
A Workflow Runtime Environment for Manycore Parallel
Architectures

M. Janetscheka,∗, R. Prodana,∗∗, S. Benedictb

aUniversity of Innsbruck, Austria
bHPCCLoud Research Laboratory, SXCCE, India

Abstract

We introduce a new Manycore Workflow Runtime Environment
(MWRE) to efficiently enact traditional scientific workflows on modern manycore
computing architectures. MWRE is compiler-based and translates workflows specified
in the XML-based Interoperable Workflow Intermediate Representation (IWIR) into
an equivalent C++-based program. This program efficiently enacts the workflow as a
stand-alone executable by means of a new callback mechanism that resolves depen-
dencies, transfers data, and handles composite activities. Furthermore, a core feature
of MWRE is explicit support for full-ahead scheduling and enactment. Experimental
results on a number of real-world workflows demonstrate that MWRE clearly outper-
forms existing Java-based workflow engines designed for distributed (Grid or Cloud)
computing infrastructures in terms of enactment time, is generally better than an exist-
ing script-based engine for manycore architectures (Swift), and sometimes gets even
close to an artificial baseline implementation of the workflows in the standard OpenMP
language for shared memory systems. Experimental results also show that full-ahead
scheduling with MWRE using a state-of-the-art heuristic can improve the workflow
performance up to 40%.

Keywords: scientific workflows, manycores, workflow execution plan, full-ahead
scheduling

c© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (see
http://creativecommons.org/licenses/by-nc-nd/4.0/)
DOI: https://doi.org/10.1016/j.future.2017.02.029

1. Introduction

Nowadays, computers exhibit an ever higher number of heterogeneous processing
cores with a growing trend to combine general-purpose CPUs with specialized comput-
ing units. As a result, modern shared memory heterogeneous manycore systems have
become increasingly complex to program. Traditional programming paradigms for

∗Corresponding author
∗∗Principal corresponding author

Email addresses: matthias@dps.uibk.ac.at (M. Janetschek), radu@dps.uibk.ac.at
(R. Prodan), shajulin@sxcce.edu.in (S. Benedict)

shared memory computers have their roots in symmetric multi-processing and, there-
fore, are struggling to fully exploit the performance of today’s heterogeneous systems.

Distributed computing infrastructures (DCI) such as Grids and Clouds are hetero-
geneous by definition for which a large number of programming methods and paradigms
exist. One of the most successful paradigms for implementing high-performance com-
puting applications on DCIs are scientific workflows, originally designed to easily cre-
ate large and complex applications by reusing existing (often legacy and monolithic)
software components and assembling them through well-defined control flow and data
flow dependencies. Existing DCI workflow engines are currently mature and come
with rich ecosystems that support the user in all aspects of the workflow life-cycle in-
cluding creation, scheduling, execution, monitoring and steering, interfaced towards
the domain scientists and ease of use rather than the computer science underneath.

Because of the similarity in terms of scale and heterogeneity, workflow systems
represent today a promising alternative for development and execution of scientific
applications on shared memory heterogeneous manycore architectures. Moreover, as
large-scale DCI infrastructures are nowadays composed of powerful manycore parallel
machines, exploiting them in an efficient fashion becomes an increasingly important re-
quirement. However, DCI systems are inherently different from shared memory many-
core systems. The parallelism in DCI applications is of coarse-grained nature because
of the high overheads and latencies involved with moving the data and computation be-
tween physically distributed systems. To achieve performance in such environments,
the computational tasks need to be large enough to hide these overheads and laten-
cies. DCI workflow systems are typically designed as external services that efficiently
distribute a relatively small number of computational tasks with high submission over-
heads and large data transfers. While such overheads are acceptable in distributed
systems, tightly-coupled manycore parallel machines are much more sensitive to la-
tencies and other sources of performance penalties. The parallelism in shared memory
manycore systems is usually of fine-grained nature dealing with a high number of small
tasks and insignificant overheads and latencies compared to DCI systems.

We proposed a new Manycore Workflow Runtime Engine (MWRE) in [10] designed
to test the viability of the workflow paradigm on shared-memory manycore systems
and identify its limitations and constraints. This paper extends our previous work [10]
by explaining our workflow engine in more detail, presenting additional experiments
showing that full-ahead scheduling is viable on manycore computers, and discussing
how we can further improve performance by applying workflow transformations. More
specifically, we aim to research how the workflow model, traditionally tailored for
coarse-grained parallelism, can cope with fine-grained parallelism typically found in
shared memory manycore applications. We purposely designed MWRE to efficiently
exploit the low latency characteristics and resources of manycore parallel architectures,
with special focus on efficient support for multi-objective full-ahead scheduling and en-
actment optimization techniques. Its distinguishing characteristic is that it compiles an
input workflow to an imperative stand-alone workflow program, instead of interpreting
and orchestrating the workflow specification as traditionally done by today’s scientific
workflow engines acting as external services. MWRE is based on a source-to-source
compiler able to process abstract scientific workflows in the Interoperable Workflow
Intermediate Representation (IWIR) [18], a common workflow specification developed

2

in the European SHIWA project (SHaring Interoperable Workflows for large-scale sci-
entific simulations on Available DCIs)1 that enables translation of workflow across
four major scientific workflow systems: ASKALON [5], MOTEUR [8], Triana [21]
and WS-PGRADE [12]. Using an activity repository, the compiler generates a stand-
alone C++ workflow program that independently executes on the underlying manycore
infrastructure with the help of a workflow engine, linked as an external shared C++
library. Our engine uses a novel low-overhead callback mechanism to resolve de-
pendencies, transfer data, and handle composite activities, rather than high-overhead
reflection and type introspection as done in existing DCI engines.

MWRE workflow applications can also be used together with traditional workflow
engines, e.g. as sub-workflows of a larger distributed workflow.

The paper is organised as follows. Section 2 gives a short introduction to scientific
workflows and related concepts. Section 3 discusses the related work. Section 4 de-
scribes the architectural design of our new workflow engine, followed by an in-depth
description on our workflows enactment technique in Section 5 and of our source-to-
source compiler in Section 6. Section 7 evaluates the performance, overheads and
scalability of our engine and Section 8 concludes the paper.

2. Model

The design and implementation of scientific workflows consists of two parts: an
abstract part and a concrete part. We give a short overview of these two parts in the
following subsections.

2.1. Workflow design: the abstract part

Figure 1: An abstract part of a scientific workflow.

The abstract part (see Figure 1) of
a scientific workflow specification com-
prises a hardware and middleware ag-
nostic (and therefore easily portable) de-
scription of the workflow structure, the
activities involved (identified by a unique
name and a type), and the data and con-
trol flow dependencies between the ac-
tivities. The individual activities are
treated as black-boxes such that only
the input and the output signatures are
known.

There are usually two different types
of workflow activities:

1. Atomic activities are basic indivisible computations units such as a legacy codes;
2. Composite activities combine several fine granular workflow activities, including

atomic and other composite ones, to form coarse granular activities and impose
a control flow on the contained inner activities.

1http://www.shiwa-workflow.eu/

3

Typical composite activities are sequential and parallel loops, conditional activities,
and sub-workflows.

2.2. Workflow implementation: the concrete part

The concrete part of a workflow contains the hardware and middleware-dependent
implementations of the atomic activities and their accompanying meta-information.
This part is often highly specific to each individual workflow system and the underly-
ing DCI. It usually contains information about the available activity implementations,
locations where they are installed, how they can be executed, and any other further
information indented to help the workflow engine in selecting the most appropriate
activity implementation.

2.3. Workflow enactment

A workflow engine executes a workflow instance (operation usually called work-
flow enactment) by traversing the DAG representing the workflow structure, determin-
ing the state of the individual activities, transferring data from finished activities to their
successors in the dependency graph, unrolling composite activities and replacing them
with the resulting subgraph, and delegating the actual execution of atomic activities to
the scheduling and execution subsystems. We call the resulting DAG where composite
activities have been replaced with their contained subgraphs enriched with additional
state information a Workflow Execution Plan (WEP).

We distinguish between two types of workflow enactment modes:

• In early enactment mode the engine re-evaluates the WEP as soon as there are
activity state changes, and tries to complete it as early as possible. This mode
usually comes with a much higher overhead, but results in a more complete
WEP comprising more information, which allows the scheduler to better plan
the workflow execution on the underlying resources;

• In late enactment mode (also called lazy evaluation mode) the engine only re-
evaluates and completes the WEP when it is absolutely necessary for the work-
flow enactment, and only partially completes it as far as it is required for contin-
uing the enactment.

2.4. Workflow scheduling

Scheduling describes the process of mapping atomic activities to available comput-
ing resources where they are executed. A concrete mapping of activities to comput-
ing resources is called workflow schedule. The scheduler usually tries to optimize the
schedule by maximising or minimizing a given utility function, typically the overall
execution time.

To be able to produce an optimal mapping the scheduler need to know the resource
requirements of an individual activity in advance. We assume in this paper that the
scheduler has accurate knowledge of the resources required by an individual activity,
but in practice obtaining this knowledge is still a steep challenge.

Existing scheduling algorithms can be broadly divided into two categories [25]:

4

• Just-in-time scheduling algorithms only consider the next activities to be sched-
uled when deciding on a mapping and ignore the rest of the WEP. They are
usually linear in complexity with the number of activities (i.e. O(N)) and come
with a low overhead, but due to limited information the generated schedule may
not be that good;

• Full-ahead scheduling algorithms use the entire WEP when deciding on a map-
ping and try to find an optimal schedule in the search space. They usually come
with a much higher overhead, but consider more workflow information and there-
fore, produce in general better results. Generating a full-ahead schedule is an
NP-hard problem [24] and therefore, most existing full-ahead scheduling algo-
rithms are approximate heuristic algorithms [22].

3. Related Work

Most scientific workflow systems like ASKALON [5], MOTEUR [8], Pegasus [3],
Kepler [1], Taverna [27], Triana [21], or WS-PGRADE [12] are targeted at DCIs such
as Grids and Clouds. They feature a rather large software stack in order to communicate
with lots of different middlewares and communication protocols, and are optimized for
moving large amount of data between distributed computing resources.

