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Abstract
According to logical inferentialists, the meanings of logical expressions are fully
determined by the rules for their correct use. Two key proof-theoretic require-
ments on admissible logical rules, harmony and separability, directly stem from this
thesis—requirements, however, that standard single-conclusion and assertion-based
formalizations of classical logic provably fail to satisfy (Dummett in The logical basis
of metaphysics, Harvard University Press, Harvard, MA, 1991; Prawitz in Theoria,
43:1–40, 1977; Tennant in The taming of the true, Oxford University Press, Oxford,
1997; Humberstone and Makinson in Mind 120(480):1035–1051, 2011). On the
plausible assumption that our logical practice is both single-conclusion and assertion-
based, it seemingly follows that classical logic, unlike intuitionistic logic, can’t be
accounted for in inferentialist terms. In this paper, I challenge orthodoxy and intro-
duce an assertion-based and single-conclusion formalization of classical propositional
logic that is both harmonious and separable. In the framework I propose, classicality
emerges as a structural feature of the logic.

According to logical inferentialists, the meanings of logical expressions are fully
determined by the rules for their correct use. Two key proof-theoretic requirements
on admissible logical rules, harmony and separability, directly stem from this thesis—
requirements, however, that standard single-conclusion and assertion-based formaliza-
tions of classical logic provably fail to satisfy (Dummett 1991; Prawitz 1977; Tennant
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1997; Humberstone andMakinson 2011). On the plausible assumption that our logical
practice is both single-conclusion and assertion-based, it seemingly follows that classi-
cal logic, unlike intuitionistic logic, can’t be accounted for in inferentialist terms. In this
paper, I challenge orthodoxy and introduce an assertion-based and single-conclusion
formalization of classical propositional logic which is both harmonious and separable.
In the framework I propose, classicality emerges as a structural feature of the logic.

Section 1 provides some background. Section 2 introduces the inferentialist argu-
ment against classical logic. Sections 3–6 present a novel axiomatisation of classical
logic and prove that it is both harmonious and separable.1 Section 7 responds to some
possible objections. Section 8 concludes.

1 Harmony and Separability

Logical inferentialists typically contend that some basic inference rules are, inMichael
Dummett’s terminology, self-justifying, in that they fully determine the meanings of
the expressions they either eliminate or introduce. As Dummett puts it:

we are entitled simply to stipulate that [self-justifying laws] shall be regarded
as holding, because by so doing we fix, wholly or partly, the meanings of the
logical constants that they govern. (Dummett 1991, p. 246)

On their most common interpretation, introduction rules in a natural deduction system
(henceforth, I-rules) state the sufficient, and perhaps necessary, conditions for intro-
ducing dominant operators in conclusions (in inferentialist parlance, the canonical
grounds for introducing such conclusions); elimination rules (henceforth, E-rules) tell
us what can be legitimately deduced from sentences containing dominant occurrences
of logical operators. Logical inferentialism, then, becomes the claim that the meanings
of logical expressions are fully determined by their I- and E-rules.2

As is well known, not any pair of I- and E-rules can determine the meaning of a
logical expression, if ill-behaved connectives such as Prior’s tonk

A
tonk-I

A tonk B
A tonk B

tonk-E
B

are to be ruled out (see Prior 1960). If the consequence relation is transitive, and at
least one theorem can be proved, then any sentence can be proved. The inventor of

1 I should stress at the outset that, even though the axiomatisation is novel, some of its main ingredients
have been present in the literature for some time. For one thing, the De Morgan-like rules for disjunction to
be introduced in Sect. 3 are already briefly discussed in Murzi (2010 Ch. 7, §4.12), Murzi and Steinberger
(2013, p. 181, fn. 37), and, more recently, Prawitz (2015, p. 29) and Pereira and Rodriguez (2017, p. 1156).
For another, the interpretation of classical reductio as a structural rule offered in Sect. 5 can already be found,
in essence, in Schroeder-Heister’s dissertation, only available in German (see Schroeder-Heister 1981, §18,
Absurdität als Grundbegriff, p. 241 and ff). Among other things, Schroeder-Heister also indicates how to
modify his normalisation theorem for classical logic in order for it to apply to an axiomatisation of classical
logic in which classical reductio is structural. The ideas and results presented in this paper were found
independently of Schroeder-Heister, and the proof strategies adopted for proving the normalisation and
separability results of Sect. 6 are imported from Prawitz rather than Schroeder-Heister. I am grateful to an
anonymous reviewer for bringing his dissertation to my attention in February 2018.
2 See Popper (1947, p. 220), Kneale (1956, pp. 254–255), and Dummett (1991, p. 247).
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natural deduction, Gerhard Gentzen, first sketched a solution to the problem. In a
famous passage, Gentzen writes:

To every logical symbol&,∨,∀, ∃,→,¬, belongs precisely one inference figure
which ‘introduces’ the symbol—as the terminal symbol of a formula—andwhich
‘eliminates’ it. The fact that the inference figures &-E and ∨-I each have two
forms constitutes a trivial, purely external deviation and is of no interest. The
introductions represent, as it were, the ‘definitions’ of the symbols concerned,
and the eliminations are no more, in the final analysis, than the consequences of
these definitions. This fact may be expressed as follows: in eliminating a symbol,
we may use the formula with whose terminal symbol we are dealing only ‘in the
sense afforded it by the introduction of that symbol’. (Gentzen 1969, p. 80)

Gentzen argues that the I-rules of his newly invented calculus of natural deduction
‘fix’, or ‘define’, the meanings of the expressions they introduce. He also observes
that, on this assumption, E-rules cannot be chosen randomly. They must be justified
by the corresponding I-rules: they are, in some sense, their ‘consequences’. This key
thought expresses in nuce the idea that I- and E-rules must be, in Dummett’s phrase,
in harmony with each other. Conversely, if it is thought that E-rules are meaning-
constitutive, I-rules cannot be chosen arbitrarily either (see e.g. Dummett 1991, p.
215).

This intuitive idea can be spelled out in a number of ways. Dummett (1991, p. 250)
and Prawitz (1974, p. 76) define harmony as the possibility of eliminating maximum
formulae, that is, formulae that occur both as the conclusionof an I-rule and as themajor
premise of the corresponding E-rule (see also Prawitz 1965, p. 34).3 The following
reduction procedure for →, for instance, shows that any proof of B via →-I and →-E
can be converted into a proof from the same or fewer assumptions that avoids the
unnecessary detour through (the introduction and elimination of) A → B.

Example 1 (→-reduction)

�0, [A]i

�0

B→-I, i
A → B

�1

�1

A→-E
B

�r

�1

�1

�0, A
︸︷︷︸

�0

B

where �r reads ‘reduces to’.

