, X3)), so the polynomial is irreducible. Now for n ≥ 4 we apply induction on
n noting that

c1Xk
1 + P(X2, . . . , Xn) ∈ C[X2, . . . , Xn][X1],
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where P(X2, . . . , Xn) = c2Xk
2 + · · · + cnXk

n is irreducible for n ≥ 4 (by the induction
hypothesis), so our polynomial is Eisenstein with respect to the prime p := P(X2, . . . , Xn).
This proves the lemma. �	

Corollary 1 Assume that k ≥ 1. If n ≥ 2, the polynomial c1Xk
1 + · · · + cnXk

n − 1 is
irreducible.

Proof Indeed, for if not, the homogenized polynomial

c1Xk
1 + · · · + cnXk

n − Xk
n+1

is reducible in C[X1, . . . , Xn+1], which is impossible by Lemma 3. �	

Now we need to deal with the case when we have a Laurent-polynomial which looks as
follows

P = c1Xk
1 + · · · + cnXk

n − cn+1/(X1 · · ·Xn)k .

Clearing up the powers of Xi from the denominators and calculating P − 1, it will be
necessary for the proof of Theorem 3 to look at

(X1 · · ·Xn)k
(
c1Xk

1 + · · · + cnXk
n − 1

) − cn+1

which is a polynomial in C[X1, . . . , Xn].

Lemma 4 Assume that k ≥ 1. Let n ≥ 3 and c1, . . . , cn be non-zero complex numbers.
Then

(X1 · · ·Xn)k
(
c1Xk

1 + · · · + cnXk
n − 1

) − cn+1

is irreducible.

Proof We rewrite the polynomial as

X2k
1

(
c1(X2 · · ·Xn)k

) + Xk
1 (X2 · · ·Xn)k

(
c2Xk

2 + · · · + cnXk
n − 1

) − cn+1 = f
(
Xk
1
)
,

where

f (X) = X2(c1(X2 · · ·Xn)k
) + X(X2 · · ·Xn)k

(
c2Xk

2 + · · · + cnXk
n − 1

) − cn+1.

By Capelli’s theorem, the given polynomial is irreducible if we succeed to show that:

(i) f (X) is irreducible over C[X2, . . . , Xn];
(ii) If α is a root of f (X), then α is not of the form βq for some element β ∈

C(X2, . . . , Xn)(α) and any q | k .
We consider it easier to work with the reciprocal polynomial

f ∗(X) = X2f (1/X)

= −cn+1X2 + X(X2 · · ·Xn)k
(
c2Xk

2 + · · · + cnXk
n − 1

) + c1(X2 · · ·Xn)k .

Additionally, since −cn+1f ∗(X) = g(−cn+1X), where

g(X) = X2 + X(X2 · · ·Xn)k
(
c2Xk

2 + · · · + cnXk
n − 1

) + c′1(X2 · · ·Xn)k ,
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where c′1 = −c1cn+1, we can work with g(X) instead of f ∗(X). Note that (i) and (ii) hold
for f (X) if and only if they hold for g(X). So, let us check parts (i) and (ii). Part (i) is easy.
We just compute the discriminant of g(X):

(X2 · · ·Xn)2k
(
c2Xk

2 + · · · + cnXk
n − 1

)2 − 4c′1(X2 · · ·Xn)k

= (X2 · · ·Xn)k
(
(X2 · · ·Xn)k

(
c2Xk

2 + · · · + cnXk
n − 1

)2 − 4c′1
)
.

We show that the polynomial in parenthesis is square-free. Assume p2 is a divisor of it for
some irreducible polynomial p of positive degree. Putting

H := c2Xk
2 + · · · + cnXk

n − 1

and taking derivatives with respect to X2, we get that p divides

∂

∂X2

(
(X2 · · ·Xn)kH2 − 4c′1

)

= kXk−1
2 (X3 · · ·Xn)kH2 + 2(X2 · · ·Xn)kH

(
kc2Xk−1

2
)

= kXk−1
2 (X3 · · ·Xn)kH

(
H + 2c2Xk

2
)
.

Clearly, since p is irreducible, it is coprime to X2, . . . , Xn and H , so p must divide H +
2c2Xk

2 = (3c2)Xk
2 + c3Xk

3 +· · ·+ cnXk
n −1 and by Corollary 1, it must be associated to this

last polynomial since this is irreducible. Since n ≥ 3, the same argument using the partial
derivative with respect to X3 instead gives that p is associated to c2Xk

2 + (3c3)Xk
3 + · · · +

Xk
n − 1 as well, a contradiction. This proves (i).
For part (ii), note that

α = (X2 · · ·Xn)kH + (X2 · · ·Xn)�k/2√

2
,

where

 := (X2 · · ·Xn)r
(
(X2 · · ·Xn)kH2 − 4c′1

)
,

with r = k − 2�k/2 ∈ {0, 1}. Further, from what we proved above,  is square-free as
a polynomial in C[X2, . . . , Xn]. Let L := C(X2, . . . , Xn) and x = (X2, . . . , Xn). We need to
show that α is not of the form βq for some prime q | k and β ∈ L(α). Assume there is such
β and let it be

β = A(x) + B(x)
√

, where A(x), B(x) ∈ L.

