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Abstract 

In the last decades, the field of structural health monitoring (SHM) has grown exponentially. Yet, 

several technical constraints persist, which are preventing full realization of its potential. To upgrade 

current state-of-the-art technologies, researchers have started to look at nature’s creations giving rise to 

a new field called ‘biomimetics’, which operates across the border between living and non-living 

systems. The highly optimised and time-tested performance of biological assemblies keeps on inspiring 

the development of bio-inspired artificial counterparts that can potentially outperform conventional 

systems. After a critical appraisal on the current status of SHM, this paper presents a review of selected 

works related to neural, cochlea and immune-inspired algorithms implemented in the field of SHM, 

including a brief survey of the advancements of bio-inspired sensor technology for the purpose of SHM. 

In parallel to this engineering progress, a more in-depth understanding of the most suitable biological 

patterns to be transferred into multimodal SHM systems is fundamental to foster new scientific 

breakthroughs. Hence, grounded in the dissection of three selected human biological systems, a 

framework for new bio-inspired sensing paradigms aimed at guiding the identification of tailored 

attributes to transplant from nature to SHM is outlined. 
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1. Introduction 

Built environment is continuously exposed to the risk of structural damage whether due to ageing 

effects, excessive loads, accidents or extreme events. If not timely detected, damage will inevitably 

impair the structural performance, jeopardizing the integrity of the system. This is a major concern in 

case of strategic civil structures and infrastructures, such as bridges, dams and buildings, among others, 

where the need to meet life-safety standards is emphasized by the critical role these systems play within 

the economy of our countries. Moreover, the costs associated with catastrophic collapses are often 

unsustainable. The timely identification of structural damage is therefore crucial to avoid unexpected 

failures, ensure structural performance and enhance public safety. Millions of euros are currently 

invested in conventional maintenance routines based on time-consuming and rather subjective visual 

inspection procedures which, in most cases, result insufficient for safety evaluation, as the majority of 

structural defects lie (unseen) beneath the surface of the structure (Moore et al., 2001). To track and 

keep under control the structural behaviour, including the onset and evolution of hidden damage 

mechanisms, structural health monitoring (SHM) systems are the best tools available up to date. Such 

systems can provide valuable and nearly real-time information for assessing integrity, durability and 

reliability of structures, allowing to quantify changes in the structures’ inherent characteristics and to 

early detect structural faults even if not visible to human eyes. Yet, recent disasters have shown that 

there is a mismatch between budget spent on SHM systems and improvement of life-safety standards.  

While SHM systems can potentially offer the possibility to obtain accurate condition screenings of the 

structural health, the problems and technical limitations of current sensing platforms still continue to 

make the damage identification task very challenging. Damage, by its nature, is a highly localized 

phenomenon, thus the careful selection and deployment of sensors are critical for its detection. To obtain 

reliable and high quality structural information, it is important to monitor the structural behavior at fine-

grained level, ensuring a sufficiently large number of sensors. Unfortunately, in what concerns civil 



structures, budget limitations often result in the installation of sparsely distributed monitoring systems, 

poorly scaled with structural damage, mainly because of the high costs associated with traditional 

tethered systems (Loh et al., 2015). Numerous wireless technologies have emerged over the past 

decades aiming at providing relatively inexpensive sensor platforms with densely distributed data 

acquisition nodes for autonomous SHM and damage detection. However, although these considerable 

advancements, modern SHM systems still present several limitations which are preventing full 

realization of their potential. Among the main problems are: inappropriate instrumentation and sensor 

overload, reliable network topology, data compression and transmission, data mining, energy 

consumption and storage cost, environmental and noise effects (Brownjohn, 2007).  

Intelligent sensors strategically deployed within a flexible hierarchical network topology are required 

to ensure a clever multi-level screening of structures while reducing operation and maintenance costs. 

Similar optimal conditions have already been accomplished in biological systems. For instance, 

analogies can be found with the human skin which is known to have a network of more than 600.000 

sensors distributed over an area of less than two square meters. Such a dense network of sensors can 

detect and process different physical stimuli of pressure, temperature and pain, thereby being of vital 

importance for the preservation of the human body. Another example is the central nervous system with 

its complex inter-connected architectures of neurons, which are able to process vast amount of 

information at very fast rates with minimal energy costs, and whose redundancy guarantees failure 

tolerance of single neural cells without compromising the efficiency of the overall system. Current 

research activities in the field of SHM are already addressing their attention to the emulation of nature’s 

time-tested patterns to develop bio-inspired artificial counterparts that can potentially outperform 

conventional systems. Cutting-edge topics encompass bio-inspired algorithms for best sensor placement 

and damage detection, intelligent sensor networks with sleep/wake options for enhancing energy 

efficiency, skin-like and mobile robotic sensors for optimum network coverage. However, a more in-

depth understanding of biological systems and their assemblies is necessary to effectively drive new 

scientific and technological breakthroughs in bio-inspired SHM. 

In light of the above considerations, the main scope of this paper is to present an overview on the current 

status of structural health monitoring, with focus on selected examples of bio-inspired algorithms 



applied in the field of SHM, namely neural, cochlea and immune -inspired algorithms. This paper is not 

meant to be an exhaustive literature review on the topic. Only a selection of published works is sampled 

and presented to showcase different ideas and the breadth of research. The remainder of this document 

is organised as follows. Section 2 gives a summary of SHM developments over time and provides a 

critical analysis of current health monitoring techniques. Deficiencies and technical limitations of 

modern SHM architecture are addressed in Section 3, pointing out possible improvement solutions. 

After a concise introduction on biomimicry concepts and bio-inspired systems in different fields and 

applications, Section 4 reviews selected works on bio-inspired algorithms implemented in the field of 

SHM. Section 5 proposes a dialectic framework to foster a more in-depth understanding of the most 

suitable biological patterns that can be transferred into engineered SHM systems. Finally, Section 6 

reports the main conclusions of the work, highlighting future trends and needs.  

2. Traditional vs modern approaches in SHM   

2.1 Overview and motivation for SHM technology development 

In general terms, Structural Health Monitoring (SHM) can be defined as the systematic online process 

of observing, tracking and sampling data over a period of time, in order to assess the fitness for purpose 

of structural systems under inevitable ageing and damage accumulation resulting from operational and 

environmental conditions. Although the first forms of structural monitoring, based on visual inspections 

and simple offline data collection methods, date back to long time ago, the term SHM was formally 

‘standardized’ only in the last decades, when the advances in software and hardware technologies led 

to the advent of automated data acquisition and processing systems (Brownjohn, 2007). At the same 

time, the need for a holistic approach to SHM started to emerge (Fanelli, 1992). The most significant 

developments in SHM originated from major construction projects, such as large dams (Comerford et 

al., 1992; Darbre and Proulx, 2002; Severn et al., 1981), large-scale bridges (Bampton et al., 1986; Barr 

et al., 1987; Leitch et al., 1987; Cheung et al., 1997; Maeck et al., 2001; Ko and Ni, 2005), offshore 

platforms (Coppolino and Rubin, 1980; Kenley and Dodds, 1980; Shahrivar and Bouwkamp, 1984; 

Brederode et al., 1986), nuclear installations (Smith, 1996), tunnels and excavations (Okundi  et al., 

2003; Tan and Chua, 2003). The primary scope was to gain a better insight into the structural behaviour 



of such systems during construction activities, normal operation and extreme events, such as 

earthquakes, strong winds and floods, by tracking specific parameters suitable for the extraction of 

information regarding the structural response and for the identification of possible anomalous changes. 

In what concerns buildings and civil infrastructures, motivation for SHM initially resulted from the 

need to timely evaluate the structural safety against significant seismic events (Brownjohn, 2007; 

Rainieri et at., 2010) and to assess the structural response to environmental and operational conditions, 

including temperature effects, traffic loadings and wind speed (Magalhães et al., 2012; Cross et al., 

2013; Comanducci et al., 2015). Still, the growing interest in the preservation and maintenance of 

strategic civil structures considerably fuelled the development of systematic approaches for SHM (Tan 

and Chua, 2003; Farrar and Lieven, 2007; Farrar and Worden, 2007; Carden and Brownjohn, 2008; 

Rainieri et al., 2011; Langone et al., 2017; Worden and Cross, 2018). Response data generated by 

structural monitoring systems are currently used to: (i) provide real-time baseline information on the 

system’s health, (ii) set performance standards, (iii) detect anomalies and deviations of the structural 

response from the ordinary behaviour, (iv) validate design models, (v) monitor, control and evaluate 

the effectiveness of retrofit interventions and repair activities. Vibration data from SHM systems also 

play a leading role when dealing with built architectural heritage, where the need to respect the historical 

value of the constructions often limits the range of applicable techniques for the system’s 

characterization. In this regard, hSHM (heritage-SHM) practices are being employed with a twofold 

aim, viz. as a diagnosis tool and as a control tool, holding an active role throughout the entire 

preservation process of historic structures (Ramos et al., 2010; Ramos et al., 2013; Saisi et al., 2016; 

Ubertini et al., 2016; Masciotta et al, 2016; Masciotta et al., 2017). Recently, great endeavours have 

been made in the field of vibration-based damage identification, but the possibility to efficiently embed 

damage detection algorithms within monitoring systems in order to automate the task of assessing 

structural health is still under development (Lynch, 2007; Avci et al., 2018). Furthermore, the inherent 

limitations of actual monitoring technologies have induced the civil engineering community to explore 

new SHM sensing paradigms so as to advance the current state-of-practice for optimal data collection 

and intelligent data interpretation. In particular, attention is being devoted to the field of biomimicry, 

as it will be discussed in the next sections. 

https://www.sciencedirect.com/science/article/pii/S0888327011002330#!


