
A proof-theoretic study of bi-intuitionistic propositional

sequent calculus

Lúıs Pinto
Centro de Matemática, Universidade do Minho, Portugal

luis@math.uminho.pt

Tarmo Uustalu
Institute of Cybernetics at Tallinn University of Technology, Estonia

tarmo@cs.ioc.ee

November 29, 2017

Abstract

Bi-intuitionistic logic is the conservative extension of intuitionistic logic with a con-
nective dual to implication usually called “exclusion”. A standard-style sequent calculus
for this logic is easily obtained by extending multiple-conclusion sequent calculus for
intuitionistic logic with exclusion rules dual to the implication rules (in particular, the
exclusion-left rule restricts the premise to be single-assumption). However, similarly to
standard-style sequent calculus for non-classical logics like S5, this calculus is incom-
plete without the cut rule. Motivated by the problem of proof search for propositional
bi-intuitionistic logic (BiInt), various cut-free calculi with extended sequents have been
proposed, including (i) a calculus of nested sequents by Goré et al., which includes rules
for creation and removal of nests (called “nest rules”, resp. “unnest rules”), and (ii) a
calculus of labeled sequents by the authors, derived from the Kripke semantics of BiInt,
which includes “monotonicity rules” to propagate truth/falsehood between accessible
worlds.

In this paper, we develop a proof-theoretic study of these three sequent calculi
for BiInt grounded on translations between the systems. We start by establishing
the basic meta-theory of the labeled system (including cut-admissibility), and use the
translations to obtain results for the other two systems. The translation of the nested
system into the standard-style system explains how the unnest rules encapsulate cuts.
The translations between the labeled and the nested systems reveal the two formats
to be very close, despite the former incorporating semantic elements, and the latter
being syntax-driven. Indeed, we single out (i) a labeled system whose sequents have
“a label in focus” and which includes “refocusing rules”, and (ii) a nested system with
monotonicity and refocusing rules, and prove these two systems to be isomorphic (in a
bijection both at the level of sequents and at the level of derivations).

1 Introduction

Bi-intuitionistic logic (also known as Heyting-Brouwer logic or as subtractive logic) is the
conservative extension of intuitionistic logic with a connective dual to implication called
exclusion (also known as coimplication or as subtraction). Bi-intuitionistic logic can also
be seen as the union of intuitionistic logic (lacking exclusion) with dual-intuitionistic logic
(lacking implication) [14], hence the word ’bi ’-intuitionistic. Whereas intuitionistic logic
has the disjunction property (if A ∨ B is provable, either A is provable or B is provable),
dual-intuitionistic logic has the dual conjunction property (if A ∧B is refutable, either A is
refutable or B is refutable). In the union, both of these properties are lost, yet one cannot
prove excluded middle (nor refute contradiction for the dual-intuitionistic weak negation).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/185628132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bi-intuitionistic logic first got the attention of Rauszer [32, 31, 33], who studied its
algebraic and Kripke semantics, alongside with a Hilbert-style system and a sequent calculus.
More recently, bi-intuitionistic logic was revisited with quite some different motivations. For
example, in line with Curien-Herbelin’s study [8] of dualities in classical sequent calculus,
Crolard [7] gave an interpretation of bi-intuitionistic exclusion as a type for coroutines (a
restricted form of continuations). With philosophical motivations, Bellin and colleagues [1, 2]
considered a different symmetrisation of intuitionistic logic (also called bi-intuitionistic) from
the point of view of pragmatics, a logic of assertions and hypotheses and, in the same vein,
Wansing [37] combined verificationism and falsificationism.

Another line of studies on bi-intuitionistic logic was motivated by automated theorem
proving and proof-theoretic considerations. Although a sequent calculus characterization
of the logic is easily obtained by extending the multiple-conclusion sequent calculus for
intuitionistic logic à la Maehara–Dragalin [23, 9] with exclusion rules dual to the implication
rules, such a calculus does not enjoy cut elimination. Neither is cut eliminable in the sequent
calculus of Rauszer [31] (the proof in the paper is incorrect). The lack of cut elimination
in a sequent calculus is problematic for proof search, since the subformula property is not
guaranteed. In order to overcome this issue, calculi with a non-standard notion of sequent
have been considered [15, 4, 16, 17, 27, 29]. In particular, a calculus of nested sequents was
proposed by Goré, Postniece and Tiu [17] and a calculus with labeled formulas was proposed
by the authors [27].