Since βq = α, it follows that β is integral over C[X2, . . . , Xn][
√

], and since
√

 is
integral over C[X2, . . . , Xn], it follows that β is integral over C[X2, . . . , Xn]. The same is
true for γ = A(x) − B(x)

√
 since γ q is the other root of g(X). Thus, 2A(x) = β + γ

is integral over C[X2, . . . , Xn], and since A(x) ∈ L, the fraction field of this last ring, it
follows that A(x) ∈ C[X2, . . . , Xn]. Now the element βγ = A(x)2 −B(x)2 is also integral
over C[X2, . . . , Xn], therefore so is B(x)2. Thus, B(x)2 is a polynomial and since  is
square-free, it follows that B(x) is itself a polynomial.
Now assume q = 2. We then have

(X2 · · ·Xn)kH + (X2 . . .Xn)�k/2√

2
= (A(x) + B(x)

√
)2

= A(x)2 + B(x)2 + 2A(x)B(x)
√

,
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which gives

(X2 · · ·Xn)kH = 2A(x)2 + 2B(x)2, (X2 · · ·Xn)�k/2 = 4A(x)B(x). (6)

The right equation above shows that both A(x) and B(x) are non-zero monomials of
degree ≤ �k/2 in each variable. Thus, degX2 (A(x)

2) ≤ 2�k/2 ≤ k and degX2 (B(x)
2) ≥

degX2 () ≥ 3k > k ≥ degX2 (A(x)
2), showing that

deg(2A(x)2 + 2B(x)2) = deg(2B(x)2) ≥ 3k,

so the left equation in (6) is impossible since the polynomial on the left-hand side has
X2-degree degX2 ((X2 · · ·Xn)kH ) = 2k < 3k .
Assume next that q ≥ 3. Taking the trace from L(

√
) to L in the relation α = βq , we

get

(X2 · · ·Xn)kH = (A(x) + B(x)
√

)q + (A(x) − B(x)
√

)q.

The right-hand side factors into (q + 1)/2 polynomials in C[X2, . . . , Xn] as follows. For
k ∈ {1, . . . , q}, let ζk = e

2kπ i
q . These are all the roots of ζ q = 1. Further, ζq = 1, and

ζq−k = ζ−1
k for k = 1, . . . , (q − 1)/2. Thus,

(A(x) + B(x)
√

)q + (A(x) − B(x)
√

)q

=
q∏

k=1

(
(A(x) + B(x)

√
) + ζk (A(x) − B(x)

√
)

)

= 2A(x)
(q−1)/2∏

k=1

∏

ζ∈{ζk ,ζ−1
k }

(
(A(x) + B(x)

√
) + ζ (A(x) − B(x)

√
)

)

= 2A(x)
(q−1)/2∏

k=1

((
2 + ζk + ζ−1

k
)
A(x)2 + (

2 − ζk − ζ−1
k

)
B(x)2

)
.

If degX2 (A(x)
2) �= degX2 (B(x)

2), then each of the polynomials in the above product on
the right has X2-degree exactly

max
{
degX2 (A(x)

2), degX2 (B(x)
2)

}
≥ degX2 () ≥ 3k,

and such a polynomial cannot divide (X2 · · ·Xn)kH , a polynomial of X2-degree 2k . For
the above deduction we used the fact that B(x) �= 0, which is clear. Assume next that
degX2 (A(x)

2) = degX2 (B(x)
2) and leta0, b0 be the leadingX2-coefficients (as polynomials

in C[X3, . . . , Xn]) of A(x)2 and B(x)2. Then the polynomial
(
2 + ζk + ζ−1

k
)
A(x)2 + (

2 − ζk − ζ−1
k

)
B(x)2

has X2-degree degX2 (B(x)
2) except if (2 + ζk + ζ−1

k )a0 = −(2 − ζk − ζ−1
k )b0. If that

happens then a0/b0 must be constant and determines uniquely the amount ζk + ζ−1
k =

2 cos(2kπ/q), and since k ∈ {1, . . . , (q − 1)/2}, this in turn determines k uniquely as well.
So, this shows that in this case there is at most one k in {1, . . . , (q − 1)/2} for which the
polynomials from the product appearing in the right-most side of (7) can have X2-degree
less than degX2 (), while all the other (q−3)/2 factors have degree at least degX2 () ≥ 3k
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but such polynomials cannot be divisors of the polynomial (X2 · · ·Xn)kH of X2-degree 2k .
This shows that our equation is impossible for q > 3. Thus, q = 3 and we get

(X2 . . .Xn)kH = 2A(x)(A(x)2 + 3B(x)2). (7)

Recall that H is irreducible by Corollary 1. If A(x) divides (X2 · · ·Xn)k , it follows that
degX2 (A(x)) ≤ k , so degX2 (A(x)