 

2.2 Classification of current SHM techniques 

The field of SHM is rather wide-ranging and embraces different techniques which can be classified 

according to various criteria. In general terms, SHM techniques can be categorized in global and local. 

The former group includes online vibration-based monitoring techniques that are suitable for 

investigations at the system-level since they allow to obtain information about the overall response of 

the structure. The latter group consists of offline inspection methods and investigations at the 

component-level which are mostly beneficial when the target areas are known in advance.  

Depending on the type and configuration of sensing and data acquisition systems, SHM techniques can 

be also classified in traditional (or standard) and modern (or smart). Traditional approaches rely on 

tethered-based sensing systems which exploit coaxial cables to communicate the response 

measurements to a central data repository (figure 1a). A certain number of sensors (e.g. accelerometers, 

displacement transducers, inclinometers, strain gauges or actuators) are deployed at strategic locations 

throughout the structure, but they are wired back to a single centralized DAQ system where data are 

stored and processed. Among the key problems intrinsic to the use of cables for SHM purposes are the 

high cost per sensing node channel, the low flexibility and the significant amount of time and labor 

needed to install and maintain dense sets of sensors. While extremely reliable in communication, the 

large number of accompanying wires, fibre optic cables, or other physical transmission media may be 

prohibitive, particularly for large-scale structures such as long-span bridges or tall buildings (Spencer 

et al., 2004). Moreover, wires are susceptible to tearing, rodent nibbling and measurement corruption 

through signal noise, thus they need to be isolated from the harsh environment, causing a further 

increase in the cost and time of installation (Lynch et al., 2000). This is why tethered monitoring systems 

typically lack a high spatial density of sensors, resulting in sparsely distributed and poorly scaled 

networks (Loh et al., 2015). Low sensor densities provide insight into the low-order modal properties 

of the structure, but for damage detection purposes there is a need for greater monitoring fidelity that is 

only achievable by highly increasing the number of measurement points (Lynch et al., 2000). The 

limitations and bottlenecks of traditional structural monitoring technologies have prompted structural 



engineering researchers to look over alternative and more modern approaches for performing many of 

the tasks associated with the health monitoring of civil structures (Lynch, 2007). Most of these 

approaches are based on the use of sensing units which embody wireless communications and mobile 

computing elements so as to deliver a relatively inexpensive sensor platform with distributed and 

autonomous data acquisition nodes not physically linked (figure 1b). Beyond the hardware architecture, 

each wireless sensor is provided with a computational core, namely an on-board software, responsible 

for data collection, self-interrogation of measurement data and wireless communication within the 

sensor network. Thanks to the rapid advances in sensors and the declining cost of computing and 

communication technologies, various wireless monitoring systems have been designed and tested across 

a number of different applications. Such systems have the potential to serve as low-cost, highly-flexible 

and highly-efficient substitutes for traditional tethered monitoring systems as they feature a cheaper and 

quicker installation as well as superior performance (Lynch and Loh, 2006). Still, despite the benefits, 

several challenges mainly associated with wireless telemetry must be tackled, e.g. power consumption 

of batteries, time synchronisation of sensors, long-range communication, lossless data compression and 

transmission (Ling and Tian, 2010; Jang et al., 2012; Alonso et al., 2018). Setting the goal to take up 

one challenge or the other, different network topologies for wireless sensor networks (figure 2) have 

already been proposed both at academic and industrial levels (Lynch and Loh, 2006), but research is 

still ongoing (Jayawardhana et al., 2017; Abdaoui et al., 2017). An extensive review about the prototype 

wireless sensing units and the commercial wireless sensor platforms developed so far is not pursued in 

this study. Several papers fully treating this subject are already available in literature, e.g. Lynch et al., 

(2000), Farrar et al. (2003), Spencer et al. (2004), Lynch and Loh, (2006), Lynch (2007), just to name 

a few. 

Depending on the capability of the sensors to act both as transmitters and receptors, SHM techniques 

can be ultimately distinguished in passive and active. Passive systems employ conventional sensors that 

slavishly record the structural response, whereas active systems involve the use of actuators, i.e. active 

sensors that are able to excite the system in which they are installed and simultaneously record its 

response. Examples of passive schemes are acoustic emission and strain/load monitoring, which have 

been demonstrated with some success (Verstrynge et al., 2018; Behnia et al., 2014; Chiu et al., 2000). 

https://www.sciencedirect.com/science/article/pii/S0888327016302503#!


Among active schemes, guided-wave SHM emerged as a very prominent option (Raghavan and Cesnik, 

2007, Yu et al., 2008). In this regard, embedded or surface-bonded wafer piezoelectric sensors are 

widely used due to their peculiarity to operate by coupling electrical and mechanical energy fields. As 

the piezoelectric material is electrically activated, strain is induced in the active sensor, and interaction 

forces and moments appear at the interface between the sensor and the structure. Conversely, when an 

elastic wave travels through the structure, the active sensor gets activated through the 

strain/displacement compatibility condition and the induced mechanical strain generates an electric 

field that is captured as voltage at the actuator terminals (Giurgiutiu, 2014). To take advantage of active 

sensors in smart health monitoring systems, wireless sensing units with actuation interfaces were 

conceived in the last decades (Lynch, 2007; Raghavan and Cesnik, 2007). Although promising, such a 

technology resulted well-suited only for component-level health monitoring and local-based damage 

detection. To broaden the range of application of active sensing units for SHM purposes, the 

shortcomings associated with wireless telemetry must be overcome first.  

3. Problems and limitations of modern SHM architecture  

The benefits that structural health monitoring strategies – if properly implemented – might bring into 

the civil engineering sector in a long-term perspective are countless. The success of these powerful tools 

in assisting facility managers to maintain their structures safely over time will depend on the ability of 

the engineering community to address all key problems and technical limitations that are still preventing 

full realization of SHM potential. Among the wide number of instances, at the top of the pyramid are 

the over-instrumentation and the consequent data inundation due to inappropriate sensors selection and 

location. These aspects require the development of reliable algorithms for optimal sensors placement 

so as to ensure intelligent test planning and to avoid data overload. Another important issue to master 

concerns the data transmission within the wireless monitoring system. Due to limited communication 

bandwidth, radio interference and path loss, data acquisition may result inaccurate and incomplete. To 

enhance the reliability of the wireless communication channel, spread spectrum wireless signals are 

preferred since narrow-band wireless transmission modulates all data upon a single carrier frequency 

(Lynch and Loh, 2006). By effectively spreading the signal energy over a broad spectrum, the 



probability of interference on the band may be greatly reduced (Bensky, 2004). Thus, methods for 

modulating data in a spread spectrum fashion should be implemented in the wireless sensors network 

(WSN). It is also stressed that wireless sensing units have a limited capacity and lossless data 

compression techniques must be applied for the purpose of reducing the flow of sensor information as 

well as energy consumption and storage cost. Novel compressive sensing (CS) techniques able to 

accurately reconstruct signals with much less number of acquired samples than that defined by Nyquist's 

theorem have also been investigated (Bao et al., 2011; Bao et al., 2013; Mascarenas et al., 2013; 

Jayawardhana et al., 2017). Nevertheless, further research and developments to streamline CS for WSN-

based SHM are needed. Power supplies of wireless sensors are finite, and the replacement of batteries 

may result quite difficult in locations that are not easily accessible, therefore preserving energy and 

storage through data reduction without losing the confidence of accurate decision-making is of utmost 

importance. Aiming at increasing the life expectancy of the battery packs and so the operational life of 

the entire monitoring system, a capable computational core should be embedded in each wireless 

sensing unit. The power demand of the wireless transceiver is proportional to the wavelength of the 

radio band, thus WSNs hopping data across a number of short-range radios result much more energy 

efficient than those using a single radio able to transmit over long ranges (Zhao and Guibas, 2004). 

