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Abstract: In this review article, we want to present an overview of oxidative stress in  
fungal cells in relation to signal transduction, interaction of fungi with plant hosts, and 
lignocellulose degradation. We will discuss external oxidative stress which may occur 
through the interaction with other microorganisms or plant hosts as well as internally 
generated oxidative stress, which can for instance originate from NADPH oxidases or “leaky” 
mitochondria and may be modulated by the peroxiredoxin system or by protein disulfide 
isomerases thus contributing to redox signaling. Analyzing redox signaling in fungi with 
the tools of molecular genetics is presently only in its beginning. However, it is already 
clear that redox signaling in fungal cells often is linked to cell differentiation (like the 
formation of perithecia), virulence (in plant pathogens), hyphal growth and the successful 
passage through the stationary phase. 
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1. Introduction: Definition of ROS and Oxidative Stress 

Reactive oxygen and nitrogen species (ROS and RNS; often called RONS by a joint generic name) 
occur in living cells as a consequence of the metabolism of atmospheric oxygen. Most of these molecules 
are comparatively short-lived and highly reactive, comprising radical as well as non-radical molecular 
species including singlet oxygen, the superoxide radical anion, hydrogen peroxide, the hydroxyl radical, 
nitric oxide, peroxynitrite, and other noxious chemical agents derived from the ones just mentioned [1]. 
A useful overview of the chemistry and biology of those molecules is given by Winterbourn [2].  
They cause detrimental chemical changes in proteins, lipids, polysaccharides, DNA, RNA, and even  
in small metabolites. However, some RONS through the adaptive processes taking place in millions of 
years of biological evolution, are now being used and active as signaling substances and for metabolic 
reactions based on radical chemistry which are needed for life and are not per se detrimental. ROS are 
also key players in the interaction of fungi with plant hosts and in the degradation of dead plant 
materials in the soil. 

Living cells are chemically and osmotically isolated from their surroundings creating a electrochemical 
potential gradient across their plasma membrane, which is necessary for life. The distribution of 
oxidizing and reducing metabolites in the cell and in the medium creates an inside redox potential of 
�310 mV relative to the hydrogen electrode under physiological conditions in nearly all living cells [1]. 
This redox potential is homeostatically controlled by an elaborate system of checks and balances. 
Deviations from the normal value are tolerated only for a very short time. If they are maintained for 
some longer time we speak of “oxidative stress” (positive deviation from the normal mean value) or even 
“reductive stress” (negative deviation from the normal mean value). Both deviations can cause cell 
death by apoptosis and other processes of programmed cell death like necrosis, which in yeasts and fungi 
have been studied during the last 15 years, starting with the seminal papers of Madeo et al. 1997 [1,3]. 
Although not absolutely clarified, there is growing evidence that also necrosis is programmed. Therefore 
the expression of “programmed necrosis” was coined [4]. Strictly speaking, oxidative stress in a cell  
or cellular compartment is defined by the concentrations of the reduced and oxidized forms of all  
redox-active metabolites by applying the Nernst equation. In reality, it is often difficult to determine  
all relevant oxidants and reductants, some of them do not readily participate in redox reactions due to 
kinetic reasons, and redox exchange between different subcellular compartments further complicates 
this picture. Another, less rigorous but practically applicable definition of oxidative stress is given by 
Lushchak [5]: “The situation when due to some reasons the steady-state ROS concentration is acutely 
or chronically increased leading to oxidative modification of cellular constituents resulting in disturbance 
of cellular metabolism and regulatory pathways, particularly ROS-based has been called oxidative stress”. 

The main “redox-buffer”of the cell is the glutathione system, which mediated by a large number of 
interlinked enzymatic redox systems, can remove ROS and some of their important reaction products 
like organic hydroperoxides (Figure 1). The number of redox enzymes taking part in these processes 
even in yeast is over 100 [1] and perhaps 5 times higher in mammalian cells. One key intermediate in 
these processes is peroxiredoxin, a universal redox protein which we want to describe in more detail 
below. The necessary reduction equivalents for redox homeostasis are in all cases ultimately supplied 
by NADPH, which in turn is mainly produced by reducing NADP through the pentose phosphate cycle, 
one of the oldest metabolic pathways in living cells on earth [6]. 
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Figure 1. Reactive oxygen species and antioxidant defence systems in the cytosol. The main 
reactive oxygen species include the superoxide anion radical, hydrogen peroxide, and organic 
peroxides (ROOH) that are detoxified to water via the Cu, Zn-superoxide dismutase, catalase 
or glutathione systems. Hydrogen peroxide and organic peroxides (ROOH) can also be 
detoxified to an alcohol (ROH) by the thioredoxin system. Gene designations are the ones 
of S. cerevisiae. SOD1: Cu, Zn-superoxide dismutase; CTT1: catalase T; GSH: reduced form 
of glutathione; GSSG: disulfide form of glutathione; GPX1,2,3: the three glutathione peroxidases 
of S. cerevisiae; GLR1: glutathione redutase; TSA1, AHP1: peroxiredoxins; TRX1,2: 
thioredoxins; TRR1: thioredoxin reductase (after Aung-Htut et al. 2012 [1]; with modifications). 

The basic biochemistry of oxidative stress and defense against it in fungal cells has been expertly 
described in recent years [1,5,7–11]. These review aticles include discussions of adaptation to oxidative 
stress at the level of transcription, postsynthetic modification of proteins, and metabolic reconfiguration 
and we want to refer the reader to these articles. The basic biochemistry of oxidative stress defense  
and adaptation is in many respects similar in yeast and in mammalian cells. The main pathways of 
oxidative stress defense are pictured in Figure 1. We will concentrate here on three topics which in  
the last few years are increasingly discussed in relation to oxidative stress in fungi: ROS as signal 
transduction molecules, the role of ROS in the interaction of fungi with plant hosts, and in the 
degradation of lignocellulose. 

Signaling by ROS is a presently highly active field of investigation in mammals, plants and eukaryotic 
microorganisms [12–14]. It becomes more and more clear that the proximate signal-transducing 
molecule is H2O2 [12–16] which for the signaling purpose is mostly produced by NADPH oxidases in 
conjunction with superoxide dismutases (SODs) [16]. We will in the following text give an overview 
of the oxidative stress created by NADPH oxidases and other metabolic reactions in fungal cells, the 
role of peroxiredoxins in redox signaling, and the ocurrence and functions of fungal NADPH oxidases. �  
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2. Peroxiredoxins 

