
Meteorological Applications utilizing
Grid and Cloud Computing

Simon Ostermann and Radu Prodan
Institute of Computer Science,

University of Innsbruck, Innsbruck, Austria
E-mail: simon@dps.uibk.ac.at

Felix Schüller and Georg J. Mayr
Institute of Meteorology and Geophysics,

University of Innsbruck, Innsbruck, Austria
E-mail: felix.schueller@uibk.ac.at

c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/CloudNet.2014.6968965

Abstract—Three practical meteorological applications with
different characteristics are used to highlight the usability of
a computer science workflow middleware called ASKALON by
allowing easy access to distributed computing for meteorology
scientists. Utilizing Cloud and Grid computing, this paper shows
use case scenarios fitting a wide range of applications from
operational to research studies with real world examples from
meteorological research. The paper concludes that distributed
computing is easy usable for meteorological problems using the
ASKALON system. This powerful tool extends existing high
performance computing concepts and allows simple and cost
effective access to computing capacity from Grid and Cloud
environments. Additional cost perspectives are given, when Cloud
computing is cheaper then in house resources: When resources
are utilized only a few hours a day.

I. INTRODUCTION AND MOTIVATION

Meteorology is a good example for a science that has an
ever growing need for computing power, be it for sophisticated
numerical models of the atmosphere itself, model chains like
e.g. coupled ocean and atmospheric models or the accompany-
ing activities such as visualization or dissemination. In addition
to the increased need for computing power, more data are being
produced, transferred and stored, which raises the problem
complexity and resulting computational requirements.

Starting in the mid 1990s, the concept of Grid computing,
in which geographical and institutional boundaries only play
a minor role, came to be a powerful tool for scientists. [1]
published the first and most cited definition: A computational
Grid is a hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to
high-end computational capabilities. In the following years
the definition changed to viewing the Grid not as a computing
paradigm, but as an infrastructure that brings together different
resources in order to provide computing support for various
applications, emphasizing the social aspect [2], [3]. Grid
initiatives mostly focus on raw computing power (Compute
Grids) or target the storage or exchange of data (Data Grids).

Many initiatives in the atmospheric sciences utilize Com-
pute Grids, i.e. climatological applications using a Compute
Grid is the Fast Ocean Atmospheric Model (FOAM) [4]. They
performed ensemble simulations of a coupled climate model
on the Teragrid, a U.S. based Grid project.

Cloud computing is a slightly newer concept than Grid
computing formed not from academia but by commercial com-

panies with strong web hosting and web services background.
Amazon realized, that the resources needed for peak usage,
like Christmas shopping, is unused most of the year and was
therefore made available for rental on a hourly basis in the
new offer called Amazon Web Services (AWS).

Resources are also pooled, but contrary to Grids usually
within one organisational unit or company. Applications range
from computational based resource renting, storage services
and offer lots of specialized solutions for more advanced
systems like map and reduce framework. Fine grain dynamic
billing allows to cut ongoing costs or react on capacity needs
with short reaction times.

The most important characteristics of Clouds are condensed
into one of the most recent definitions by [5]: Cloud computing
is a model for enabling ubiquitous, convenient, on demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.
One of the few projects in meteorological research is [6], show-
ing a feasibility study for Cloud computing with a coupled
atmosphere-ocean model.

In this paper, we discuss advantages and disadvantages of
Cloud and Grid computing for meteorological research, show
some computer science issues, and present three examples
of meteorological applications, which we have developed for
different kinds of distributed computing over the past few
years: projects MeteoAG and MeteoAG2 for a Compute Grid
and latest RainCloud for Cloud computing. We look at issues
and benefits mainly from the perspective of system users of
distributed computing. Additional or different aspects may
apply for service providers and the middleware developer.

II. ASPECTS OF DISTRIBUTED COMPUTING IN
METEOROLOGY

A. Grid and Cloud computing

Our practical experience in Grid computing come from
projects MeteoAG and MeteoAG2 within the national effort
AustrianGrid (AGrid) utilizing the ASKALON environment
[7] (see section II-D), including partners and supercomputer
centres distributed over Austria [8]. AGrid Phase 1 started in
2005 and concentrated on research of basic Grid technology
and application. Phase 2, started in 2008, continued to build
on research of Phase 1 and additionally tried to make AGrid
self-sustaining. The research aim of this project was not to



develop conventional parallel applications that can be executed
on individual Grid machines but to unleash the power of the
Grid for single distributed program runs. To simplify this task,
all Grid sites are required to run a similar Linux operating
system. At the height of the project it consisted of 9 clusters
distributed over 5 locations in Austria.