Dummett (1991, p. 250) calls the availability of such procedures intrinsic harmony. He
correctly points out, though, that intrinsic harmony only prevents E-rules from being
stronger than the corresponding introductions, as in the case of Prior’s tonk. It does
not rule out the possibility that they be, so to speak, too weak (see 1991, 287).4 A way

3 We will give a precise and slightly more general definition of a maximum formula in Sect. 6 below.
4 For instance, a connective � satisfying the standard I-rules for ∧ but only one of its E-rules would be
intrinsically harmonious, and yet intuitively disharmonious: its E-rule would not allow one to infer from
A � B all that was required to introduce A � B in the first place.
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to ensure that E-rules be strong enough is to require that they allow one to reintroduce
complex sentences, as shown by the following expansion:

Example 2 (→-expansion)

�

A → B
�e

�

A → B [A]i
→-E

B→-I, i
A → B

where �e reads ‘expands to’.

This shows that any derivation � of A → B can be expanded into a longer derivation
whichmakes full use of both→-I and→-E. The availability of an expansion procedure
for a pair of I- and E-rules is sometimes referred to as local completeness. Accordingly,
a pair of I- and E-rules for a constant $ can be taken to be harmonious tout court
(or, in Dummett’s terminology, ‘stable’), if and only if there exist both reduction
and expansion procedures for $-I and $-E. Alternative conceptions of harmony are
developed in e.g. Read (2000) and Tennant (1997, 2008).5

But why should logical expressions be governed by harmonious rules? One moti-
vating thought behind the requirement of harmony is that logic is innocent: it shouldn’t
allow one to prove atomic sentences that we couldn’t otherwise prove (Steinberger
2009a). Yet another motivating thought has it that I-rules determine, in principle,
necessary and sufficient conditions for introducing dominant occurrences of logical
operators. For this reason, the thought goes, E-rules should ‘give us back’ the grounds
specified by the corresponding I-rules, on the assumption that such grounds are in
principle necessary (see e.g. Moriconi and Tesconi 2008, p. 105 and ff). This is in
effect what Dummett calls the Fundamental Assumption, that ‘[i]f a statement whose
principal operator is one of the logical constants in question can be established at all,
it can be established by an argument ending with one of the stipulated I-rules’ (Dum-
mett 1991, p. 251). The Assumption lies at the heart of the proof-theoretic accounts
of validity (Prawitz 1985; Dummett 1991). As Prawitz puts it,

it is the whole [inferentialist] project that is in danger when the fundamental
assumption cannot be upheld. (Prawitz 2006, p. 523)

If harmony is a necessary condition for logicality, Prior’s challenge is easily met:
the tonk rules are spectacularly disharmonious, and hence cannot define a logical
connective.6 But the tonk rules are also non-conservative: they allow one to prove
sentences in the tonk-free language that were not previously provable in the absence
of the rule for tonk (indeed they allow one to prove any such sentence). And indeed,
the first response to Prior’s tonk, published by Nuel Belnap in 1962, was precisely
that admissible rules should yield conservative extensions of the base systems towhich
they may be added.7

5 For an overview see Steinberger (2011b). Tennant’s conception of harmony is further discussed in Stein-
berger (2009b), Tennant (2010), and Steinberger (2011a).
6 Whether harmony is also a sufficient condition for logicality is a more delicate question. See Read (2000).
7 See also e.g. Hacking (1979, pp. 237–238) and Dummett (1991, pp. 217–218), and the discussion in
Steinberger (2011b). For a recent critical discussion of the requirement of harmony, see Rumfitt (2017).

123



Classical Harmony and Separability

The demand for conservativeness is equivalent to the requirement that an admissible
logical system be separable, i.e. such that every provable sentence or rule in the system
has a proof that only involves either structural rules or rules for the logical operators
that figure in that sentence or rule. This requirement is sometimes motivated by the
further inferentialist thesis that to understand a linguistic expression is to know its role
in inference (Boghossian 2003), i.e. to be able in principle to derive all correct uses
of any logical expression one understands. Given separability, the totality of uses of
$ (i.e. the derivations of rules and theorems involving sentences with $ as their main
logical operator) is derivable from the basic rules for $, and, given the inferentialist
account of understanding, one’s grasp of $’s rules is thereby sufficient for knowing
$’s meaning.

Logical inferentialists typically assume an atomistic conception of our understand-
ing of logical expressions. That is, they assume that in principle a speaker could
understand e.g.∧without understanding ∃,→without understanding ¬, and so forth.
Thus, Kent Bendall writes that ‘the order in which […] logical rules are introduced
should not matter’ (Bendall 1978, p. 255), since ‘it should not matter in what order
one learns […] the logical operators’ (Tennant 1997, p. 315). In a similar spirit, Dum-
mett claims that ‘to understand A ∨ B, one need not understand A ∧ B or A → B’
(Dummett 1991, p. 223). If to understand a logical expression is to know its role in
inference, and if the understanding of logical expressions is atomistic, then it is natural
to assume that basic logical rules should be, in Dummett’s terminology, pure, i.e. such
that exactly one logical operator figures in them.8

Let orthodox inferentialism be the view that the I- and E-rules of logical expressions
must be harmonious and pure, and that any adequate axiomatisation of logic ought
to be separable. The view can be traced back to Gentzen and has more recently been
defended by Tennant in a number of writings (see e.g. Tennant 1997). Inferentialists
such as Dummett and Prawitz relax the requirement of purity, and only require that
basic logical rules be harmonious and that admissible axiomatisations of logic be
separable. As Dummett puts it:

An impure $-introduction rule will make the understanding of $ depend on the
prior understanding of the other logical constants figuring in the rule. Certainly
we do not want such a relation of dependence to be cyclic; but there would
be nothing in principle objectionable if we could so order the logical constants
that the understanding of each depended only on the understanding of those
preceding it in the ordering. (Dummett 1991, p. 257)

However, even relaxing the purity requirement in the way Dummett suggests, it is well
known that harmony and separability alone are already incompatible with standard
axiomatisations of classical logic.

8 The requirement of purity is compatible with multiple occurrences of the same logical operator within
the same rule.
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2 The Inferentialist Argument Against Classical Logic

Proof-theoretic constraints such as harmony and separability rule out Prior’s tonk.
But, it may be argued, they rule out much more. For while the rules of intuitionistic
logic are harmonious, standard formalizations of classical logic typically aren’t.9 For
instance, the classical rule of double negation elimination

¬¬A
DN-E

A

is not in harmony with the standard rule of negation introduction:

[A]i

...

⊥¬-I, i .¬A

The harmonious rule of negation elimination is the following intuitionistic rule:

A ¬A¬-E .⊥
Negation elimination, unlike its classical counterpart, allows one to infer from ¬A
precisely what was required to assert ¬A: a derivation of ⊥ from A. It is easy to show
that the rule is harmonious in the sense of satisfying both intrinsic harmony and local
completeness.

Example 3 (Intuitionistic negation)

�0, [A]i

�0

⊥¬-I, i ¬A

�1

�1

A¬-E ⊥

�r

�1

�1

�0, A
︸︷︷︸

�0

⊥

�

¬A
�e

�

¬A [A]i
¬-E ⊥¬-I, i ¬A

By contrast, the classical rule of double negation elimination is left, so to speak, in the
cold. The same goes for any other classical rule, such as e.g. classical reductio or the
Law of Excluded Middle:

[¬A]i

...

⊥
CR, i

A

[A → B]i

...