We have decided to review the structure, function , and physiological significance of this class of 
redox-active enzymes, because they are among the most important oxidative stress defense systems in 
all cells and have recently been shown to also take part in redox signaling through H2O2 in eukaryotes. 
The peroxiredoxins constitute a protein superfamily which has been rather highly conserved throughout 
evolution [17,18]. In yeast cells as well as in other fungal cells, peroxiredoxins are the quantitatively 
most abundant redox defense proteins and in some cases make up about 1% of the soluble proteins of 
the cell [19]. Figure 1 shows the involvement of the yeast peroxiredoxins in the predominant ROS 
detoxification pathway in the cytoplasm of the cell. Two other pathways are active in addition to the 
peroxidredoxin pathway: The cytoplasmic catalase (encoded by the gene, CTT1) which is specific for 
H2O2 and dismutates H2O2 to H2O and O2, and the glutathione peroxidase, which is also specific for 
H2O2, but reduces it directly to H2O mediated by the glutathione (GSH) cycle. The oxidized form of 
glutathione (GSSG) is ultimately re-reduced using NADPH. We are mentioning in parenthesis that 
NADPH is the predominant supplier of reduction equivalents in all living cells [6]. The third pathway, 
based on peroxiredoxins (Figure 1) can reduce a broad spectrum of ROS including H2O2, alkyl 
hydroperoxides, lipid hydroperoxides, NO, peroxynitrite, and “unwanted” disulfide bridges in oxidized 
proteins. The immediate redox partner of peroxiredoxins is thioredoxin, which via thioredoxin reductase 
is re-reduced, depending again on NADPH as a supply of redution equivalents [1]. This pathway is  
not only the most abundant at the protein level, it also shows a very high intrinsic enzymatic activity  
of about 107 M�1 sec�1 [19]. This is necessary for efficient detoxification given the high toxicity of  
the peroxides which are scavenged. 

Nevertheless, H2O2 is a preferred signaling substance in eukaryotic cells, as will be discussed 
below. Toxic peroxides occur in multiple cellular compartments. For efficient detoxification, all these 
compartments must contain the peroxiredoxin system, as evidenced by the peroxiredoxin isoforms 
encoded in the yeast and human genome. 

In yeast, five isoforms encoded by independent genes are found [1,20]: three of them are found in 
the cytoplasm (AHP1, TSA2, TSA1) of which TSA1 is the most important one as evidenced by the 
strong oxidant hypersensitivity of the corresponding deletion mutant, which is not complemented by the 
presence of the other isoforms [21–23] unless Tsa2 is expressed from an artificial genetic construct 
using Tsa2 controlled by the the Tsa1 promoter. Efficient protection from oxidative stress requires  
not only the right enzymatic activity (which Tsa2 exerts) but also a sufficient level of expression [20]. 
Two peroxiredoxin isoforms are even found in the nucleus (Dot5) and in the mitochondria (Prx1), 
respectively [23,24], showing that the detoxification of ROS by this system is important in these 
subcellular compartments [25]. Tsa1 activity has been shown to be necessary for suppressing genomic 
instability in the yeast S. cerevisiae [20]. This would logically point to the fact that oxidative stress 
defense in the cytoplasm somehow exerts influence on the redox reactions taking place in the nucleus. 
However, the mechanism which is at work here has not been investigated. 

Six isoforms have been characterized in human cells [26], of which one (PrxI) is the ortholog of 
Tsa1and can functionally replace it as shown by genetic experiments [26].The human isoforms are 
named PrxI to PrxVI. PrxI and II are 2Cys peroxiredoxins located in the cytoplasm, PrxVI is a 1Cys isoform 
also located in the cytoplasm. PrxIII is a 2Cys enzyme located exclusively in mitochondria, and PrxV 
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is an atypical 2Cys peroxiredoxin located in the cytoplasm, mitochondria and peroxisomes. Finally, 
PrxIV is a 2Cys peroxiredoxin located in the ER which functionally interacts with PDI (protein 
disulfide isomerase) in the redox reaction forming the disulfide bonds of proteins destined for the 
secretory pathway. This latter function of the PrxIV protein seems to be specific for the mammalian 
system and to be still undiscovered or absent from fungal cells. 

 

Figure 2. Reaction cycle of eukaryotic 2-Cys peroxidredoxins. Step 1: The peroxidatic 
cysteine is oxidized to the sulfenic acid and concomitantly substrate (ROOH) is reduced to 
ROH. Step 2: The sulfenic acid form of the peroxidatic cysteine reacts with the resolving 
cysteine in the other subunit of the dimer, forming a disulfide bridge and releasing water. 
Step3: The disulfide form reacts with its redox partner, thioredoxin yielding the fully reduced 
form which can start a new reaction cycle. Step 4: The sulfenic acid form of the protein is 
further oxidized by substrate to the sulfinic acid form which is catalytically inactive and 
forms a chaperonine. Step 5: The sulfinic acid form is reduced back to the sulfenic acid form. 
Its redox partner is sulfiredoxin which is this reaction forms a diulfide bridge. The reaction 
is energy dependent and consumes ATP which is hydrolyzed to ADP and Pi. See text for further 
discussion of the reaction cycle, in particular the structural transition to form a chaperonine, 
and the local unfolding of the structure (after Hall et al. 2009 [19]; with modifications). 

The catalytic cycle of eukaryotic peroxiredoxins involves a number of peculiarities explaining its 
regulation, recognition of multiple substrates, and role in H2O2 signaling. The protein undergoes 
physiologically important local unfolding during its reaction cycle [19,24,27]. We are discussing  
here only the 2Cys peroxiredoxins. The enzymes are active as homodimers associated in a head to  
tail arrangement where each subunit contains two unequal important cysteine residues, named the 
peroxidatic (catalytic) cysteine Cp, and the resolving cysteine, Cr. In the ground state, the protein is  
fully reduced (both cysteines in SH form) and fully folded (FF), the two cysteines which will from  
an intersubunit disulfide bond are still separated by about 14 Å, and the Cp residue is well shielded  
by a C-terminal helix and the GGLG loop. These two structural motifs occur only in eukaryotic 
peroxiredoxins which have developed an additional signal transmission function, but not in the 
prokaryotic peroxiredoxins. In the first step of the reaction cycle (Figure 2) both Cp residues of  
the homodimer are oxidized to the sulfenic acid level and the substrate is reduced (typically from 
ROOH to ROH), in the second step, local unfolding takes place with respect to the C-terminal helix 
and the GGLG loop. This unfolding enables the Cp of one subunit to approach Cr of the other one and 
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formation of the disulfide bond with release of water. The –S-S- form is still locally unfolded (LU) and 
can now react with the redox partner, thioredoxin (also with other redox patner proteins which are not 
well known at present), to reform the ground state (fully reduced and FF). We assume that the local 
unfolding is essential for the catalytic activity, both by enabling formation of the intermediate disulfide 
form and by enabling the protein to interat with so many different substrates, but also with different 
interaction partner proteins. 