Swift [26] is an exception by being a light parallel script-based engine not restricted
to DCIs, but open for general use. It is limited to files in modelling data dependencies,
and provides no ways of calculating full-ahead workflow schedules.

Swift/T [28] is a completely new implementation of Swift, which translates a work-
flow script written in the Swift workflow language into a native MPI program for highly
scalable dataflow processing on distributed systems. Like Swift, it does not provide
support for full-ahead scheduling.

Pegasus MPI cluster [19] uses MPI for communication and job submission to ex-
ecute large, fine-grained workflows on distributed petascale systems. It has been de-
veloped to execute traditional scientific workflows on HPC systems with exotic, highly
optimized networks that do not support a TCP/IP stack.

Dispel4py [7] is a Python library for describing abstract stream-based workflows
for distributed data-intensive applications. It supports different backends like MPI,
Apache STORM and Python multiprocessing, with no support full-ahead scheduling.

Nextflow2 is a Java-based DSL similar to the Swift workflow language which uses
the UNIX pipeline concept as programming model for parallel and scalable programs.
It also does not support full-ahead scheduling.

Bobolang [6] is a specialized DSL for data-parallel algorithms. It uses Bobox [2]
as backend, which is a parallel processing framework intended for data-intensive com-
putations based on a non-linear pipeline.

The most prevalent parallel programming API standard on shared memory systems
is OpenMP3. Other native parallel programming APIs like MPI4 or Charm++ [13] tar-

2http://nextflow.io/
3http://openmp.org/
4http://www.mpi-forum.org/

5

get distributed memory systems, but have the common drawback of not modelling data
dependencies and not providing means of generating a complete full-ahead schedule.

StarSS [17] is a dependency-driven task execution API for shared memory sys-
tems, which also supports distributed memory systems through a hybrid MPI/StarSS
approach. It provides directives that annotate C/Fortran source codes to define tasks
and dependencies between them. StarSS does not allow reusing legacy workflows and
does not provide any infrastructure for full-ahead scheduling.

JOpera [15] is a management tool for business workflows that creates Java byte
code from the workflow specification through an event driven state machine instead
of directly interpreting the specification. JOpera comes with an integrated workflow
design and execution environment as an Eclipse plugin hiding the compilation process
from the user. JOpera is tailored to business workflows and does not support advanced
full-ahead scheduling.

In summary, Swift, Dispel4py and Bobolang/Bobox are the best-suited alternatives
for implementing scientific workflows on manycore systems aside our proposed sys-
tem. However, they do not support full-ahead scheduling, or are specialized in a very
specific problem class. Furthermore, workflows implemented using Swift, Dispel4py
or Bobolang do not natively run on the intended target platform. To the best of our
knowledge, there is no related work that implements a native specialised compiled-
based scientific workflow engine which is specifically focused on multi-objective full-
ahead scheduling on shared-memory manycore parallel architectures.

4. Manycore Workflow Runtime Engine (MWRE)

ParallelFor

Render

Convert

SceneFile

Figure 2: The POV-Ray workflow.

Based on the requirements out-
lined in the introduction, we designed
a Manycore Workflow Runtime En-
gine (MWRE) tailored to heterogeneous
shared-memory manycore systems. Our
main design principle was to provide a
set of feature similar to the ones found in
the current DCI workflow engines, while
addressing the special characteristics and
requirements of manycore systems. In
this section we discuss the basic archi-
tecture of our workflow system and give
short descriptions of the components.

We use the Persistence of Vision
Raytracer (POV-Ray) workflow as a run-
ning example to illustrate the work-
flow representation, translation and en-
actment. POV-Ray [16] is a free tool for
creating three-dimensional graphics, which is known to be a time-consuming process
used not only by hobbyists and artists, but also in biochemistry research, medicine,
architecture, and mathematical visualization. We modelled a POV-Ray rendering sce-
nario as a workflow depicted in Figure 2, where the description of a movie can be

6

Figure 3: MWRE architecture.

separated in several scenes, each scene being composed of several frames that can be
rendered (e.g. in .png format) in a parallel for loop. The Scene activity before
the Render returns the scene file for a given scene name. Finally, all frames are merged
into a .mpg movie using a Convert activity (e.g. running a png2yuv followed by an
ffmpeg conversion).

Figure 3 presents the overall architecture of the MWRE consisting of three main
parts: 1 the workflow specification, 2 a source-to-source compiler, and 3 the work-
flow runtime environment. The main difference between the MWRE’s architecture and
the traditional DCI workflow engines is the source-to-source compiler that generates
a native C++ program from the workflow specification. Furthermore, MWRE does
the mapping of abstract activity types to concrete activity implementations at compile-
time, instead of runtime as done by most DCI engines.

4.1. Workflow specification

The input to MWRE is a workflow specification (1) encoded in the Interoperable
Workflow Intermediate Representation (IWIR) [18]. IWIR is an intermediate work-
flow specification language designed in the European SHIWA project5 to enable in-
teroperability of different workflow systems. As most workflow environments require
workflows to be written in their respective workflow language to be able to execute
them, exchanging workflows usually means that the workflow specification needs to be
translated from one workflow language to another. IWIR eases this translation process
by providing a common intermediate representation and thus reducing the number of
required translators from 2 ·n2 to 2 ·n. IWIR is currently supported by four workflow
systems: ASKALON [5], MOTEUR [8], Triana [21] and WS-PGRADE [12].

Using IWIR to specify MWRE workflows has several advantages allowing reusing
existing tool chains with no need to implement existing functionality. First, because it

5http://www.shiwa-workflow.eu/

7

is designed for interoperability, it captures all concepts and constructs found in most
workflow languages, and can therefore be seen as a superset of the major workflow
languages. Second, it is well-defined and easy to parse. Third, it allows automatic
translation and reuse of existing workflows for experiments across different systems
without further modifications. Fourth, it allows integration of new languages and new
platforms with O(1) complexity through IWIR front-end or back-end support. And
fifth, the implementation of a MWRE workflows is not tied to a specific development
environment, but domain scientists can use their favourite workflow development tools
from any workflow environment that supports IWIR translation.

Listing 1 shows the IWIR specification of our POV-Ray workflow. The toplevel
composite activity represents the start of the workflow and is defined in lines 2 – 66.
The input ports of the toplevel activity (one file and two integers) are defined in
lines 3 – 7 and also represent the workflow input ports. A real-world POV-Ray work-
flow has more input parameters, but we omitted them for brevity reasons. The output
ports of the toplevel activity (one file) defined in lines 55 – 57 again represent the
workflow output ports too. Lines 9 – 45 represent the parallel for ParallelFor

loop activity containing the atomic activities SceneFile (lines 16 – 23) and Render

(lines 24 – 33). The loop activity is then followed by the atomic activity Convert,
represented in lines 46 – 53.

4.2. Source-to-source compiler

The IWIR workflow specification is then given to the source-to-source compiler
(2), which translates it into a C++ workflow program using the API provided by
MWRE. We believe that compiling the workflow application into a native executable
program is the way to achieve the “best” performance on shared-memory manycore
systems while minimizing enactment latencies and other middle-ware overheads. The
compiler is also responsible for mapping the abstract workflow activity types to con-
crete activity implementations. Performing this task at compile-time, instead of run-
time as done by most DCI workflow systems, saves additional overhead and eases
configuration of the workflow program. For this purpose, the compiler has access to
a repository that contains activity implementations in form of pre-compiled libraries,
binaries, GPU kernels (i.e. CUDA, OpenCL), source-code snippets, and shell-scripts.
The compiler also allows a 1-to-n mapping of activity types to implementations. Meta-
data stored for each mapping allows the scheduler to efficiently select the most suitable
implementation at runtime. Using a source-to-source compiler also allows applying
transformations to the workflow structure to optimize the performance of the generated
workflow program, similar to the compiler optimisations for shared memory systems.
We describe the source-to-source compiler in Section 6 in detail.

4.3. Runtime environment

The runtime environment of MWRE (3) invokes and executes the workflow pro-
gram created by the source-to-source compiler. It is implemented as a C++ library
considering several performance concerns, such as overhead, memory footprint, and
resource utilization. We describe MWRE workflow engine in Section 5 in detail.

8

Listing 1 IWIR specification of the POV-Ray workflow.
1 <IWIR version="1.1" wfname="NewWorkflow" xmlns="http://shiwa-workflow.eu/IWIR">
2 <blockScope name="toplevel">
3 <inputPorts>
4 <inputPort name="scene" type="string"/>
5 <inputPort name="totalFrames" type="integer"/>
6 <inputPort name="framesPerActivity" type="integer"/>
7 </inputPorts>
8 <body>
9 <parallelFor name="ParallelFor">