For Cloud computing, plenty of providers offer services,
e.g. Microsoft Azure or Google Compute Engine. Those overs
can be seen as Platform as a Service (PaaS) solutions, which
have the big disadvantage that applications need to be ported to
the specific platform to allow execution. The Cloud computing
project RainCloud uses Amazon Web Services (AWS), simply
because it is the most well known and widely used Cloud
provider. Their Infrastructure as a Service (IaaS) offer is called
Amazons Elastic Compute Cloud (EC2) and offers virtual ma-
chines with root access to the users, allowing easy installation
of software, libraries and are extreme flexible to use for all
kinds of legacy applications. AWS offers additional services
for computing, data storage (Simple Storage Service S3) and
data transfer (Content distribution networks called Cloudfront),
as well as tools for monitoring and planning (Cloudwatch). The
services most interesting for scientific computing is EC2 as it
allows custom Linux images and kernels allowing to execute
all kinds of application: C, C++, Fortran, Java, Shell-Scripts
and python.

So called instances (i.e.virtual computers) are defined
according to their compute power relative to a reference
CPU, available memory, storage and network performance.
One Elastic Compute Unit (ECU) provides the equivalent
CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor. Network performance for the different instance
types is specified with the terms: Very low, Low, Moderate,
High and 10 Gibabit. Memory and storage are defined in
gigabytes and some instances offer solid state disks (SSD) for
higher performance.

Figure 1 shows the basic structure of IaaS based Cloud
computing on the right side and AGrid as Grid example on the
left side. A user might provision multiple (M) instances from a
Cloud provider, each with a specific number of CPUs (s-r) and
cores running a Linux image of his choice. For Grid resources
the offered operating system is out of the end users control.
An additional layer, so called Middleware, is applied between
the compute resource itself and the end user. The Middleware
handles all necessary scheduling, file transfer and setup of
Cloud nodes. The end users interact with the Middleware via
a Graphical User Interface (GUI) for workflow creation and
execution. Execute Engine, Scheduler and Resource Manager
interact to effectively use the available resources from avail-
able Grids and Clouds and react to changes in the provided
computing infrastructure or the executed dynamic workflows.

In the following sections, we list advantages and disad-
vantages of Grid and Cloud computing, which affected our
research most. A general comparison with all vital issues can
be found in [9]. Security issues did not apply to this research
and operational setting as no sensible data is used. However,
for big and advanced operational weather forecasting this
might be an issue due to the monetary value of utilized weather
sensor data. If security is a concern detailed discussions can
be found in [10] for Grid computing, [11] and [12] for Cloud
computing.

1) Advantages/Disadvantages Grid:

+ Handle massive amounts of data. The full atmo-
spheric model in MeteoAG generated large amounts
of data. Through Grid tools like gridftp [13] we were
able to efficiently transfer and store all simulation data.

+ Access to HPC which suits parallel applications
(e.g. MPI). The model used in MeteoAG, as many
other meteorological models, is a massive parallel
application parallelized with MPI. On Grids they run
efficiently, however not across different HPC clusters
as latencies between distributed data centres can be
too high. A middleware can leverage the advantage of
access to multiple machines and run applications on
suitable machines and parts of workflows in parallel.

- Different hardware architectures. During tests in
MeteoAG we discovered problems due to different
hardware architectures, which can be substantial [14].
We tested different systems with exactly the same
setup and software and got consistently different re-
sults. In this case this affected our complex full model,
but not our simple model. The exact cause is unclear,
but most likely a combination of programming, the
used libraries (and their versions) and setup (kernel
versions) down to the hardware level.

- Difficult to setup and maintain as well inflexible
handling. The process of getting necessary updates,
patches or special libraries needed in meteorology was
complex and lengthy or sometimes even impossible
due to operating system limitations of the different
administrative domains.

- Special compilation of source code. For best per-
formance the executables in MeteoAG needed to be
compiled for each architecture, with possible side
effects. Even in a tightly managed project as AGrid we
had to supply three different executables for the mete-
orological model compiled for the different compatible
CPU architectures to avoid significant performance
looses.

The Grid offers a limited amount of resources but for the
executed workflows they were always enough free resources to
simulate our models. As part of the Austrian Grid the access
to the available resources was available and sufficient as this
Grid is used for research mostly and hardly any production
runs are executed there.

2) Advantages/Disadvantages Cloud computing:

+ Cost. Costs can easily be determined and planned and
more details about this important factor are given in
section IV.

+ Full control of software environment, including op-
erating system (OS) with root access. This proofed
to be one of the biggest advantages for our workflows.
It is easy to choose the right kernel and version, install
needed software, special libraries or modify any com-
ponent of the system. Cloud providers usually offer
standard UNIX operating systems as images/AMI, but
tuned images can also be saved permanently and made



Askalon
Middleware

Execute Engine
ssh job submission

GRAM job submission

Scheduler
match jobs to resources

Resource Manager
e.g. via EC2 API

. . .