Alternatively, wireless cluster nodes provided with both short-range and long-range radios can be 

employed. Clustering approaches can also help improve the scalability of the system, reducing network 

traffic and making new cluster additions independent from existing ones (Chen et al., 2011). A flexible 

network management software combining sleep/wake cycles with threshold detection is also 

recommended to trade off functionality and power consumption. One step forward in this direction has 

been moved by Ling and Tian (2010) who developed a distributed algorithm for sparse signal recovery 

in compressive sleeping wireless sensor networks.  

Although all afore-mentioned aspects entail an a priori hierarchical planning of the wireless network 

topology, it is worth noting that improving the WSN architecture before its implementation will 

ultimately upgrade the SHM system’s performance and lead to a clever multi-level screening reducing 

both operation and maintenance costs, without compromising the accuracy of the outcome. Eventually, 

some extra effort needs to be made to improve the time synchronization between wireless sensing units 

https://www.sciencedirect.com/science/article/pii/S0888327016302503#!


in order to align data streams at different locations according to a common temporal metric. Indeed, it 

has been shown that errors due to time shifts between the incoming raw data from each sensor node 

may adversely impact the mode shape identification and damage detection/localization of the structure 

under analysis (Abdaoui et al., 2017). Last but not the least is the issue of the influence of ambient 

factors and background noise on the vibration response of full-scale structures in operation conditions. 

It is well-known that environmental effects can mask changes due to damage occurrence, thus it is 

extremely important to distinguish whether variations in the structural response are caused by 

exogenous factors, such as temperature, humidity, wind, etc., rather than endogenous factors linked to 

structural damage. The establishment of confidence intervals and appropriate threshold levels may help 

detect anomalies and deviations from the standard behaviour of the structure. A successful WSN 

architecture should provide for sensing units with computing procedures capable to spot and filter out 

environmental and operational variations, and to autonomously execute the embedded damage detection 

algorithm in real or near real time.  

The above considerations highlight that, although successfully used over the past decades in a wide 

range of applications, WSN-based monitoring systems still do not meet the stringent requirements of 

Quality of Service (QoS) for the scope of SHM of civil infrastructures (Chen et al., 2011; Alonso et al., 

2018). In order to develop reliable SHM systems, architectural and networking issues cannot be 

addressed in isolation. A cross-layer or holistic approach distinct from previous SHM strategies is 

needed, and tailored technologies must be conceived. 

4. Bio-inspired engineering  

To overcome grand engineering challenges such as the ones discussed in the previous section, engineers 

have recently turned to biology for sources of inspiration, giving rise to a new field called bio-inspired 

engineering. The past two decades have seen a rapid increase in the amount of research related to bio-

inspired systems as quantified by the significant escalation in the number of papers published on this 

subject (figure 3). Although growing rapidly both as an academic and as an applied discipline, 

biomimetics still lacks an analytical framework (Hesselberg, 2007). This section is conceived as an 

attempt to give a brief overview of this field in order to path the way for the subsequent definition of a 



dialectic framework for new bio-inspired sensing paradigms in the context of structural health 

monitoring. Due to space limitations, some relevant material will be inevitably left out of consideration, 

but the intent of the authors is to keep the focus on the sources of bio-inspiration and paradigms that 

have already found actuation in SHM, so as to easily identify the aspects upon which further research 

must be addressed in the future for the advancement of SHM. 

 

4.1 Introduction of biomimicry concepts 

Biomimetics or biomimicry is an interdisciplinary field that identifies potential and useful processes 

and mechanisms in biological systems and living organisms and imitates them in order to solve complex 

human problems. Etymologically, the term biomimetics comes from the Greek words bios, meaning 

life, and mimesis, meaning imitation. The name was coined in the 1950s by the polymath Otto Schmitt 

(Harkness, 2002), whose doctoral research focused on the development of a physical device that 

explicitly mimicked the electrical action of a nerve. Few years later, Jack E. Steele of the US Air Force 

coined the word bionics to indicate the science of systems which have some functions copied from 

nature (Vincent et al., 2006). According to the definition of the Biomimicry Institute in Missoula 

(Montana, USA), biomimicry is an approach to innovation that seeks sustainable solutions to human 

challenges by emulating nature’s time-tested patterns and strategies (http://biomimicry.org). The core 

idea of biomimetics is that Nature has already engineered high-performance, elegant and sustainable 

systems which have benefited from millions of years of evolution and optimization, and whose 

capabilities far surpass many of the current available technologies. Hence, biology is regarded as a 

source of inspiration to give rise to innovative and efficient nature-inspired technologies at macro- and 

nano-scales in many different fields and applications.  

 

4.2 Bio-inspired systems in different fields and applications 

Even though biomimetics is a relatively young field, the mankind has been taking hints from biology 

for centuries. One of the early although unsuccessful attempt of biomimicry dates to the 15th century, 

when Leonardo Da Vinci tried to build a “flying machine” based on the observation and study of both 

http://biomimicry.org/


anatomy and flying mechanisms of winged animals. In the last century, with the technology progress 

and the unification of life and natural sciences with engineering and physical sciences, biomimetics has 

spurred interest across numerous disciplines and bio-inspired concepts have increasingly been 

integrated into several areas. Nowadays, the term biomimetics is used in all contexts that involve the 

transfer of skills or information from biology to applied science (Hesselberg, 2007). The most famous 

example of biomimicry is the hook-and-loop fastener, also known as Velcro (Velcro, 1955), which was 

conceived in the late 1940s by the Swiss engineer George de Mestral, after examining under a 

microscope the burs stuck to his clothes and his dog’s fur after returning from a hunting trip. Another 

example showing the potential of the biomimetical approach is the ‘lotus effect’ discovered by the 

botanist Wilhelm Barthlott during a systematic scanning electron microscopy study of the leaf surface 

of some 10.000 plant species (Barthlott and Neinhuis, 1997). The self-cleaning and water-repellent 

properties exhibited by the microscopically rough surface of the lotus leaf have inspired a new 

generation of super-hydrophobic materials. Interesting examples of biomimicry include the exploration 

of the micro architecture of seashells and nacres to produce lightweight, tough and shatterproof ceramics 

(Clegg et al., 1990) or the examination of the hierarchical nanostructure of bones for the synthesis of 

optimal composite materials (Gao, 2006). The replication of the ribbed texture of the shark skin has 

been used to reduce drag in hulls of sailing boats, military aircrafts (Bechert et al., 2000) and whole-

body swimsuits.  Functional materials with artificial fibres that mimic the structural features and the 

directional water-collecting ability of spider’s silk have been designed as well (Zheng et al., 2010). This 

is only a short list within the realm of bio-inspired materials. Many other examples can be found in 

literature.  

Another area that in recent years has turned some attention to the advantages of the biomimetic approach 

is the area of robotics, which is indeed a natural fit for bio-inspired engineering. A few examples are: 

the wall-climbing robot developed after studying both tread and adhesive foot surface of geckos (Menon 

and Setti, 2006);  the bio-inspired robot created after the locomotion of the lobster for the easy traverse 

of underwater terrains (Ayers and Witting J, 2007); the land robot whose stabilization mechanism was 

inspired by the tail movement of a jumping lizard (Chang-Siu et al., 2011); the self-moving endoscopes 

developed from the analysis of ragworms locomotion in slippery and tortuous substrates (Hesselberg, 



2007); and the flapping micro-air vehicles built from the mimesis of insects flight and size (Lentink et 

al, 2010).  

Needless to mention how strong the link between the fields of computer science and biology is. For 

instance, after the emergence of genetic algorithms (Goldberg, 1998), many computational techniques 

inspired by nature have been proposed in the field of optimization, such as differential evolution (Li 

and Yin, 2012), artificial bee colony (Karaboga and Basturk, 2007), particle swarm optimization 

(Kennedy, 2010), monarch butterfly optimization (Wang et al., 2015a), ant colony optimization (Zhang 

et al. 2014), firefly algorithm (Wang et al., 2014), chaotic cuckoo search (Wang et al., 2016a),  

earthworm optimization algorithm (Wang et al., 2015b), bat algorithm (Wang et al., 2016b), moth 

search algorithm (Wang, 2016), and  krill herd algorithm (Wang et al., 2017). 