10 <inputPorts>
11 <inputPort name="scene" type="string"/>
12 <inputPort name="numFrames" type="integer"/>
13 <loopCounter name="frameCounter" from="1" to="" step=""/>
14 </inputPorts>
15 <body>
16 <task name="SceneFile" tasktype="SceneFile">
17 <inputPorts>
18 <inputPort name="scene" type="string"/>
19 </inputPorts>
20 <outputPorts>
21 <outputPort name="povFile" type="file"/>
22 </outputPorts>
23 </task>
24 <task name="Render" tasktype="Render">
25 <inputPorts>
26 <inputPort name="povFile" type="file"/>
27 <inputPort name="startFrame" type="integer"/>
28 <inputPort name="numFrames" type="integer"/>
29 </inputPorts>
30 <outputPorts>
31 <outputPort name="frames" type="collection/file"/>
32 </outputPorts>
33 </task>
34 </body>
35 <outputPorts>
36 <outputPort name="frames" type="collection/collection/file"/>
37 </outputPorts>
38 <links>
39 <link from="ParallelFor/scene" to="SceneFile/scene"/>
40 <link from="SceneFile/povFile" to="Render/povFile"/>
41 <link from="ParallelFor/numFrames" to="Render/numFrames"/>
42 <link from="ParallelFor/frameCounter" to="Render/startFrame"/>
43 <link from="Render/frames" to="ParallelFor/frames"/>
44 </links>
45 </parallelFor>
46 <task name="Convert" tasktype="Convert">
47 <inputPorts>
48 <inputPort name="frames" type="collection/file"/>
49 </inputPorts>
50 <outputPorts>
51 <outputPort name="outFile" type="file"/>
52 </outputPorts>
53 </task>
54 </body>
55 <outputPorts>
56 <outputPort name="finalMovie" type="file"/>
57 </outputPorts>
58 <links>
59 <link from="toplevel/totalFrames" to="ParallelFor/frameCounter/to"/>
60 <link from="toplevel/framesPerActivity" to="ParallelFor/frameCounter/step"/>
61 <link from="toplevel/framesPerActivity" to="ParallelFor/numFrames"/>
62 <link from="toplevel/scene" to="ParallelFor/scene"/>
63 <link from="ParallelFor/frames" to="Convert/frames"/>
64 <link from="Convert/outFile" to="toplevel/finalMovie"/>
65 </links>
66 </blockScope>
67 </IWIR>

9

5. MWRE Workflow Enactment

This section describes the enactment model of our workflow engine. In order to
be able to meet the requirements of shared-memory manycore systems, we designed
it significantly different from traditional scientific workflow engines for DCIs by pay-
ing special attention to the efficient use of resources, low overheads, and arbitrarily
complex data types for input and output activity ports.

5.1. Workflow enactment model

Figure 4: MWRE workflow execution model.

Workflow engines for DCIs usually
rely on reflection and type introspection
to generate the complete workflow struc-
ture and retrieve detailed activity infor-
mation. Based on this information, the
engine executes the workflow and han-
dles the dependency resolution and the
data transfers. One problem with this ap-
proach is its high overhead and increased
resource use. Furthermore, to reduce the
complexity and simplify the engine im-
plementation, only a restricted set of data
types for ports is usually supported. While this is sufficient for DCIs where complex
data structures are usually transmitted via files, it is more efficient on shared memory
systems to directly transfer them via shared memory requiring support for arbitrarily
complex data types. To circumvent these problems, we use a novel design which, in-
stead of relying on reflection and type introspection, employs a callback mechanism to
resolve dependencies, transfer data, and handle composite activities.

Figure 4 shows the execution model of our engine. First (1), the engine reads
the workflow structure from the workflow program. Listing 2 shows the structure
of the C++ workflow program generated from the POV-Ray workflow representation.
Lines 1 – 4 list the available activity implementations of the SceneFile atomic ac-
tivity, lines 5 – 7 the implementations of the Render atomic activity, and lines 8 – 11
the implementations of the Convert atomic activity. Afterwards, lines 12 – 19 encode
a table containing all workflow activities. Each line in this table represents a single
activity and contains the activity name, the parent activity which represents the com-
posite activity the activity is contained within, the successors and predecessors of the
activity representing the data- and control-flow dependencies, the callbacks associated
with the activity, and other activity dependent information. Finally, line 21 defines the
workflow itself and defines the initial start activity.

The engine maintains bookkeeping record information for the workflow and each
activity instance. A record entry includes, among other things, the current state of the
activity instance and references to the input and output data buffers. By amending
the engine with an API that allows accessing these records, third-party applications
can easily monitor the workflow progress. Furthermore, workflow steering can be eas-
ily implemented by allowing manipulation of the input and output data structures by
third-party applications. However, due to its architecture, the engine cannot provide

10

Listing 2 POV-Ray workflow program snippet.
1: ActivityImplemenation SceneFileImpls[] = {
2: /* {type, function-pointer, meta-data} */
3: PThread, &renderImplFunc, {{“SSE”, “SSE2”}}
4: };

5: ActivityImplemenation RenderImpls[] = {
6: PThread, &renderImplFunc, {{“SSE”, “SSE3”}, {“key2”, “value2”}}
7: };

8: ActivityImplemenation ConvertImpls[] = {
9: PThread, &convertImplFunc1, {{“SSE”, “SSE”}, {“key3”, “value3”}}

10: OpenCl, &convertImplFunc2, {{“OpenCL”, “2.1”}}
11: };

12: ActivityTemplate Activities[] = {
13: /* (name, ID, parentID, branchID, succs, preds, callbacks, activity-specific) */
14: AT::Container(“toplevel”, 1, 0, 0, {}, {}, callbacks, ...),
15: AT::Atomic(“SceneFile”, 2, 1, 0, {3}, {}, callbacks, SceneFileImpls, 1, ...),
16: AT::PForLoop(“PFor”, 3, 1, 0, {5}, {2}, callbacks, ...),
17: AT::Atomic(“Render”, 4, 2, 0, {}, {}, callbacks, RenderImpls, 1, ...),
18: AT::Atomic(“Convert”, 5, 1, 0, {}, {3}, callbacks, ConvertImpls, 2, ...),
19: };

20: /* (workflow name, activities, id of start activity) */
21: Workflow workflow(“povray”, Activities, 1);

22: int main() {
23: wf input wf int = ...;
24: wf output wf out = WorkflowEngine.startWorkflow(workflow, wf in);
25: }

data type information inside input/output data buffers and, therefore, third-party appli-
cations used for workflow steering need to retrieve this information from other sources.

From the workflow structure, the engine constructs the WEP (2) and repeatedly
traverses it during the enactment. When traversing the WEP, the engine executes so-
called visitor functions for each node. In traditional engines, the visitor functions are
directly responsible for the dependency resolution and data transfers. In contrast, the
visitor functions in our engine are only responsible for orchestrating the execution of
the associated pre-compiled callback functions (3) that directly modify the state of the
associated workflow activities (4). The callback functions are part of the workflow
specification, and it is the responsibility of the source-to-source compiler to generate
them. Each callback function implements a specific functionality, such as transfer-
ring the input data, collecting the output data from children for composite activities,
or resolving the condition of a while loop. This approach has the advantage of keep-
ing the workflow engine lightweight and efficient. Instead of knowing all the details
about the workflow, the engine only knows what is necessary to traverse the workflow
structure and to keep track of the execution status, with no need to implement generic
functionality for dependency resolution, data transfer and other tasks that introduce
performance overheads. Another advantage is that it allows arbitrary data type support
and facilitates extensibility. Every functionality that needs information about data types
is encapsulated in a purposely-tailored callback function used in a particular workflow.
New functionality can be easily implemented in callback functions too without needing
to modify the engine.

11

Listing 3 Visitor function of a parallel for loop.
1: function VISITPFOR(activity instance AIi)
2: if ¬AIi.ALLINPUTSAVAILABLE then
3: AIi .INPUTCALLBACK
4: end if
5: if AIi.state < ReadyForExecution then
6: AIi .FORCOUNTERCALLBACK
7: end if
8: if AIi.state = ReadyForExecution then
9: if ¬AIi.ISUNROLLED then

10: UNROLLLOOP(AIi)
11: end if
12: VISITCHILDREN(AIi)
13: end if
14: if AIi.state ≥ ReadyForExecution ∧¬AIi.ALLOUTPUTSAVAILABLE then
15: AIi .OUTPUTCALLBACK
16: end if
17: if AIi.state < Finished ∧ all children are finished then
18: AIi.SETSTATE(Finished)
19: end if
20: end function

Figure 5: Simplified state diagram of a parallel

for activity.

Listing 3 shows the generic visitor
function used to visit a parallel for

loop (Figure 5 shows a simplified state
diagram of the parallel for loop). At
first, it calls the input callback function
in line 3 to fetch the input data from
its predecessors, if they are not already
available. If the for loop is not ready
for execution (meaning that the for loop
counter has not been yet evaluated), the
evaluating for counter callback gets ex-
ecuted in line 6. When the for loop is ready for execution (meaning that the iteration
space of the loop counter is known), the loop gets unrolled and an activity instance is
created for each child and each iteration in line 10. Afterwards, the visitor functions
for the children activities are called in line 12. In our case, the atomic activity render

is the only child. The visitor function of an atomic activity executes the input callback
function and, when all inputs are satisfied, the activity gets executed and the output
data is available in the output buffer of the atomic activity. The visitor function of the
for loop activity executes the output callback function in line 15, which fetches data
from the output buffers of the child activities and stores them into the output buffer
of the loop activity. After all child activities have finished their execution, the activity
state is set to Finished in line 18.

As an example, Listing 4 shows the implementations of the callback functions of
the parallel for loop (ParallelFor) of the POV-Ray workflow. The first call-
back (line 1) is the input callback responsible for initializing the activity’s input data
buffer. For this, it accesses the input data buffer of the parent activity, checks whether
it contains valid data, saves it into the input buffer of the for activity, and sets the
allInputsAvailable flag to true if all input data fields contain valid data to avoid
unnecessary function invocations. The second callback (line 12) is the output callback

12

Listing 4 Callback functions of the POV-Ray ParallelFor loop activity.
1: function FORLOOPINPUTCALLBACK(ForLoopInstance f or)
2: f or in← RETRIEVEINSTRUCT(f or) . Initialisation of f or in input port
3: parent in← RETRIEVEINSTRUCT(GETPARENTINSTANCE(f or))
4: if ISVALID(parent in.povFile) then
5: f or in.povFile← parent in.povFile
6: end if

7: [. . .] . Similar code for initializing totalFrames, f ramesPerActivity and scene ports

8: if ISVALID(f or in.povFile, f or in.totalFrames, f or in. f ramesPerActivity, f or in.scene) then
9: f or.SETALLINPUTSAVAILABLE(true)

10: end if
11: end function

12: function FORLOOPOUTPUTCALLBACK(ForLoopInstance f or)
13: f or out← RETRIEVEOUTSTRUCT(f or)
14: for i← 0 to f or.getIterationCount() do
15: child out← RETRIEVEOUTSTRUCT(GETCHILDINSTANCE(f or, i,0))
16: if ISVALID(child out. f rames) then
17: f or out. f rames.set(i, child out. f rames)
18: end if
19: end for
20: if CONTAINSNVALIDENTRIES(f or.GETITERATIONCOUNT, f or out. f rames) then
21: f or.SETALLOUTPUTSAVAILABLE(true)
22: end if
23: end function

24: function FORLOOPCOUNTERCALLBACK(ForLoopInstance f or)
25: f or in← RETRIEVEINSTRUCT(f or)
26: if isValid(f or in.totalFrames, f or in. f ramesPerActivity) then
27: f or.SETCOUNTER(0, f or in.totalFrames/ f or in. f ramesPerActivity, 1)
28: f or.SETSTATE(ReadyForExecution)
29: end if
30: end function

responsible for filling in the output data buffers by accessing the output data buffers of
its children, checking the validity of the data, storing the data into the output buffer of
the for loop, and setting the allOutputsAvailable flag to true if all output data
fields contain valid data. The third callback (line 24) is the for counter callback respon-
sible for initializing the loop counter of the for loop activity PForLoop by checking
if all required data is available, setting the counter, and declaring the activity as ready-
for-execution by modifying its state.