2) ≤ 2k . Thus, we deduce that degX2 (A(x)
2 + 3B(x)2) =

degX2 (3B(x)
2) ≥ 3k , and we get the same contradiction as before. Thus, H | A(x),

showing that

A(x)2 + 3B(x)2 = aM,

where a is some non-zero complex number andM = Xa2
2 · · ·Xan

n is some monomial. We
also have the relation

A(x)2 − B(x)2 = NL(
√

)/L(α)
1/3 = c′′1(X2 · · ·Xn)k/3 = c′′1M1,

where c′′1 = 3
√
c′1 (some cubic root of c′1) andM1 is also a monomial. Further, since

(X2 · · ·Xn)�k/2 = β3 − γ 3
√


= 2B(x)(3A(x)2 + B(x)2),

we see that B(x) is a divisor of (X2 · · ·Xn)�k/2, so B(x) = M2 is also a monomial. Thus, we
get

 = aM − c′′1M1

4M2
2

.

The right-hand side above is a polynomial and sinceM,M1,M2 are monomials, it follows
that M2

2 | M and M2
2 | M1. Thus,  = cM3 + dM4 is a sum of two monomials with

some non-zero coefficients. However, this is impossible since a quick look at shows that
as a polynomial in X2 it has non-zero coefficients for X3k+r

2 , X2k+r
2 , Xk+r

2 and Xr
2 , where

r = k − 2�k/2 ∈ {0, 1}. This contradiction finishes (ii); hence, the proof. �	

4 Proof of Theorem 1
The aim of this section is to prove Theorem 1.

Proof We first show that if there are infinitely many solutions to (1), then all of them can
be parametrized by finitely many expressions as given in (14) for c below. The arguments
in this section follow the arguments from [13] and [14].
From now on, we assume w.l.o.g. that α1 = |α1| > |α2| ≥ · · · ≥ |αk |.
We assume that there are infinitelymany solutions to (1). Then, for each integer solution

(a, b, c), we have

a =
√
(Fx − 1)(Fy − 1)

Fz − 1
, b =

√
(Fx − 1)(Fz − 1)

Fy − 1
, c =

√
(Fy − 1)(Fz − 1)

Fx − 1
.

Our first aim is to prove, that the growth-rates of these infinitely many x, y and z have
to be the same, except for a multiplicative constant. Let us recall that we trivially have
x < y < z and that, by Lemma 1, the solutions of x need to diverge to infinity as well. We
now want to prove that there exists a constant C5 > 0 such that C5z < x for infinitely
many triples (x, y, z).
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In order to prove this, we choose x (and hence y, z) large enough. We denote by g :=
gcd(Fy − 1, Fz − 1). Then we use Lemma 2 to obtain

|f1|αx
1 > Fx − 1 ≥ Fx − 1

a
= b = Fz − 1

c
≥ Fz − 1

g
≥ |f1|αz

1 − 2

C1α
kz
k+1
1

≥ |f1|
C1

α
z

k+1−1
1 > |f1|α

z
k+1−C6
1

and hence

x >
z

k + 1
− C6

which implies x > C7z for a suitable new constantC7 (depending only on k) and x, z being
sufficiently large.
Next, we do a Taylor series expansion for c which was given by

c =
√
(Fy − 1)(Fz − 1)

Fx − 1
. (8)

Using the power sum representations of Fx, Fy, Fz , we get

c =√
f1α

(−x+y+z)/2
1

× (
1 + (−1/f1)α−x

1 + (f2/f1)αx
2α

−x
1 + · · · + (fk/f1)αx

kα
−x
1

)−1/2

×
(
1 + (−1/f1)α

−y
1 + (f2/f1)α

y
2α

−y
1 + · · · + (fk/f1)α

y
kα

−y
1

)1/2

× (
1 + (−1/f1)α−z

1 + (f2/f1)αz
2α

−z
1 + · · · + (fk/f1)αz

kα
−z
1

)1/2 .

We then use the binomial expansion to obtain

(1 +(−1/f1)α−x
1 + (f2/f1)αx

2α
−x
1 + · · · + (fk/f1)αx

kα
−x
1

)1/2

=
T∑

j=0

(
1/2
j

)(
(−1/f1)α−x

1 + (f2/f1)αx
2α

−x
1 + · · · + (fk/f1)αx

kα
−x
1

)j

+ O(α−(T+1)x
1 ),

where O has the usual meaning, using estimates from [15] and where T is some index,
which we will specify later. Let us write x := (x, y, z). Since x < z and z < x/C7, the
remainder term can also be written as O(α−T‖x‖/C7

1 ), where ‖x‖ = max{x, y, z} = z.
Doing the same for y and z likewise and multiplying those expressions gives

c = √
f1 α

(−x+y+z)/2
1 ·

[

1 + −1 + ∑k
p=2 fp αx

p

f1 αx
1

]−1/2

×
[

1 + −1 + ∑k
q=2 fq α

y
q

f1 α
y
1

]1/2 [

1 + −1 + ∑k
r=2 fr αz

r
f1 αz

1

]1/2

= √
f1 α

(−x+y+z)/2
1

×
⎛

⎝
T∑

p1=0

T∑

q1=0

T∑

r1=0

∑

p0+p2+···+pk=p1

∑

q0+q2+···+qk=q1

∑

r0+r2+···+rk=r1
dp,q,rMp,q,r

⎞

⎠

+ O
(
α
T‖x‖/C9
1

)
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in terms of

dp,q,r =
(− 1

2
)
!p1! 12 !