The growth of biomimetic-related patents (Bonser, 2006) does reveal that the field of biomimetics is 

also gaining ground in the practical field. The benefits yielded by bio-inspired systems can be noticed 

in several applications, including structures, aerodynamics of vehicles, highly efficient devices and 

apparatus. By emulating dolphins’ frequency-modulating acoustics, EvoLogics has developed a high-

performance underwater modem for data transmission in harsh hydro-acoustic conditions. The device 

is currently employed in the tsunami early warning system throughout the Indian Ocean 

(www.evologics.de). This is only one example of successfully applied bio-inspired technology. It is 

enough to search on the internet for the term biomimicry to have a rough idea of the great amount of 

bio-inspired applications we are already surrounded by. Numerous research groups and laboratories 

around the world are currently active in the field of biomimicry and are engaged in outstanding projects.  

 

4.3 Sources of bio-inspiration for robust SHM  

Given its success in many different areas of engineering, biomimetics has recently been approached for 

SHM purposes. In this regard, biomimetics is guiding in the definition of new nature-inspired sensing 

paradigms for the development of highly efficient wireless sensor networks. The processing 

mechanisms used in biological sensory systems seem to be particularly attractive to engineers and 

scientists due to the simplistic individual functional unit, the neuron, which inevitably forms complex 

http://www.evologics.de/


architectures with other units to convey information to the brain in real time (Modha et al., 2011). 

Networks of biological neurons are able to make extremely sophisticated decisions with reaction times 

in the millisecond range, and this is a very appealing feature for engineering applications that require 

real-time decision making (Peckens, 2014). In addition, neurons are capable of processing vast amounts 

of information at very fast rates with minimal energy costs thanks to highly compressive communication 

mechanisms. Various compressive methods for vibratory signals have been explored (Spanias et al., 

1991; Zhang and Li, 2006; Bao et al., 2011; Bao et al., 2013; Mascarenas et al., 2013; Jayawardhana et 

al., 2017), but they are often computationally expensive and require complex post-processing steps, 

thus detracting from any real-time processing capabilities (Peckens and Lynch, 2013). Yet more, the 

need to perform numerous conversions between the analog and digital domains in conventional 

monitoring systems does inhibit the computational speed of the overall network.  

By drawing inspiration from biology, new sensing and control methods may be formulated from which 

current engineered monitoring systems might largely benefit. In the last years, increasing efforts have 

been made in this direction, but further research is necessary. So far, the main sources of bio-inspiration 

that have found actuation in SHM can be grouped in three categories: central nervous system, cochlea 

system and immune system. In the next sections, a description of the key physiological mechanisms 

characterizing each biological model is presented, followed by a review of the relevant bio-inspired 

algorithms derived for SHM applications. The purpose is to provide a better comprehension on how the 

existing bio-inspired sensing paradigms have been conceived, what analogies between natural patterns 

and engineered SHM systems have been leveraged, if and how biological processes have been 

embedded into real software and hardware components, and which deficiencies still need to be 

addressed to ensure the design of optimal bio-inspired SHM solutions. Finally, for the sake of 

completeness, a brief overview of the status of bio-inspired sensing technology for the purpose of SHM 

is given. 

 

4.3.1. Central nervous system.  The central nervous system (CNS) is one of the most complex and 

fascinating sensory systems in human beings. Its adaptive architecture and parallel processing 

capabilities have repeatedly drawn the attention of mathematicians and engineers since decades. The 

https://www.sciencedirect.com/science/article/pii/S0888327016302503#!


main and essential organ of the CNS is the brain, which receives, integrates, coordinates and transmits 

information, operating together with the spinal cord. The core components of the brain and spinal cord 

are the neurons, electrically excitable cells connected to each other to form neural networks. A typical 

neuron is composed of three regions: the cell body (soma), the axon and the dendrites. The cell body, 

metabolic centre containing the nucleus of the cell, analyses the incoming signals; the axon, special 

cellular extension arising from the cell body, carries the signals to other neurons; the dendrites, tree-

like protrusions arising and branching from the cell body, receive the electrochemical signals from other 

cells’ axons (figure 4). According to the ‘neuron doctrine’ proposed by Santiago Ramón y Cajal (Finger, 

2000), neurons are not continuous throughout the body, yet still communicate with one another. The 

structure through which neurons pass signals to individual target cells is called synapse (from the Greek 

synapsis, meaning “conjunction”). Synapses can be excitatory or inhibitory and respectively increase 

or decrease the fire activity in the target neuron.  

Each neuron receives information about an external stimulus through multiple receptors and encodes 

the information from this continuous input signal into a condensed format of all-or-none discrete 

electrochemical pulses called ‘action potentials’ or spike train, whose firing rate reflects the amplitude 

and frequency of the input (Bialek et al., 1991). If the action potentials exceed a certain threshold, an 

impulse is sent down the axon. The ‘strength’ of the synapse, a property which is not innate but subject 

to modification depending on the external signal, influences the effect of the impulse. When the impulse 

reaches the axon’s terminal cell, neurotransmitters are released, activating the synaptic connection and 

transmitting the impulse to a multitude of receptors on the postsynaptic neurons. This results into a 

complete signal processing and information integration through complex networks of neurons (Kandel 

et al., 2000). The connections between these networks can be strengthened or weakened over time, 

thereby allowing the overall neural network to adapt according to input stimuli and to autonomously 

make sophisticated decisions (Kandel et al., 2000). It is worth noting that although the signal flows 

according to a serial architecture, the CNS relies on parallel components, thus enabling simultaneous 

processing of analogous information either in different groups of neurons or in different neurons of the 

same pathway. This innate multitasking skill guarantees efficiency, effectiveness, fault tolerance and 

provides the CNS with a global speed higher than a modern supercomputer. Furthermore, to minimize 



metabolic expense (energy) while maintaining rapid conduction, many neurons have insulating myelin 

sheaths around their axons. Extremely important is the role played by the glial cells, non-neural cells 

which constantly provide support and nutrition to neurons, insulate them electrically, maintain 

homeostasis, destroy pathogens and participate in the signal transmission within the nervous system. 

For a more comprehensive description of the physiology of the CNS the reader can refer to (Kandel et 

al., 2000). 

Taking cue from the nature of the CNS, in the early 1940’s Artificial Neural Networks (ANNs) were 

developed and implemented in computer software as an attempt to formulate mathematical 

representations of the basic physiology of an interconnected mesh of neurons. The first mathematical 

model of the neuron was introduced by the pioneering work of McCulloch and Pitts (1943). The authors 

conceived the neuron as an extremely simplified processing unit which fired only if the weighted sum 

of the inputs exceeded a certain threshold value α (all-or-none principle). According to this simplistic 

design known as the McCulloch-Pitts perceptron, the dendrites provide a set of n inputs xi (i=1,…, n), 

whereas the axon produces a single output y which is the result of a linear activation function applied 

to the inputs (figure 5). The intent of the design was to model the axon-dendrite interactions of 

biological neural networks, where the activation function symbolized processing in the soma and the 

weights mimicked the synaptic strength between neurons. Although successful in capturing the 

threshold activation attribute of biological systems, the McCulloch-Pitts perceptron lacked the 

capability to make sophisticated decisions and was limited to linear applications. Shortly following this 

first work, different non-linear activation functions were developed (Bishop, 1994), such as the 

sigmoidal activation function. Hebb (1949) introduced variable weights, allowing the network to learn. 

Still, the earliest learning algorithms for neural networks and practical applications relied on adaptive 

synaptic connections (Rosenblatt, 1958; Widrow and Hoff, 1960), resulting effective only for a limited 

class of problems (Minsky and Seymour, 1969). In the 1980’s, novel training algorithms based on error 

backpropagation were proposed in order to overcome these limitations (Rumelhart and McClelland, 

1986). Since then, neural networks started to gain popularity and a great number of ANN-based methods 

appeared (Anderson and Rosenfeld, 1988; Anderson and Rosenfeld, 1990; Hagan et al., 2014).  



In what concerns the field of SHM, the multilayer perceptron (MLP) with sigmoidal activation function, 

trained by backpropagation to adjust weights and thresholds, has been the most common neural network 

architecture used hitherto (Doebling et al., 1996). Among other possible network architectures, 

interesting applications adopted cerebellar model articulation controller network (Yen and Kwak, 

1993), counter propagation neural network (Hecht-Nielsen, 1988; Szewczyk and Hajela, 1994), 

probabilistic neural network (Jiang et al., 2011; Specht, 1990), radial basis function network (Rytter 

and Kirkegaard, 1997), and recurrent neural network (Butcher et al., 2014). Although the afore-

mentioned ANN solutions were developed for the same purpose, their algorithms perform differently. 