The intermediate sulfenic acid state can be further oxidized by a second molecule of H2O2 (or other 
oxidized substrates). This is relatively easy to achieve leading to the hyperoxidized state containing  
the sulfinic acid form of Cp.This form of the enzyme which is fully folded is catalytically inactive, and 
attains a new structure and activity. It is a decamer (a ring of five dimers) and, moreover, several of  
the rings form a hollow cylinder which is an efficient chaperonine re-folding misfolded proteins  
after inserting them into the hollow chamber. The sulfinic acid form can be reduced back to the 
sulfenic acid by the enzyme, sulfiredoxin, a reaction which needs the help of NADPH and ATP [28].  
The physiological significance of this process in signal transmission will be discussed in the next 
paragraphs. Even a further oxidation of the sulfinic acid form to the sulfonic acid form has been 
observed. However, this process is thought to be irreversible in vivo. 

3. Protein Disulfide Isomerase (PDI) in Oxidative Stress and Signaling 

Protein disulfide isomerase (PDI) and the isoforms of this enzyme, like peroxidredoxins, are highly 
abundant redox proteins of eukaryotic (and prokaryotic) cells which are located in the endoplasmic 
reticulum (ER) of eukaryotic cells and are deeply involved in the creation and regulation of oxidative 
stress in mammalian as well as in fungal cells. Excellent reviews exist describing the structure and 
function of PDI [29–31]. These authors consider the ER as the main source of oxidative stress in the 
cell which can be produced as a consequence of the unfolded protein response (UPR). The direct 
source of ROS (in particular H2O2) in this mechanism is ERO1 (an essential gene in yeast which has 
been studied intensively in relation to UPR) and supplies oxidation equivalents to PDI. 

The primary function of the enzymatic pathway involving PDI (in S. cerevisiae the isoforms Pdi1, 
Eps1, Eug1, Mpd1 and Mpd2) and Ero1is threefold: (i) oxidation of cysteine SH groups during 
attainment of the correct folding of secreted proteins in the ER; (ii) reduction of disulfide bridges 
which are incorrectly formed; and, (iii), isomerization of disulfide bridges which are often formed in 
the incorrect place in multi-cysteine secreted proteins. The ultimate sources of oxidation and reduction 
are molecular oxygen which is transformed to H2O2 by Ero1, and NADPH, respectively. Not suprisingly, 
PDI protein domains are members of the thioredoxin fold superfamily.They can interact in redox 
reactions with a number of additional partner proteins [29]. PDI seems to play a central role in 
induction of apoptosis [30,32,33] which includes a signaling pathway consisting of pro-apototic and 
anti-apoptotic modules. It is unclear at present how the adaptive (i.e., cell survival) and apoptotic (i.e., 
cell death) branches of this pathway are balanced. Very unexpected steps are included, like externalization 
of PDI from the ER to extramitochondrial membranes [29]. At present, a conclusive picture of the role 
of PDI in oxidative stress in fungi is not yet emerging. However, there can be no doubt that in the near 
future more interesting facts about the function of PDI in oxidative stress and signaling will be 
discovered, using the well known fungal model systems S. cerevisiae and S. pombe. 
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4. Signaling through Hydrogen Peroxide and the Function of Peroxiredoxins as Modulators  
of Signaling 

We would like to start this part of the chapter by giving examples of signaling through ROS or 
H2O2 in those cases where information about the signaling mechanism and the signaling partners is 
available. As has been stressed before, mammalian cells are in this respect much better known than 
fungal cells. However the mammalian examples can tell us what we can possibly expect. Another good 
example is supplied by S. pombe, a fungal system that is not closely related to S. cerevisiae. Both 
examples provide possible roadmarks for which to look in S. cerevisiae and other fungi. 

In those rare cases where detailed information about the fungal systems is available, we can point 
out the differences to mammalian cell systems. In principle, redox signaling can be divided into three 
different possible and partly documented mechanisms [19] discussed in the examples given below. 

Example 1: In this example from mammalian cells, an extracellular signal which is not itself  
a redox signal, is transformed into a redox signal in the cell addressing phosphotyrosine phosphatase 
1B (PTP1B) [34,35]. An excellent review including PTP1B was published recently [13]. Generally, 
PTPs in their active site carry a low pKa cysteine SH group which is prone to oxidation [36]. In the 
case described here, the non-redox signal (epidermal growth factor, EGF) is amplified and transmuted 
(discussed below) into a redox signal (H2O2), which transiently inactivates PTP1B by sulfenylation at 
the catalytic cysteinyl SH group of the enzyme [37]. This in turn leads to an increase in the tyrosine 
phosphorylation state of epidermal growth factor receptor (EGFR) which is a tyrosine kinase capable  
of autophosphorylation. This amounts to a feed-forward amplification of the signal. In this case, 
compartimentation of the H2O2 signal is reached because on binding of EGF to the EGFR, the latter is 
through endocytotic vesicular transport moved to the ER where it stimulates the ER-located Nox4  
(in the relevant epithelial cell cultures) to produce H2O2. The hydrogen peroxide originating from 
Nox4 in turn sulfenylates the receptor tyrosine kinase as well as the PTP1B. The former is activated  
by sulfenylation while the latter is inactivated. Both effects lead to a strong feed-forward reaction. 
Production of Nox4 is transcriptionally controlled in this system by the EGFR signaling pathway. 
Although this system is in our view one of the best described in mammalian cell H2O2 signaling, many 
open questions obviously remain. Above all, it is unclear how the signal created in the ER is further 
transmitted reaching ultimately the trancription machinery in the nucleus. It is known that EGFR 
activates c-myc and CREB. An equally important open question is the eventual down-regulation of  
this powerful signaling. This awaits further research in the future. As the key mechanistic steps occur 
in the ER, it is quite probable that the ER-located peroxiredoxin, PrxIV, and the ER-located PDI play  
a significant yet still unknown role in this process. Of note, the only S. cerevisiae NADPH oxidase 
identified biochemically so far, resides in the ER, so that the suggested signaling function of YNO1 in 
reorganization of the actin cytoskeleton during the cell cycle [38] could in part follow the mechanistic 
model described above. 

Other examples from mammalian cells can be found in the published literature [36,39–41]. 
Example 2: In this example, which has been mostly studied in yeast, a redox signal from outside is 

amplified in the cell to stimulate a defense response to oxidative stress by formation of a disulfide covalent 
linkage of peroxiredoxin to a partner protein resulting in a downstream transcriptional response [19]. 
Typically, as a result, a trancription factor forms an internal disulfide bridge which results in blocking 
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nuclear export, transfer to the nucleus and activation of the downstream oxidative stress response genes. 
The example was discovered in S. pombe [42]. The transcription factor governing the low level of oxidative 
stress defense reaction in this yeast is Pap1, the structural and functional homolog of the well-known  
S. cerevisiae trancription factor Yap1 which governs oxidative stress response. In S. pombe, Pap1 is 
under control by the H2O2 sensor Tpx1, one of the S. pombe peroxidredoxins. A similar disulfide bond 
formation in S. cerevisae is indirect, with the primary H2O2 sensor being the glutathione peroxidase, 
Gpx3, which then in turn via a disulfide cascade creates a disulfide bond on Yap1. A second pathway 
depends in a similar way on oxidation of Sty1, a MAPkinase (MAPK), activating the downstream 
transcription factor Atf1, which is likewise involved in oxidative stress response. This pathway is 
important for survival of high levels of H2O2, while the Pap1 pathway is involved in adaptation to low 
levels of H2O2 [42]. Of note, these important S. pombe redox signaling pathways have up to now only 
been studied using external H2O2. The important question is, of course, what is the still unknown 
internal source of H2O2 for signaling. Does S. pombe display redox signaling also in cases where the 
primary signal is not external oxidative stress? Other examples from S. pombe exist but are not 
described in detail here due to space restrictions [43]. 