Instance 2
s CPU’s

Instance 1
s CPU’s

Instance M-1
r CPU’s

Instance M
r CPU’s

Cloud
provider

e.g.: Amazon
Lunacloud

...

Cloud

. . .

Cluster 2
m CPU’s

Cluster 1
k CPU’s

Cluster N-1
p CPU’s

Cluster N
q CPU’s

Base grid
Infrastructure

e.g. Aus-
trian Grid:
approx. 500
CPU’s (2006)

- Uni. Innsbruck
- Uni. Vienna

- Uni. Linz
. . .

Grid

End user

Develop work-
flow with GUI Submit workflow Results

Fig. 1. Schematic setup of the computing environment for Cloud and Grid computing.

publicly available (with additional monthly storing
costs).

+ Simple on demand self service. For applications with
varying requirements for compute power or with daily
but short needs for compute power, this is an important
characteristics. The resources for the workflow runs
were always available within short times, usually the
standard on-demand Linux instances were up and
running within 5-10 seconds (Amazons documentation
states a maximum of 10 minutes).

- Slow data transfer Data transfer to and from the
Cloud are slow as internet connections are involved.
The AGrid was build on University sides sharing
the same ACONet backbone, allowing low latency
and high bandwidth even between different locations.
Additional a higher network latency between most in-
stance types is given, resulting in additional overheads
when using this (cheaper) instance types.

Missing information of underlying hardware has no impact
on our workflow, as we are not trying to optimize a single
model execution. No common standard between clouds and
a Cloud provider going out of business is unimportant for
the used application as the used software relies on common
protocols like ssh and adaptation to a new cloud provider could
be done easily changes to the Middleware configuration.

B. Computer science challenges

For meteorology, as with wide spectrum of scientific
applications, the time required to solve a problem grows
quickly with problem size (NP complete, [15]). Scheduling
different parts of a distributed/workflow application onto het-
erogeneous resources is one of those problems, which becomes
even more complex when multiple parameters are targeted
for optimization. Execution time, power consumption, cost,
resource utilization and fairness are targets that are considered
in optimization processes.

Cloud resource usage adds an additional complexity to
the problem as the resource pool no longer is static as in
Grids. Cloud providers offer wide range of resource types with
different performance characteristics and prices with certain
billing intervals. Provisioning the optimal set of resources for
the scheduling mechanism is difficult. Executing an application
within half of the billing interval (i.e. 30 minutes) leads to the
same costs as when running for the full hour. We optimize the
scientific application runtime to fit into the billing interval as
close as possible. Exceeding that time window by just a few
seconds would raise the execution cost significantly and needs
to be avoided in all cases (i.e. by a factor of two if the planed
execution time was 60 minutes).

C. Solutions

To account for the heterogeneity and loosely coupled
nature of resources from Grid and Cloud providers, computer
science adopted a workflow paradigm based on loosely coupled
coordination of activities. Distributed applications are split in
reasonably small execution parts, which can be executed in
parallel on distributed systems, allowing the runtime system
to optimize resources usage, file transfers, load balancing,
reliability, scalability and handle failed parts.

Utilizing the Cloud resource model with coarse grain
(hourly) billing intervals results in a new target for optimiza-
tion: close to full hour computation. With a given budget, it
is possible to calculate the available resources per planned
execution. An optimization target is to scale the model res-
olution or domain size to fit within the given limit as well as
possible. This results in the most efficient results for the given
monetary constraints but requires predictable runtime of the
overall workflow execution.

D. Middleware ASKALON

To make it as simple as possible for a (none computer)
scientist to use distributed computing resources, we make use
of a so called Middleware system. ASKALON, an existing



Middleware from the Distributed and Parallel Systems group
in Innsbruck, provides integrated environments to support the
development and execution of scientific workflows on dynamic
Grid and Cloud environments [7].

Figure 1 shows the design of the ASKALON system.
Workflows can be generated in a scientist-friendly GUI and
submitted for execution to a service to allows long lasting
workflows without the need for the user to be online through-
out the whole execution period.

Three main components handle the execution of the work-
flow:

Scheduler Activities are mapped to physical (or virtualized)
resources for their execution. A wide set of scheduling
algorithms is available e.g. JustInTime or DCP-C [16].
For a reasonable scheduling result, a prediction service
providing estimated activity runtimes is utilized [17].

Resource Manager Cloud resources are known to scale by
credit card and theoretically an infinite amount of re-
sources is available1. The resource manager has the task
to provision the right amount of resources at the right
moment to allow the execute engine to run the workflow
as the scheduler decided. Cost constraints must be strictly
adhered to as budgets are in practice limited.

Execute Engine Submission of jobs and transfer of data to
the compute resources is done with a suitable protocol,
e.g. ssh for Cloud resources or GRAM in a Globus/Grid
environment.