For instance, Rytter and Kirkegaard (1997) proved that the MLP trained with backpropagation is more 

reliable than the radial basis function (RBF) network in damage identification, being the latter strongly 

dependent on the training examples. On the contrary, Amezquita-Sanchez and Adeli (2015) showed 

that the probabilistic neural network (PNN) far surpass the performance of the classic MLP thanks to 

lower training time and, according to Li (2011), the PNN also outclasses the learning vector quantization 

(LVQ) neural network when dealing with damage localization problems. Many real applications of 

ANN for SHM purposes have been reviewed in literature (Amezquita-Sanchez and Adeli, 2015; Fan 

and Qiao, 2011; Sohn et al., 2004; Carden and Paul, 2004; Doebling et al., 1996). Most works have 

shown the efficiency of neural networks as non-model-based methods for damage identification in the 

presence of training sets (supervised learning), but non-model-based unsupervised learning has also 

been attained through specific network architectures, such as the Self-Organizing Map, which are 

different from the feedforward architecture (Onur and Osama, 2015). One of the earliest work by Kudva 

et al. (1991) presented a two-step algorithm trained to identify location and size of a hole in a stiffened 

plate. Successively, other works applied the backpropagation neural network to locate and quantify 

damage in more complex systems, like multiple story buildings and trusses, after training the methods 

either with analytical solutions, finite element models or experimental data (Wu et al., 1992; Elkordy 

et al., 1993; Manning, 1994; Povich and Lim, 1994; Stephens and Van Luchene, 1994; Szewczyk and 

Hajela, 1994; Nakamura et al., 1998; Ni et al., 2006). Similarly, ANNs were used for bridge health 

monitoring to detect anomalies and assess damage extent (Chan et al., 1999; Feng and Bahng, 1999; 

Liu and Sun, 1997; Mehrjoo et al., 2008). However, when dealing with small local damages, ANNs 



resulted to be less reliable in terms of damage location and quantification (Kirkegaard and Rytter, 1994). 

In such cases, multi-stage artificial neural networks with sub-structuring have shown to be more suitable 

(Bakhar et al., 2010a; Bakhar et al., 2010b). It is noted that neural networks have also achieved good 

results in identifying damage patterns not belonging to training sets (unsupervised learning), which is 

essential for monitoring issues (Manning, 1994). Nevertheless, some authors prefer to use model-based 

approaches, e.g. model updating, when applying neural networks for damage localization and 

assessment in unsupervised learning (Chang et al., 1999; Sanders et al., 1997). 

While the original intent of ANNs was to mimic the processing mechanisms employed by the nervous 

system, the evolution of these networks did actually diverge from the original source of inspiration. For 

example, the training techniques and the architectural design of ANNs have no link with the original 

biological neural circuit. Besides, ANNs are often used in combination with other methods to improve 

the reliability of the algorithm (Zheng et al., 2011), thus further deviating from the primary biological 

principles.  

 

4.3.2. Cochlea system. Aiming at returning to the original principles of biological sensory systems, 

the mammalian cochlea system has recently been chosen as a source of inspiration for a new sensing 

paradigm for robust SHM, due to its unique processing techniques and real-time spectral decomposition 

capabilities (Elliott and Shera, 2012; Peckens and Lynch, 2013). The cochlea, namely the main signal 

processing unit of the auditory system, is a spiral-shaped tapered tube partitioned in three fluid-filled 

cavities by two elastic membranes: the Reissner’s membrane and the basilar membrane (figure 6a-b). 

The latter is characterized by a geometric configuration and a mechanical stiffness which change along 

its length. As such, the natural frequency of the basilar membrane also varies along its length. When a 

sound wave enters the ear canal, or the outer ear, it excites the ear drum, which converts the sound wave 

into a pressure wave in the middle ear’s fluid cavity. In turn, the pressure wave in the middle ear excites 

the inner ear’s oval window, which is connected to the base of the cochlea (Yost, 1994). The frequency 

components in the signal selectively resonate sections of the basilar membrane whose local natural 

frequency is tuned to the same frequency of the signal component (Dallos, 1996). Based on the vibrating 

subsections of the membrane (figure 6c), the cochlea instantaneously maps out the frequency content 



of the signal and conveys the perceived stimulus to higher levels of the auditory cortex via neural signals 

(Peckens and Lynch, 2015). The stereocilia and associated inner hair cells (IHCs) of the organ of Corti, 

which runs on top of the basilar membrane (figure 6c-d), are responsible for encoding the analog 

response of the membrane, i.e. vibratory amplitudes, into compressed and asynchronous digital signals 

called ‘binary spike trains’ which are then transmitted to a unique set of auditory nerve fibers resulting 

in a finely tuned map of the motion of the basilar membrane (Yost, 1994). As the basilar membrane 

vibrates, the bundle of rigid sensory hairs (stereocilia) on top of each IHC deflects, allowing the release 

of transmitters across the auditory synapse which triggers a graded potential. The graded potential is 

then transmitted to the auditory nerve where its amplitude is encoded into a series of electrical spikes 

(‘action potentials’) whose firing rate is proportional to the velocity of the basilar membrane at the hair 

cell location. Being each electrical spike an all-or-none event, the spike will only fire if a threshold 

stimulus is reached and the resulting electrical spike will not carry information about the stimulus but 

instead will be part of a series of pulses that encode information about the perceived stimulus. Therefore, 

the central nervous system is able to determine the frequency content of the incoming sound wave 

depending on the activated nerve and also the associated amplitude through the firing rate of the neural 

spike train (Peckens and Lynch, 2015). In brief, the cochlea system utilizes a unique method of spectral 

decomposition, along with place theory (frequency-location mapping), to attain an impressive auditory 

range while maintaining near real-time processing capabilities. It is able to achieve this by acting as a 

hydro-mechanical frequency analyser, as well as using compressive techniques to efficiently transmit 

data to the CNS (Peckens and Lynch, 2013).  

Based on the operational principles of the auditory system, a cochlea-inspired sensor was proposed by 

Peckens and Lynch (2013) in the context of signal processing for structural monitoring applications. 

The bio-inspired sensing system was conceived by mimicking the main data processing mechanisms of 

the mammalian cochlea: 1) spectral decomposition by the basilar membrane; and 2) linear encoding of 

peak values and data compression by the inner hair cells. These mechanisms were translated into an 

engineered sensor system by a two-step process: 1) decomposition of the vibratory signal into its 

frequency components through a bank of band-pass filters; and 2) implementation of a real-time peak 

picking algorithm with linear encoding of the filtered signals through an ultralow power microcontroller 



(figure 7). In the proposed sensor node, each band-pass filter represents a finite sub-section of the basilar 

membrane capable of extracting a specific frequency range from an input signal. If more filters are 

included in the system, the original signal results more detailed and better approximated but at the 

expense of increased compression rates. In order to determine the optimal filter bank configuration and 

reduce the distortion error, while minimizing information flow and energy consumption, Peckens and 

Lynch (2013) used a greedy search algorithm based on the minimization of an objective function. By 

doing this, they were able to design a cochlea-inspired sensor node with real-time processing 

capabilities and impressive data compression. The properties of the central nervous system, combined 

with the signal processing capabilities of the cochlea system, were then interpreted from an engineering 

viewpoint and their functionality was applied towards enhancing the performance of structural 

monitoring systems by giving rise to a resource efficient wireless sensor network architecture based on 

bio-mimicry of the CNS. Finally, by emulating the interactions between sensory neurons, motor neurons 

and muscles, a bio-inspired control algorithm was developed and validated on a four-story shear 

structure (Peckens, 2014). Nonetheless, a real application on a full-scale structure is needed to further 

validate this nature-inspired technology and demonstrate its real-time control capabilities in 

environments harsher than those afforded by controlled laboratory experiments.  

Although successful in addressing many of the limitations and bottlenecks inherent to traditional 

wireless sensor nodes used for monitoring and control of civil infrastructures, the cochlea-inspired 

sensor node still presents room for improvement. In particular, two aspects deserve more investigation: 

the digital radio of the sensor, which is not able to modulate information in binary spike trains as seen 

within biological systems, thereby incurring unnecessary overhead; and the hardware architecture of 

the cochlea-inspired sensing node, which is not capable to ‘learn’ and autonomously adapt itself 

according to different input stimuli, similarly to the biological processes seen in nature.  

 

4.3.3. Immune system. Another source of bio-inspiration which has drawn the attention of the 

scientific community for years is the human immune system. This system is composed by a set of 

different biological structures (i.e. tissues, organs and single cells) and processes, whose aim is to 

protect the body against potentially aggressive microorganisms and to limit the risk of disease. To this 



end, the first target of the immune system is to distinguish between self and non-self entities, 

discriminating and tackling the latter. Self-entities belong to the same organism of the immune system, 

whereas non-self entities are potential disease-causing agents, such as viruses, bacteria, parasites and 

fungi, scientifically labelled as pathogens.  