Example 3: In this example the authors [19,27] propose their floodgate model (more appropriately 
called the adjustable buffer model) for the role of the yeast peroxiredoxin, Tsa1, in the response to an 
H2O2 signal. Tsa1 deficiency [44] as well as increased unregulated activity [45] result in accelerated 
mother cell-specific and chronological aging in S. cerevisiae. The floodgate model is presently a very 
attractive one. The experimental findings are consistent with the model however still without detailed 
proof of the molecular mechanism in fungi. 

The eukaryotic members of the peroxiredoxin protein family (but apparently not the prokaryotic 
ones) in addition to their defense function play an important role in hydrogen peroxide signaling, and 
suprisingly also as chaperones (when hyperoxidized), and are regulated mainly by the redox state of 
their active site cysteines, but also through phosphorylation [46] and other post-synthetic modifications 
like glutathionylation, and through a large number of partner proteins [47]. A general overview of  
redox-based modulation of signal transduction by peroxidredoxins is given by Janssen-Heiniger et al. [48] 
and Park et al. [47]. 

We want to discuss and make it plausible why H2O2, a molecule exerting considerable oxidative 
damage in cells, has nevertheless been chosen by “Mother Nature”, as a signaling substance. Signaling 
through H2O2 works well in eukaryotic cells (little is known about bacteria), because H2O2 is a stable 
non-radical substance occuring naturally through normal metabolic reactions that displays a sufficient 
half-life to be able to migrate (diffuse) for a few microns within the cell. H2O2 is electrically neutral 
and could diffuse through lipid bilayer membranes, however, in real life it is passing membranes bymeans 
of the aquaporin channels [49]. H2O2 is synthesized by “regular” metabolic reactions, by “leaky” 
electron transfer, but also by special reactions designed for the sole purpose of creating ROS. Several 
reactions come to mind and will be enumerated here, of which one (NADPH oxidases) will be discussed 
in more detail. It is reactive chemically towards its target proteins with the typical reaction being oxidation 
of a target SH group which is a reversible reaction. It acts locally (see below) without destroying 
cellular components outside the target area. It can be readily destroyed if no longer useful by a number 
of detoxification pathways (see Figure 1) which is essential for every signaling substance. Eukaryotic 
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peroxidredoxins are involved in both the destruction of H2O2 and in its transient stabilization through 
hyperoxidation of the peroxidatic sulfhydryl group (Figure 2). 

Prokaryotic peroxiredoxins cannot be inactivated by high hydrogen peroxide [24]. This resistance to 
high hydrogen peroxide is accompanied by absence of the flexibility of the C-terminus and around  
the resolving Cys. Therefore, the prokaryotic enzymes are not physiologically inactivated by hydrogen 
peroxide like the eukaryotic ones. Probably this means that the prokaryotic peroxiredoxins are not 
involved in signaling, only in oxidative stress defense. 

Peroxiredoxin is a secondary modulator of eukaryotic hydrogen peroxide signaling. The producer of 
H2O2 is (among other enzymes) typically an NADPH oxidase, in conjunction with a superoxide 
dismutase (SOD). The two enzymes may be tightly linked in the cell [16,40]. In a localized burst of 
H2O2, peroxiredoxin is locally hyperoxidized, as already mentioned above, leading to inactivation as  
a peroxidase and enhancement of the H2O2 signal and to a new function as a chaperonine. 

The target of the H2O2 signal is most often a phosphotyrosine phosphatase (PTP) [36], as has been 
described above in Example 1, but is not yet investigated in detail in fungal organisms. PTPs in turn 
influence protein phosphorylation through protein kinases, which are often key modules of cellular 
signaling. In order to do this, a certain minimum local concentration of H2O2 must be attained, which is 
around 10 mM while the typical, maximum bulk concentration of H2O2 measured in higher cells is 
about 0.1 μM (in resting cells) and 0.7 μM (after stimulation through a signal), four to five orders of 
magnitude lower [50]. Bulk intracellular H2O2 concentration above 0.7 μM lead to apoptosis [50]. It is, 
therefore, clear that the burst of signaling H2O2 must be strictly confined in time and space in the cell, 
unless unwanted oxidative stress reactions are elicited in the cell. This is achieved by the peroxidredoxin  
system which is the principal hydrogen peroxide degrading system in the cytoplasm. It efficiently 
removes the signaling substance after the signal has been transmitted, and it does not do it as long as 
peroxiredoxin is transiently inactivated by oxdizing the catalytic SH group to the inactive sulfinic acid 
state as mentioned above. Sulfiredoxin (Srx) reduces the sulfinic acid back to the thiol in an ATP  
and thioredoxin or glutathione-dependent reaction, thereby completing the oxidative regulation cycle 
of peroxiredoxin [51–55]. This means [19] the reversible opening and closing of a gate or buffer for H2O2. 

5. Metabolic Reactions Generating H2O2 

Several sources of H2O2 in fungal cells (and in higher cells) have been found. There are several 
obvious possibilities for the production of H2O2 in the metabolism of fungal cells. They have been 
listed in the literature: glyoxal oxidase and aryl alcohol oxidase [56], and the combined action of one 
electon transfer to oxygen in the respiratory chain of mitochondria in conjunction with superoxide 
dismutase (MnSOD) [57,58]. A further source of H2O2 is the combined action of NADPH oxidases 
with SOD which is highly regulated in space and time [16,40]. For the occurrence of NADPH oxidases 
in fungi, the reader is referred to the discussion of “Fungal NADPH Oxidases” below. Another source 
of H2O2 is PDI (protein disulfide isomerase), which in fungal cells like in all eukaryotes occurs in the 
endoplasmic reticulum and may be quantitatively more important for ROS production than the 
mitochondria [29,31]. The role of NADPH oxidases in signaling has up to now not been researched 
intensively in fungal systems as much as it has been in mammalian cells.  
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6. Fungal NADPH Oxidases and Their Function in Cell Differentiation 