E. Open challenges

Improvements to our current system for executing the
meteorological workflows targets:

Runtime prediction A precise prediction for execution and
file transfer is needed to optimize the runtime to utilize the
resources as efficiently as possible. The current solution
employs several minutes buffer between execution time
and billing interval to avoid increased costs as predictions
are not precise enough for Cloud resources and networks.

Dynamic problem size Amazon, for example, is offering re-
sources with variable pricing, which provides the chance
of cheaper computation. Assuming a fixed budget for the
executions the problem size could be increased dynami-
cally to meet the computational power currently available
for the given budget. In such a case a price increase
during execution would require dynamic workflow and
input parameter changes during the application execution.
This would require a more dynamic application imple-
mentation and changes of the middleware.

Federated Cloud The current approach utilized Amazon EC2
or a private Cloud as the two possible Cloud provider.
Additional Clouds are supported by ASKALON but their
simultaneous usage introduces new challenges for the
scheduler. Inter-Cloud file transfers may have a unpre-
dictable (slow) performance compared to transfers within
a single Cloud. Pricing schemes of different providers are
often hard to compared. Ways to see multiple commercial

1Amazon EC2 allows up to 20 instances for a user. If more instances are
needed a manual request form has to be filled out to get permanent access to
bigger resource pools.

Cloud providers as a one bigger federated Cloud are
needed.

III. APPLICATIONS IN METEOROLOGY

In the following subsections, we describe the three ap-
plications we developed for meterological research and used
Grid and Cloud resources for faster execution. All projects
investigate orographic precipitation over complex terrain. The
most important characteristics regarding distributed computing
of the projects are shown in table I.

A. MeteoAG

MeteoAG started as part of the AGrid computing ini-
tiative. Using ASKALON we created a workflow to run
a full numerical atmospheric model and visualization on a
Grid infrastructure [18]. The model is the non hydrostatic
Regional Atmospheric Modeling System (RAMS), a fully MPI
parallelized Fortran based code [19]. NCAR Graphics library is
used for visualisation. Due to all AGrid sites running a similar
Linux OS, no special code adaptation to Grid computing was
needed.

We simulated real cases as well as idealised test cases in
the AGrid environment. Most often these are parameter studies
testing sensitivities to certain input parameters with many
slightly different runs. The investigated area in the realistic
simulations covers Europe and a target area over western
Austria, with resolution of the innermost domain of 500m
and 60 vertical levels (approx. 7.5 million grid points). Figure
2 shows the workflow deployed to the AGrid. Starting with
many simulations with a shorter simulation time, it was then
decided which runs to extend further. Only runs where heavy
precipitation occurs were chosen. Post-processing done on the
Compute Grid includes extraction of variables and preliminary
visualization, but the main visualization is done on a local
machine.

The workflow characteristics relevant for distributed com-
puting are: fewer model instances but highly CPU demanding
as well as lots of interprocess communications. Results of this
workflow require a substantial amount of data transfer between
the different Grid sites and the end-user.

Upon investigation of our first runs it was necessary to
provide different executables for specific architectures (32bit,
64bit, 64bit Intel) to get optimum speed.

B. MeteoAG2

MeteoAG2 is the continuation of MeteoAG and also part
of AGrid [20]. Based on the experience of MeteoAG that it
is much more effective to deploy an application consisting
of serial CPU jobs, MeteoAG2 uses a simpler meteorological
model, the Linear Model of orographic precipitation (LM)
[21]. The model computes only very simple linear equations of
orographic precipitation, is not parallelized, and has short run-
time, in the 10 seconds area, even with high resolutions (500m)
over large domains. LM is written in Fortran. ASKALON is
used for workflow execution and Matlab routines for visuali-
sation of the output files that the workflow produces.

With this workflow, rainfall over the Alps was investigated
by taking input from European Centre for Medium-Range



TABLE I. OVERVIEW OF OUR PROJECTS AND THEIR WORKFLOW CHARACTERISTICS.

Project MeteoAG MeteoAG2 RainCloud

Type Grid Grid Cloud
Meteorological model RAMS (Regional Atmospheric Modeling System) single layer linear model of orographic

precipitation
double layer linear model of orographic
precipitation

Model type complex full numerical model parallelized with
Message Passing Interface (MPI)

simplified model double layer simplified model

Parallel runs 20-50 approx 50000 > 5000 operational, > 10000 research
Runtime several days several hours 1-2 hours operational / < 1h research
Data transfer 200GB 1GB 10MB - 1GB
Workflow flexibility strict strict flexible
Applications parameter studies, case studies downscaling parameter studies, downscaling, proba-

bilistic forecasts, model testing
Intent research research operational, research
Frequency on demand on demand operational: daily, research: on demand
Programming shell scripts, Fortran, NCAR Graphics, MPI shell scripts, Fortran, Matlab python, Fortran

parallel (cases)

parallel (parameters)

simulation_init

case_init

rams_makevfile rams_init

raver revu_compare

rams_hist

revu_dump

Fig. 2. Workflow of MeteoAG using the Regional Atmospheric Modelling
System (RAMS) and supporting software REVU (extracts variables) and
RAVER (analyses variables).