5.2. Scheduling and activity execution

After the WEP has been evaluated for the first time and after every change, the
workflow engine sends the new WEP to the scheduler. The scheduler then maps atomic
activities to computing resources. Traditional workflow engines for DCIs often only
lazily evaluate the WEP as far as it is required for workflow enactment to enact the
ready to execute activities. However, full-ahead schedulers require a WEP that is as
complete as possible to achieve a better schedule and, therefore, need to compute the
WEP on their own. While this was not a major issue in traditional engines, as they are
more tolerant to high overheads and usually run on own external dedicated systems,
the performance overhead are of a greater concern for workflows on shared memory
manycore systems. Because of this, we designed the WEP maintained by the workflow

13

engine as complete as possible and such that all the relevant information is shared with
the scheduler to avoid unnecessary recalculations.

Each activity implementation comes with meta-data in form of key-value pairs that
can be used by the scheduler to select an appropriate implementation for execution.
There is a set of well-defined key-value pairs such as the key OpenCL used to spec-
ify the OpenCL version of a specific activity implementation, or SSE to specify the
required version of the Streaming SIMD Extension. Moreover, users can also define
their own arbitrary key-value pairs. For example, line 6 in Listing 2 specifies that the
activity implementation requires SSE3 and there is also a user-defined key-value pair
key2=value2.

After the scheduler has selected appropriate activity implementations and generated
a schedule, the individual scheduling decisions are sent to the appropriate execution
subsystems (e.g. pthread subsystem for x86 code, CUDA/OpenCL subsystem for GPU
kernels). For this purpose, MWRE provides a common extensible interface for the
execution subsystems designed to support a wide variety of computing resources and
to allow the scheduler interact with a specific execution subsystem without knowing the
details of the underlying implementation. The execution results are then send back to
the scheduler, which then handles them accordingly and notifies the workflow engine
of any activity state changes.

Whenever an activity execution fails, the scheduler decides how the fault is re-
solved. We offer an API for implementing third-party schedulers and using this API
the scheduler can resubmit the activity as it is, select a different activity implementa-
tion, map the activity onto a different resource, or simply fail the entire workflow. For
example, our scheduler implementations try to resubmit a failed activity three times
and after that the entire workflow is put into failed state, but other implementations
may come up with more sophisticated fault handling methods.

6. Source-to-Source Compiler

In our MWRE workflow environment, we employ the Insieme compiler6 to con-
vert a workflow specification written in IWIR into a C++ workflow program using
our engine. Insieme is a research source-to-source compiler targeted at automatically
optimizing parallel programs for homogeneous and heterogeneous multi-core archi-
tectures, which currently supports C, Cilk, OpenMP and OpenCL languages. Insieme
uses a single high-level parallel intermediate representation (IR) called INSPIRE [11]
in all stages of the compilation process. INSPIRE is the best-suited compiler-based IR
because it allows us to concentrate on a single language (unlike e.g. gcc, which uses
different IR languages in different compiler stages), it includes constructs for high-
level constructs like for loops (unlike e.g. LLVM whose IR language only consists
of simple assembler-like instructions), and it additionally includes constructs directly
representing parallel concepts (like e.g. parallel for loops). High-level constructs
ease program analysis, while dedicated parallel constructs allow to precisely represent

6http://www.insieme-compiler.org

14

an IWIR workflow. Furthermore, INSPIRE has been designed as an extensible IR al-
lowing to easily add new data types or program constructs.

The conversion process from an IWIR workflow specification into an equivalent
MWRE workflow program consists of three phases: (1) translation of the IWIR speci-
fication into INSPIRE, (2) compiler transformations on the INSPIRE IR, and (3) con-
version of the INSPIRE IR into a MWRE workflow program.

6.1. Phase 1: IWIR translation into INSPIRE
IWIR is a block-structured, data flow-oriented workflow language with control flow

constructs very similar to modern imperative programming languages like C. There-
fore, IWIR workflows can also be represented by IR languages originally designed for
imperative languages, for example by replacing all IWIR constructs with their corre-
sponding INSPIRE high-level counterparts.

Listing 5 shows the INSPIRE program representing our POV-Ray example work-
flow. To ease the program analysis, each activity is represented by a function that
encapsulates the code implementing the activity and whose signature represents the
activity input and output ports. In our example, function fun003 (lines 22 – 29) repre-
sents the start of the workflow and defines the workflow input (lines 23 – 25) and out-
put ports (line 28). The iwir wf input and iwir wf output functions are helper
functions whose only purpose is to help identify the workflow input and output ports.
The fun002 function (lines 15 – 20) represents the toplevel activity corresponding
to the IWIR snippet between lines 2 – 66 in Listing 1. The fun001 (lines 11 – 13)
and fun000 (lines 1 – 9) functions represent the parallel for ParallelFor activ-
ity corresponding to the IWIR snippet between lines 9 – 45 in Listing 1. The fun001

function defines the parallel loop itself and the activity ports, while the fun000 func-
tion represents the loop body. Finally, line 31 represents the root of the workflow pro-
gram. The iwir input wrapper and iwir output wrapper functions in each
function call are helper functions used to determine the function arguments represent-
ing the input and the output ports. Atomic activities are represented by a call to the
iwir atomic function, the first parameter being the name of the atomic activity type,

the second parameter being the atomic activity type, and the rest of the parameters rep-
resenting the input and output ports and their names.

Imperative languages, including INSPIRE, use variables and operations upon vari-
ables to describe the data flow. Data flow-driven programs like IWIR can easily be
converted into an imperative program by representing every data dependency as a vari-
able using a single static assignment, meaning that every variable is written only once,
which ensures that we can easily analyse the data flow to recreate the data dependen-
cies. The only exceptions are loop ports that can be written more than once, however,
they can only be written once per loop iteration, which makes them still easy to analyse.
IWIR also does not allow any data manipulations outside of atomic activities, therefore,
an INSPIRE program representing an IWIR workflow is only allowed to transport data
from one activity to another, but not to manipulate this data.

6.2. Phase 2: INSPIRE compiler transformations
Compiler transformations are usually applied to a program in order to optimize

one or more program characteristics, such as execution time or program size. They

15

Listing 5 INSPIRE representation of the POV-Ray workflow.

1 let fun000 = fun(ref<ref<array<char,1>>> scene, ref<int<4>> numFrames,
ref<collection<collection<file<ref<array<char,1>>>>>> frames, int<4> counterStart,
int<4> counterStop, int<4> counterStep) -> unit {

2 for(decl int<4> forCounter = counterStart .. counterStop : counterStep) {
3 decl ref<file<ref<array<char,1>>>> povFile =

(var(undefined(type<file<ref<array<char,1>>>>)));
4 _iwir_atomic_("SceneFile", "SceneFile", _iwir_input_wrapper_(scene), "scene",

_iwir_output_wrapper_(povFile), "povFile");
5 decl ref<collection<file<ref<array<char,1>>>>> renderFrames =

(var(undefined(type<collection<file<ref<array<char,1>>>>>)));
6 _iwir_atomic_("Render", "Render", _iwir_input_wrapper_(povFile), "povFile",

_iwir_input_wrapper_(forCounter), "forCounter", _iwir_input_wrapper_(numFrames),
"numFrames", _iwir_output_wrapper_(renderFrames), "renderFrames");

7 (ref_collection_at(frames, forCounter) := (*renderFrames));
8 };
9 };

10

11 let fun001 = fun(ref<ref<array<char,1>>> scene, ref<int<4>> totalFrames, ref<int<4>>
framesPerActivity, ref<collection<collection<file<ref<array<char,1>>>>>> frames) ->
unit {

12 pfor(getThreadGroup(0), 1, (*totalFrames), (*framesPerActivity), bind(counterStart,
counterStop, counterStep){fun000(_iwir_input_wrapper_(scene),
_iwir_input_wrapper_(framesPerActivity), _iwir_output_wrapper_(frames),
counterStart, counterStop, counterStep)});

13 };
14

15 let fun002 = fun(ref<ref<array<char,1>>> scene, ref<int<4>> totalFrames, ref<int<4>>
framesPerActivity, decl ref<file<ref<array<char,1>>>> outFile) -> unit {

16 decl ref<collection<collection<file<ref<array<char,1>>>>>> frames =
(var(undefined(type<collection<collection<file<ref<array<char,1>>>>>>)));

17 fun001(_iwir_input_wrapper_(scene), _iwir_input_wrapper_(totalFrames),
_iwir_input_wrapper_(framesPerActivity), _iwir_output_wrapper_(frames))

18 _iwir_atomic_("Convert", "Convert", _iwir_input_wrapper_(frames), "frames",
_iwir_output_wrapper_(outFile), "outfile");