The first report of a fungal NADPH oxidase goes back to Lara-Ortiz et al. [59]. In the beginning of 
research on fungal NADPH oxidases, the only well-known example of an NADPH oxidase (NOX enzyme) 
was the human enzyme, NOX2, which is located in the plasma membrane of macrophages/monocytes 
and plays an important role in non-specific defense against bacterial and fungal infections. Therefore, 
research concentrated on true orthologs of NOX2 which were expected to exist in fungal cells [60–62]. 
This means that at that time researchers were trying to find not only orthologs of the human defense 
enzyme but also orthologs of its regulatory subunits, which was in part misleading because the fungal 
NADPH oxidases reside in different branches of the evolutionary tree of IMR (integral membrane 
reductase) enzymes [63–65] and are also regulated in different ways—compare the part on sequence-based 
evolutionary trees of fungal NADPH oxidases. Human Nox2, also called gp91ph°x, is located in the 
plasma membrane and regulated at the enzyme level by regulatory subunits which are cytoplasmic in 
unstimulated cells but transferred to the plasma membrane after stimulation of the macrophage cells. 
More than six regulatory interaction partners of pg91phox are known in the macrophage (and also in 
other human cell types), of which only two share homology with corresponding regulatory subunits of 
NADPH oxidase enzymes in fungi: NoxR (corresponding to p67ph°x) and the small GTPase, rac [62]. 
The function of NoxR in fungi is underscored by the mutant phenotype, for instance in A. nidulans, 
which is similar to the phenotype of the NoxA deletion, resulting in deficiency of cleistothecia formation. 
However, members of the NoxR family of fungi occur also in species that do not obviously contain 
orthologs of the classical fungal NADPH oxidases, and therefore presumably have additional new 
functions unrelated to Noxs. In filamentous fungi, the two classical protein families, NoxA and NoxB 
(in some fungi called Nox1 and Nox2) both show interaction with NoxR. Additional regulatory 
subunits are assumed to exist (based on the recognizable protein interaction domain on NoxR). 
Interactors were genetically identified in Epichloe festucae and found to be BemA and Cdc24, 
homologs of which are known to be involved in polarity establishment in fungal cells, and 
consequently in hyphal growth [66]. The physiological functions of the two enzymes, NoxA and 
NoxB, were found by analyzing the phenotype of the corresponding deletion mutants, and in some 
cases by screening for extragenic suppressors and by studying the action of NADPH oxidase inhibitors 
(for instance, diphenylideneiodonium chloride). In all cases, the mutant phenotypes were either a  
defect in cell differentiation (cleistothecia formation), so that these strains were female-sterile (NoxA 
deficiency, [62]), a defect in spore germination (Noxb deficiency, [67,68]), or a defect in the symbiotic 
interaction with a host plant in the case of plant parasitic or mutualistic fungi (NoxA deficiency [69]). 
The filamentous fungi studied most carefully in this respect were Aspergillus nidulans [59], Podospora 
anserinum [67,68,70], Neurospora crassa [71], Epichloe festucae [66,69], and others. In none of these 
cases, the molecular details of signaling which would explain the mutant phenotypes, are known [62]. 
However these findings are clearly in line with the general idea that ROS in fungi serve both as 
sources of oxidative stress, defence purposes (in the interaction with plants), and signaling to induce 
cell differentiation. 

The third classical NADPH oxidase of fungi, NoxC (also called Nox3 in some species), does not 
interact with NoxR, carries two or more EF-hand calcium ion binding domains (like human Nox5) 
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pointing to calcium regulation, is sequence–wise not closely related to either NoxA or NoxB, and 
functionally only known in exceptional cases, mostly in plant pathogenic fungi [62]. 

NADPH oxidases are without exception located in biological membranes. They comprise 6 or 7 
transmembrane helices, and produce superoxide in a vectorial way so that superoxide (in the example 
of the macrophage enzyme) is produced on the extracellular side of the plasma membrane and  
molecular oxygen and NADPH are consumed in the cytoplasm. The unique reaction catalyzed by 
NADPH oxidases is in need for three different cofactors: NADPH, FAD, and (two different) b-type 
cytochromes, as well as the substrate, dioxygen (Figure 3).The reaction equation can be summarized 
as: NADPH + 2O2 �NADP+ + 2O2� + H+. 

 

Figure 3. Hypothetical structure of a typical NADPH oxidase. This structural model is 
based on bioinformatics, cell fractionation and biochemical data concerning the human 
Nox enyzmes (NOX1, 2, 3, and 4); no crystallographic or NMR structural data are available 
yet. Nox enzymes comprise typically about 500 amino acids and are exclusively located in 
lipid bylayer membranes, like the plasma membrane or the ER membrane. Large dots are 
highly conserved amino acids. The reaction center transferring a single electron to oxygen 
is the upper b-type heme in this scheme. The enzyme consists of six transmembrane helices.  
The two b-type hemes are coordinated with histidine residues between helices III and V.  
The enzyme contains binding sequences for NADPH as well as for FAD in its cytoplasmic 
tail (after Bedard and Krause 2007 [60]).  
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Superoxide itself is a well known oxygen radical which produces severe oxidative stress and 
oxidative damage to nearly all cellular components mostly through the formation of follow-up 
products, the most important of which is the highly reactive OH radical. In the defense reactions of 
macrophages, NADPH oxidase cooperates with myeloperoxidase and other peroxidases, forming a set 
of very highly active bactericidal compounds, like the hypochlorite anion, peroxonitrite, and others. 

However, the picture of NADPH oxidases as a class of defense enzymes has been greatly changed 
and enlarged in recent decades and our present view of this class of enzymes now includes catalysis of 
specialized chemical reactions and also signal transduction. One example is synthesis of the biologically 
active form of the hormone, thyroxine, by DUOX2 and a thyroidal peroxidase in the thyroid gland in  
a radical reaction using iodide and H2O2 [60,61]. Signal transduction is another more general and more 
important new function of NADPH oxidases based on the production of ROS as signaling compounds 
which can signal cell proliferation but also cell differentiation [13]. The best available evidence for  
a signaling ROS exists for hydrogen peroxide in human cells as well as fungal cells. Signaling by 
NADPH oxidases in fungi [62,67] was studied in detail in connection with cell differentiation in 
Aspergillus [59], Podospora [70], and Neurospora [71]. These examples relate to the formation of 
fruiting bodies needed for sexual reproduction, spore germination or interaction with a plant host and 
without exception concern mutations in the classical fungal NADPH oxidases NoxA, NoxB, and NoxC 
or the regulatory fungal NOX subunit, NoxR, of filamentous fungi (see also the cladogram given  
in Figure 4). The mutant phenotypes are pronounced, leading, for instance, to female sterile mycelia. 
However, there is presently no information available on the molecular mechanisms which would 
explain how these fungal NADPH oxidases or the ROS produced by them are involved in the 
physiological cell differentiation in fruiting bodies. 