1
2 !(− 1

2 − p1
)
!
( 1
2 − q1

)
!
( 1
2 − r1

)
!

× (−1)p0+q0+r0

p0! q0! r0!
f −p1−q1−q1
1

f p2+q2+r2
2
p2! q2! r2!

· · · f
pk+qk+rk
k
pk ! qk ! rk !

and

Mp,q,r = α
−p1x−q1y−r1z
1 α

p2x+q2y+r2z
2 · · · α

pkx+qky+rk z
k

where p = (p0, p1, . . . , pk ), q = (q0, q1, . . . , qk ), and r = (r0, r1, . . . , rk ) are vectors of
non-negative integers satisfying

p0 + p2 + · · · + pk = p1, q0 + q2 + · · · + qk = q1, r0 + r2 + · · · + rk = r1,

and ‖p‖, ‖q‖, ‖r‖ ≤ T . Since there are only finitely many such vectors, we may label
the coefficients dp,q,r and monomialsMp,q,r as d0, d1, . . . , dn−1 andM0, M1, . . . , Mn−1,
respectively, where we choose d0 = M0 = 1. In summary we have

c = √
f1α

(−x+y+z)/2
1

⎛

⎝1 +
n−1∑

j=1
djMj

⎞

⎠ + O(α−T‖x‖/C7
1 ), (9)

where the integer n depends only on T , dj are non-zero coefficients in the field K =
Q(α1, . . . ,αk ), andMj is a monomial of the form

Mj =
k∏

i=1
α
Li,j(x)
i ,

in which Li,j(x) are linear forms in x ∈ R3 with integer coefficients which are all non-
negative if i = 2, . . . , k and negative if i = 1. Set J = {1, . . . , n − 1}. Note that each
monomial Mj is “small”, that is there exists a constant κ > 0 (which we can even choose
independently of k), such that

|Mj| ≤ e−κx for all j ∈ J. (10)

This follows easily from the following fact: By the Pisot property of Fn, we can write
α1 = |α1| > 1 + ζ for a suitable ζ > 0 (a conjecture of Lehmer asserts that ζ can be
chosen to be an absolute constant). Using this notation and a suitable κ , we have

|Mj| = |α1|L1,j(x) · |α2|L2,j(x) · · · |αk |Lk,j(x)
≤ (1 + ζ )L1,j(x) · 1 · · · 1
≤ (1 + ζ )−x

≤ e−κx for all j ∈ J.

Our next aim is to apply a version of the Subspace theorem given in [10] to show that
there is a finite expansion of c involving terms as in (9); the version we are going to use
can also be found in Section 3 of [16], whose notation - in particular the notion of heights
- we follow.
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Wework with the field K = Q(α1, . . . ,αk ) and let S be the finite set of places (which are
normalized so that the Product Formula holds, cf. [10]), that are either infinite or in the
set {v ∈ MK : |α1|v �= 1 ∨ · · · ∨ |αk |v �= 1}. Observe that we may choose α1, . . . ,αk in C

and therefore view K as a subfield of C. We denote by | · |∞ the unique place such that
|β|∞ = |β| = √�(β)2 + �(β)2 for all β ∈ C. According to whether −x + y+ z is even or
odd, we set ε = 0 or ε = 1 respectively, such that α

(−x+y+z−ε)/2
1 ∈ K . By going to a still

infinite subset of the solutions, we may assume that ε is always either 0 or 1.
Using the fixed integer n (depending on T ) from above, we now define n + 1 linearly

independent linear forms in indeterminants (C, Y0, . . . , Yn−1). For the place∞ introduced
above, we set

l0,∞(C, Y0, . . . , Yn−1) := C −
√
f1αε

1Y0 −
√
f1αε

1

n−1∑

j=1
djYj, (11)

where ε ∈ {0, 1} is as explained above, and

li,∞(C, Y0, . . . , Yn−1) := Yi−1 for i = 1, . . . , n.

For all other places v in S, we define

l0,v := C, li,v := Yi−1 for i = 1, . . . , n.

We will show, that there is some δ > 0, such that the inequality

∏

v∈S

n∏

i=0

|li,v(y)|v
|y|v <

(
∏

v∈S
| det(l0,v , . . . , ln,v)|v

)

· H(y)−(n+1)−δ (12)

is satisfied for all vectors

y =
(
c,α(−x+y+z−ε)/2

1 ,α(−x+y+z−ε)/2
1 M1, . . . ,α

(−x+y+z−ε)/2
1 Mn−1

)
.