The immune system operates through a multilevel defence of increasing specificity (Janeway et al., 

2001). Most of infections are prevented without any symptom of disease by the first two levels of 

defence (external/internal epithelial surfaces and innate immune response), while the last level (adaptive 

immune response) is activated only when pathogens breach the first physical barriers of the host 

organism and successfully evade the innate response (figure 8). Essential for the adaptive response are 

the lymphocytes. Each lymphocyte bears receptors able to recognize and bind with specific molecular 

patterns called antigens (Janeway et al., 2001). The strength of this bond is called ‘affinity’. 

Antigen specificity allows for the generation of responses that are tailored to specific pathogens or 

pathogen-infected cells. In detail, when a pathogen infects the body, lymphocytes mature and 

differentiate into effector cells so as to actively combat the infection. B lymphocytes differentiate into 

effector B-cells (plasma cells) which secrete antibodies able to signal pathogens; whereas T 

lymphocytes differentiate into effector T-cells (antigen-specific cells) which destroy infected cells 

(killer T-cells) or recruit and activate other cells (helper T-cells). After defeating the infection, most of 

effector cells undergo a programmed death (apoptosis), while the few cells that survive, the so-called 

‘memory cells’, retain the tailored responses unfolded by the immune system (‘immunological 

memory’), providing a faster and more effective response in case of a new contact with the same 

pathogen (Janeway et al., 2001). 

Inspired by immunology, several adaptive problem-solving methods, and consequently algorithms, 

have been developed and collected under the name of Artificial Immune Systems (AISs), see De Castro 

et al., 1999. Following the analogies with its biological counterpart, each generic AIS requires the 

definition of several components which highly influence the effectiveness of the method, i.e.:  

• Representation of data;  

• Generation of detectors; 

• Matching rules and affinity definition. 



According to the so-called shape-space approach (Perelson and Oster, 1979), the mathematical 

representation of the immune system’s agents consists of either binary or real-valued strings, where the 

latter is much more suitable when dealing with SHM problems. Most of the methods, especially in real-

valued representation, use random generation of detectors for discriminating between self and non-self 

entities (Ji and Dasgupta, 2007). However, there are also a few works in binary representation that make 

use of deterministic laws for the generation of detectors, based on the adopted matching rule (Ji and 

Dasgupta, 2007). Matching rules help to define the acceptable affinity level between monitoring data 

and AIS agents by setting a threshold, whose value strongly affects both the cost and reliability of the 

method. Specific evaluations about the problem addressed and its own self-space are always required 

in order to establish a threshold value for the affinity. A simple and general rule cannot be provided 

(Ayara et al., 2002).  

Among the main algorithms derived from the mimicry of the functional principles of the immune system 

are negative and positive selection algorithms (figure 9), resulting from the evolution of the Self/Non-

self discrimination theory formulated by Joshua Lederberg (1959). The first negative selection 

algorithm was developed by Forrest et al. (1994) and consisted of a binary coded method composed of 

two stages: the censoring of the generated detector matching sample normal condition data that belong 

to self-space, and the monitoring of data collected from the system to identify changes (Ayara et al., 

2002). Initial real-valued algorithms presented approaches analogous to previous binary coded methods 

(González et al., 2002; Singh, 2003; Stibor et al., 2004). Afterwards, more efficient algorithms were 

developed in both representations (either binary or real-valued) for: i) generation of detectors with 

variable size, shape and centre position; ii) redundant detectors elimination; and iii) introduction of 

novel special features, such as guided high-rate mutation (De Castro and Timmis, 2002a) and clonation 

(Dasgupta et al., 2004). The main goal was to maximize the coverage of the non-self space (Ji and 

Dasgupta, 2004) while preventing overlapping of detectors. Variable radius algorithms were proposed 

in this regard by Matziger (2002), Ji and Dasgupta (2004) and Laurentys et al. (2010). Later on, further 

negative selection algorithms were developed (Ji and Dasgupta, 2007; Dasgupta et al., 2011), all 

differing in each of their components, viz. data representation, detectors generation and matching rules. 

The main advantage of this class of algorithms was that they only required normal condition data (Ji 



and Dasgupta, 2004). This is a very important feature in the majority of learning problems, since a 

complete knowledge of all possible fault conditions is usually not available. Thus, classical supervised 

SHM techniques often result less effective (González and Dasgupta, 2003). By applying negative 

selection-based methods, it is possible to achieve a first identification of an emerging damage scenario, 

just by recognizing it as the cause of an abnormal pattern of features. Despite the advantages, it is worth 

noting that constructing a detector set able to cover the entire non-self space is not possible for this type 

of algorithms, no matter what method is adopted (Wierzchoń, 2002).  

Based on the clonal selection theory developed in the late 1970s by Burnet (1976), De Castro and Von 

Zuben (2002) proposed the first clonal selection algorithm (figure 9), named CLONALG. As already 

observed for negative selection algorithms, different approaches have been progressively suggested 

over time to improve the reliability of the initial clonal selection algorithm, e.g. resorting to real-valued 

representation (Campelo et al., 2005; Garrett, 2004), extending the applicability to multi-objective 

optimization (Luh et al., 2002; Ruochen et al., 2003), modifying clonal or mutation operators (Cutello 

et al., 2005; Garrett, 2004; Gong et al., 2007; Ruochen et al., 2003), or even introducing more operators 

(Cutello et al., 2005; Yu and Hou, 2004). Detailed reviews of this class of algorithms can be found in 

literature (Al-Enezi et al., 2010; Dasgupta et al., 2011). 

A considerable step forward in the development of a bio-inspired theory of the immune system was 

made by Jerne (1974) and Hoffmann (1975), who tried to formalize the interacting network of immune 

system cells by leveraging their ability to mutually recognize each other and to create a dynamic system 

of self-stimulated elements, even in the absence of external aggressions. Unlike the theoretical basis, 

the numerical formulation for activation/suppression of cells within the network is not univocal and was 

formalized into a model only some years later by Farmer et al. (1986). This model did inspire the first 

Artificial Immune Network algorithm proposed by Ishida (1990) in the 1990s. Enhanced algorithms for 

data analysis and multimodal optimization were developed as well, like Jisys (Hunt et al., 1999), AINE 

(Timmis et al., 2000) and aiNET (De Castro and Von Zuben, 2001; De Castro and Timmis, 2002b), an 

artificial immune network formally inspired by the clonal selection.  

Altogether, AIS-based methods present several strengths. Among the main advantages are the 

distributed and imperfect detections. The former provides a good coverage of both self and non-self 



spaces even without a centralized management, making self-organization and communication within 

detectors possible. The latter permits detectors flexibility, allowing to reduce the number of detectors 

in the identification process since a perfect matching is not required. Moreover, AIS methods are 

endowed with adaptability, being easily improved to learn not only in the initial training stage, but also 

in the following monitoring stages.  

The numerous benefits of immune-inspired methods have boosted their use in different fields, such as 

Computer and Network Security, Anomaly and Fault Detection, Pattern Recognition, Data Mining 

Clustering and Filtering, Machine Learning, Function Optimization, and many others (Aickelin et al., 

2014; De Castro et al., 1999). AIS architectures have also been developed and successfully applied in 

the field of mechanical engineering for condition monitoring purposes (Bayar et al., 2015), but just a 

few works have extended the results to SHM applications in civil engineering, even though these two 

fields present various common characteristics. An example is the work of Chen and Zang (2009) who, 

based on previously developed algorithms, i.e. CLONALG (De Castro and Von Zuben, 2002) and AIRS 

(Watkins et al., 2004), formulated an Artificial Immune Pattern Recognition (AIPR) method in order to 

identify, by similarities, the class of an a priori known damage (supervised pattern recognition 

problem). Relying on Fuzzy Clustering algorithm, a few years later the same authors provided an 

unsupervised damage classification algorithm able to distinguish among different damage classes, each 

represented by a specific memory cell, according to the similarity in the monitored data (Bo and Zang, 

2009). The AIPR structural damage classification was then integrated into an automatic immune-

inspired monitoring system composed of mobile agents mimicking B-cells, which patrolled over a 

wireless network of different sensors distributed throughout the monitored structure (Chen, 2010; Liu 

and Chen, 2011). Finally, the AIPR method was upgraded to allow for anomaly identification even in 

the absence of specific data sample in the training stage (Chen and Zang, 2011), thereby enabling to 

solve unsupervised pattern recognition problems. Other examples in the field of immune-inspired SHM 

are: the work of Xiao (2012), who proposed a method for fault diagnosis trained to identify specific 

damage locations and extents through the combination of negative and clonal selections; the work of 

Abbasidoust et al. (2012), who developed a damage detection model-based AIS algorithm with 

weighted attributes that relies on clonal and negative selection algorithms; and the recent works of 



Anaya et al. (2014; 2015), who presented an active system for structural damage detection based on the 

use of piezoelectric transducers acting either as actuators or sensors. In this last case, different data 

patterns belonging to known damage conditions were employed to train the method, according to a 

clonal selection strategy. It is noted that clonal selection and immune network theories are strongly 

reliable and effective in tackling optimization problems. In fact, they both inspired algorithms for 

improving the distribution of sensors in the monitoring of civil engineering systems (Yi et al., 2015; 

Zhang et al., 2008). However, when dealing with damage identification problems, most of clonal 

selection and immune network algorithms allow to identify damage location and extent only if they are 

correctly trained to recognize the features of a given damage state or when, in case of supervised 

process, a label to the emerged damage is assigned for future recognition. This is one of the main issues 

to address in order to exploit immune-inspired techniques for both supervised and unsupervised SHM 

and foster their use in civil engineering applications. 