The NADPH oxidase of S. cerevisiae, Yno1 [38] is not closely related to the classical fungal 
NADPH oxidases NoxA, B, and C, is located in the ER and was studied by in vitro biochemical activity 
determination. The deletion of the gene confers no defect in cell differentiation, but leads to hypersensitivity 
to antibiotics inhibiting the actin cytoskeleton. Subsequent work [16] showed that Yno1 is directly 
coupled to the superoxide dismutase, SOD1, so that the desired signaling substance H2O2 is tightly 
controlled in space (and time) leaving no possibility for the primary product, superoxide, to engage in 
other, deleterious or unwanted metabolic pathways. The topic of ROS sequestration is actively researched 
in many experimental systems, also in higher cells. Toledano and co-workers [40] argue that hydrogen 
peroxide as a signaling molecule requires protection of those proteins which are not immediately 
involved in the signaling process. The physiological endpoint found by Reddi and Culotta [16] is the 
regulation of mitochondrial respiration depending on carbon source and growth phase. This work and 
the work by Leadsham et al. [72] clearly shows that Yno1’s function becomes most obvious when 
yeast cells use up glucose and reach the point of diauxie. Under these conditions, certain respiratory 
defective mutants induce a burst of ROS which is under control of Ras2 activity leading to apoptosis, 
however, is completely abolished in the Yno1 deletion mutant. This finding would indicate a function 
for Yno1 in controlled cell death of yeast. �  
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Figure 4. Phylogenetic relationships among the fungal members of the IMR (integral 
membrane reductase) protein superfamily (see also text for a discussion). 

The cladogram shown was calculated (Vector NTI® Software Package, Life Technologies, Carlsbad, 
CA, USA) using 60 representative fungal IMR protein sequences available in the sequence databanks 
(http://www.ncbi.nlm.nih.gov/gene) by December 2014. The length from the (calculated) origin of  
the tree to each protein sequence is proportional to the number of amino acid exchanges. The resulting 
phylogenetic tree is clearly divided into six subfamilies which are separated from each other by deep 
valleys. In addition, a small number of outliers are shown, which are not members of the six subfamilies. 
They are discussed in the text. Starting from the bottom, the subfamilies are: blue: NoxA or Nox1 
(please note that there is no agreed unified nomenclature and researchers working with different fungal 
species have invented different names for the enzymes), in some but by no means all proteins of  
the NoxA group, in vitro biochemical experiments have shown NADPH oxidase activity–the same is 
true for NoxB and NoxC; green: NoxB or Nox2; brown: NoxC or Nox3; red: the subfamily of Yno1 
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homologs, as discussed in the text, in vitro biochemical activity measurements clearly show NADPH 
oxidase activity for the founding member, S. cerevisiae Yno1 (shown in red), the other (non-cerevisiae) 
members of the group were not tested biochmically, but they could be NADPH oxidases due to their 
close sequence similartiy to Yno1; light blue: the Fre8 group, S.c. Fre8 (but not the other FRE genes) 
showed weak NADPH oxidase activity, the other three members were not tested; yellow: the ferric 
reductase subfamily, some, but by no means all of the members were tested for biochemical activity 
reducing ferric iron complexes during the iron uptake process in S. cerevisiae, the subfamily members 
from other fungi were mostly not tested. 

Only the gene names used in the sequence databases are used in the figure. 
Abbreviated species names (in alphabetical order) in the cladogram: 

A. g. Ashbya gossypii 
A. c. Acremonium chrysogenum 
A. f. Aspergillus fumigatus 
C. a. Candida albicans 
C. g. Candida glabrata 
D. d. Dictyostelium discoideum 
D. h. Debaryomyces hansenii 
F. o. Fusarium oxysporum 
F. v. Fusarium verticillioides 
G. z. Gibberella zeae 
K. l. Kluyveromyces lactis 
L. e. Lodderomyces elongisporus] 
L. b. Laccaria bicolor 
L. t. Lachancea thermotolerans 
M. g. Magnaporthe grisea 
M. o. Magnaporthe oryzae 
M. t. Myceliophthora thermophila 
N. c. Neurospora crassa 
N. h. Nectria haematococca 
N. p. Neofusicoccum parvum 
P. a. Podospora anserina 
R. o. Rhizopus oryzae 
S. c. Saccharomyces cervisiae 
S. char. Stachybotrys chartarum 
S. k. Saccharomyces kudriavzevii 
S. m. Sordaria macrospora 
S. s. Sporothrix schenckii 
T.d. Torulaspora delbrueckii 
T. m. Togninia minima 
T. t. Thielavia terrestris 
V. d. Verticillium dahliae 
V.p. Vanderwaltozyma polyspora 
Z. r. Zygosaccharomyces rouxii 
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NADPH oxidases produce superoxide as a primary product, which is in many cases in living cells  
is the source of deleterious reactive oxygen species (ROS). Strict compartmentalization as well as 
regulation of enzyme activity and “channeling” of the radical through immediate interaction with SOD 
have led to the modern picture of NADPH oxidases involved in signaling. Some of the known examples 
of ROS signaling in fungi are presented in the present paper. It is attempted to cover the literature up  
to 2014. However, it also seems clear that the same NADPH oxidase systems whose primary role is 
signaling, can, under certain pathological conditions, be also a source of oxidative stress. This was first 
discovered and described in mammalian cells [73]. 

7. Sequence-Based Phylogenies of IMR Proteins 

We now come to the question of sequence-based phylogenies of the NOX/IMR protein superfamily in 
fungi in relation to the biochemical function of these enzymes. IMR (integral membrane protein) is  
an acronym coined by Grissa et al. [63] which encompasses membrane proteins of similar sequences 
including NADPH oxidases and ferric reductases, and very probably enzymes with further still undiscoverd 
biochemical activities. There appear to be two well-separated branches in the sequence-based phylogeny 
of this protein superfamily as calculated by Grissa et al. [63], with all the true NOXes known at the 
time falling into one branch of this phylogeny and the ferric reductases (integral membrane reductases) 
into a separate one. However, we showed by in vitro biochemical methods that YNO1, located in the 
published phylogeny in subfamily XVII of IMR proteins together with FRE8 (showing only a small 
superoxide producing capacity), is a bona fide NADPH oxidase, while the other FRE genes of yeast 
(FRE1 through FRE7) are not [38]. We cannot, therefore escape the conclusion that at least one 
subfamily of IMRs, which is attributed to the ferric reductase branch by Grissa et al. [63], codes not 
for ferric reducase gene products, but for a biochemically proven NADPH oxidase. 

This is further documented in Figure 4. To illustrate the YNO1 subfamily as defined in Figure 4 
even more, we have systematically compared the YNO1 sequence over its whole length with close 
relatives from C. albicans and C. glabrata, as well as with its S. cerevisae paralogs located in the FRE 
subfamily. Yno1 and the best match from C. glabrata (CAGL0K05863g) share 40.9% identity and 
69.9% similarity. By the same criteria, Yno1and its paralog Fre1 share only 18.2% identity and 47.8% 
similarity. By the way, Yno1 shares only a weak identity and similarity with the typical members of 
the fungal NoxA, B, and C proteins. Apparently, the same biochemical activity, NADPH oxidase, can 
be reached in several quite different subfamilies of the large IMR protein superfamily. 