19 _iwir_wf_output_(type<file<ref<array<char,1>>>>, outFile)
20 };
21

22 let fun003 = fun() -> unit {
23 decl ref<ref<array<char,1>>> scene = _iwir_wf_input_(type<ref<array<char,1>>>);
24 decl ref<int<4>> totalFrames = _iwir_wf_input_(type<int<4>>);
25 decl ref<int<4>> framesPerActivity = _iwir_wf_input_(type<int<4>>);
26 decl ref<file<ref<array<char,1>>>> outFile =

(var(undefined(type<file<ref<array<char,1>>>>)));
27 fun002(_iwir_input_wrapper_(scene), _iwir_input_wrapper_(totalFrames),

_iwir_input_wrapper_(framesPerActivity), _iwir_output_wrapper_(outFile))
28 _iwir_wf_output_(type<file<ref<array<char,1>>>>, outFile)
29 };
30

31 fun003()

can also be applied to an INSPIRE representation of a workflow application. However,
compiler transformations for MWRE workflows have different optimizations goals and
constraints. Traditional compiler transformations are mostly targeted towards exploit-
ing hardware characteristics and loop optimisation, their only constraint being program
correctness. In contrast, MWRE workflows only contain an abstract specification of
the workflow structure translated into a WEP by the workflow engine that executes
the workflow by traversing it. Furthermore, IWIR and consequently MWRE do not
allow any data manipulation outside of atomic activities that are treated as blackboxes
and may have more than one implementation. This excludes most traditional compiler

16

transformations which require data manipulations or operate on low-level program con-
structs or on individual instructions. However, compiler transformations having other
optimization goals can be applied to workflows, as described in the following:

• Reduce the number of executed atomic activities, where the most effort is spent
when executing a workflow. Therefore, this transformation category is the most
likely to achieve good results. When applying traditional compiler transforma-
tions, atomic activities should be treated as single instructions.

• Reduce the engine overhead by reducing the number of composite activities
and/or transforming the workflow structure. Since the time spent in the workflow
engine is usually a fraction of the total workflow execution there is only limited
benefits from such transformations with respect to the execution time. However,
optimizations falling into this category may help with the next optimization goal.

• Improve and/or facilitate scheduling by modifying the workflow structure so that
the scheduler can find better mappings leading to faster execution plans.

A compiler transformation is legal when the resulting program is semantically
equivalent to the original program, which means that the transformed program pro-
duces the same results as the original program. When applying compiler transforma-
tion to a workflow program, we may change the order of atomic activities, or eliminate
an individual atomic activity. This poses a problem because, according to the workflow
paradigm, atomic activities are regarded as black-boxes without any knowledge of its
internals. There could be a hidden state governing the execution of atomic activities,
and by applying compiler transformations we could accidentally alter it in a way that
causes the transformed program to produce false results.

To solve this problem, we need to relax the black-box principle and provide (lim-
ited) information on what happens inside an activity. To achieve this, we use a tag
systems which allows attaching tags to activities. For example, we use a side-effect
freeness tag (the term comes from functional programming indicating functions that
always produce the same output for the same input) to indicate that the tagged activ-
ities do not have a global state influencing their execution of an atomic activity. The
tags are stored inside the activity repository as part of the activity description. All tags
added to an activity also need to be valid for all implementations of that activity. Before
a workflow transformation is applied, the source-to-source compiler checks the tags of
the affected activities to determine whether the transformation can be safely applied.

There are traditional compiler transformations that fall into one of the categories
mentioned above, and can be theoretically applied to workflow programs. But there are
practical implications that hinder the application of traditional transformations without
tailoring them specifially to workflow programs first. To demonstrate the problem let
us try to apply an existing compiler transformation to our POV-Ray workflow example.
The first step is to analyse the workflow program to identify optimization possibilities.
In our example a data-flow analysis would reveal that the input value of the SceneFile
atomic activity are loop invariant, and therefore we can move this activity out of the
loop and place it right before it using a traditional compiler transformation called loop-
invariant code hoisting, and thus improve performance by having the affected activities
executed only once instead of every loop iteration.

17

Listing 6 Data structures representing the ports of a POV-Ray workflow (we omitted
the boolean ‘‘valid data’’ flag for each structure component and the structures for
the Convert activity for brevity reasons).
1: struct toplevel input {
2: string string;
3: int totalFrames;
4: int framesPerActivity;
5: }
6: struct toplevel output {
7: string finalMovie;
8: }
9: struct SceneFile input {

10: string scene;
11: }
12: struct SceneFile output {
13: string povFile;
14: }
15: struct PForLoop input {
16: string povFile;
17: int totalFrames;
18: int numFrames;
19: string scene;
20: }
21: struct PForLoop output {
22: collection frames;
23: }
24: struct RenderTask input {
25: string povFile;
26: int startFrame;
27: int numFrames;
28: }
29: struct RenderTask output {
30: collection frames;
31: }

However, when applying the loop-invariant code hoisting transformation of a tra-
ditional compiler, the SceneFile activity would be placed before the parallel for

loop (between lines 11 and 12 in Listing 5). This would break the rule that every
composite activity needs to be encapsulated in its own function, which violates the IN-
SPIRE workflow structure outlined in Section 6.1 that can no longer be translated into
a MWRE workflow program in the next step. Instead, a workflow-aware version of
the loop-invariant code hoisting transformation needs to place the SceneFile activity
inside the function representing the toplevel activity (line 15 in Listing 5).

6.3. Phase 3: MWRE workflow generation
The last phase deals with the conversion the (optimized) INSPIRE program into

a MWRE workflow program. It consists of three sub-phases: In the first sub-phase,
we generate C data structures (i.e. structs) representing the input and output ports
of each activity. In the second sub-phase, we replace the functions representing the
individual activities and the contained INSPIRE constructs with equivalent MWRE
constructs and construct tables representing the complete workflow structure. Finally
in the third sub-phase, we analyse the variables and their data-flow to reconstruct the
original data-flow and generate the callback functions implementing said data-flow.

We again use our example POV-Ray workflow to describe the translation process.
First, we traverse the entire INSPIRE workflow program and look at the signatures of

18

E
na

ct
m

en
tT

im
e

[s
ec

]

0,01

0,1

1

10

100

1.000

Number of Activities
0 2.000 4.000 6.000 8.000

OpenMP
MWRE - Early
MWRE - Late
Swift
ASKALON

(a) Enactment time.

M
em

or
y

[K
B

]

10.000

100.000

1e+06

1e+07

Number of Activities
0 2.000 4.000 6.000 8.000

OpenMP
MWRE
Swift
ASKALON

(b) Memory utilisation.

Figure 6: Experimental results for the POV-Ray workflow.

the functions and function-calls representing the workflow activities to learn about their
input- and output-ports. Using that information we generate the structures (structs)
representing the ports of each activity (see Listing 6). Afterwards, we again traverse
the INSPIRE workflow program, only this time we create the tables representing the
workflow structure (see Listing 2). The INSPIRE program structure outlined in Sec-
tion 6.1 allows us to identify the individual workflow activities in the INSPIRE work-
flow program, and for each identified activity we create a row in our activity table
(Lines 12 – 19 in Listing 2). For each encountered atomic activity we consult the activ-
ity implementation repository to retrieve all available implementations and construct a
table representing these implementations (e.g. Lines 1 – 4 in Listing 2 lists the available
implementations for the SceneFile activity). Also we generate the callback function
implementing the semantics of composite activities like e.g. the callback function that
evaluates the loop counter of our parallel for loop. Finally, we analyse the vari-
ables of the INSPIRE program and their data-flow to reconstruct the original data-flows
and generate the callback functions implementing the found data-flow (see Listing 4).

7. Experiments

The purpose of our experiments is twofold. We first compare in Section 7.1 the per-
fomance and overhead of our workflow engine with two related state-of-the-art work-
flow systems. Second, we evaluate in Section 7.2 the overhead of workflow execution
with full-ahead scheduling to find out how well full-ahead scheduling performs on
shared-memory manycore computers which exhibit completely different characteris-
tics than DCIs. We conducted all the experiments on a multi-core system with four
Intel Xeon E7-4870 10-core CPUs at 2.40 GHz with a total of 128 GB of RAM. We
used the GNU GCC C/C++ compiler version 4.9.1 to compile the generated workflow
programs with the -O3 optimisation flag.

7.1. Workflow enactment performance and overhead

The goal of these experiments was to verify the callback-driven approach of de-
signing the engine and to give a general estimate of the overhead and scalability asso-
ciated with maintaining a WEP on shared memory many-core systems. Furthermore

19

we also compared the performance and overhead of early evaluation mode (labelled
MWRE-Early) and late evaluation mode (labelled MWRE-Late) to get an estimate on
the costs of maintaining an as complete as possible WEP.

We conducted the experiments by comparing our engine with two related ones: a
fully-fledged workflow environment for DCIs (ASKALON [5]) and a general purpose
lightweight workflow scripting language (Swift [26]). To allow a low baseline compar-
ison, we also implemented synthetic OpenMP versions for each workflow application,
as OpenMP is the current standard for programming parallel applications on shared
memory architectures. We automatically generated the MWRE workflow programs
from the IWIR specifications (exported from ASKALON) and the concrete parts from
the ASKALON’s resource management deployment files using a Java source-to-source
compiler that translates IWIR to C++. For each experiment, we recorded the enactment
time of the workflow programs in both default and lazy WEP evaluation modes, and
their memory utilisation. The enactment time refers to the time spend by the engine
while evaluating the WEP and resolving dependencies. Regarding memory, we used
the resident size reported by the operating system for MWRE and OpenMP, while for
ASKALON and Swift we used the memory statistics delivered by the Java runtime
API. Since there is no difference in memory consumption between MWRE-Early and
MWRE-Late, we report a single joint result for both. To obtain a more accurate mea-
sure of the workflow enactment overhead and its memory consumption, we replaced
the actual atomic activities with dummy implementations that only create empty files
to satisfy data dependencies, and recorded the makespan of the workflow executions.
We used the minimum completion time (MCT) [14] scheduling algorithm in all exper-
iments as it has low overhead, a low linear complexity, and is resilient to prediction
inaccuracies. We use a logarithmic y-axis in all the figures for a better visualisation.