In the presence of various proof systems for a logic, a natural question to ask is how
they relate to each other and what can be learned from the relationship1. In this paper, we
present a proof-theoretic study of sequent calculus for bi-intuitionistic propositional logic,
which extends the study initiated in [28] on translations between the standard-style (=
Maehara–Dragalin-style), nested and labeled sequent calculi for this logic. In particular, the
translations make it possible to read standard-style derivations off derivations resulting from
proof search in the nested or labeled calculi. More interestingly, the detailed study of the
translations offered in this paper provides means for transferring meta-theory between the
various systems and enables, in particular, identification of unnest cuts as a complete class
of cuts for the formulation with standard sequents. Additionally, this refined study allows to
justify precisely the claim that nested and label sequent calculi can be viewed as “notational
variants” (found in [12, 18] in the context of classical modal logics), through the design of
new labeled and nested systems for propositional bi-intuitionistic logic which are isomorphic
(exhibiting a 1-1 correspondence both for sequents and for derivations).

In comparison to the workshop paper [28], the novel material in this extended version
includes the following.

1. All the material in Subsect. 3.2 is new. The syntatic proofs for the labeled system
of invertibility of the inference rules and of admissibility of weakening, contraction,
cut, nodemerge and nodesplit are new (in [27] and in [28] these results are either not
claimed or are obtained by semantical arguments). These results make the paper self-
contained, in particular, in what concerns the identification of complete classes of cuts
for the standard-style system.

2. Also new are the results on bijectivity of the translations between labeled and nested
sequents in Subsect. 5.1 and all the material in Subsect. 5.3, where we introduce and
prove isomorphic: i) a labeled system whose sequents have a label in focus and which
includes refocusing rules; and ii) a nested system with monotonicity and refocusing
rules. The relationship in Subsect. 5.4 to the deep inference system DBiInt for BiInt
by Postniece [29, 30] is also new.

3. Finally, we have added the various results on admissibility/eliminability of contraction
in Sect. 6 as well as the identification of a subclass of unnest cuts (“absorbed” into

1Indeed, the idea of relating formal systems and transferring properties between them goes back to the
very birth of sequent calculus in the work of Gentzen [13], where consistency of classical natural deduction
was obtained via sequent calculus.

2

LBiI
Thm. 3

%%

kK

tt
N-LBiI

Thm. 2
33

Thm. 6

00

Prop. 11
��

L-LBiI
Thm. 5

pp

ff

Prop. 8
��

N0-LBiI

Prop. 9

UU

oo
Thm. 7

// L0-LBiI

Prop. 8

UU

Figure 1: Summary of proof systems and embeddings studied in the paper

the implication-right rule and the exclusion-left rule, see Fig. 8) still complete for the
standard-style system.

We end this section with the organization of the rest of the paper, the naming scheme
for the main proof systems covered in detail in the paper and a diagram (Fig. 1) with the
embeddings studied in the paper. Sect. 2 introduces the syntax and Kripke semantics for
BiInt, the standard-style sequent calculus LBiI and the nested sequent calculus N-LBiI.
Sect. 3 introduces the labeled sequent calculus L-LBiI and develops its meta-theory. Sect. 4
relates the standard-style system with the other two systems. Sect. 5 relates the base systems
of nested and labeled sequents, introduces and proves isomorphic their variants, respectively
N0-LBiI and L0-LBiI and relates the labeled systems with deep inference on nested se-
quents. Sect. 6 shows some applications of the embeddings, and Sect. 7 concludes the paper.
The names of the systems introduced in this paper all have the base element LBiI (the
initial L to indicate they are in sequent calculus format, as in Gentzen’s nomenclature LK
and LJ). The prefixes N- and N0- indicate systems of nested sequents. The prefixes L- and
L0- indicate systems of labeled sequents.

2 Bi-intuitionistic propositional logic

2.1 Syntax and semantics

We start by defining the syntax and semantics of bi-intuitionistic propositional logic (BiInt).
The language of BiInt extends that of intuitionistic propositional logic (Int), by one

connective, exclusion, thus the formulas are given by the grammar:

A,B := p | > | ⊥ | A ∧B | A ∨B | A⊃B | A �B

where p ranges over a denumerable set of propositional variables which give us atoms. The
formula A�B is the exclusion of B from A. We do not take negations as primitive. However,
in addition to the intuitionistic (or strong) negation, there is also a dual-intuitionistic (or
weak) negation. The two negations are definable by ¬A := A⊃⊥ and vA := > �A.