We shall use the notation y = (c, y0, . . . , yn−1) below. The use of the correct ε ∈ {0, 1}
guarantees that these vectors are indeed in Kn+1.
First notice, that the determinant in (12) is given by

det

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1 −√
f1 αε

1 −√
f1 αε

1 d1 · · · −√
f1 αε

1 dn−1
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

if v = ∞ and by

det

⎛

⎜⎜⎜⎜
⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞

⎟⎟⎟⎟
⎠

if v �= ∞. Thus |det(l0,v, . . . , ln,v)|v = |1|v = 1 for all places v. Notice further, that

H(y) =
∏

v
|y|v =

∏

v∈S
|y|v

∏

v/∈S
|y|v ≤

∏

v∈S
|y|v
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since for all v /∈ S we have |y|v = max{|c|v, |y0|c, . . . , |yn−1|v} ≤ 1, which is a consequence
of c ∈ Z and the remaining components y0, . . . , yn−1 of y being S-units (hence satisfy
|yi|v = 1 for all v /∈ S). It follows that

0 ≤
∏

v∈S

n∏

i=0

1
|y|v ≤ H(y)−(n+1).

Thus, for (12) it suffices to consider

∏

v∈S

n∏

i=0
|li,v(y)|v < H(y)−δ ,

and the double product on the left-hand side can be split up into
∣∣∣∣∣∣
c −

√
f1αε

1y0 −
√
f1αε

1

n−1∑

j=1
djyj

∣∣∣∣∣∣∞
·

∏

v∈MK,∞,
v �=∞

|c|v ·
∏

v∈S\MK,∞
|c|v ·

n−1∏

j=0

∏

v∈S
|yj|v.

Now notice that the last double product equals 1 due to the Product Formula and that
∏

v∈S\MK,∞
|c|v ≤ 1,

since c ∈ Z. An upper bound on the number of infinite places in K is k ! and hence,

∏

v∈MK,∞,
v �=∞

|c|v <

( (Fy − 1)(Fz − 1)
Fx − 1

)k !

≤
∣∣∣∣f1α

y
1 + · · · + fkα

y
k − 1

∣∣∣∣

k !∣∣∣∣f1α
z
1 + · · · + fkαz

k − 1
∣∣∣∣

k !

≤
(

|f1| · α
‖x‖
1 − 1/2

)2·k !

for y large enough such that |f2αy
2 + · · · + fkα

y
k | < 1/2. And finally the first expression is

just
∣∣∣
√
f1αε

1α
(−x+y+z−ε)/2
1

∑

j≥n
djMj

∣∣∣,

which, by (9), is smaller than some expression of the form C8α
−T‖x‖/C7
1 . Therefore, we

have
∏

v∈S

n∏

i=0
|li,v(y)|v < C8α

− T‖x‖
C9

1 ·
(

|f1|α‖x‖
1 − 1/2

)2·k !
.

Now we choose T (and the corresponding n) large enough such that

C8α
− T‖x‖

C7
1 < α

− T‖x‖
2C7

1 ,
(

|f1|α‖x‖
1 − 1/2

)2·k !
< α

T‖x‖
4C7
1 .

Then we can write

∏

v∈S

n∏

i=0
|li,v(y)|v < α

−T‖x‖
4C7

1 . (13)
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For the height of our vector y, we have the estimate

H(y) ≤ C9 · H(c) · H
(

α
−x+y+z−ε

2
1

)n
·
n−1∏

i=0
H(Mi)

≤ C9

(
|f1|α‖x‖

1 − 1/2
)k ! n−1∏

i=0
α
C10‖x‖
1

≤ α
C11‖x‖
1 ,

with suitable constants C9, C10, C11. For the second estimate, we used that

H(Mj) ≤ H(α1)Cα1 (x)H(α2)Cα2 (x) · · ·H(αk )Cαk (x)

and bounded it by the maximum of those expressions. Furthermore we have

H
(

α
−x+y+z−ε

2
1

)n
≤ α

n‖x‖
1 ,

which just changes our constant C11.
Now finally, the estimate

α
− T‖x‖

4C7
1 ≤ α

−δC11‖x‖
1

is satisfied provided that we pick δ small enough.
So all the conditions for the Subspace theorem are met. Since we assumed that there

are infinitely many solutions (x, y, z) of (12), we now can conclude that all of them lie in
finitely many proper linear subspaces. Therefore, there must be at least one proper linear
subspace, which contains infinitely many solutions and we see that there exists a finite set
Jc and (new) coefficients ej (for j ∈ Jc) in K such that we have

c = α
(−x+y+z−ε)/2
1

⎛

⎝e0 +
∑

j∈Jc
ejMj

⎞

⎠ (14)

with monomialsMj as before.

Likewise, we can find finite expressions of this form for a and b.
Next we use the following parametrization lemma:

Lemma 5 Suppose, we have infinitely many solutions for (1). Then there exists a line in
R3 given by

x(t) = r1t + s1 y(t) = r2t + s2 z(t) = r3t + s3

with rationals r1, r2, r3, s1, s2, s3, such that infinitely many of the solutions (x, y, z) are of the
form (x(n), y(n), z(n)) for some integer n.