Weather Forecasts (ECMWF) model, splitting the Alps into
subdomains (see figure 3) and running the model within each
subdomain with variations in the input parameters. The last
step combines the results from all subdomains and visualises
them. Using Grid computing allowed us to run many over
50.000 simulations in a relatively short amount of time (several
hours).

The workflow deployed to the Grid (figure 4) is simple with
only two main activities: preparing all the input parameters
for all subdomains and then the parallel execution of all runs.
One of the drawbacks of MeteoAG2 is the very strict setup
that was necessary due to the state of ASKALON at that time,
e.g. no robust if-construct yet, and the direct use of model
executables without wrappers. The workflow could not easily

Fig. 3. Grid setup of experiments in MeteoAG2.

parallel

LinMod:Make_NameList

LinMod:Prod_NcFiles

Fig. 4. Workflow of MeteoAG2 using the Linear Model (LM) of orographic
precipitation.

be changed to suit different research needs, e.g. change to
different input parameters for LM or using a different model.
Ongoing developement and bugfixes in the middleware later
on allowed to creat more flexible workflows as shown in the
next use case.

C. RainCloud

Switching to Cloud computing, RainCloud uses an ex-
tended version of the same simple model of orographic pre-
cipitation as MeteoAG2. The main extension to LM is the
ability to simulate different layers, while still retaining its fast



execution time [22]. The software stack includes ASKALON
again, the Fortran-based LM, python scripts and Matpotlib for
visualisation.

The inclusion of if-constructs in ASKALON and a different
approach to the scripting of activities (e.g. wrapping the model
executables in python scripts and calling these) allows Rain-
Cloud be be used in different setups. It was possible to create
one generic workflow that can be used for multiple use cases
by making parts of the workflow optional using if-structures
and boolean input parameters to enable or disable those parts.
We are now able to run the workflow in 3 flavours without any
changes: idealised, semi-idealised and realistic simulations as
well as different settings: operational and research. Figure 5
depicts the workflow run on Cloud computing. Only the first
two activities, PrepareLM and LinearModel have to be run, the
others are optional. This workflow fits a lot of meteorological
applications as it has the building blocks:

parallel

PrepareLM

LinearModel

PostProcessSingle

PostProcessFinal

Fig. 5. Workflow of RainClouds operational setting for the Avalanche
Warning Service Tyrol (LWD)

• preparation of the simulations (PrepareLM)

• execution of a meteorological model (LinearModel)

• post processing of each individual run, e.g. for pro-
ducing derived variables (PostProcessSingle).

• post processing of all runs (PostprocessFinal).

The operational setup produces spatially detailed daily
probabilistic precipitation forecasts for the Avalanche Service
Tyrol (Lawinenwarndienst Tirol) to help forecast avalanche
danger. Figure 5 shows the workflow.

Our workflow invocations vary substantially in required
computation power as well as data size. The operational job

is run daily during winter, whereas research types are run in
bursts. Data usage within the Cloud can be substantial in the
area of 500Gb with all flavours, but with big differences of data
transfer from the Cloud back to the local machine. Operational
results are small, in the order of 100Mb, while research results
can amount up to 100Gb, influencing the overall runtime due
to the additional transfer time as well as the costs.

IV. COSTS, PERFORMANCE AND USAGE SCENARIOS

To define the exact costs for a dedicated server system
or the participation in a Grid initiative is not trivial, and
often even unknown to the provider. We contacted several
of them, but due to complicated budgeting the final costs
are not obvious. [23] discusses costs for operating a server
environment for data services from a providers perspective.
Costs shown are servers, infrastructure, power requirement and
networking, however not mentioning cost of human resources
for e.g. system administration. [24] include human resources
and establish a cost model for setup and maintenance of a
data center. Grids may have different and negotiable levels of
access and participation, with varying associated costs.

Cloud computing on the other hand offers simpler and
transparent costs. Pricing varies depending on the provider,
capability of a resource, but also on the geographical region.
For example Amazon currently offers centres in the US, EU,
Asia Pacific and South America resulting in different transfer
speeds towards the users location. Prices of AWS on-demand
compute instances for Linux OS can be found in table II and
are 0.02 USD/hour up to ∼5 USD/hour (region Ireland).

Cheaper instance pricing is available through spot instances
with which one bids on spare resources. These resources might
get cancelled if demand rises, but are a valid option for
interruption-tolerant workflows or for developing a workflow.