The semantics of BiInt is usually given à la Kripke, although one can also proceed
from an algebraic semantics (in terms of Heyting-Brouwer algebras) and there are further
alternatives. The Kripke semantics is about truth relative to worlds in Kripke structures
that are the same as for Int. A Kripke structure is a triple K = (W,≤, I) where W is a non-
empty set whose elements we think of as worlds, ≤ is a preorder (reflexive-transitive binary
relation) on W (the accessibility relation) and I—the interpretation—is an assignment of sets
of propositional variables to the worlds, which is monotone w.r.t. ≤, i.e., whenever w ≤ w′,
we have I(w) ⊆ I(w′).

Truth in Kripke structures is defined as for Int, but covers also exclusion, interpreted
dually to implication as possibility in the past:

• w |= p iff p ∈ I(w);

• w |= > always; w |= ⊥ never;

3

• w |= A ∧B iff w |= A and w |= B; w |= A ∨B iff w |= A or w |= B;

• w |= A⊃B iff, for any w′ ≥ w, w′ 6|= A or w′ |= B;

• w |= A �B iff, for some w′ ≤ w, w′ |= A and w′ 6|= B.

A formula is called valid, if it is true in all worlds of all structures. It is easy to see that
monotonicity extends from atoms to all formulas thanks to the universal and existential
semantics of implication and exclusion.

It is important for this paper that, instead of general Kripke structures, one may equiv-
alently work with Kripke trees. These are Kripke structures (W,≤, I) where W is finite and
the preorder ≤ arises as the reflexive-transitive closure of some asymmetric binary relation
→ on W , subject to the condition that any two worlds w, w′ are related by the reflexive-
transitive-symmetric closure of→ in a unique way (w′ is reached from w by exactly one path
along →∪←).

It is also a basic observation that Gödel’s translation of Int into the modal logic S4
extends to a translation into the future-past tense logic KtT4 (cf. [22]). As the semantics of
KtT4 does not enforce monotonicity of interpretations, atoms must be translated as future
necessities or past possibilities (these are always monotone): p# = �p (or �p); ># = >;
⊥# = ⊥; (A ∧ B)# = A# ∧ B#; (A ∨ B)# = A# ∨ B#; (A ⊃ B)# = �(A# ⊃ B#);
(A �B)# = �(A# �B#).

2.2 The standard-style sequent calculus LBiI

A sequent calculus for BiInt is most easily obtained by extending Maehara–Dragalin-style
[23, 9] sequent calculus for Int, as has been done by Restall [35] and Crolard [6]. (Rauszer’s
[31] original sequent calculus was different, as it required sequents to have a single formula in
the antecedent or in the succedent.) In the Maehara–Dragalin-style system for Int, sequents
are multiple-conclusion, but the ⊃R rule is constrained. The extension, which we will now
show, imposes a dual constraint on the �L rule.

The sequents of our calculus (henceforth referred to as the standard-style calculus LBiI)
are pairs Γ ` ∆ where Γ,∆ (the antecedent and succedent) are finite multisets of formulas
(we omit braces and denote union by comma as usual). The inference rules of LBiI are
shown in Fig. 2.

Note that ∆ is missing in the premise of the ⊃R rule; dually, in the premise of �L we do
not have the context Γ.

Regarding structural rules, both in LBiI and the other two sequent calculi considered
in this paper (N-LBiI and L-LBiI), we have chosen to work with formulations optimized
for bottom-up proof search, which means that, as a general guideline, we want to have our
inference rules “as invertible as possible”. We have weakening and contraction built in to
the other rules to the degree that LBiI is complete without explicit versions of them. This
requires of course that the two-premise rules are context-sharing etc. But there are also
more specific consequences: in LBiI, we have duplication of the main formula in the rules
⊃L and �R in the first, resp. the second premise (when the rules are read bottom-up).