Proof Assume that (1) has infinitely many solutions. We already deduced in Section 4
that c can be written in the form

c = α
(−x+y+z−ε)/2
1

⎛

⎝ec,0 +
∑

j∈Jc
ec,jMc,j

⎞

⎠
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with Jc being a finite set, ec,j being coefficients inK for j ∈ Jc ∪{0} andMc,j = ∏k
i=1 α

Lc,i,j(x)
i

with x = (x, y, z). In the same manner, we can write

b = α
(x−y+z−ε)/2
1

⎛

⎝eb,0 +
∑

j∈Jb
eb,jMb,j

⎞

⎠ .

Since 1 + bc = Fz = f1αz
1 + · · · + fkαz

k , we get

f1αz
1 + · · · + fkαz

k − αz−ε
1

⎛

⎝eb,0 +
∑

j∈Jb
eb,jMb,j

⎞

⎠

⎛

⎝ec,0 +
∑

j∈Jc
ec,jMc,j

⎞

⎠ = 1. (15)

We now pick β1, . . . ,β� as a basis for the multiplicative group generated by
{α1, . . . ,αk ,−1}. We remark that each element in this group is an S-unit with the set
S defined in Sect. 4. We express each α1, . . . ,αk as a product of β1, . . . ,β� and insert them
into (15). We obtain a new equation of the form

∑

j∈J
ejβ

L1,j(x)
1 · · · βL�,j(x)

� = 0, (16)

where again J is some finite set, ej are new coefficients in K and Li,j are linear forms in
x with integer coefficients. Note that the sum on the left hand side is not zero, since it
contains the summand −1. This is an S-unit equation.
We may assume that infinitely many of the solutions x are non-degenerate solutions of

(16) by replacing the equation by a new equation given by a suitable vanishing subsum if
necessary.
Wemay assume, that (L1,i , . . . , L�,i) �= (L1,j , . . . , L�,j) for any i �= j, because otherwise we

could just merge these two terms.
Therefore for i �= j, the theorem on non-degenerate solutions to S-unit equations (see

[11]) yields that the set of

β
L1,i(x)−L1,j(x)
1 · · · βL�,i(x)−L�,j(x)

�

is contained in a finite set of numbers. Now since β1, . . . ,β� are multiplicatively indepen-
dent, the exponents (L1,i − L1,j)(x), . . . , (L�,i − L�,j)(x) take the same value for infinitely
many x. Since we assumed, that these linear forms are not all identically zero, this implies,
that there is some non-trivial linear form L defined overQ and some c ∈ Q with L(x) = c
for infinitely many x. So there exist rationals ri, si, ti for i = 1, 2, 3 such that we can
parametrize

x = r1p + s1q + t1, y = r2p + s2q + t2, z = r3p + s3q + t3

with infinitely many pairs (p, q) ∈ Z2.
We can assume, that ri, si, ti are all integers. If not, we define  as the least common

multiple of the denominators of ri, si (i = 1, 2, 3) and let p0, q0 be such that for infinitely
many pairs (p, q) we have p ≡ p0 mod  and q ≡ q0 mod . Then p = p0 + λ, q =
q0 + μ and

x = (r1)λ + (s1)μ + (r1p0 + s1q0 + t1)

y = (r2)λ + (s2)μ + (r2p0 + s2q0 + t2)

z = (r3)λ + (s3)μ + (r3p0 + s3q0 + t3).
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Since ri, si and x, y, z are all integers, rip0 + siq0 + ti are integers as well. Replacing
ri by ri, si by si and ti by rip0 + siq0 + ti, we can indeed assume, that all coefficients
ri, si, ti in our parametrization are integers.
Using a similar argument as in the beginning of the proof, we get that our equation is of

the form
∑

j∈J
e′jβ

L′
1,j(r)

1 · · · βL′
�,j(r)

� = 0,

where r := (λ,μ), J is a finite set of indices, e′j are new non-zero coefficients in K and
L′
i,j(r) are linear forms in r with integer coefficients. Again we may assume that we have

(L′
1,i(r), . . . , L

′
�,i(r)) �= (L′

1,j(r), . . . , L
′
�,j(r)) for any i �= j.

Applying the theorem of non-degenerate solutions to S-unit equations once more, we
obtain a finite set of numbers �, such that for some i �= j, we have

β
(L′

1,i−L′
1,j)(r)

1 · · · β(L′
�,i−L′

�,j)(r)
� ∈ �.

So every r lies on a finite collection of lines and since we had infinitely many r, there must
be some line, which contains infinitely many solutions, which proves our lemma. �	
We apply this lemma and define  as the least common multiple of the denominators

of r1, r2, r3. Infinitely many of our n will be in the same residue class modulo , which we
shall call r. Writing n = m + r, we get

(x, y, z) = ((r1)m + (rr1 + s1), (r2)m + (rr2 + s2), (r3)m + (rr3 + s3)).

Replacing n by m, ri by ri and si by rri + s, we can even assume, that ri, si are integers.
So we have

−x + y + z − ε

2
= (−r1 + r2 + r3)m

2
+ −s1 + s2 + s3 − ε

2
.