A
Peirce’s Rule, i

A
LEM .

A ∨ ¬A

Classical negation appears to be not harmonious.
It might be thought that the problem can be solved by simply supplying an extra set

of harmonious I- and E-rules for one of the classical connectives, such as e.g. negation:

9 See Prawitz (1977, p. 36), Dummett (1991, pp. 296–300) and Tennant (1997, pp. 308–321).
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A
DN-I ¬¬A

¬¬A
DN-E .

A

In this spirit, Weir (1986) proposes the following rules for disjunction:

[¬B]i
.
.
.

A∨-I1W , i
A ∨ B

A ∨ B ¬B∨-E1W A

[¬A]i
.
.
.

B∨-I2W , i
A ∨ B

A ∨ B ¬A∨-E2W .
B

The rules are pairwise harmonious, but they do not collectively satisfy intrinsic har-
mony, as the following derivation shows (see Weir 1986, pp. 476–478):

�, [¬B]i

�0

A∨-I1W , i
A ∨ B

�

�1

¬A∨-E2
W

.
B

Here there is no way one can in general derive B from a derivation of A from ¬B,
without appealing to Weir’s rules for disjunction.

Weir’s rules allow one to prove A ∨ ¬A by means of an argument ending by just
one application of disjunction introduction (Weir 1986, p. 469):

[¬A]1∨-I2W , 1 .
A ∨ ¬A

The rule of double negation elimination is derived as follows:

[¬A]1∨-I1W (1)
A ∨ ¬A ¬¬A∨-E1W .

A
However, it is easy to see that the idea of defining a single logical operator by means
of multiple sets of harmonious introduction and elimination rules doesn’t work.10 For
consider the following seemingly innocuous rules:

A⊕-I1
A ⊕ B

B⊕-E1
A ⊕ B

A ⊕ B⊕-I2
A

A ⊕ B⊕-E2 .
B

If they are taken to define a single connective, they validate Prior’s rules for tonk:

A⊕-I1
A ⊕ B⊕-E2 .

B
In effect, Weir’s rules could be regarded as defining two harmless, and indeed harmo-
nious, connectives ∨′ and ∨′′, one governed by ∨-I1W and ∨-E1

W and one governed by
∨-I2W and ∨-E2

W , but neither of the two being equivalent to classical disjunction. In
Sect. 3, I introduce genuinely harmonious classical rules for ∨.

Similarly, standard axiomatisations of classical logic are not separable. For instance,
some uses of → such as Peirce’s Law, that ((A → B) → A) → A, are only derivable

10 I owe this point to Dominic Gregory, to whom I am very much indebted.
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by means of rules for both → and ¬. Intuitionists such as Dummett, Prawitz and
Tennant have taken the lack of harmony and separability of standard axiomatisations
of classical logic to show that classical rules such as double negation elimination are
not logical (or that they are in some other sense defective), and that the logical rules
we should adopt are those of intuitionistic logic, i.e. classical logic without the Law of
Excluded Middle, double negation elimination and other equivalent rules [or perhaps
of a weaker logic still (Tennant 1987, 1997)].11

However, while it is true that standard axiomatisations of classical logic are not
harmonious, a number of non-standard axiomatisations of classical logic are both
harmonious and separable. In particular, classical logic can be shown to be as proof-
theoretically respectable as intuitionistic logic provided rules are given both for
asserting and for denying complex statements (Rumfitt 2000; Incurvati and Smith
2010), where denial is taken to be a primitive speech act distinct from the assertion of
a negated sentence (Parsons 1984; Smiley 1996). The resulting axiomatisation of clas-
sical logic is compatible with the orthodox inferentialist’s strictures (Rumfitt 2000).
In particular, the rules for classical negation are as harmonious as the intuitionistic
ones: they allow one to deny ¬A given the assertion of A and vice versa, and to deny
A given the assertion of ¬A and vice versa. Alternatively, harmonious, pure, and sep-
arable axiomatisations of classical logic can be given once multiple conclusions are
allowed (Read 2000; Cook 2005), either in a natural deduction or in a sequent-calculus
setting.12

Inferentialists typically dismiss both of these moves. For one thing, it is unclear
whether denial really is on a par with assertion. On the face of it, our linguistic practice
appears to be assertion-based, as opposed to assertion-and-denial-based. For another,
while it is possible to make sense of multiple-conclusion calculi, it would also seem
that our inferential practice features arguments for at most one conclusion (Rumfitt
2008; Steinberger 2011c). As Ian Rumfitt puts it:

The rarity, to the point of extinction, of naturally occurring multiple-conclusion
arguments has always been the reason whymainstream logicians have dismissed
multiple-conclusion logic as little more than a curiosity. (Rumfitt 2008, p. 79)

While by no means decisive, these simple considerations make it worthwhile to ask
whether an axiomatisation of classical logic that is both assertion-based and single-
conclusion can be made consistent with the requirements of harmony, purity, and
separability. The next four sections argue that it can, provided absurdity is interpreted
as a punctuation sign andwe allow for higher-level rules. New rules for disjunctionwill
further make the axiomatisation to be presented in Sect. 6 compatible with Dummett’s
Fundamental Assumption. I consider classical disjunction first (Sect. 3), before turning
to absurdity (Sect. 4) and higher-level rules (Sect. 5).

11 See e.g. Dummett (1991, p. 299).
12 Sequent calculi axiomatisations of intuitionistic and classical logic are exactly alike, except that classical
sequent calculi allow for sequents with multiple premises and multiple conclusions. In turn, such sequents
can be plausibly interpreted as saying that onemay not assert all the antecedents and deny all the succedents,
where, again, assertion and denial are both seen as primitive speech acts (Restall 2005).
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3 Classical Disjunction

From a classical inferentialist perspective, the standard rules for disjunction can be
seen as unsatisfactory for at least two reasons.

To begin with, if the logic is classical, the standard introduction rules for ∨ are
guaranteed not to respect Dummett’s Fundamental Assumption that, if one can intro-
duce a complex statement, one could in principle introduce it by means of an argument
endingwith an application of one of the introduction rules for its main logical operator.
The classical Law of Excluded Middle is a case in point: since in the present state of
information it is not the case that, for every statement A, we can assert either A or
its negation, we cannot introduce A ∨ ¬A by means of an argument ending with an
application of disjunction introduction, as the Fundamental Assumption requires.

Second, and relatedly, one often hears that the standard introduction rules for
disjunction do not actually represent the way disjunctions are asserted in everyday
practice, and that the meaning of ‘or’ in ordinary language is radically different from
its meaning in logic. The complaint seems reasonable enough: we typically assert
A ∨ B on the grounds that A and B cannot both be false—not because we already
know that one of the disjuncts is true. As Scott Soames puts it:

nearly always when we assert the disjunction of A and B in ordinary language,
we do so not because we already know that A is true, or because we already
know that B is true. Rather, we assert the disjunction because we have some
reason for thinking that it is highly unlikely, perhaps even impossible, that both
A and B will fail to be true. (Soames 2003, p. 207)

This suggests the following new rules for disjunction:13

[¬A,¬B]i

...