Figure 6 shows the difference between spot and on-demand
pricing for 25 test runs of our operational workflow (circle
and x, right y-axis). All runs use a total of 32 cores but a
different number of instances. Runtime only includes the actual
workflow, not the spin up needed to prepare the instances. It
usually takes 5-10 seconds for an instance to become available.
Spot and on-demand only differ in the pricing scheme not
in the computational resources themselves. With spot pricing
we achieved savings between 65-89 percent, however with an
additional startup latency of 2-3 minutes (compared to 5-10
seconds) as spot instances need longer for instantiation.

Additional costs for data transfer from and to the Cloud
apply but the RainCloud workflow incurred no additional data
transfer costs as AWS has an allotment of 1GB/month free
transfer which was never exhausted.

A simple cost comparison can be done with the purchasing
costs of dedicated hardware, excluding costs for system admin-
istration, cooling or power. The operational part of RainCloud
runs on 32 cores for approximately 3h per day during winter
half year, i.e. 550h per year. A standard 4 core desktop PC with
8 GB RAM costs around 850 USD, equaling to 3500h of a
c3.xlarge AWS instance (4 core, 7.5 GB RAM, 0.239USD/h).
A dedicated 32 core server with 64GB RAM costs around 5500
USD (various brands, excluding Austrian taxes). A comparable
on-demand AWS instance (c3.x8large; 32 cores, 60 GB RAM)



TABLE II. PRICES AND SPECIFICATIONS FOR AMAZON EC2 ON DEMAND INSTANCES RUNNING LINUX OS IN REGION EU-west AS OF JUNE 2014.

Instance Family Instance Type vCPU ECU Memory (GiB) Storage (GB) Cost USD/h
General purpose m3.medium 1 3 3.75 1 x 4 SSD 0.077
General purpose m3.xlarge 4 13 15 2 x 40 SSD 0.154
General purpose m3.2xlarge 8 26 30 2 x 80 SSD 0.616
Compute optimized c3.large 2 5 3.75 2 x 16 SSD 0.120
Compute optimized c3.xlarge 4 14 7.5 2 x 40 SSD 0.239
Compute optimized c3.8xlarge 32 108 60 2 x 320 SSD 1.912
Memory optimized r3.large 2 6.5 15 1 x 32 SSD 0.195
Memory optimized r3.2xlarge 8 26 61 1 x 160 SSD 0.780
Memory optimized r3.8xlarge 32 104 244 2 x 320 SSD 3.120
Storage optimized i1.4xlarge 16 53 122 4 x 800 SSD 3.751
Storage optimized hs1.8xlarge 16 35 117 24 x 2048 4.900
Micro instances t1.micro 1 Var 0.615 EBS only 0.020
GPU instances c2.2xlarge 8 26 15 1 x 60 SSD 0.702
General purpose m1.xlarge 4 8 15 4 x 420 0.520
General purpose m1.medium 1 2 3.75 1 x 410 0.130
Memory optimized m2.4xlarge 8 26 68.4 2 x 840 1.840

could run for ∼2800 hours at 1.91USD/h pricing. Assuming
no instance price variance, our operational workflow could be
run for approximately five years, the usual depreciation time
for hardware.

m3.2xlarge m1.xlarge c3.8xlarge m1.medium m2.4xlarge
instance type

0

900

1800

2700

3600

4500

ru
n
ti

m
e
 [

s]

0

2

4

6

8

10

co
st

 [
U

S
D

]

spot

on-demand

Fig. 6. Overall runtime of one operational run on various EC2 instance types.

Figure 6 shows the effect of different instance types on the
runtime of our operational RainCloud workflow. Dots show
costs for on-demand instances (x) and spot instances (circle;
right y-axis). First, a clear difference between the instance
types shows, longest running taking nearly twice as long as the
shortest one. Second, even within one instance type, runtime
varies between 10-20 percent. Serial execution on a one core
desktop PC takes about 12h, i.e. a speedup of ∼18. Based on
these experiments our daily operational workflow uses four
m3.2xlarge instances.

[14] show speedup and performance for MeteoAG with
various problem sizes. Speedup of multiple cores versus 1
core for a short running test setup is ∼5, with higher speedups
possible for a full complex workflow run. For MeteoAG2 [20]
show a speedup of ∼120 of executing the workflow on several
Grid machines compared to the execution on a single desktop
PC. However, as these are different workflows, no comparison
between the type of computing resources can be made from
these performance measures.

In meteorology different usage scenarios are commonly
found. For choosing the right type of computing system
several issues need to be taken into account. Only above a
certain workflow length moving away from a local machine

is worth the effort. Grids usually have a steep learning curve
while Clouds offer simple (web) interfaces To make the most
out of Cloud computing (and to some extent out of Grid
computing) it is best to have a workflow which can be split
into small, independent components and utilize a Middleware
like ASKALON for the execution, that reduces the complexity
for scientists.