This holds for infinitely many m, so we can choose a still infinite subset such that all of
them are in the same residue class χ modulo 2 and we can write m = 2� + χ with fixed
χ ∈ {0, 1}. Thus, we have

−x + y + z − ε

2
= (−r1 + r2 + r3)� + η,

where η ∈ Z or η ∈ Z + 1/2.
Using this representation, we can write (14) as

c(�) = α
(−r1+r2+r3)�+η
1

⎛

⎝e0 +
∑

j∈Jc
ejMj

⎞

⎠

for infinitely many �, where

Mj =
k∏

i=1
α
Li,j(x)
i ,

and x = x(�) = (x(2� + χ ), y(2� + χ ), z(2� + χ )).
So for infinitely many solutions (x, y, z), we have a parametrization in �, such that c is

a power sum in this � with its roots being products of α1, . . . ,αk . This, together with (8)
gives the functional identity

(Fx − 1)c2 = (Fy − 1)(Fz − 1), (17)

which proves Theorem 1. �	
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5 Linear recurrences with nonsquare leading coefficient
The aim of this section is to prove Theorem 2.

Proof Weprove this result by contradiction: Supposewe had infinitelymanyDiophantine
triples in {Fn; n ≥ 0}. Then we can apply Theorem 1 and obtain

c(�) = α
(−r1+r2+r3)�+η
1

⎛

⎝e0 +
∑

j∈Jc
ejMj

⎞

⎠ (18)

for infinitely many �, where

Mj =
k∏

i=1
α
Li,j(x)
i ,

and x = x(�) = (x(2� + χ ), y(2� + χ )), z(2� + χ )).
First we observe, that there are only finitely many solutions of (18) with c(�) = 0. That

can be shown by using the fact, that a simple non-degenerate linear recurrence has only
finite zero-multiplicity (see [11] for an explicit bound). We will apply this statement here
for the linear recurrence in �; it only remains to check, that no quotient of two distinct
roots of the form

α
L1,i(x(�))
1 · · · αLk,i(x(�))

k

is a root of unity or, in other words, that
(

α
m1
1 α

m2
2 · · · αmk

k

)n
= 1

has no solutions in n ∈ Z/{0}, m1 < 0 and mi > 0 for i = 2, . . . , k . But this follows at
once fromMignotte’s result [24].
So, we have confirmed that c(�) �= 0 for still infinitely many solutions. We insert the

finite expansion (18) in � for c into (17). Furthermore, we use the Binet formula

Fx = f1αx
1 + · · · + fkαx

k (19)

and write Fx, Fy, Fz as power sums in x, y and z respectively. We get an equation of the
form

(
f1αx

1 + · · · + fkαx
k − 1

)

× α
−x+y+z−ε

1

(
e20 + 2e0e1α−x

1 + 2e0e2α
−y
1 + 2e0e3α−z

1 + e21α
−2x
1 + · · ·

)

=
(
f1α

y
1 + · · · + fkα

y
k − 1

)(
f1αz

1 + · · · + fkαz
k − 1

)
,

Using the parametrization (x, y, z) = (r1m + s1, r2m + s2, r3m + s3) with m = 2� or
m = 2� + 1, we have expansions in � on both sides of (17). Since there must be infinitely
many solutions in �, the largest terms on both sides have to grow at the same rate.
In order to find the largest terms, let us first note the following: If e0 = 0 for infinitely

many of our solutions, then the largest terms were

f1αx
1α

−x+y+z−ε

1 e21α
−2x
1 = f1α

y
1f1α

z
1, (20)
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or some even smaller expression on the left-hand side, if e1 = 0 as well. Note that there
could bemore than one term in the expansion of c with the same growth rate, for example
if y and z are just translates of x and therefore we have α

−y
1 = α−x−c

1 = Cα−x
1 , but this

would only change the coefficient e1 which we do not know anyway. From (20), we get

e21α
−2x+y+z−ε

1 = f1α
y+z
1 .

Dividing by α
y+z
1 on both sides, we see that the left-hand side converges to 0, when x grows

to infinity (which it does by Lemma 1), while the right-hand side is the constant f1 �= 0.
This is a contradiction.
So we must have that e0 �= 0 for infinitely many of our solutions. Then e0α

(−x+y+z−ε)/2
1

certainly is the largest term in the expansion of c and we have

f1αx
1α

−x+y+z−ε

1 e20 = f1α
y
1f1α

z
1.

for the largest terms, which implies that e20 = f1αε
1. But this is a contradiction, since we

assumed that neither f1 nor f1α1 is a square in K . So, the theorem is proved. �	

6 Linear recurrences of large order
We now prove Theorem 3.

Proof We follow the same notation as in the proof of Theorem 1. Supposing that we
have infinitely many Diophantine triples with values in {Fn; n ≥ 0}, we get the functional
identity

(Fx − 1)c(�)2 = (Fy − 1)(Fz − 1),

where x = r1�+s1, y = r2�+s2, z = r3�+s3, r1, r2, r3 positive integerswith gcd(r1, r2, r3) =
1 and s1, s2, s3 integers.
We first handle (i) in the theorem. Therefore assume that α is not a unit. Then, by