LBiI is sound and complete for the Kripke semantics of BiInt for the following gener-
alization of validity from formulas to sequents. A sequent Γ ` ∆ is taken to be valid if, for
any Kripke structure (W,≤, I) and any world w, we have that if all formulas in Γ are true
in w, then so is some formula in ∆. This has been proved (for variants of LBiI), e.g., by
Restall [35] and Monteiro [24].

However, LBiI is incomplete without cut, as shown by the authors in 2003 (private
email message from the second author to R. Goré, 13 Sept. 2004, quoted in [4]). It suffices to
consider the obviously valid sequent p ` q, r ⊃ ((p � q) ∧ r). The only possible last inference
(other than weakening and contraction, which are redundant) in a derivation could be

?
p, r ` (p � q) ∧ r

p ` q, r ⊃ ((p � q) ∧ r) ⊃R

4

Initial rule and cut (necessary):

Γ, A ` A,∆ hyp
Γ ` A,∆ Γ, A ` ∆

Γ ` ∆
cut

Logical rules:

Γ ` ∆
Γ,> ` ∆

>L
Γ ` >,∆ >R

Γ, A,B ` ∆

Γ, A ∧B ` ∆
∧L

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧B,∆ ∧R

Γ,⊥ ` ∆
⊥L Γ ` ∆

Γ ` ⊥,∆ ⊥R
Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆
∨L

Γ ` A,B,∆
Γ ` A ∨B,∆ ∨R

Γ, A⊃B ` A,∆ Γ, B ` ∆

Γ, A⊃B ` ∆
⊃L

Γ, A ` B
Γ ` A⊃B,∆ ⊃R

A ` B,∆
Γ, A �B ` ∆

�L
Γ ` A,∆ Γ, B ` A �B,∆

Γ ` A �B,∆ �R

Structural rules (eliminable):

Γ ` ∆
Γ, A ` ∆

weakL
Γ ` ∆

Γ ` A,∆ weakR
Γ, A,A ` ∆

Γ, A ` ∆
contrL

Γ ` A,A,∆
Γ ` A,∆ contrR

Figure 2: Inference rules of LBiI

but the premise is invalid as the succedent formula q has been lost. With cut, the sequent
can be proved as follows:

p ` q, p, . . . hyp
p, q ` q, p � q, . . . hyp

p ` q, p � q, . . . �R

p, p � q, r ` p � q hyp
p, p � q, r ` r hyp

p, p � q, r ` (p � q) ∧ r ∧R

p, p � q ` q, r ⊃ ((p � q) ∧ r) ⊃R

p ` q, r ⊃ ((p � q) ∧ r) cut

Notice that permutation of the cut on the exclusion p�q up past the ⊃R inference, for which
the cut formula is a side formula, is not possible. This is one type of cuts that cannot be
eliminated; there are altogether three such types [24]. This situation is reminiscent of the
naive standard-style sequent calculus for S5 where the sequent p ` �♦p cannot be proved
without cut, but can be proved by applying cut to the sequents p ` ♦p and ♦p ` �♦p that
are both provable without cut.

In Sect. 6, with the help of the translations proposed in this paper, we will identify classes
of cuts complete for LBiI.

2.3 The nested sequent calculus N-LBiI

Next we introduce a calculus N-LBiI of nested sequents, which is a minor variation of the
calculus LBiInt1 of Goré et al. [17].2 N-LBiI is an extension of LBiI where the concept of
contexts is generalized so that, alongside formulas, they can also contain nested sequents,
manipulated by dedicated additional inference rules.

The sequents of N-LBiI (ranged over by S) are defined simultaneously with contexts
(ranged over by Γ,∆) by the following grammar:

S ::= Γ ` ∆
Γ,∆ ::= ∅ | A,Γ | S,Γ

2The difference is that LBiInt1 does not build contraction into logical rules, as we do in the case of
∧L, ∨R, ⊃L, �R, and that LBiInt1 has a context-splitting version of the cut rule, whereas our cut rule is
context-sharing.