⊥∨-I∗, i
A ∨ B

A ∨ B ¬A ¬B∨-E∗ .⊥
Here the discharge of¬A and¬B might be vacuous, i.e. one does not need to actually
use, and discharge, both of ¬A and ¬B in order to infer A ∨ B by one step of ∨-I∗.
Thus for instance,

[¬A]i

...

⊥∨-I∗, i
A ∨ B

counts as a legitimate application of ∨-I∗ This in turn highlights ∨-I∗’s classicality:
what in textbook natural deduction systemswould be an application of classical reduc-
tio (CR) immediately followed by one step of the standard rule of ∨-I is here turned
into a single primitive step.14

13 To my knowledge, these rules were first discussed in Murzi (2010, Ch. 7, §4.12) and Murzi and Stein-
berger (2013, p. 181, fn. 37). For a more recent discussion, see Prawitz (2015, p. 29) and Pereira and
Rodriguez (2017, p. 1156).
14 Many thanks to an anonymous referee for suggesting this observation.
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The above rules are obviously harmonious: the elimination rule allows one to intro-
duce precisely what was required to introduce A∨ B in the first place, viz. a derivation
of ⊥ from ¬A and ¬B. More precisely, the reduction step is as follows (where, since
∨-I∗ can discharge assumptions vacuously, only one ofD2 and D3 might be present):

Definition 4 (∨-reduction)

�, [¬A,¬B]i

D1

⊥∨-I∗p , i
A ∨ B

�0

D2

¬A

�1

D3

¬B∨-E∗
p ⊥

�r
�

�0

D2

¬A

�1

D3

¬B
︸ ︷︷ ︸

D1

⊥
And here is the corresponding expansion step:

Definition 5 (∨-expansion)

�

A ∨ B �e

�

A ∨ B [¬A]1 [¬B]1
∨-E∗ .⊥∨-I∗, 1

A ∨ B

With these rules in place, the Law of Excluded Middle is provable on no assumptions
via an argument ending with an application of ∨-I∗, as required by the Fundamental
Assumption; one only needs to assume ¬A and ¬¬A:

[¬A]1 [¬¬A]1¬-E ⊥∨-I∗, 1 .
A ∨ ¬A

The standard rules for disjunction and the new ones are interderivable given classical
reductio or some equivalent rule such as double negation elimination. The standard
two-part rule ∨-I can be derived using the new rule ∨-I∗ as follows:

[¬A]1 A¬-E ⊥∨-I∗, 1
A ∨ B

[¬B]1 B¬-E ⊥∨-I∗, 1 .
A ∨ B

As for the standard rule ∨-E, it can be derived using classical reductio and the new
rule ∨-E∗:

A ∨ B

[¬C]3

[A]1
...

C¬-E ⊥¬-I, 1 ¬A

[¬C]3

[B]1
...

C¬-E ⊥¬-I, 2 ¬B∨-E∗ .⊥
CR, 3

C

Conversely, the new rule∨-I∗ can be derived using CR from the standard two-part rule
∨-I, as follows:
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[¬(A ∨ B)]3
[A]1∨-I

A ∨ B¬-E ⊥¬-I, 1 ¬A

[¬(A ∨ B)]3
[B]2∨-I

A ∨ B¬-E ⊥¬-I, 2 ¬B
︸ ︷︷ ︸

...

⊥
CR, 3 .

A ∨ B

Likewise, the new rule ∨-E∗ is derivable from the standard rule ∨-E:

A ∨ B
¬A [A]1

⊥
¬B [B]1

⊥∨-E, 1 .⊥
Classical though they may be, ∨-I∗ and ∨-E∗ do not suffice to yield a proof-
theoretically acceptable axiomatisation of classical logic. For one thing, although
they allow one to derive the Law of Excluded Middle, they do not yield either double
negation elimination or classical reductio. And, absent double negation elimination
(or some equivalent rule, such as classical reductio), they do not even yield the stan-
dard rule of disjunction elimination. For another, the revised rules are impure, since
more than one logical operator figures in their schematic form. They are therefore
unacceptable by orthodox inferentialist standards.

Both problems can be solved, provided that classical logicians interpret absurdity
as a logical punctuation sign and are willing to allow for higher-level rules in their
formalisation of logic. The next two sections introduce these two ingredients in turn.

4 Absurdity as a Punctuation Sign

It is notoriously difficult to offer an adequate inferentialist account of absurdity. Dag
Prawitz suggests that ⊥ be defined by the empty I- rule. That is, in his view, there is
no canonical way of introducing ⊥. He writes:

the introduction rule for ⊥ is empty, i.e. it is the rule that says that there is no
introduction whose conclusion is ⊥. (Prawitz 2005, p. 685)

In Prawitz’s view, the rule can be shown to be in harmony with ex falso quodlibet15:

⊥EFQ .
A

On the other hand, Dummett has claimed that ⊥ should rather be defined by the
following infinitary rule of ⊥-introduction

P1 P2 P3 …⊥-ID ,⊥
where the Pn are all the atoms of the language, which Dummett takes to be jointly
inconsistent (see Dummett 1991, pp. 295–256). The idea is to specify canonical

15 See Prawitz (1973, p. 243), Read (2000, p. 139), and Negri and von Plato (2001, p. 8).
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grounds for ⊥ that can never obtain: no rich enough language will allow for the
possibility in which all atoms, including basic contraries such as ‘This table is all
red’ and ‘This table is all white’, can be proved—or so the thought goes. The rule is
evidently harmonious with EFQ: one can derive from an assertion of ⊥ precisely what
was required for asserting ⊥ in the first place.

Both Prawitz’s and Dummett’s accounts are problematic, however. Dummett’s rule
is non recursive andmakes the meaning of⊥ dependent on the expressiveness of one’s
language. After all, it may be argued that atoms need not be in general incompatible.
As for Prawitz’s account of⊥, the very thought that⊥ has content makes the meaning
of negation dependent on the meaning of absurdity, and hence violates the orthodox
inferentialist’s demand for purity.

An alternative, andmore promising, proposal views⊥ as a logical punctuation sign
(Tennant 1999; Rumfitt 2000). Thus, Tennant writes that

an occurrence of ‘⊥’ is appropriate onlywithin a proof […] as a kind of structural
punctuation mark. It tells us where a story being spun out gets tied up in a
particular kind of knot—the knot of a patent absurdity, or self contradiction.
(Tennant 1999, p. 204)

Similarly, Rumfitt suggests that ⊥ ‘marks the point where the supposition […] has
been shown to lead to a logical dead end, and is thus discharged, prior to an assertion of
its negation’ (Rumfitt 2000, pp. 793–794). On such a view, EFQ becomes a structural
rule, i.e. a form of weakening on the right (Steinberger 2009a, 2011b).