7.1.1. POV-Ray

ParallelFor

Render

Convert

Figure 7: Experimental POV-
Ray workflow.

We used again the POV-Ray workflow with the simple
structure presented in detail in Section 4 but without the
SceneFile activity (see Figure 7).

The results in Figure 6 show that until about 2000 –
3000 activities the performance of MWRE is similar
to OpenMP. Above 2000 activities the performance of
MWRE-Early is significantly worse than OpenMP, and the
performance difference increases the higher the activity
count. The performance of MWRE-Late is slightly better,
being similar to OpenMP till about 3000, and after it gets
worse than OpenMP but it stays better than MWRE-Early

showing twice the performance at about 8000 activities.
Swift is 50 times worse than MWRE for a low number of
activities, but this difference decreases till it has the same performance as MWRE-Early
and is only twice as worse than MWRE-Late for 8000 activities. ASKALON’s perfor-
mance is 70 –120 times worse than MWRE and it can only handle about 2000 activities
till it exceeds the memory available to Java.

After a rapid increase in the beginning, MWRE’s memory utilization remains rel-
atively constant between 90 – 110 MB and slowly increases with the number of activ-

20

E
na

ct
m

en
tT

im
e

[s
ec

]

0,01

0,1

1

10

100

1.000

Number of Activities
0 2.000 4.000 6.000 8.000

OpenMP
MWRE - Early
MWRE - Late
Swift
ASKALON

(a) Enactment time.

M
em

or
y

[K
B

]

10.000

100.000

1e+06

Number of Activities
0 2.000 4.000 6.000 8.000

openMP
MWRE
Swift
ASKALON

(b) Memory utilisation.

Figure 9: Experimental results for the RainCloud workflow.

ities. We consider this a low consumption given that real-world activity implementa-
tions typically consume gigabytes of memory. In comparison, OpenMP uses between
10 – 15 MB, Swift between 280 – 1000 MB, and ASKALON between 590 – 8500 MB.

7.1.2. RainCloud

Parallel

ForEach

linearModel

prepareLM

IF

PPS

IF

PPF

Figure 8: RainCloud workflow.

RainCloud is a meteorological work-
flow for weather simulation in moun-
tainous regions using a simple numeri-
cal linear model of orographic precipi-
tations [20]. The workflow is currently
used by the Tyrolean avalanche service
for their daily avalanche bulletins. Its
structure, displayed in Figure8, is very
similar to POV-Ray, but contains a few
additional conditional activities. In our
experiments, the conditional activities
always evaluate to true so that the PPS

and PPF activities are executed.
The results in Figure 9 show that un-

til about 3000 activities the performance
of MWRE is similar to OpenMP. Above
3000 activities the performance of MWRE-Early and MWRE-Late is significantly worse
than OpenMP, and the performance difference increases the higher the activity count.
The performance of MWRE-Late is again significantly better than MWRE-Early after
3000 activities. Swift is 40 times worse than MWRE for a low number of activities,
but this difference decreases till it shows even better performance as MWRE-Early and
is only slightly worse than MWRE-Late at around 9000 activities. ASKALON’s perfor-
mance starts out 350 times worse than MWRE but at around 6000 activities, where it
runs out of memory again, it is only 10 times worse than MWRE-Early.

After a rapid increase, the memory utilization of MWRE is relatively constant be-
tween 60 – 95 MB and slowly increases with the number of activities. In comparison,
OpenMP uses between 16 – 21 MB, Swift between 283 – 590 MB, and ASKALON
between 590 – 6200 MB.

21

E
na

ct
m

en
tT

im
e

[s
ec

]

10

100

1.000

Number of Activities
0 500 1.000 1.500 2.000 2.500 3.000

openMP
MWRE - Early
MWRE - Late
Swift
ASKALON

(a) Enactment time.

M
em

or
y

[K
B

]

100.000

1e+06

1e+07

Number of Activities
0 500 1.000 1.500 2.000 2.500 3.000

OpenMP
MWRE
Swift
ASKALON

(b) Memory utilisation.

Figure 11: Experimental results for the Montage workflow.

7.1.3. Montage

Parallel

ForEach

Parallel

ForEach

mProjectPP

mDiffFit

mConcatFit

mBgModel

mImgTbl

mAdd

mShrink

mJpeg

Parallel

ForEach

mBackground

Figure 10: Montage workflow.

Montage [9] is a well-known work-
flow in the scientific computing com-
munity created by NASA/IPAC, which
stitches together multiple images to cre-
ate mosaics of the sky. Montage has a
rather complex structure briefly sketched
in Figure 10, making its enactment the
most computationally expensive from all
our workflows.

The results in Figure 11 show that
until about 600 activities the perfor-
mance of MWRE is similar to OpenMP.
Above 600 activities the performance of
MWRE-Early is rapidly degrading, even
getting much worse than Swift at around
2000 activities. In contrast, MWRE-Late
always performs similar to OpenMP.
Swift starts 7 times worse than MWRE
for a low number of activities, but this
difference decreases till it is even twice as fast as MWRE-Early at around 3000 activ-
ities. In this experiment we cannot directly compare ASKALON to the rest because
ASKALON begins to exceed available memory at around 160 activities due to the in-
ternal implementation of the collection data type, extensively used for activity ports in
Montage.

The memory utilisation of MWRE is relatively constant between 65 – 207 MB and
slowly increases with the number of activities. In comparison, OpenMP uses between
21 – 30 MB, Swift between 312 – 6500 MB, and ASKALON between 614 – 9000 MB.

7.1.4. Sparselu
The Sparselu workflow (see Figure 12) adapted from the sparselu program from

the BOTS benchmark suite [4] does LU factorisation of sparse matrices. The workflow
comes in two flavours: with a for and with a while sequential outermost loop. In

22

E
na

ct
m

en
tT

im
e

[s
ec

]

1

10

100

1.000

10.000

Number of Activities
0 10.000 20.000 30.000 40.000 50.000 60.000

OpenMP
MWRE-Early
MWRE-Late
Swift
ASKALON

(a) Enactment time (For-Length).

M
em

or
y

[K
B

]

10.000

100.000

1e+06

Number of Activities
0 10.000 20.000 30.000 40.000 50.000 60.000

ASKALON
Swift
MWRE
OpenMP

(b) Memory utilisation (For-Length).

E
na

ct
m

en
tT

im
e

[s
ec

]

0,1

1

10

100

1.000

10.000

Number of Activities
0 10.000 20.000 30.000 40.000

OpenMP
MWRE-Early
MWRE-Late
Swift
ASKALON

(c) Enactment time (For-Width).

M
em

or
y

[K
B

]
10.000

100.000

1e+06

Number of Activities
0 10.000 20.000 30.000 40.000

OpenMP
MWRE
Swift
ASKALON

(d) Memory utilisation (For-Width).

Figure 13: Experimental results for the For variant of the Sparselu workflow.

terms of WEP generation in MWRE, there is a big difference between a while and a
for loop. While we can unroll a for loop once we know the loop iteration counter
and generate the complete WEP, this is not possible for a while loop that requires
re-evaluation of the loop condition after each iteration with no indication on the total
number of iterations. The workflow contains three consecutive parallel for loops
with the same number of iterations within the sequential outermost loop. The exper-
iments labelled *-Length in Figures 14 and 13 only modify the iteration number of
the sequential outermost loop (i.e. the length of the workflow), while the experiments
labelled *-Width only modify the iteration number of the inner parallel for loops
(i.e. the width of the workflow). In the first case, we increase of total number of activ-
ities while keeping the number of activities scheduled at the same time constant, while
in the second case we also modify the number of activities simultaneously scheduled.

The results in Figures 14 and 13 show that the performance of MWRE is similar
to OpenMP most of the time. Also there is no significant difference in performance
between the For and the While variants. However, there is a significant performance
difference between the *-Length and the *-Width variants. The performance of the
*-Length variants always stays similar to OpenMP, whereas the performance of the
*-Width variants gets worse than OpenMP at about 30000 activities. The perfor-
mance of Swift is about 4 – 7 times worse than MWRE in most cases. However, in
the *-Width variants it is only two times worse than MWRE-Early at around 60000
activities. ASKALON on the other hand, is about 500 – 800 times worse than MWRE,
and at around 6000 activities it again runs out of memory.

23

E
na

ct
m

en
tT

im
e

[s
ec

]

1

10

100

1.000

Number of Activities
0 10.000 20.000 30.000 40.000 50.000 60.000

OpenMP
MWRE-Early
MWRE-Late
Swift

(a) Enactment time (While-Length).

M
em

or
y

[K
B

]

10.000

100.000

1e+06

Number of Activities
0 20.000 40.000 60.000

OpenMP
MWRE
Swift

(b) Memory utilisation (While-Length).

E
na

ct
m

en
tT

im
e

[s
ec

]

1

10

100

1.000

Number of Activities
0 10.000 20.000 30.000 40.000

MWRE-Late
Swift
MWRE-Early
OpenMP

(c) Enactment time (While-Width).

M
em

or
y

[K
B

]

1.000

10.000

100.000

1e+06

1e+07

Number of Activities
0 10.000 20.000 30.000 40.000

OpenMP
MWRE
Swift

(d) Memory utilisation (While-Width).

Figure 14: Experimental results for the While variant of the Sparselu workflow.

Sequential

For / While

mProjectPP

Parallel

For
fwd

Parallel

For
bdiv

Parallel

For
bmod

Figure 12: Sparselu workflow.

The memory utilisation of MWRE
is significantly higher than in the previ-
ous experiments (between 15 – 820 MB),
but comparable if we take into ac-
count the higher number of activities in-
volved. In comparison, OpenMP uses
between 15 – 32 MBs, Swift between
550 – 4100 MB, and ASKALON be-
tween 770 – 7200 MB.