It would be interesting to compare the three-dimensional (3D) structures of NOX and ferric reductase 
enzymes with the one of Yno1 to see if, perhaps, the Yno1 structure is more closely related to the 
NOXes than to the ferric reductases. Protein structures generally show a stronger conservation and 
correlation with function, than sequence alone. Unfortunately, X-ray crystallography has so far not yielded 
any structures of the membrane–bound IMR proteins. The argument by Lalucque and Silar [74] linking 
fungal NOX enzymes with multicellularity would correlate well with S. cerevisiae and S. pombe 
having no NOX enzymes (based on sequence criteria alone), while P. anserina, A. nidulans, and many 
other filamentous fungi do contain coding sequences for NOXA, B, and/or C enzymes. However, the 
monocellular S. cerevisiae yeast does contain a bona fide NOX enzyme, so the generalization that 
Noxes are enzymes of multicellularity [74] is certainly no longer true. One could, however, argue that 
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S. cerevisiae is a close relative of a multicellular filamentous fungal plant parasite (A. gossypii) and  
was probably derived from an ancestral plant parasite in the not too distant evolutionary history [75] 
which could possibly explain the presence of a bona fide NADPH oxidase in this yeast. 

Very highly similar sequences to the one of Yno1 exist in C. albicans as well as in C. glabrata  
(see Figure 4). C. albicans is a dimorphic human pathogen and hyphal growth seems to be necessary 
for pathogenicity. The phenotype of the homozygous deletion mutant of the C. albicans Yno1 ortholog  
(C2 03530W A) is currently being investigated and should shed additional light at the physiological 
functions of this group of fungal NADPH oxidase enzymes. 

8. Oxygen Radicals in the Interaction of Plants with Their Fungal Symbionts and Parasites 

A newly emerging field is the long-distance signal tranduction in plants interacting with their fungal 
symbionts and parasites and likewise the response elicited in the fungal cell during the successful 
invasion leading to mutualistic or parasitic interaction with the plant. This phenomenon will be viewed 
here only from the perspectice of the fungal cell. 

The mechanism of signal transduction in plants is only now beginning to be understood. ROS and 
calcium ions play a major role in this process [76]. In this field, a major aim is to gain knowledge 
about plant NADPH oxidases which are the most important sources of ROS for signal transduction [77].  
For instance, in A. thaliana 10 different Rboh (respiratory burst oxidase homologue) genes exist  
which are called Atrboh and have specialized functions for the life cycle and defense of this plant.  
A more specialized update was given by Torres et al. [78] concerning ROS signaling of the plant in 
response to pathogens. 

A finding that is fascinating and not understood at all at the present time is that although plant 
defense relies heavily on NADPH oxidases, the so-called Rboh enzymes, the fungi also need NADPH 
oxidases for the successful invasion of and interaction with the plant host. In most cases, the NoxA, B 
or C enzymes are concerned. 

A good example is the infection of rice leaves by Magnaporthe grisea. Both the NoxA and the 
NoxB genes of the fungus are needed for the succesful penetration, in particular for the formation of 
the appressorium. The respective deletion mutants of the two Nox genes have lost virulence and the 
defect is in the infection process [79]. 

Another example is known in somewhat more molecular detail. NoxA activation through rac is 
required to establish a mutualistic symbiotic association between Epichloe festucae and its host, the 
perennial ryegrass Lolium perenne [66,69,80,81]. The fungal hyphae grow in the extracellular space of 
the plant. In the absence of NoxA, in planta, the hyphae overgrow and branch and eventually kill the 
plant, which shows stunted growth. If the fungus is grown on agar plates in the absence of plants or 
plant materials, no strong phenotype of the NoxA deletion mutation is shown. Obviously, the 
mutualistic relationship between plant and fungus requires a delicate balance of redox signaling which 
is not nearly understood at present. 

9. ROS Production and the Degradation of Lignocellulose by Fungi 

In a short review article [82], the current status of biofuel production from lignocellulose is 
described. The US this year opened the first factories which produce bioethanol from cellulose (corn 
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stover) in large quantities (more than 300 million liters per year at their present capacity). However, 
the first step is still the energy demanding conversion of cellulose and hemicellulose to sugars by 
purely chemical and physical means (heat and NaOH). The true breakthrough will be the biological 
conversion by fungi or fungal enzymes (white rot fungus, and others) which can degrade lignocellulose 
at room temperature and physiological pH. This process consists of radical reactions and is absolutely 
dependent on the enzymes, lignin peroxidase and laccase, and on ROS produced in the fungi by glyoxal 
oxidase, aryl alcohol oxidase, and NADPH oxidases. These processes are up to now poorly known to 
mycologists and biotechnologists but are under intensive research presently. If we know more about 
the natural processes, another big challenge will be the design of a commercial process based on the 
degradation of lignocellulose. 

Surprisingly, both the degradation of lignin and of cellulose which are covalently linked in wood 
(through hemicellulose), require oxidative steps. Both extracellular and intracellular enzymatic reactions 
are required. 

Cellobiose dehydrogenase (reviewed in Baldrian and Valaskova [83]) is described as an example of 
oxidative degradation. The disaccharide is oxidized at the reducing end C1 atom to the corresponding 
gluconolactone, and is subsequently converted to the open chain gluconic acid. The enzyme uses  
FADH2 and b-type cytochrome as redox co-enzymes and interacts with cytochrome c and/or quinones 
in one electron transfer reactions. The ultimate source of oxidation equivalents for this reaction is 
presumably H2O2. 

The degradation and separation of lignin from cellulose in biotechnological processes presently is 
still done chemically. It serves the purpose of making cellulose more accessible to the enzymes 
degrading it. The degradation of lignin in nature is cost-efficiently performed by basidiomycete white 
rot fungi, and Phanerochaete chrysosporium is well researched with respect to this process [84]. 

Laccases are an important class of enzymes that are needed in plants for lignin synthesis and in 
fungi for lignin degradation [84]. Laccases are extracellular agents catalyzing crucial steps in lignin 
degradation by fungi. These well studied 4Cu enzymes (“blue enzymes”) reduce dioxygen to water in 
one-electron steps creating phenolic radicals (for instance semihydroquinones) leading to cleavage of  
C-C bonds in the phenylpropanoid subunits of lignin (so far shown only using soluble lignin model 
compounds), thereby cleaving the lignin macromolecule to smaller molecules. Laccases accomplish 
lignin degradation in conjunction with the peroxidases discussed in the next paragraph, but they are not 
per se essential for ligin degradation, as for instance the white rot fungus Phanerochaete chrysosporium 
does not contain a recognizable laccase-encoding gene in its genome sequence. The action of laccases 
creates considerable oxidative stress in the vicinity of fungal cells growing on wood. H2O2 is not 
involved in the known mechanism of the laccase reaction. 