With the purpose of improving setting and effectiveness of the method, the evolution of AISs did 

ultimately deviate from the original source of inspiration, as seen for ANNs. In some cases, mutation 

and clonation operators are integrated with Fuzzy logic (Leng and Bentwich, 2002; Costa Silva et al., 

2012) or, alternatively, randomized algorithms like Monte Carlo integration (González et al., 2003) are 

used together with the original immune-inspired algorithms. In other cases, AIS-based algorithms are 

combined with non-bio-inspired models, e.g. Bayesian network (De Castro and Von Zuben, 2009), 

further preventing from the complete actuation of the initial bio-inspired paradigm.    

 

4.3.4. Other emerging sources of bio-inspiration. Besides the three major sources examined hitherto, 

other sources of bio-inspiration have gained ground within the research community involved in the field 

of SHM, especially in the computational area. In particular, the Darwinian principles of natural 

evolution have inspired the class of evolutionary algorithms (EAs) which have been used in the field of 

SHM and damage identification for solving optimization problems, such as best sensor placement, 

network coverage and mobile sensor deployment (Abbasi et al., 2014). Among EAs, genetic algorithms 

(GAs) have been quite extensively investigated (Yi et al., 2011; Huang et al., 2016; Silva et al., 2016). 

However, the processes of these particular genetic operators are complex, and the computational 



efficiency is low. To overcome these limitations, various attempts have been made, including the 

introduction of the virus evolutionary theory into the GA.  

The promising application of GAs in the sensor network design for SHM systems has rapidly led to the 

application of other intelligent approaches, such as particle swarm optimization (PSO) and ant colony 

optimization (ACO), the former conceived after the social behaviour of bird flocking or fish schooling 

and the latter inspired by the behaviour of real ants and their pheromone trail-based communication 

scheme. These algorithms are currently among the most established population-based metaheuristics 

that have been employed with some success in the field of SHM, typically when dealing with best sensor 

placement and coverage optimization (Li, 2012) or damage detection problems (Qian et al., 2012; Perera 

et al., 2014; Yu and Xu, 2011). However, in most of these approaches, either the considered network 

characteristics are very limited, or several requirements of the application cases are not incorporated 

into the performance measure of the algorithm. To maximize the performance (detection) while 

minimizing the cost of the sensor system, Yi et al. (2012) explored the modified monkey algorithm 

(MA), a kind of evolutionary algorithm designed after the mountain-climbing processes of monkeys. 

Shortly following this first attempt, an enhanced version of the MA, i.e. the asynchronous-climb 

monkey algorithm (AMA), was proposed by the same authors and experimentally verified for the 

optimum design of sensor arrays in the Canton Tower in Shanghai (Yi et al., 2015). 

Another interesting source of bio-inspiration which has been transplanted into an SHM system is the 

deoxyribonucleic acid (DNA) array (Lin et al., 2010). The proposed system is constructed utilizing a 

double-tier regression process to extract the expression array from the structural time history recorded 

during external excitations. This array is symbolized as the various genes of the structure from the 

viewpoint of molecular biology and reflects the possible structural damage conditions. The DNA-

inspired SHM system was tested on a scaled-down six-story steel building, showing satisfactory results 

in terms of damage detection. 

Shifting from computing to sensing technologies, the unique functionalities and properties of the skin 

of humans, animals, and insects have led to active research in developing skin-inspired tactile sensors 

as well as distributed strain sensors that take advantage of nanotechnology-derived materials (Loh et 

al., 2015). In particular, in the context of SHM, skin-like distributed sensing coupling piezoresistive 



CNT (carbon nanotubes)-based thin films (fabricated using layer-by-layer assembly) with an electrical 

impedance tomography (EIT) algorithm have been achieved for strain monitoring and damage detection 

purposes (Loh and Azhari, 2012). Inspired by natural hair cells and their diversity, further studies have 

aimed at developing flow sensors that mimic the mechanisms evolved and perfected in sensory hairs. 

Artificial hair cells (AHCs) perform electromechanical transduction in response to air or fluid flow, 

similar to the way tilting of biological hair cells results in neuronal electrical signals. A specific 

application in which bio-inspired flow sensors have been used for SHM is the case of bridge scour 

monitoring. In fact, to overcome the limitations imposed by conventional scour detection methods, 

Swartz et al. (2014) proposed a modular wireless smart scour sensing post consisting of bio-inspired, 

whisker-shaped magnetostrictive flow sensors able to detect water flow by bending and to wirelessly 

transmit the response to a base station in real time. 

Although skin-inspired sensors offer the possibility to monitor the structural behaviour at fine-grained 

level and to resolve changes throughout the system simultaneously, the costs associated with such a 

densely distributed and multimodal sensing technology may be prohibitive. Hence, extensive research 

is being devoted to the development of biomimetic crawling/climbing sensors emulating different 

creatures’ ability to navigate around the world in order to minimize the number of sensors to deploy 

over a structure while still ensuring optimum coverage and accuracy in damage detection. A successful 

example used for SHM applications is the mobile sensor that Zhu et al. (2010) created by connecting 

two two-wheeled vehicles through a flexible beam, with an accelerometer placed on its centre, to collect 

the vibration response of a steel portal frame subjected to damage. The snake-like robot proposed by 

Enner et al. (2013) to monitor pipeline systems is another practical example that outlines the diversity 

of current bio-inspired research activities.   

While the variety of bio-inspired algorithms and sensors developed so far allow to tackle individual 

SHM-related aspects, the complexity of the SHM process requires a more holistic approach, where each 

single instance is not addressed separately, but only by reference to the whole. Hence, in parallel to 

these engineering advancements, more in-depth understanding of biological systems and relevant 

assemblies are essential for driving new scientific and technological breakthroughs in bio-inspired 

sensor research. 



 

5. A framework for new bio-inspired sensing paradigms in SHM 

The previous section has shown how uncovering the general principles behind the functioning of 

selected biological systems can lead to the development of efficient solutions to the technical conflicts 

and operational problems of actual SHM architectures. It must be stressed that the intrinsic nature of 

biology and engineering is very different and the transfer of concepts or mechanisms from living to 

non-living systems is not trivial (Vincent et al., 2006). Organisms are the result of a millenary evolution 

process moulded by natural selection; engineered systems are the product of a decision-making process 

driven by prescriptions. A simple and direct replica of the biological prototype is rarely successful and 

some form or procedure of interpretation and translation from biology to technology is always required 

(Vincent et al., 2006). As shown in Section 4, significant contributions to the definition of suitable bio-

inspired paradigms for SHM applications have been produced in the last decade. However, more 

research is needed in this field in order to enhance ‘already (but not completely)-addressed’ technical 

aspects and to keep on searching for solutions to the issues yet to be tackled.  

The scope of this section is to provide a dialectic framework to help identify analogous features between 

biological and SHM systems and to easily discriminate desired from unwanted nature-inspired 

characteristics. Such a framework will ultimately assist in seeking for the most suitable and robust 

synthesis to the dialectics. This pairing process is materialized into a compatibility-matrix with the 

desired SHM system’s characteristics distributed along the top and the identified biological features 

arranged along the vertical axis (see Table 1). At this stage, only the three main sources of bio-

inspiration that have been discussed in Section 4.3 are considered for the analogy. The biological sub-

system in charge of each specific physiological function is listed as well, together with the engineered 

version of the relevant biomimetic system, when existing. As for the attributes of the SHM system, they 

have been listed grounded on the critical appraisal and considerations emerged from the previous 

sections. The outlined compatibility-matrix aims at driving the selection of the most compatible and 

wanted functions to transfer from nature to SHM. Each ‘problem’ is defined by a pair of analogous 

characteristics (e.g. ‘data fusion’ for the SHM system and ‘information integration’ for the biological 



system). However, the feature matching is not univocal, since each characteristic of the monitoring 

system can have more than one functional analogy with the biological counterpart. The stronger the 

compatibility (analogy), the stronger the future solution.  