5

Rules for nested sequents:

Γ0 ` ∆0,∆

Γ, (Γ0 ` ∆0) ` ∆
nestL

Γ,Γ0 ` ∆0

Γ ` (Γ0 ` ∆0),∆
nestR

Γ, (Γ0 ` ∆0) ` ∆

Γ,Γ0 ` ∆0,∆
unnestL

Γ ` (Γ0 ` ∆0),∆

Γ,Γ0 ` ∆0,∆
unnestR

Figure 3: Inference rules of N-LBiI for manipulating nested sequents

where contexts, just as in LBiI, are quotiented down to multisets (so identified up to per-
mutations of the member formulas/nested sequents). Just as commas in antecedents and
succedents intuitively correspond to conjunctions and disjunctions, nested turnstiles should
be understood as structural-level implications and exclusions.3

The inference rules of N-LBiI are those of LBiI in Fig. 2 (including the cut rule and the
structural rules) together with the additional inference rules for introducing and eliminating
nested sequents in Fig. 3. The nestL and nestR rules are structural versions of �L and ⊃R.
The unnestL/R rules are elimination rules for exclusions on the left and implications on the
right. It is fair to think of them as masqueraded versions of certain quite specific types of
cuts (as we show in Sect. 6).4

Stating soundness and completeness of N-LBiI requires defining what it means for a
nested sequent to be valid. This is achieved via a translation that “flattens” nested sequents
into standard sequents, reducing validity of nested sequents to that of standard sequents.
We give a formal definition of this translation of sequents in Sect. 4.1, where we show that
derivations of N-LBiI can be translated into LBiI. Goré et al. [17] established soundness of
N-LBiI wrt. this notion of validity directly, but showed completeness by an embedding of
Rauszer’s sequent calculus [31]. They also showed cut to be redundant in the strong sense of
existence of a cut-eliminating transformation of derivations [17] (we will come back to this
in Sect. 6). The example of the previous subsection is proved in N-LBiI without cut (but
with unnestL) as follows:

p ` q, p hyp
p, q ` q, p � q hyp

p ` q, p � q �R

(p ` q), r ` p � q nestL
(p ` q), r ` r

hyp

(p ` q), r ` (p � q) ∧ r ∧R

(p ` q) ` r ⊃ ((p � q) ∧ r) ⊃R

p ` q, r ⊃ ((p � q) ∧ r) unnestL
(1)

3 A labeled sequent calculus for BiInt

3.1 The system L-LBiI

The third sequent calculus we consider is the labeled sequent calculus L-LBiI introduced
in [28], a variation on the calculus L of ours [27] (whose differences we will explain later).
The design of L-LBiI follows the method of Negri [25] for obtaining cut-free sequent calculi
for normal modal logics defined by frame conditions of a certain type. Essentially, L-LBiI
is a formalization of the first-order theory of the Kripke semantics of BiInt, using an ex-
plicit device of labels for worlds, which, in addition, reflects some proof search concerns, for

3In [17], a nested sequent in the antecedent, resp. succedent, of a parent sequent (a structural-level
exclusion, resp. implication) is written Γ < ∆, resp. Γ > ∆.

4For simplicity, we adopted a formulation of unnestL/R rules that does not incorporate formula contrac-
tion. For a version of N-LBiI that is complete without the contrL/R rules, the unnestL/R rules must be
stated differently. In fact, this is adopted in the nested system N0-LBiI in Sect. 5.

6

example, by considering only invertible rules.
A sequent of L-LBiI is a triple Γ `G ∆ where G is a label tree and Γ and ∆ are labeled

contexts. More precisely, the label tree G = (N,E) is an oriented graph, i.e., a directed
graph without 2-cycles. This means that we have a nonempty set N of nodes, called labels,
together with an asymmetric (i.e., irreflexive and antisymmetric) set E ⊆ N ×N of edges.
This oriented graph is required to have the property that the corresponding simple graph
(N,E∪E−1) is a tree, i.e., that any two nodes in N are connected by exactly one path made
of edges from E ∪E−1. We write |G| for N and xGy for (x, y) ∈ E. Labeled contexts Γ and
∆ are multisets of labeled formulas and these, in their turn, are pairs x : A with x a label
drawn from |G| and A a formula. We identify sequents up to renaming of labels.