7.1.5. Discussion
The experimental results show that

MWRE has a better performance and
lower memory usage than other tra-
ditional workflow systems on shared-
memory manycore systems most of the
time. It even shows similar performance
than OpenMP in most cases. However,
its scalability is limited and nearly all ex-
periments show that at a certain workflow size the performance of MWRE begins to
degrade. This is because MWRE maintains a complete WEP of the workflow in order
to facilitate full-ahead scheduling. Maintaining a WEP is a complex stateful operation
and at a certain size the costs of maintaining a WEP becomes too high causing poor

24

performance. At which workflow size the costs of maintaining a WEP seems to be in-
dividual for each workflow. In our experiments a simple workflow like POV-Ray only
shows similar performance to OpenMP up to 2000 – 3000 activities, whereas a more
complex workflow like Sparselu can scale up to more than 60000 activities.

One of the factors that influences the scalability is the number of simultaneously
scheduled activities. POV-Ray is basically a single parallel loops, which means that
nearly all activities are scheduled at the same time. In contrast, Sparselu contains sev-
eral parallel loops within a sequential loop which means that only a fraction of the total
workflow activities are simultaneously scheduled. This is further confirmed by compar-
ing the *-Length and *-Width variants of the Sparselu workflow. The *-Length vari-
ants do not change the number of simultaneously scheduled activities, and they show
performance similar to OpenMP in all cases. In comparison, the *-Width variants
do increase the number of simultaneously scheduled activities, and at around 30000
activities their performance begins to worsen.

Another factor limiting scalability seems to be the number of re-evaluations of
the WEP caused by our early evaluation policy. The most prominent example is the
huge gap in the performance of MWRE-Early and MWRE-Late in the Montage work-
flow. Montage excessively uses parallel ForEach loops together with Union-Ports,
which means that every finished loop iteration causes a notification of the successor
activities that new data is available when MWRE-Early is used. In contrast, MWRE-Late
only informs the successors when the complete loop has finished. Also in most other
workflows MWRE-Late scales better than MWRE-Early, although the performance dif-
ference is not that dramatic. This also indicates that there is some optimization poten-
tial by finding some middle ground between MWRE-Early and MWRE-Late and thus
reducing the number of re-evaluations.

The results also indicate that there is no significant performance difference between
generating the complete WEP from the beginning (i.e. For variants of Sparselu) and
successively completing the WEP as the workflow execution progresses (i.e. While

variants of Sparselu).

7.2. Workflow execution using full-ahead scheduling

We believe that full-ahead scheduling is one of the keys to success for workflows on
shared-memory manycore computers. We know from DCIs that full-ahead scheduling
algorithm produce a better schedule than just-in-time scheduling algorithms in most
cases. But workflows on DCIs exhibit different characteristics than parallel programs
on shared-memory manycore computers. While Workflows on DCIs usually consist
of relatively few, long running atomic activities, parallel programs on manycores con-
sist of a rather large number of short running tasks. Also, on DCIs the workflow en-
gine and consequently the scheduler are implemented as extern services having their
own dedicated computing resources, while on manycores the workflow engine and the
scheduler have to compete with the atomic activity execution sub-system for comput-
ing resources. Because of this the scheduler has to re-evaluate the schedule more often
on manycore computers leading to more overhead, while at the same time workflow
execution on manycores is much more susceptible to scheduling overhead because of
shared computing resources and much shorter execution times of atomic activities.

25

Speedup JIT/HEFT

Sp
ee

du
p

0.9

1

1.1

1.2

1.3

1.4

Parameter Group
0 20 40 60 80 100

Figure 15: Speedup of HEFT versus MCT.

To find out whether full-ahead scheduling can still deliver its promises despite the
above mentioned problems, we executed a large number of workflows exhibiting char-
acteristics of parallel programs for manycores using a well-known full-ahead schedul-
ing algorithm. In order to have a baseline we can compare the results to, we also
executed the same workflows using a just-in-time scheduling algorithm. As full-ahead
scheduling algorithm we use HEFT [14] and as just-in-time algorithm we use Min-
imum Completion Time (MCT). HEFT is one of the most widely known full-ahead
scheduling algorithms consisting of two phases. In the first phase, it recursively as-
signs a rank to each activity according to its highest distance to the last activity of the
workflow (i.e. B-rank):

rank (ai) = wi + max
n j∈succ(ai)

(ci, j + rank (a j)) ,

where ai ∈ A refers to the i-th activity, wi is the average execution time of activity ai
across all available resources, succ(ai) is the set of activities that immediately depend
on ai, and ci, j is the average communication costs of the data transferred between
activities ai and a j ∈ succ(ai) across all pairs of available resources. In the second
phase, it traverses the ranked list of activities and schedules each of them using the
MCT algorithm.

To evaluate the workflow execution performance for a large number and variety of
workflows, we used an algorithm for automatically generating random workflows [23]
by varying the following parameters as presented in Table 1:

• Average number of activities v in the workflow;

• Workflow shape α by randomly generating the workflow height from a uniform
distribution with a mean value equal to

√
v

α
, and the width of each level randomly

selected from a uniform distribution with mean value
√

v ·α;

26

• Output degree of an activity oi representing the maximum number of successors
a workflow activity is allowed to have;

• Computational heterogeneity β by randomly generating the execution time for
each activity ai on each resource from the interval

(
wi ·

(
1− β

2

)
,wi ·

(
1+ β

2

))
,

where wi is the average execution time of ai.

Parameter Value set
v { 300, 600, 900, 1200, 2400 }
α { 1, 2, 4 }
oi { 2, 4, 8, 10 }
β { 1, 1.9 }

Table 1: Random workflow generation parameters.

We set the computation to commu-
nication ratio parameter to zero, since
on shared memory systems the commu-
nication is usually much faster than the
computation. We set the average ac-
tivity execution time w to five seconds
to get a more realistic result for shared
memory manycore systems that allow a
much finer-grained parallelism compared
to DCIs that feature average execution times of several minutes or hours.

We generated three different workflows for each parameter combination, recorded
the average workflow execution time for each parameter combination, and computed
the speedup of HEFT compared to MCT. Furthermore, we recorded the workflow en-
actment time (spent in the workflow engine and the scheduler) together with the queu-
ing and actual execution time for each activity.

Figure 15 shows the speedup results of our experiments. The x-axis represents the
parameter groups starting with 1, defined as the cross-product of the parameter values
from Table 1. For example, the parameter group 20 represents the parameter values
v= 300, α = 4, oi = 4 and β = 1.9. It can be seen that HEFT generally exhibits a better
performance than MCT for a large number of workflows, with performance gains of up
to 40%. The number of activities v does not have a significant impact on performance in
our experiment. In contrast, the shape parameter α significantly influence performance.
For α = 1 (parameter groups 1 – 8, 25 – 32, 49 – 56, 73 – 80 and 97 – 104), we hardly
obtain any speedup and get even slowdowns. Only for α > 1 we obtain significant
speedups. The parameter α controls the height and width of a workflow, and the higher
its value the more parallelism a workflow contains. This means that a workflow needs
a minimal amount of parallelism for full-ahead scheduling to produce good results.
The influence of the parameters oi and β on the speedup cannot be clearly determined.
There are some indications that higher values of oi and β tend to produce a better
speedups, but the differences are smaller than the error distribution. Therefore, they
are not significant enough for a conclusion.

Figure 16 with a logarithmic y-axis shows the cumulative sum of enactment times,
activity queuing times and activity execution times. The x-axis again represents the
parameter groups. In this figure, the number of nodes v significantly impacts the en-
actment time. The number of nodes grows with the growing parameter group number,
as also the enactment time for both HEFT and MCT. The activity queuing time is in-
fluenced by both number of nodes v and workflow shape α . The higher the number of
nodes v the higher the average queue time. But there are also sudden jumps in the queue
time which correspond with the workflow shape α being set to 2 (the smaller jumps

27

Average Cumulative Times HEFT

Ti
m

e
[s

]

0.01

0.1

1

10

100

1,000

10,000

Parameter Group
0 20 40 60 80 100 120

Enactment Time
Queue Time
Execution Time

(a) HEFT.
Average Cumulative Times JIT

Ti
m

e
[s

]

0.01

0.1

1

10

100

1,000

10,000

Parameter Group
0 20 40 60 80 100 120

Enactment Time
Queue Time
Execution Time

(b) MCT.

Figure 16: Cumulative time analysis of HEFT and MCT.

like e.g. at parameter group 57 – 64) and being set to 4 (the higher jumps like e.g. at
parameter group 65 – 72). When we compare the results of HEFT with the results of
MCT then we see that HEFT has higher enactment time, which is proportional to the
number of nodes v, than MCT. Nevertheless, the enactment time is in all instances still
much smaller than the sum of queue times and execution times. But HEFT has a lower
activity queue time than MCT. When we look at the total times, then the lower queue
times more than compensate for the higher enactment times so that in the end HEFT
has a better performance than MCT in most cases.

The results clearly show that workflow execution on shared-memory manycores
using a full-ahead scheduling algorithm can still gain significant performance com-
pared to just-in-time scheduling, despite suffering from a higher overhead compared

28

to workflow execution on DCIs and manycore computers being more susceptible to
overhead. Even with a low average activity execution time of only five seconds, the
overhead caused by the WEP generation and full-ahead scheduling algorithm stays in
an acceptable range.

8. Conclusion

We described in this paper a new lightweight Manycore Workflow Runtime Envi-
ronment (MWRE), designed to efficiently enact scientific workflows on modern shared
memory manycore computing architectures with a special emphasis on full-ahead schedul-
ing. MWRE is compiler-based and translates workflows represented in the XML-based
IWIR specification into an equivalent C++-based workflow program. The workflow
program efficiently enacts the workflow as a stand-alone executable by means of a
new callback mechanism to resolve dependencies, transfer data, and handle composite
activities, rather than high-overhead reflection and type introspection used in existing
DCI engines.