For a research scenario with bursts of high activity with
many but small activities, Cloud computing fits perfectly. The
costs are fully controllable and only little setup is required. Ex-
amples are parameter studies with simple models, computation
of model output statistics (MOS) or satellite data processing.
If a lot of data transfer is needed Grid computing is the better
alternative. Research applications with big, long running, data
intensive simulations such as high resolution complex models
are best run on Grids or local clusters.

In an operational scenario with frequent invocations,
Clouds and Grids might be suitable depending on the amount
of data transferred. For simple models or preprocessing of data
Clouds offer a cheap alternative. However, for full forecast
models dedicated local cluster are usually the fastest and most
reliable option. Time critical data dissemination of forecasts
can be sped up with Grids. Operational scenarios with infre-
quent invocations might benefit from using Grid or even Cloud
computing, avoiding the need for a local cluster. Examples
are recalculation/reanalysis of seasonal/climate simulations or
updating of MOS equations.

V. CONCLUSION

We successfully executed meteorological applications on
distributed computing infrastructure. Grids and Clouds re-
sources bouth showed advantages and disadvantage which
we analysed. Our meteorological applications range from
a complex atmospheric limited-area model to a simplified
model of orographic precipitation. Adhering to some limita-
tions/considerations, distributed computing can cater to both.

If Grid is seen as an agglomeration of individual clusters,
complex parallelized models are simple to deploy and efficient
to use in a research setting. The compute power is usually
substantially larger than what a single institution could afford.
However, in an operational setting the immediate availability
of resources might not be given. This is an issue that needs



to be addressed in advance. For data storage and transfer, e.g.
dissemination of forecasts, Grids are a powerful tool.

Taking Grid as a structure, workflows involving MPI are
not simple to exploit. As with Clouds, it is more efficient to
deploy an application consisting of serial jobs with as little
interprocess communication as possible.

The setup and access to Cloud infrastructure is a lot
simpler and less effort than participation in a Grid project.
Grids require hardware and more complex software to access
whereas access to Clouds is usually kept as simple as possible.
A Credit card and one time reachability via phone to verify a
AWS account is the only requirement to get access to the theo-
retical unlimited resources offered by Amazon. (Commercial)
Cloud computing is very effective and cost saving tool for
certain meteorological applications. Individual projects with
high-burst needs or an operational setting with a simple model
are two examples.

The biggest disadvantages of Clouds are data transfer to
and from the Cloud. Within the Cloud infrastructure the trans-
fer speeds are comparable to local resources but over internet
connections, especial from Europe to America, transfers are
considerably slower than for a dedicated cluster setup or Grids.

Private Clouds remove some of the disadvantages of public
Clouds, security and data transfer are the most notable ones.
However, using private Clouds also removes the advantage of
not needing hardware and system administration. We used a
small private Cloud to develop our workflow before going full-
scale on Amazon AWS with our operational setup.

In a meteorological research setting with specialised soft-
ware, Clouds offer a flexible system with full control over
operating system, installed software and libraries. Grids on
the other hand are managed on individual Grid sites and are
more strict and less flexible. The same is valid for customer
service. Clouds offer one contact for all problems and offer
(paid) premium support as opposed to having to contact each
system administration for every Grid site.

We showed that meteorological application can be executed
using Grid and Cloud resources and depending on the appli-
cation and its usage patterns either Grid or Cloud fits the end
user needs more.

REFERENCES

[1] I. Foster and C. Kesselman, The Grid 2: Blueprint for a new computing
infrastructure. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[2] I. T. Foster and C. Kesselman, The Grid: Blueprint for a new computing
infrastructure, 2nd ed. Amsterdam: Morgan Kaufmann, 2004.

[3] M. L. Bote-Lorenzo, Y. A. Dimitriadis, and E. G. A. Sanchez, Grid
Characteristics and Uses: A Grid Definition. Springer Berlin /
Heidelberg, 2004, vol. 2970.

[4] V. Nefedova, R. Jacob, I. Foster, Z. Liu, Y. Liu, E. Deelman, G. Mehta,
M.-H. Su, and K. Vahi, “Automating Climate Science: Large Ensemble
Simulations on the TeraGrid with the GriPhyN Virtual Data System,”
e-science, vol. 0, p. 32, 2006.

[5] P. Mell and T. Grance, “The NIST definition of cloud computin-
grecommendations of the National Institute of Standards and Tech-
nology. Special Publication 800-145, NIST, Gaithersburg,” csrc. nist.
gov/publications/nistpubs/800-145/SP800-145. pdf, vol. 15, no. 10.07,
p. 2009, 2011.