Formally, to treat ⊥ as a logical punctuation sign is to switch from a set-formula
framework (SET-FMLA), i.e. a framework in which the premises of an argument
form a set and its conclusion is always a singleton, to a to a set-formula-or-empty-set
framework (SET-SET∅), i.e. a framework in which the premises of an argument form a
set and its conclusion is always either a singleton or the empty set. Clearly, both options
are compatible with the orthodox inferentialist’s rejection of multiple-conclusions.16

In the remainder of this paper, I will treat ⊥ as a logical punctuation sign. 17

5 Higher-Level Rules

Now tohigher-level rules.Natural deduction systems involve rules, such as arrow intro-
duction,which allowone to discharge assumptions. Butwhat exactly is an assumption?
Schroeder-Heister (1984) suggests that to assume some formulae β1, . . . , βn is tech-
nically just to treat these formulae as temporary axioms:

16 In a recent paper, Lloyd Humberstone and David Makinson argue against justifications of intuitionis-
tic logic based on proof-theoretic properties of basic I- and E-rules (what they call ‘elementary rules’),
essentially on the assumption that any acceptable axiomatisation of logic ought to be assertion-based and
SET-FMLA (Humberstone and Makinson 2011). As they show, on this assumption, it is not even possible
to provide acceptable I-rules for ¬ and ⊥, let alone harmonious such rules. However, as they also observe,
their results do not carry over to a SET-SET∅ framework.
17 It worth noticing that, as an added bonus, the empty set interpretation of ⊥ also helps to solve Carnap’s
so-called Categoricity Problem (see e.g. Carnap 1943), without resorting to multiple-conclusions or rules
for denial, and without postulating the existence of a necessarily false sentence, as in Garson (2013).
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Assumptions in sentential calculi technically work like additional axioms. A
formula α is derivable from formulas β1, . . . , βn in a calculus C if α is derivable
in the calculus C′ resulting from C by adding β1, . . . , βn as axioms. But whereas
“genuine” axioms belong to the chosen framework and are usually assumed to be
valid in some sense, assumptions bear an ad hoc character: they are considered
only within the context of certain derivations. (Schroeder-Heister 1984, p. 1284)

But if assumptions just are ad hoc axioms, one should also be free to use ad hoc rules
in the context of a derivation. Thus Schroeder-Heister again:

Instead of considering only ad hoc axioms (i.e. assumption formulas) we can also
regard ad hoc inference rules, that is, inference rules […] used as assumptions.
Assumption rules technically work like additional basic rules: α is derivable
from assumption formulas β1, . . . , βn and assumption rules ρ1, . . . , ρm , in C if
α is derivable in C′, where C′ results from C by adding β1, . . . , βn as axioms and
ρ1, . . . , ρm as basic inference rules. (Schroeder-Heister 1984, p. 1285)

Armed with Tennant’s account of absurdity as a logical punctuation sign and with
Schroeder-Heister’s higher-level rules, let us now turn to classical logic.

On the foregoing assumptions, modus ponens can be formulated as a higher-level
rule, as follows:

[

A
B

]i

...

C A → B→-Ehl , i .
C

The standard rule of arrow elimination is obtained by setting C equal to B (then, given

a derivation of A, one may conclude B from A
B

and A). Similarly, classical reductio
can be rewritten as a structural rule, as follows:

[

A
⊥

]i

...

⊥
C Rhl , i .

A

If one can derive a contradiction from the assumption that A itself leads to a contra-
diction, one can discharge that assumption and infer A. The rule is structural since
no logical operator figures in it: recall, following Tennant, we are interpreting ⊥ as
shorthand for the empty set, rather than as a propositional constant.18 Finally, our
proposed impure rules for disjunction can now be presented as pure harmonious rules.

The I-rule can be read as stating that, if one can derive absurdity from the rules A
⊥

and B
⊥ one may discharge the rules and infer A ∨ B. More formally:

18 As a referee pointed out to me, a version of C Rhl is discussed in Schroeder-Heister (1981, §18, p. 241
and ff).
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[

A
⊥

]i [

B
⊥

]i

︸ ︷︷ ︸

...

⊥∨-I∗p , i .
A ∨ B

Conversely, the corresponding E-rule states that, given a proof of A ∨ B, one may

infer ⊥ from the rules A
⊥ and B

⊥ :

A ∨ B

[A]i

...

⊥

[B]i

...

⊥∨-E∗
p , i .⊥

It is easy to show that this pair of I- and E-rules is just as harmonious as its impure
counterpart {∨-I∗,∨-E∗}.

The new rules∨-I∗p and∨-E∗
p, C Rhl , and the standard I- andE-rules for conjunction,

implication, and negation, together afford a harmonious and pure axiomatisation of
classical propositional logic (henceforth, CPL), in which each of the connectives is
treated as a primitive.19 Call this formalization Ncp.

In keeping with Schroeder-Heister’s original treatment of higher-level rules, Ncp
only allows for the assumption of rules. However, once rules can be assumed, it is
difficult to see why rules couldn’t also figure as conclusions. Consider the following

structural rule, where depending on graphic convenience I sometimes write A
B

as
A/B:

[A]i

...

B
/-I, i .

(A/B)

The rule allows one to derive the rule A/B from a derivation of B from A, discharging

A. The parentheses ensure unique readability: they indicate that the object A
B

, as

opposed to simply A, follows from a derivation of B from A.20 The rule is naturally
paired with the following, also purely structural, rule:

(A/B) A
/-E .

B

This says that, given the rule A
B

, B can be derived given A.

19 Given negation introduction and negation elimination, ∨-I∗p and ∨-E∗
p are equivalent to ∨∗-I and ∨∗-E,

which we have already shown to be interderivable, given C Rhl or some classically equivalent rule, with
the standard I- and E-rules for disjunction. There is no need for ex falso quodlibet, which is just a special
case of C Rhl , if we are allowed vacuous discharge of assumptions.
20 Without parentheses, /-I would allow one to invalidly infer A, and then B, from a derivation of B from
A.
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The introduction and immediate elimination of / gives rise to what we may call a
maximum rule, i.e. a rule occurrence that is both the consequence of an application
of /-I and the major premise of an application of /-E. Unsurprisingly, maximum rules
can be ‘levelled’, as shown by the following reduction:

Definition 6 (/-reduction)

�0, [A]i

�0

B
/-I, i

(A/B)

�1

�1

A
/-E

B

�r

�1

�1

�0, A
︸︷︷︸

�0

B

The definition of intrinsic harmony given in Sect. 1 can be generalised accordingly,
as the possibility of eliminating maximum formulae and rules.

Although they bear a close resemblance to →-I and →-E, the structural rules /-I
and /-E should be sharply distinguished from the operational rules →-I and →-E:
while →-I and →-E allow one to respectively introduce and eliminate an operator,
/-I and /-E allow one to respectively introduce and eliminate a rule.

It might be insisted that /-I and /-E are just →-I and →-E in disguise. However,

the objection would miss the point: from the fact that A
B

could be interpreted as
A → B, it doesn’t follow that it is to be so interpreted. An analogy helps to illustrate
the point. Consider a bilateralist setting, where + and − are force signs, +A and −A
are to be respectively read as ‘A? Yes’ and ‘A? No’, the assumption of +A is to be
interpreted as ‘A? Suppose yes’, and ⊥ is interpreted as the empty set. Now consider
the following bilateralist form of indirect proof:

[+A]i

...