Hitherto, most bio-inspired paradigms have been conceived and developed for reasons other than health 

monitoring and structural control. On the contrary, the main idea behind the proposed dialectic matrix 

moves from an inverse approach. Instead of browsing biological literature to find one potential 

prototype and try to adjust it for emulation into some artificial system, which may likely turn out to be 

useful for SHM applications, now the target is to start first with the identification of all desirable 

properties and functions a robust SHM system must be provided with. Only in the second place one 

should look for functional analogies in biology in order to understand how nature has addressed similar 

instances and how an artificial system can be modelled on a very complex natural prototype to imitate 

its functional principles as closely as possible. The bio-inspired analogies that have already found 

actuation in SHM are not many, as shown in Table 1, column ‘Biomimetic System’. Greater efforts are 

needed in this field to fill existing gaps.  

Although limited, the proposed compatibility-matrix can be considered as the first attempt to 

systematize and tailor biomimetics to SHM requirements (and not vice versa) according to a holistic 

approach, where architectural and networking issues are not addressed separately but as a unified whole. 

The next step will be to increase the order of the matrix by including new biological functions that 

match the desired SHM system’s characteristics. In such a way the remaining gaps can be filled (e.g. 

the SHM attributes marked by grey cells in the matrix still have no matching) and a wider range of 

analogies can be obtained for the same engineered feature. Finally, the functional analogies showing 

the closest fit will be analysed in detail and sorted by levels of complexity to enable the selection of the 

best bio-inspired solutions, both in terms of performance and feasibility, for the subsequent 

implementation into biomimetic multimodal engineered systems for SHM and control.  

6. Conclusions 

This paper has reviewed important research developments in the field of bio-inspired computation for 

structural health monitoring, along with some recent advancements in bio-inspired sensing technology 



for SHM. First, a critical analysis of current state-of-the-art approaches to SHM has been provided to 

demonstrate the need for bio-inspired design in this field. Second, the functional principles of the three 

main biological systems that have given rise to bio-inspired artificial counterparts in SHM have been 

detailed to foster a better comprehension of the functional analogies between biological and SHM 

systems.  

Recent advancements in bio-inspired computation have permitted the development of various 

algorithms for best sensor placement, optimal network coverage, compressive sensing and damage 

detection. However, such computational tools still require expensive and tedious materials processing.  

In what concerns bio-inspired sensing technology, the latest advancements include skin-like and mobile 

sensors aimed at creating multimodal densely distributed and scalable SHM system to measure the 

structural response at fine-grained level and improve accuracy in terms of damage identification.  

The scope of this paper has been limited to presenting an overview of selected works for bio-inspired 

SHM. The analysed papers reveal that biomimetics is still largely empirical and lacks a systematic 

approach. In general, the majority of bio-inspired paradigms were conceived for reasons other than 

structural monitoring and, despite the numerous attempts of biomimicry, most artificial systems either 

remained inferior to their natural counterparts or diverged from the primary source of inspiration. To 

get back to the original bio-inspired principles, more in-depth analyses of the parallels between 

biological kingdom and SHM systems are necessary to be able to tailor biomimetics to SHM 

requirements and achieve high performance sensor networks. A holistic approach must be leveraged, 

where networking and architectural issues are not addressed separately. To this end, the authors propose 

a compatibility-matrix derived from the careful analysis of the key physiological mechanisms of three 

sources of bio-inspiration, i.e. central nervous system, cochlea system and immune system. Such matrix 

draws interesting conclusions in terms of feature matching between natural and artificial counterparts 

and provides compelling evidence for a holistic bio-inspired design in SHM. Hence, it is expected that 

bio-inspired research in the field of SHM will continue to grow exponentially, not only trying to mimic 

single biological functionalities, but also aiming at creating integrated full SHM systems assembled in 

the same manner as in biology. 
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Figure 1 – Configuration of structural monitoring systems: tethered (a) versus (b) wireless. 
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Figure 2 – Wireless network topologies for wireless sensor networks: (a) star; (b) peer-to-peer; (c) 

two-tier network topologies (Lynch and Loh, 2006). 

  



 

Figure 3 – Number of publications containing the words biomimetics and biomimicry associated with 

engineering in the title, abstract, or keywords. The data is obtained from searching the ISI Web of 

Science database (SCI-EXPANDED, The Thompson Corporation, 2016) using the terms biomimetic 

or biomimicry engineering in the topic field.  
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Figure 4 – Schematic architecture of two neurons (droualb.faculty.mjc.edu). 

 

  



 

Figure 5 – Model of McCulloch-Pitts perceptron.  
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(a) (b) 

 

(c) (d) 

Figure 6 – Schematic representation of the mammalian cochlea system: (a) inner ear; (b) cross-section 

of the cochlea; (c) uncoiled cochlea indicating the vibrating subsections of the basilar membrane; and 

(d) cross-section of basilar membrane and organ of Corti ( . 
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(a) 

(b) 

Figure 7 – Simplified representation of (a) the mammalian auditory process in comparison with the 

process of (b) the cochlea-inspired sensing system (adapted from ). 
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Figure 8 – Schematic representation of the multilevel defence structure of the immune system 

(adapted from Anaya et al., 2015).  
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Figure 9 – Simplified representation of negative and clonal selection theories.  In negative selection, 

lymphocytes that bind to antigens from the body's own tissues are destroyed, while the rest mature 

into inactive lymphocytes. In clonal selection, the lymphocytes that encounter a match with foreign 

antigens are cloned (adapted from https://en.wikipedia.org/wiki/Clonal_selection).
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 SHM system’s features 
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Biological features 
Biological 

system 

Biomimetic 

system 

C
E

N
T

R
A

L
 N

E
R

V
O

U
S

 S
Y

S
T

E
M

 

Signal analysis & 

encoding 

Nerve cells 

(soma) 
⚫ ⚫                        

Artificial Neural 

Networks  

Threshold detection 
Nerve cells 

(soma) 
                 ⚫        

Artificial Neural 

Networks  

Impulse transmission  
Synaptic 

connection 
        ⚫  ⚫               

Artificial Neural 

Networks  

Information 

integration  
Nerve fibers        ⚫                   

Feedback 

inhibition/excitation 
Synapses                    ⚫        

Parallel & 

synchronized 

processing 

Neurons    ⚫        ⚫               

Learning and data 

mining  

Nerve cells 

(soma) 
                ⚫         

Artificial Neural 

Networks  



Metabolic expense 

reduction  

Axons’ myelin 

sheath 
                   ⚫       

Self-support and 

nutrition  
Glial cells                     ⚫       

Adaptability to input 

stimuli 

Synaptic 

connection 
             ⚫             

Optimal coverage 
Neurons’ 

number  
                      ⚫    

Multilevel physiology Neural clusters          ⚫             ⚫   ⚫ 
Artificial Neural 

Networks  

Real-time decision 

making 
Brain                        ⚫   

Hierarchical 

Morphology 
Nervous system                     ⚫      

C
O

C
H

L
E

A
 S

Y
S

T
E

M
 Spectral 

decomposition  

Basilar 

membrane 
⚫                         

Bandpass filter 

bank 

Peak values encoding Organ of Corti  ⚫                        Microcontrollers 

w/ peak-picking 

algorithm w/ 

linear encoding  

Data compression Inner hair cells   ⚫                       

Data transmission 
Hair-cell 

neurons 
          ⚫               

IM
M

U
N

E
 S

Y
S

T
E

M
 

Multilevel defence 

organisation 

Skin-Inn.IS-

Adap.IS 
     ⚫        ⚫        ⚫  ⚫ ⚫  

Alarm issue 
Innate immune 

system 
      ⚫           ⚫         

Pattern recognition  Lymphocytes        ⚫          ⚫         

Pattern 

recognition 

algorithms 

Cells communication Cell receptors         ⚫                  

Cells clonation B lymphocytes         ⚫        ⚫          
Clonal selection 

algorithms 

Cells patrolling  B-cells           ⚫                
Software-

embedded agents 



Parallel and 

coordinated actions 
Lymphocytes     ⚫     ⚫   ⚫               

Pathogen 

counteraction  
Antibodies                ⚫           

Selection of effector 

cells 
Lymphocytes                         ⚫   

Self/non-self 

discrimination  
T lymphocytes       ⚫ ⚫                   

Negative 

selection 

algorithms 

Cells 

activation/suppression 
T-cells                   ⚫ ⚫       

Antigen specificity  T-cells       ⚫                   

Negative 

selection 

algorithms 

Equilibrium 

restoration 
Lymphocytes                ⚫            

Immunological 

memory 
Memory cells                 ⚫          

Table 1. Compatibility-matrix of functional analogies between biological and SHM systems (cells with dots indicate matching features). 

 