We compared the performance and overhead of MWRE’s engine with two repre-
sentative traditional engines: a Java-based one designed for DCIs (ASKALON) and a
script-based one designed for manycore architectures (Swift). Our results demonstrate
that employing a compiled workflow program tailored to the needs of manycore plat-
forms exhibits a lower enactment time and less memory consumption. In particular,
MWRE efficiently handles complex workflows with a high number of activities, and
even achieves a similar enactment time to synthetic OpenMP versions for certain types
of workflow applications. MWRE performs much better than ASKALON in all sit-
uations, and it can also perform better than Swift depending on the workflow. It can
even come close to the performance of OpenMP. However, MWRE suffers from limited
scalability due to the overhead involved with maintaining a WEP. The scalability limits
are highly dependent of the complexity of the WEP and the number of simultaneously
scheduled activities. In our experiments, workflows with a small number of simultane-
ously scheduled activities and a fairly complex WEP scale well up to more than 60000
activities, while other workflows with a very high number of simultaneously scheduled
activities only scale up to 2000 – 3000 activities. Furthermore, we experimented with
two different WEP evaluation strategies, namely early evaluation and lazy evaluation.
The results show that for highly complex WEPs there is a large potential for optimiza-
tion, but simpler WEPs only slightly benefit from the early evaluation. The memory
consumption of MWRE is significantly higher than OpenMP, but within low acceptable
limits, and much better in other workflow engines designed for DCIs. We also eval-
uated the performance and overhead of MWRE using a full-ahead scheduler (HEFT).
The results show that full-ahead scheduling approaches, despite suffering from higher
overheads than on DCIs and manycore computers generally being more susceptible to
overheads, can also gain performance in shared-memory manycore environments up to
40%. The results show that the higher overheads are compensated by a significantly
lower queue wait times for workflow activities.

We also evaluated the application of compiler transformations to workflow pro-
grams. While they are theoretically possible and also have valid use-cases, we could

29

not find any traditional compiler transformation that can be actually applied to work-
flow programs as it is due to the specific requirements of their internal representation in
the compiler. Any compiler transformation that is intended to be applied to workflows
needs to be specifically tailored to these requirements first.

In future research, we plan to further investigate the WEP evaluation modes with
the goal to combine the benefits of early evaluation with the performance of late eval-
uation. Also, we plan to expand our work on compiler transformations for workflow
programs by modifying existing compiler transformations to make them compatible
and finding new compiler transformations specifically tailored to the needs of work-
flow programs.

Acknowledgement

This work is supported by the Austrian Science Fund (FWF) project TRP 237-
N23: “Workflows on manycore processors” and by the joint FWF – Indian Department
of Science and Technology (DST) project No. INT/AUA/FWF/P-02/2013.

[1] D. Barseghian, I. Altintas, M. B. Jones, D. Crawl, N. Potter, J. Gallagher,
P. Cornillon, M. Schildhauer, E. T. Borer, E. W. Seabloom, et al. Workflows
and extensions to the kepler scientific workflow system to support environmental
sensor data access and analysis. Ecological Informatics, 5(1):42–50, 2010.

[2] D. Bednárek, J. Dokulil, J. Yaghob, and F. Zavoral. Bobox: parallelization frame-
work for data processing. Advances in Information Technology and Applied Com-
puting, pages 189–194, 2012.

[3] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. da Silva, M. Livny, et al. Pegasus, a workflow man-
agement system for science automation. Future Generation Computer Systems,
46:17–35, 2015.

[4] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade. Barcelona OpenMP
tasks suite: A set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In International Conference on Parallel Processing, pages 124–131.
IEEE Computer Society, 2009.

[5] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, J. Q. Ste-
fan Podlipnig, M. Siddiqui, H.-L. Truong, A. Villazón, and M. Wieczorek.
ASKALON: A development and grid computing environment for scientific work-
flows. In I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, editors, Work-
flows for e-Science, pages 450–471. Springer, 2007.

[6] Z. Falt, D. Bednárek, M. Kruliš, J. Yaghob, and F. Zavoral. Bobolang: A language
for parallel streaming applications. In Proceedings of the 23rd international sym-
posium on High-performance parallel and distributed computing, pages 311–314.
ACM, 2014.

30

[7] R. Filgueira, A. Krause, M. Atkinson, I. Klampanos, A. Spinuso, and S. Sanchez-
Exposito. dispel4py: An user-friendly framework for describing escience applica-
tions. In Proceedings of 11th IEEE eScience 2015, Munich, Germany, September
1-4, pages 454–464. IEEE, 2015.

[8] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec. Flexible and efficient
workflow deployment of data-intensive applications on grids with MOTEUR. In-
ternational Journal of High Performance Computing Applications, 22(3):347–
360, 2008.

[9] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. Laity, E. Deelman,
C. Kesselman, G. Singh, M.-H. Su, T. Prince, and R. Williams. Montage: a
grid portal and software toolkit for science-grade astronomical image mosaick-
ing. International Journal of Computational Science and Engineering, 4(2):73–
87, 2009.

[10] M. Janetschek, R. Prodan, and S. Benedict. A workflow runtime environment
for manycore parallel architectures. In Proceedings of the 10th Workshop on
Workflows in Support of Large-Scale Science. ACM, 2015.

[11] H. Jordan, S. Pellegrini, P. Thoman, K. Kofler, and T. Fahringer. Inspire: The
insieme parallel intermediate representation. In Proceedings of the 22nd inter-
national conference on Parallel architectures and compilation techniques, pages
7–18. IEEE Press, 2013.

[12] P. Kacsuk. P-GRADE portal family for grid infrastructures. Concurrency and
Computation: Practice and Experience, 23(3):235–245, 2011.

[13] L. V. Kale and S. Krishnan. CHARM++: a portable concurrent object oriented
system based on C++, volume 28. ACM, 1993.

[14] M. Maheswarana, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic
mapping of a class of independent tasks onto heterogeneous computing systems.
Journal of Parallel and Distributed Computing, 59(2):107–131, November 1999.

[15] C. Pautasso. Compiling business process models into executable code. Handbook
of Research in Business Process Management, pages 318–337.

[16] T. Plachetka. POVRAY – Persistence of Vision Parallel Raytracer. In Proceedings
of Computer Graphics International ’98, pages 123–129, 1998.

[17] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical task-based pro-
gramming with starss. International Journal of High Performance Computing
Applications, 23(3):284–299, 2009.

[18] K. Plankensteiner, R. Prodan, M. Janetschek, J. Montagnat, D. Rogers, I. Harvey,
I. Taylor, Á. Balaskó, and P. Kacsuk. Fine-grain interoperability of scientific
workflows in distributed computing infrastructures. Journal of Grid Computing,
11(3):429–455, 2013.

31

[19] M. Rynge, S. Callaghan, E. Deelman, G. Juve, G. Mehta, K. Vahi, and P. J.
Maechling. Enabling large-scale scientific workflows on petascale resources us-
ing mpi master/worker. In Proceedings of the 1st Conference of the Extreme
Science and Engineering Discovery Environment: Bridging from the eXtreme to
the campus and beyond, page 49. ACM, 2012.

[20] F. Schüller, S. Ostermann, M. Janetschek, R. Prodan, and G. Mayr. The raincloud
project: Harnessing cloud computing for a meteorological application at the ty-
rolean avalanche service. In Geophysical Research Abstracts, volume 15, page
9710, 2013.

[21] I. Taylor, M. Shields, I. Wang, and O. Rana. Triana applications within grid
computing and peer to peer environments. Journal of Grid Computing, 1(2):199–
217, 2003.

[22] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. Parallel and Dis-
tributed Systems, IEEE Transactions on, 13(3):260 –274, mar 2002.

[23] H. Topcuoglu, S. Hariri, and M.-y. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. Parallel and Dis-
tributed Systems, IEEE Transactions on, 13(3):260–274, 2002.

[24] J. Ullman. Np-complete scheduling problems. Journal of Computer and System
sciences, 10(3):384–393, 1975.

[25] M. Wieczorek, A. Hoheisel, and R. Prodan. Towards a general model of the multi-
criteria workflow scheduling on the grid. Future Generations Computer Systems,
25(3):237–256, 2009.

[26] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Fos-
ter. Swift: A language for distributed parallel scripting. Parallel Computing,
37(9):633–652, 2011.

[27] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al. The taverna work-
flow suite: designing and executing workflows of web services on the desktop,
web or in the cloud. Nucleic acids research, page gkt328, 2013.

[28] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and I. T.
Foster. Swift/t: Large-scale application composition via distributed-memory
dataflow processing. In Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on, pages 95–102. IEEE, 2013.

32

Matthias Janetschek received his master degree in Computer
Science from the University of Innsbruck, Austria, in 2011.
He is currently a Ph.D. student at the Institute of Computer Sci-
ence, University of Innsbruck, Austria. His research in the area
of parallel and distributed systems comprises scientific work-
flows and bringing them to shared-memory manycore comput-
ers.

Radu Prodan received the Ph.D. degree from Vienna Univer-
sity of Technology, Vienna, Austria, in 2004. He is currently
an Assistant Professor at the Institute of Computer Science,
University of Innsbruck, Austria. His research in the area of
parallel and distributed systems comprises programming meth-
ods, compiler technology, performance analysis, and schedul-
ing. He participated as main investigator in numerous national
and European projects. He is currently the scientific coordina-
tor in the Horizon 2020 project ENTICE. He is the author of
over 70 journal and conference publications and one book. He
was the recipient of an IEEE Best Paper Award.

Shajulin Benedict received his Ph.D. degree in Grid schedul-
ing from Anna University, Chennai. After his Ph.D., he worked
as a postdoctoral researcher in the Technical University of Mu-
nich under the guidance of Professor Michael Gerndt. Cur-
rently, he leads the HPCCLoud Research Laboratory at the
St. Xavier’s Catholic College of Engineering in India. His re-
search interests include energy-aware scheduling, performance
analysis of HPC Cloud applications, HPC application develop-
ments, and so forth. He is a University Rank Holder in reward
for his academic excellence. He has received two research
grants from Germany and two projects from the Department

of Science and Technology, India (including the Indo-Austrian project EASE).

33