⊥
RED, i −A

Since+ and− are force signs that don’t affect propositional content, RED is effectively
a structural rule that, in a bilateralist framework, allows one to deny A given a derivation
of ⊥ from the assumption +A. It could be objected that RED is a form of negation
introduction in disguise (Murzi and Hjortland 2009, p. 486). But the point would not
be well taken. For while the denial force sign in RED could be interpreted as an external
negation, it doesn’t follow from this that it is be so interpreted (Incurvati and Smith
2010, pp. 9–10).

Now let Ncp+ be the result of closing Ncp under /-I and /-E. To give the reader a
feel of the new system, we prove two classical principles. We first prove the Excluded
Middle:
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Example 7 (Excluded middle)

[A]1 [A/⊥]2
/-E ⊥¬-I, 1 ¬A [¬A/⊥]2

/-E ⊥∨-I�p , 2 .
A ∨ ¬A

We then provePeirce’s Law in rule form, onlymaking use of rules for→ (and structural
rules):

Example 8 (Peirce’s rule)

[A/⊥]3 [A]2 [B/⊥]1
/-E ⊥

CRhl , 1
B→-I, 2

A → B (A → B) → A→-E
A [A/⊥]3

/-E ⊥
CRhl , 3

A

The next section shows that Ncp+ is not only harmonious, but also satisfies the more
demanding requirement of separability.

6 Normalization for Ncp+

Following (and generalising) Prawitz (1965), we prove normalization and subformula
property theorems forNcp+. The subformula property theorem entails the separability
property as an immediate corollary. First, we define Ncp+.

Definition 9 Formulae of Ncp+ are built up from atoms and from the standard binary
connectives ∧,∨,→, and the unary connective ¬. Absurdity (⊥) is a logical ‘punctu-
ation sign’, and hence not an atom. The rules for ∧,→, and ¬ are the standard ones:
∧-I, ∧-E, →-I, →-E, ¬-I, ¬-E. The rules for ∨ are non-standard: ∨-I∗p and ∨-E∗

p.

There are three structural rules: CRhl , /-I, and /-E.

Definition 10 Objects of Ncp+ are divided into levels. Atomic formulae and com-
pound formulae of the form ¬A, A ∧ B, A ∨ B, and A → B are of level 0. Rules of

the form A/B are of level 1. Rules of the form A
(B/C)

or
(A/B)

C
are of level 2.

And so on.

I use Greek letters γ, δ (possibly with subscripts) as metavariables ranging over for-
mula occurrences, occurrences of ⊥, and rule occurrences. We then prove in three
easy steps that Ncp+ really gives us classical propositional logic.

Fact 11 The operational rules of Ncp+ are pure.

Lemma 12 The standard disjunction rules ∨-I and ∨-E are interderivable with ∨-I∗p
and ∨-E∗

p, given CR.
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Proof : left as an exercise to the reader (the proof is essentially already given in
Sect. 3).

Lemma 13 CRhl and CR are interderivable in minimal logic.

Proof : It is enough to observe that ¬A and A
⊥ are interderivable. We first

prove that A
⊥ follows from ¬A:

¬A [A]i
¬-E ⊥

/-I, i
(A/⊥)

We then prove the converse implication:

(A/⊥) [A]i
/-E ⊥

/-I, i ¬A

Corollary 14 Ncp+ is a sound and complete axiomatisation of CPL.

Proof : this follows from Lemmas 12 and 13, given the observation that minimal
logic together with C R yields a sound and complete axiomatisation of CPL.

Next, we define the notions of maximum rule, local peak, normal deduction, and
subformula:

Definition 15 (Maximum formula) A maximum formula in � is a formula occurrence
in � that is the consequence of an application of an I- rule or a ⊥-rule (namely, CR,
CRhl , or EFQ) and the major premise of an E-rule.

Definition 16 (Maximum rule) A maximum rule in � is a rule occurrence in � that is
the consequence of an application of an I- rule and the major premise of an E-rule.

Definition 17 (Local peak) A local peak in � is either a maximum formula or a
maximum rule in �.

Definition 18 (Normal deduction) A normal deduction is a deduction which contains
no local peaks.

Definition 19 (Subformula) The notion of a subformula inNcp+ is inductively defined
by the following clauses:

(1) A is a subformula of A;
(2) A is a subformula of ¬A;
(3) A and B are subformulae of A/B;
(4) If B ∧ C, B ∨ C , or B → C is a subformula of γ (where γ may be a formula or

a rule), then so are B and C .

We can now prove that every deduction in Ncp+ converts into a normal deduction. To
this end, we first need to show that local peaks can always be removed.
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Let� be a derivation of E from� that contains a local peak γ that is a consequence
of an application of an I-rule and major premise of an application of an E-rule. Then,
following Prawitz (1965, p. 36), we say that �′ is a reduction of � at γ if �′ is
obtained from � by removing γ by an application of a reduction procedure. The
reduction for our modified disjunction rules is as follows

Definition 20 (∨-reduction)
[

A
⊥

]i [

B
⊥

]i

︸ ︷︷ ︸

D1

⊥∨-I∗p , i
A ∨ B

A
⊥

B
⊥∨-E∗

p ⊥

�

A
⊥

B
⊥

︸ ︷︷ ︸

D1

⊥
The reduction for / has been introduced in Definition 6. The remaining conversion
steps are standard (see Prawitz 1965, Chapter 2).

In our next step, we prove that we can restrict applications of CRhl to the case where
its conclusion is atomic.

Theorem 21 (CRhl -restriction) Applications of CRhl can always be restricted to the
case where the conclusion is atomic.

Proof We generalise Prawitz’s original proof (Prawitz 1965, pp. 39–40) to the present
case involving our higher-level rules for disjunction and the higher-level structural
rule CRhl . Let � be a deduction in Ncp+ of A from � in which the highest degree of a
consequence of an application α of CRhl is d, where d > 0 and the degree of a formula
A is defined as the number of occurrences of logical operators in A (see Prawitz 1965,
p. 16). Let F be a consequence of an application α of CRhl in � such that its degree is
d but no consequence of an application of CRhl in � that stands above F is of degree
greater than or equal to d. Then � has the form

[

F
⊥

]i

�

⊥
CRhl , i

F

where
[

F
⊥

]

is the set of derivations discharged by α, and F has one of the following

forms: ¬A, A ∧ B, A → B, or A ∨ B.21 In the respective cases, we transform � into
derivations which either do not contain applications of CRhl or have consequences of
applications of CRhl of degree less than d. Here are the transformations for negation

[¬A/⊥]i

�

⊥
CRhl , i ¬A

�

[A]2 [¬A]1¬-E ⊥¬A/⊥-I, 1
(¬A/⊥)

�

⊥¬-I, 2 ¬A

21 Prawitz’s original proof only covers the cases of ∧ and →, since, in his system, ∨ is defined.
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conjunction

[A ∧ B/⊥]i
�

⊥
CRhl , i

A ∧ B

�

[A ∧ B]1∧-E
A [A/⊥]3

/-E ⊥
/-I, 1

(A ∧ B/⊥)