Mignotte’s result [24], there is no multiplicative dependence between the roots and thus
(e.g. by using Lemma 2.1 in [7]), it follows that if we put X = (X1, . . . , Xk ) and

Pi(X) =
k∑

j=1
fjαsi

j X
ri
j − 1 ∈ K [X1, . . . , Xk ] for i = 1, 2, 3,

then for each h ∈ {1, 2, 3} putting i, j such that {h, i, j} = {1, 2, 3}, we have that
Pi(X)Pj(X)

Ph(X)
= Qh(X)2, (21)

for someQh(X) ∈ K [X±1
1 , . . . , X±1

k ]. For this we have to identify the exponential function
� �→ α�

1 by X1, � �→ α�
2 by X2 and so forth. Actually, Theorem 1 shows that Qh(X) ∈

K [X±1
1 , X2, . . . , Xk ]. Since the polynomial on the left-hand side of (21) has no pole at

X1 = 0 it follows that the Laurent-polynomial on the right-hand side is a polynomial in
X1 as well. This imposes some conditions on the degrees:
(P) Parity: r1 + r2 + r3 ≡ 0 (mod 2). This is clear from degree considerations since

2degX1 (Qh) = degX1 (Pi) + degX1 (Pj) − degX1 (Ph) = ri + rj − rh.
(T) Triangular inequality: r1 + r2 > r3. It is clear that r1 + r2 ≥ r3, otherwise

P1(X)P2(X)/P3(X) has negative degree as a polynomial in, say, X1, so it cannot be a poly-
nomial in X1. To see that the inequality must be in fact strict, assume that equality holds.
Then Q3(X) = q3 ∈ K [X1]. Hence,

P1(X)P2(X) = q23P3(X).
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In the left, we have the monomial Xr1
1 Xr2

2 with non-zero coefficient f1f2αs1
1 α

s2
2 , whenever

r1 < r2. However, such monomials do not appear in the right above. Thus, we must have
r1 = r2, and since further we also have r3 = r1 + r2 and gcd(r1, r2, r3) = 1, it follows that
(r1, r2, r3) = (1, 1, 2). In this case, the coefficient of X1X2 in the left is

f1f2
(

α
s1
1 α

s2
2 + α

s1
2 α

s2
1

)
,

and this must be zero since X1X2 does not appear in P3(X). This shows that

(α1/α2)s1−s2 = −1,

so s1 = s2. But then x = y, which is not allowed.
Observe now that by the corollary to Lemma 3 (proved in Sect. 3) we know that the

polynomials Pi(X) are irreducible (as a polynomial in C[X]). We have that r1 ≤ r2 ≤ r3.
From (21) for (i, j, h) = (1, 2, 3) it follows that Ph(X) divides Pi(X) or Pj(X). By degree
considerations, Ph(X) divides Pj(X) (otherwise r1 = r2 = r3 and we can take them all to
be 1, which is impossible by (P)). So, again by degree considerations, Ph(X) and Pj(X) are
associated and Pi(X) is a square which contradicts Lemma 3.
In case (ii) of the theorem, the identification with Laurent-polynomials (e.g. again via

Lemma 2.1 in [7]) does not work in the above form. But when α is a unit, then we have the
relation α1 · · ·αk = ±1, which allows applying a similar identification as we now explain.
We insist again that by Mignotte’s result [24] there are no other multiplicative relations
between α1, . . . ,αk . In particular, any k − 1 of these numbers (e.g. α1,α2, . . . ,αk−1) are
multiplicatively independent. Hence, we may identify � �→ α�

1 by X1, � �→ α�
2 by X2 and

so forth, which implies that � �→ α�
k must be identified with ±1/(X1 · · ·Xk−1). Theorem

1 shows that if we put

Pi(X) =
k−1∑

j=1
fjαsi

j X
ri
j + fkαsi

k
(X1 · · ·Xk−1)ri

− 1 ∈ K
[
X±1
1 , . . . , X±1

k−1
]

for i = 1, 2, 3, then for each h ∈ {1, 2, 3} putting i, j for the two indices such that {h, i, j} =
{1, 2, 3}, we have that

Pi(X)Pj(X)
Ph(X)

= Qh(X)2, (22)

for someQh(X) ∈ K [X±1
1 , . . . , X±1

k−1].We clear on each side denominators andputP′
i(X) =

Pi(X)(X1 · · ·Xk−1)ri ∈ K [X1, . . . , Xk−1] for i = 1, 2, 3. Then

((X1 · · ·Xk−1)(ri+rj−rh)/2Qh(X))2 = P′
i(X)P

′
j (X)

P′
h(X)

.

The left-hand side has no non-zero poles at Xi while the right-hand side does not
have either a zero or a pole at Xi = 0 for i = 1, . . . , k − 1, therefore we deduce that
Q′
h(X) = (X1 · · ·Xk−1)(ri+rj−rh)/2Qh(X) is a polynomial. By Lemma 4 the polynomials

P′
i(X), P

′
j (X), P

′
h(X) are irreducible (as polynomials in C[X]). Repeating the arguments

from above leads again to the sought contradiction. �	
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