10. Lignin Peroxidases (LiP) and Manganese Peroxidases (MnP) 

Apparently these peroxidases play an essential role in the extracellular degradation of lignin by fungi, 
as suggested by genetic and genomic data [84]. Peroxidases are heme proteins and employ H2O2 as  
a substrate, form an oxo-ferryl compound (recognized spectroscopically) in a first step, thereby 
reducing H2O2 to H2O; and a compound II in a second step, in which one electron is transferred to  
an aromatic non-phenolic structure of lignin. Thus, degradation by a radical mechanism is started. 



Biomolecules 2015, 5 335 
 

 

Most frequently, bonds in the side chains of phenylpropanoid units are broken leading to a variety of 
small molecule products (examples are a number of benzoic acid derivatives). 

Manganese peroxidases (MnPs) also use H2O2 as a substrate, but oxidize Mn2+ to Mn3+, a highly 
oxidizing diffusible reagent which is believed to help degradation of sterically hindered moieties of 
lignin. A third type of extracelllular peroxidases (versatile peroxidases or “novel peroxidases”, NoP) 
have also been found but are less well researched. The genome of P. chrysosporium contains 10LiP,  
5 MnP and one NoP-encoding genes [85]. 

11. The Use of Fenton Chemistry by Wood-Degrading Fungi 

It is remarkable that processes like the Fenton and Haber-Weiss reactions are employed in the life 
cycle of fungi growing on wood, which produce highly toxic and aggressive molecular products like 
the hydroxyl radical and are avoided as much as possible in the cellular metabolism of prokaryotes as 
well as eukaryotes. Consider the careful avoidance of free ferrous ions in living cells, which are 
complexed in cellullar stores where they cannot take part in the unwanted production of oxygen 
radicals. The same applies to the Cu+ ions which in a similar way can support the Fenton reaction [86]. 
In the case of the degradation of wood by fungi, the “strong” chemistry of the Fenton reaction seems to 
be a way to break up lignin and recycle biologically the enormous amount of dead biomass of woody 
plants. The process is of course extracellular and highly controlled (see below). A detailed knowledge 
of this process and its regulation would be highly desirable for the development of the “second 
generation” of biofuels which requires the degradation and fermentation of the non-edible waste parts 
of plants, like for instance corn stover. In a further step to be taken in the future, even the woody parts 
of trees which remain in millions of tons in the timber industry processing of trees, could be used. 

The strategy to use Fenton chemistry for lignin degradation is mainly used by the basidiomycete 
brown rot fungi, which express less extracellular peroxidases than the white rot fungi and digest mainly 
the cellulose part of wood. The fungi which were mainly studied in this respect are Gloeophyllum 
trabeum [87] and Postia placenta [88]. In order to produce sufficient activity and amounts of hydroxyl 
radicals, these fungi have invented two additional strategies: First, the secretion of either one or  
both of two quinone compounds which are efficient redox cyclers capable of one-electron transfer 
reactions and necessary for the extracellular generation of superoxide for the Fenton process: these are  
2,5-dimethoxy-1,4-benzoquinone (2,5 DMBQ) and 4,5-dimethoxy-1,2-benzoquinone (4,5 DMBQ). 
Both compounds are produced as downstream metabolites of lignin degradation [87,89]. Second, these 
fungi secrete oxalic acid (also produced from lignin degradation metabolites) which chelates iron  
in the extracellular space [90]. The chelated Fe2+ ions are susceptible to oxidation and support the key 
Fenton reaction with H2O2. The process is depicted in Figure 4 of Bugg et al. [84]. A very similar but 
quantitatively less important Fenton process is used also by white rot fungi [91]. 

All of the processes described so far, with the single exception of the laccase reaction, require H2O2. 
The known sources of H2O2 in fungal cells have been listed above in the part on Metabolic Reactions 
Generating H2O2. �  
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12. Further Degradation Products of Lignocellulose 

Enzymatic breakdown of cellulose and hemicellulose is straightforward leading to glucose and  
other monomeric sugars and sugar derived metabolites (like gluconic acid, see above). These metabolites 
are used as carbon sources by the wood-rotting fungi, if no other carbon sources are available, and  
are extremely valuable for use in a new generation of bio-ethanol production facilities [82].  
Lignin degradation is thought to be (at least in part) necessary to enable the attack of lignocellulose by 
extracelllular cellulases. 

The processes which can solubilize and liberate small molecules representing partial structures of 
lignin are well researched and include a large variety of structures which are all rationally derived  
from the phenylpropane building blocks of this irregular and cross-linked polymer [84]. Most important 
are benzoic acid, benzaldehyde, cinnamic acid, substituted biphenyls, substituted diphenyl ethers, 
acetophenone, and many others, justifying the attempts to create novel bio-refinery processes and 
extracting industrially valuable chemicals. However, these downstream processes are not the subject of 
the present review paper. 

13. Conclusions 

We have, in this study, attempted to give an overview of three special aspects of oxidative stress  
in fungi: ROS as signaling molecules and NADPH oxidases as a major source of ROS; the role of ROS 
in the interaction of fungi with their plant hosts; and the extracellular degradation of lignocellulose by 
fungi utilizing ROS for this purpose. In the kingdom fungi, like in animals and plants, oxidative stress 
is both a substantial challenge for cellular survival that must be overcome by appropriate defense 
systems, but also something that can be used for pro-survival purposes in the specific situations of 
fungal cells. Several highly developed uses of oxygen radicals, ROS and the generation of oxidative 
stress come to mind and were reviewed above: 

(i) The use of ROS (in this case H2O2) for intracellular signaling in the decision between growth 
and proliferation on the one hand, and growth arrest and cell differentiation on the other. This 
kind of signaling has to be compared with H2O2 signaling in mammalian cells, where much 
more information is available and the parallels but also the differences between the two 
signaling systems must be clarified. 

(ii) The interaction of fungi with their plant hosts, both in parasitic and symbiotic relationships. 
(iii) The degradation of lignocellulose, which is an environmental process of overriding importance 

for homeostasis in the biosphere. Lignocellulose can only be degraded in nature if oxygen 
radicals attack this highly resistant polymeric structure. The process must therefore take place 
in the extracellular space and the cells which use this process for supplying carbon sources for 
growth must, on the other hand, protect themselves against its detrimental consequences. 

While it was traditionally thought that one electron transfer processes occurring erroneously in the 
mitochondrial respiratory chain are the main or only intracellular source of ROS (apart from such 
specialized systems as mammalian macrophages), it is now clear that ROS (superoxide radical anion 
and H2O2) are formed “on purpose” in every cell, by NADPH oxidases. We have therefore included  
a discussion of the present state of research on fungal NADPH oxidases. 
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Defense systems against oxidative stress are numerous and highly conserved in all eukaryotic and 
even prokaryotic cells. Many of the molecules, used normally for defense, can also play a role in 
signaling. As foremost examples we have discussed here the function of peroxiredoxins and of protein 
disulfide isomerases in fungal cells. 

Taken together, the study of fungal oxidative stress, its use in the life cycle of fungi and its 
importance for cycles of matter in the biosphere, are a presently intensively researched topic and will 
be so even more in the future. 
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