�

⊥
CRhl , 3

A

[A ∧ B]2∧-E
B [B/⊥]4

/-E ⊥
/-I, 2

(A ∧ B/⊥)

�

⊥
CRhl , 4

B∧-I
A ∧ B

and the conditional

[A → B/⊥]i

�

⊥
CRhl , i

A → B

�

[A]3 [A → B]1→-E
B [B/⊥]2

/-E ⊥
/-I, 1

(A → B/⊥)

�

⊥
CRhl , 2

B→-I, 3
A → B

The case for disjunction can be dealt with similarly as follows:

[A ∨ B/⊥]i
�

⊥
CRhl , i

A ∨ B

�

[A ∨ B]2
[A]1 [A/⊥]3

/-E ⊥
[B]1 [B/⊥]3

/-E ⊥∨-E∗
p , 1 ⊥

A ∨ B/⊥-I, 2
(A ∨ B/⊥)

§igma

⊥∨-I∗p , 3
A ∨ B

The new applications ofCRhl (if any) have consequences of degrees less than d. Hence,
by successive applications of the above procedures we finally obtain a deduction of A
from � in which every consequence of every application of CRhl is atomic. �
We now generalise Prawitz’s proof that his axiomatisation of CPL is normalisable.
We begin with some definitions, largely following Prawitz (1965, p. 25 and ff; and p.
41).

Definition 22 (Top and end formulae) A top-formula in a formula-tree� is a formula-
occurrence or an occurrence of ⊥ that does not stand immediately below any formula
occurrence or occurrence of⊥ in�. An end-formula in a formula-tree� is a formula-
occurrence or occurrence of ⊥ that does not stand immediately above any formula
occurrence or occurrence of ⊥ in �.

Definition 23 (Top and end rules) A top-rule in a formula-tree � is a rule-occurrence
that does not stand immediately below any formula occurrence in � or occurrence of
⊥. An end-rule in a formula-tree� is a rule-occurrence that does not stand immediately
above any formula occurrence or occurrence of ⊥ in �.

Definition 24 (Thread) A sequence γ1, γ2, . . . , γn of formula occurrences, or occur-
rences of ⊥, or rule occurrences, in a formula-tree � is a thread in � if (i) γ1 is a
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top-formula or a top-rule in �, (2) γi stands immediately above γi+1 in � for each
i < n, and (3) γn is the end-formula or end-rule of �. We say that γi stands above
(below) γ j if i < j(i > j).

Definition 25 (Subtree) If δ is a formula occurrence, or occurrence of⊥, or rule occur-
rence, in the tree �, the subtree of � determined by γ is the tree obtained from � by
removing all formula occurrences or occurrences of ⊥ except those in γ and the ones
above γ .

Definition 26 (Side-connectedness) Let γ be a formula occurrence, or occurrence
of ⊥, or rule occurrence in �, let (�1,�2, . . . ,�n/γ ) be the subtree of � deter-
mined by γ and let γ1, γ2, . . . , γn be the end-formulae or end-rules of, respectively,
�1,�2, . . . ,�n . We then say that γi is side-connected with γ j , for i, j ≤ n

Definition 27 (Branches) A branch in a deduction is the initial part γ1, γ2, . . . , γn of
a thread in the deduction such that either (i) γn is the first formula occurrence in the
thread that is the minor premise of an application of either→-E or¬-E, or the formula
occurrence or occurrence of⊥ in the thread that is the minor premise of /-E or a minor
premise of ∨-Ep; or (ii) γn is the last formula occurrence of the thread (i.e. the end
formula of the deduction) if there is no such minor premise in the thread. A branch
that is also a thread that thus contains no minor premise of →-E,¬-E, or /-E, or∨-Ep

is a main branch.

Theorem 28 (Normalization) If � �Ncp+ γ , then there is a normal deduction in Ncp+
of γ from � (where � is a possibly empty set of formulae or rules).

Proof Let � be a deduction in Ncp+ of γ that is as described in Theorem 21. Let the
degree of rule R be the number of occurrences of logical operators in R (recall, ⊥ is
not a logical operator). Now let δ be a local peak in � such that there is no other local
peak in � of higher degree than that of δ and such that local peaks in � that stand
above a formula occurrence side-connected with δ (if any) have lower degrees than δ.
Let�′ be a reduction of� at δ. The new local peaks that may arise from this reduction
are all of lower degrees than that of δ. Moreover,�′ is still as described above. Hence,
by a finite number of reductions, we obtain a normal deduction of γ from �.22 �
Theorem 29 Let � be a normal deduction in Ncp+, and let β = γ1, γ2, . . . , γn be
a branch in �. Then, there is a formula occurrence, or occurrence of ⊥, or rule
occurrence γi , called the local valley in β, which separates two (possibly empty) parts
of β, respectively called the E- and I-part of β, with the properties:

1. Each formula or rule occurrence γ j in the E-part (i.e. j < i ) is a major premise
of an E-rule and contains γ j+1 as a subformula.

2. γi , provided i �= n, is a premise of an I-rule or of CRhl .
3. Each formula γ j in the I-part except the last one (i.e. i < j < n) is a premise of

an I-rule and is a subformula of γ j+1.

22 See Prawitz (1965, pp. 40–41). Notice that Prawitz’s Lemma on permutative reductions (see Prawitz
1965, pp. 49–51) need not be repeated here, since Ncp+ does not contain general elimination rules such as
the standard rule of disjunction elimination.
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Proof The formula or rule occurrences in β that are major premises of E-rules precede
all formula occurrences or occurrences of⊥ in β that are premises of I-rules or of CRhl .
Otherwise, there would be a first formula or rule occurrence in β which is a major
premise of an E-rule but succeeds a premiss of an I-rule or of CRhl , and such a formula
or rule occurrence would be a local peak, contrary to the assumption that � is normal.
Now let γi be the first formula occurrence or occurrence of ⊥ in β that is premise of
an I-rule or of CRhl or, if there is no such segment, let γi be γn . Then, γi is a local
valley as described in the theorem. Obviously, γi satisfies both 1. and 2. Moreover,
every formula occurrence or occurrence of ⊥ γ j such that i < j < n is a premise
of an I-rule or of CRhl . However, the latter possibility is excluded, since a premise of
CRhl is an occurrence of ⊥ and can be consequence of an E-rule only. Hence, 3. is also
satisfied. �
Corollary 30 (Subformula property) Each formula occurring in a normal deduction
� of γ from � is a subformula of γ or of one of the formulae in �.

Prawitz (1965, pp. 42–43) proves this result for his own formalization of CPL, which
includes the rules for∧,→, and CR, and where¬A is defined as A → ⊥. In Prawitz’s
system, the theorem holds for every formula in�, ‘except for assumptions discharged
by applications of CR and for occurrences of ⊥ that stand immediately below such
assumptions’. Prawitz’s proof carries over to Ncp+, this time without exceptions.
Informally, this can be shown by considering, in the newNcp+ setting, the exceptions
to Prawitz’s original theorem, viz. that (i) assumptions discharged by applications of
CR and (ii) occurrences of ⊥ that stand immediately below such assumptions may
not be subformulae of either γ or some of the formulae in �. Concerning (i), we then
notice that it is a consequence of Prawitz’s theorem that, if B/⊥ is an assumption
discharged by CRhl in a normal deduction of A from �, then B is a subformula of A
or of some subformula of �. As for (ii), the problem disappears as soon as we treat ⊥
as a logical punctuation sign. For a fuller proof, we first order branches according to
the following definition, still following and generalising Prawitz’s original proof.