[6] C. Evangelinos and C. Hill, “Cloud Computing for parallel Scientific
HPC Applications: Feasibility of running Coupled Atmosphere-Ocean
Climate Models on Amazon’s EC2.” ratio, vol. 2, no. 2.40, pp. 2–34,
2008.

[7] S. Ostermann, K. Plankensteiner, R. Prodan, T. Fahringer, and A. Iosup,
“Workflow monitoring and analysis tool for ASKALON,” in Grid and
Services Evolution, Barcelona, Spain, June 2008, pp. 73–86.

[8] J. Volkert, “The Austrian Grid Initiative - High Level Extensions
to Grid Middleware,” in PVM/MPI, ser. Lecture Notes in Computer
Science, D. Kranzlmüller, P. Kacsuk, and J. J. Dongarra, Eds., vol.
3241. Springer, 2004, p. 5.

[9] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid
Computing 360-Degree Compared,” 2008 Grid Computing Environ-
ments Workshop, pp. 1–10, Nov. 2008.

[10] E. Cody, R. Sharman, R. H. Rao, and S. Upadhyaya, “Security in grid
computing: A review and synthesis,” Decision Support Systems, vol. 44,
no. 4, pp. 749–764, Mar. 2008.

[11] D. Catteddu, “Cloud Computing: Benefits, Risks and Recommendations
for Information Security,” in Web Application Security SE - 9, ser.
Communications in Computer and Information Science, C. Serrão,
V. Aguilera Dı́az, and F. Cerullo, Eds. Springer Berlin Heidelberg,
2010, vol. 72, p. 17.

[12] D.-G. Feng, M. Zhang, Y. Zhang, and Z. Xu, “Study on cloud computing
security,” Journal of Software, vol. 22, no. 1, pp. 71–83, 2011.

[13] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. T. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke,
“Data management and transfer in high-performance computational
Grid environments,” Parallel Computing, vol. 28, no. 5, pp. 749–771,
2002.

[14] F. Schüller, J. Qin, F. Nadeem, R. Prodan, T. Fahringer, and G. Mayr,
“Performance, Scalability and Quality of the Meteorological Grid
Workflow MeteoAG,” Austrian Computer Society, vol. 221, pp. 155–
165, 2007.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability / A Guide
to the Theory of NP-Completeness. San Francisco: W.H. Freeman and
Company, 1978.

[16] S. Ostermann and R. Prodan, “Impact of variable priced cloud re-
sources on scientific workflow scheduling,” in Euro-Par 2012 Parallel
Processing, ser. Lecture Notes in Computer Science, C. Kaklamanis,
T. Papatheodorou, and P. Spirakis, Eds., vol. 7484. Springer Berlin
Heidelberg, 2012, pp. 350–362.

[17] F. Nadeem and T. Fahringer, “Predicting the execution time of grid
workflow applications through local learning,” High Performance Com-
puting Networking, Storage and Analysis, Proceedings of the Confer-
ence on, vol. 1, no. 1, pp. 1–12, 2009.

[18] F. Schüller, Grid computing in meteorology: grid computing with -
and standard test cases for - a meteorological limited area model.
Saarbrücken, Germany: VDM, 2008.

[19] W. R. Cotton, R. A. P. Sr., R. L. Walko, G. E. Liston, C. J. Tremback,
H. Jiang, R. L. McAnelly, J. Y. Harrington, M. E. Nicholls, G. G.
Carrio, and J. P. McFadden, “RAMS 2001: Current status and future
directions,” Meteorology and Atmospheric Physics, vol. 82, no. 1, pp.
5–29, Jan. 2003.

[20] K. Plankensteiner, J. Vergeiner, R. Prodan, G. Mayr, and T. Fahringer,
“Porting LinMod to Predict Precipitation in the Alps using ASKALON
on the Austrian Grid,” in 3ˆrd Austrian Grid Symposium, J. Volkert,
T. Fahringer, D. Kranzlmüller, R. Kobler, and W. Schreiner, Eds., vol.
269. Austrian Computer Society, 2009, pp. 103–114.

[21] R. B. Smith and I. Barstad, “A linear theory of orographic precipitation,”
Journal Of The Atmospheric Sciences, vol. 61, no. 12, pp. 1377–1391,
Jun. 2004.

[22] I. Barstad and F. Schüller, “An Extension of Smiths Linear Theory of
Orographic Precipitation: Introduction of Vertical Layers,” Journal of
the Atmospheric Sciences, vol. 68, no. 11, pp. 2695–2709, Nov. 2011.

[23] A. Greenberg and J. Hamilton, “The cost of a cloud: research problems
in data center networks,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 1, pp. 68–73, 2008.

[24] C. D. Patel and A. J. Shah, “Cost model for planning, development and
operation of a data center,” 2005.