Definition 31 (Ordering of branches) A main branch (i.e. a branch that ends with
an end-formula of �) has order 0. A branch that ends with a minor premise of an
application of →-E, /-E, ¬-E, or ∨-Ep is of order n + 1 if the major premise of this
application has order n.

We now prove Corollary 30 by induction on the order of branches.

Proof Let � be a normal deduction in Ncp+. We show that the corollary holds for all
formula occurrences or occurrences of ⊥ in a branch of order p if it holds for formula
occurrences in branches of order less than p. Let β be γ1, γ2, . . . , γn and let γi be the
local valley of β. For γn the assertion is immediate: either γn = γ , or γn is a minor
premise of an application of →-E, ¬-E, ∨-Ep, or /-E with a major premise of the
form either A → B, or ¬A, or A ∨ B, or A/B that belongs to a branch of order p −1.
Hence, by Theorem 29, the corollary holds for all γ j such that i < j < n. If γ1 is not
discharged by an application of CRhl or ∨-Ip, then either γ ∈ � or γ1 is a formula A1
discharged by an application α of either →-I, ¬-I, or /-I such that the consequence
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of α has the form either A1 → B, or ¬A1, or A1/B and belongs to the I-part of β

or to some branch of order less than p. Hence, in this case, A1 is a subformula of
the required kind, and, by Theorem 29, the same holds for all A j such that j ≤ i .
Finally, if γ1 is a rule discharged by an application of CRhl or of ∨-Ip, then γ1 is a
minor premise of ∨-Ep, and so γ1 = γn ; hence, also in the latter three cases, the proof
is complete. �
Theorem 32 (Separation property)Any normal deduction only consists of applications
of the rules for the connectives occurring in the undischarged assumptions, if any, or
in the conclusion, plus possibly CRhl .

Proof This follows at once from Corollary 30, by inspection of the inference rules. �

7 Objections and Replies

Recall, the intuitionist’s contention was that classical logic cannot be regimented in
a proof-theoretically acceptable way: classical logic, the intuitionist complained, is
bound to be inharmonious or inseparable. The foregoing formalization of classical
logic, if acceptable at all, shows that this accusation is misplaced. Ncp+ provides a
single-conclusion and assertion-based axiomatisation of CPL satisfying the orthodox
inferentialist’s requirements of harmony, purity, and separability. The intuitionist’s
error, classical inferentialists may diagnose, was to think that the extra deductive
power enjoyed by negation, disjunction, and implication in classical logic had to be
owed to their respective I- and E-rules. But, classical inferentialists may argue, this
was a mistake: the extra deductive power essentially derives from a different (and
richer) understanding of ⊥.

Intuitionists might object that the foregoing axiomatisation of classical logic, if
proof-theoretically kosher, is incompatible with inferentialism. Rumfitt has recently
made the point. As he puts it:

A set/formula sequent represents an actual argument, in which a reasoner passes
from a set of premises to a conclusion. Hence the correctness of such a sequent
can be related to the intuitive acceptability of the corresponding inferential pas-
sage. Where a speaker fails to reach such a conclusion, however, we do not
have an inference; we merely have a list of statements. Accordingly, we cannot
explain the correctness of a set/formula-or-empty sequent directly in terms of
the intuitive acceptability of an inference. (Rumfitt 2017, p. 237)

The argument fails to convince, though. Consider, for instance, the rule of negation
elimination:

A ¬A¬-E ,⊥
where⊥ is interpreted as a logical punctuation sign, i.e. as the empty set. Then, the rule
correctly represents a plausible pattern of inference: upon deriving both A and ¬A, a
rational agent stops her reasoning and examines instead which of the assumptions on
which A and ¬A depend must be given up.
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It may be insisted that, qua structural rule, CRhl , and hence classicality, has not
been proof-theoretically justified. As Priest puts it:

[I]ntroduction and elimination rules are superimposed on structural inferential
rules […] and the question therefore arises as how these are to be justified. (Priest
2006, p. 179)

However, a parallel argument would show that intuitionistic logic cannot be fully
proof-theoretically justified either, since intuitionistically valid structural principles
such as (say) weakening and contraction do not appear to be justifiable by means
of proof-theoretic requirements such as harmony and separability. The inferentialist
requirements of harmony, purity, and separability pertain (and have always pertained)
to logical operators, and it is consistent with these requirements that structural rules
be justified, or criticised, in non-proof-theoretic ways.

Intuitionists might retort that, although this may well be true, classical logicians
need stronger structural assumptions, which, they may add, still makes classical logic
epistemically suspect. But all that follows from this is that the proper intuitionist
challenge to the classical logician is not a proof-theoretic one. Rather, it must be
directed to the classicist’s extra structural assumptions.More precisely, in the foregoing
framework, the challenge should be directed to the classicist’s logic of absurdity.
Stephen Read makes the point, albeit in a slightly different context:

The constructivist can still mount a challenge to classical logic. But we now
see where that challenge should be concentrated—and where it is misguided.
The proper challenge is to Bivalence, and to the classical willingness to assert
disjunctions, neither of whose disjuncts is separately justified […]. (Read 2000,
pp. 151–152)

In the present framework, the challenge should be mounted to the inferentialist’s
willingness to infer A if the assumption that A leads to a dead end (less figuratively:
the rule ‘From A, infer ⊥’) itself leads to a dead end (yields ⊥).

8 Conclusions

Dummett once wrote that the proof-theoretic deficiency of the classical rules for nega-
tion (in a standard SET-FMLA setting) is ‘a strong ground for suspicion that the
supposed understanding [of classical negation] is spurious’ (Dummett 1991, p. 299).
However, even conceding that the meaning and understanding of logical connectives
are inexorably tied to the proof-theoretic demands of harmony, purity, and separability,
Dummett’s conclusion is unwarranted: pace the intuitionist’s contention that classical
logic is proof-theoretically defective, Ncp+ enjoys exactly the same proof-theoretic
properties as the standard axiomatisations of intuitionistic logic. Moreover, the new
rules for disjunction allow one to prove directly the Law of Excluded Middle, thus
vindicating the inferentialist thought that ‘what is implicit in the totality of cases of
the introduction-rule for a connective is that they exhaust the grounds for assertion of
that specific conclusion’ (Read 2008, p. 289). Classical logic may well be shown to
be defective—for instance, on the grounds that it is incompatible with an anti-realist
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metaphysics (see e.g. Wright 1992, Chapter 2), or that it does not accommodate the
semantic and soritical paradoxes (see e.g. Field 2008). But, even assuming an ortho-
dox inferentialist account of logical expressions, the grounds for restricting certain
classical principles are not proof-theoretic.
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