To represent label trees it will be handy to use label tree expressions given by the following
grammar :

G1, G2 := 〈x〉|(x, y)|G1 ⊕x G2

Here the second construct requires x and y to be distinct labels and the third construct
requires exactly one label x to occur in both G1 and G2. Label tree expressions represent
label trees in the following way: 〈x〉 represents the tree with a single node x; (x, y) represents
the label tree G with two nodes x, y and one edge from x to y; G1⊕xG2 represents the label
tree (N1 ∪ N2, E1 ∪ E2), if G1 and G2 represent label trees (N1, E1), resp. (N2, E2). The
requirement that x is the unique label occurring simultaneously in G1 and G2 guarantees
that the simple graph (N1∪N2, E1∪E2∪E−11 ∪E

−1
2) is indeed a tree. Conversely, any label

tree can be represented by a label tree expression, generally in many ways: roughly speaking,
any chosen edge (x, y) of a label tree G determines two disjoint smaller trees composed of
the labels connected to x and composed of the labels connected to y after removal of (x, y),
represented by G1 and G2 say, and then G is represented by G1⊕x (x, y)⊕yG2. For example,
the three label tree expressions 〈x〉⊕x (x, y)⊕y (z, y), 〈z〉⊕z (z, y)⊕y (x, y), and (z, y)⊕y (x, y)
all represent the label tree ({x, y, z}, {(x, y), (z, y)}). In what follows, when we write a label
tree expression, we mean generally the label tree it represents.

We will need label substitution operations G[x/y] and Γ[x/y] to substitute label x for
label y, in a label tree G, resp. a context Γ, defined in the obvious way. However, in the
case of G[x/y], there is the proviso x 6∈ |G|, otherwise we are not guaranteed to obtain a
well-formed label tree.

Below we use the notations G+ and G∗ for the transitive, resp. reflexive-transitive, closure
of G and the notations G ↓ y and G ↑ y to mean that there is no z such that zGy, resp. yGz.
Sometimes we will say x is to the past of y or y is to the future of x meaning that xG+y.

Intuitively, we use label trees to represent Kripke trees and a labeled formula is about
truth at a particular world. Formally, a labeled sequent Γ `G ∆ is valid, if, for any Kripke
structure (W,≤, I) and function v : |G| → W such that xGy implies v(x) ≤ v(y), we have
that, if v(x) |= A for every x : A in Γ, then v(x) |= A for some x : A in ∆.

The inference rules of L-LBiI are presented in Fig. 4. In all rules, the condition that all
the premises and the conclusion are well-formed labeled sequents must be read as a proviso.
In particular, note that the label tree expression G⊕x (x, y), resp. (y, x)⊕xG, in the premise
of rule ⊃R, resp. �L, requires y 6∈ |G| and consequently requires also the freshness condition
y 6∈ Γ and y 6∈ ∆ (in order to ensure the conclusion to be a well-formed labeled sequent).

The system L-LBiI has primitive monotonicity rules (as the system L of [27]), which
perform propagation of truth and falsity to future, resp. past, worlds (reading the rules from
the conclusion to the premise). The monotonicity rules are restricted to certain kinds of
formulas (as in the system L of [27]), but we will show that unrestricted monotonicity is
admissible in L-LBiI. Similarly, axioms of L-LBiI are restricted to atoms, but of course
we will show that non-atomic axioms are admissible in L-LBiI. These restrictions become
handy when considering meta-theoretic properties of L-LBiI (and, a posteriori, of the other
systems).

Note that the structural rules and the cut rule are not primitive in L-LBiI, contrasting
with LBiI and N-LBiI. In order to guarantee admissibility of contraction, the rules ⊃L
and �R need to duplicate the main formula when going from the conclusion to the first resp.

7

Initial rule:

Γ, x : p `G x : p,∆
hyp

Logical rules:

Γ `G ∆

Γ, x : > `G ∆
>L

Γ `G x : >,∆ >R

Γ, x : A, x : B `G ∆

Γ, x : A ∧B `G ∆
∧L

Γ `G x : A,∆ Γ `G x : B,∆

Γ `G x : A ∧B,∆ ∧R

Γ, x : ⊥ `G ∆
⊥L

Γ `G ∆

Γ `G x : ⊥,∆ ⊥R

Γ, x : A `G ∆ Γ, x : B `G ∆

Γ, x : A ∨B `G ∆
∨L

Γ `G x : A, x : B,∆

Γ `G x : A ∨B,∆ ∨R

Γ, x : A⊃B `G x : A,∆ Γ, x : B `G ∆

Γ, x : A⊃B `G ∆
⊃L

Γ, y : A `G⊕x(x,y) y : B,∆

Γ `G x : A⊃B,∆ ⊃R

Γ, y : A `(y,x)⊕xG y : B,∆

Γ, x : A �B `G ∆
�L

Γ `G x : A,∆ Γ, x : B `G x : A �B,∆
Γ `G x : A �B,∆ �R

Monotonicity rules:

xGy Γ, x : A, y : A `G ∆

Γ, x : A `G ∆
monotL

yGx Γ `G y : A, x : A,∆

Γ `G x : A,∆
monotR

proviso: A atomic or an implication proviso: A atomic or an exclusion

Figure 4: Inference rules of L-LBiI

the second premise, similarly to what happens in Kleene’s G3 system [19] for intuitionistic
logic.

Our counterexample to cut elimination in LBiI can be proved in L-LBiI as follows:

x : p, . . . `(x,y) x : p, . . .
hyp

x : q, . . . `(x,y) x : q, . . .
hyp

x : p, . . . `(x,y) x : q, x : p � q, . . . �R

x : p, . . . `(x,y) x : q, y : p � q monotR
x : p, y : r `(x,y) x : q, y : r

hyp

x : p, y : r `(x,y) x : q, y : (p � q) ∧ r ∧R

x : p `〈x〉 x : q, x : r ⊃ ((p � q) ∧ r) ⊃R

Notice the propagation of p � q to the past that occurs at the monotR step to an already
existing label.

L-LBiI is sound and complete wrt. the notion of validity introduced above. We will
not show this directly. Yet observe that the label tree version of the algorithmic system
L∗ of [27] (whose completeness wrt. the same notion of validity was shown in [27]) embeds
easily into L-LBiI. Observe that completeness of L-LBiI also follows immediately from the
embeddings into L-LBiI in Sect. 4 of the standard-style and the nested-style systems LBiI
and N-LBiI and completeness of these systems.

3.2 Meta-theory of L-LBiI

Now we establish the main meta-theoretic properties of L-LBiI. We show admissibility
of weakening, invertibility of all the logical rules, admissibility of nodemerge (merging two

8

nodes), admissibility of full monotonicity, contraction and cut, and also admissibility of
nodesplit (splitting a node into two). Quite some care is needed with the order in which
these results are proved. In particular, invertibility and admissibility of nodemerge is done
in two stages.

Proposition 1 (General axiom) Γ, x : A `G x : A,∆ is derivable (for any formula A).

Proof By easy induction on A. The cases for implication and exclusion require monotonicity
steps. �

Proposition 2 (Weakening) Weakening is height-preserving admissible. Specifically, if
Γ `G ∆ has a derivation of height n, then both Γ, x : A `G ∆ and Γ `G x : A,∆ have
derivations of height n (for any x ∈ |G|).

Proof Routine induction on derivation height. �

Admissibility of weakening is used often. Most of the times we do not signal its use. The
fact that weakening can be done with preservation of derivation height is used in the cut
elimination argument (Lemma 1 and Thm. 1).

All rules of L-LBiI are invertible. Firstly we prove that all rules except for ⊃L and �R
are invertible. Invertibility of ⊃L and �R is proved later, simultaneously with admissibility
of full monotonicity and contraction.

Proposition 3 (Invertibility) All rules except for ⊃L and �R are invertible. In partic-
ular, for the rule ⊃R, if Γ `G x : A ⊃ B,∆, then Γ, y : A `G⊕x(x,y) y : B,∆ for any
y 6∈ |G|.

Proof The results follow by easy inductions on derivation height. For example, for ⊃R, we
have that x : A⊃B can only be principal at an ⊃R step (because of the restrictions on hyp
and monotR rules) and, in this case, the conclusion follows immediately (y can be any label
not in G, since sequents are identified up to renaming of labels). The cases where x : A⊃B
is not principal follow by the IH and reapplication of the rule used in the last step. �

Next we study the nodemerge rules, which play an important role in the rest of the paper,
since they are used both to obtain admissibility of contraction, full monotonicity and cut in
the labeled system L-LBiI as well as to justify the translation in Sect. 5 of the nested system
N-LBiI into L-LBiI. A nodemerge rule is a principle for merging a label y with a label x in
a given sequent whereby the resulting sequent has one label less (label y) and has x-labeled
formulas where there were previously y-labeled formulas. However, this principle is not for
valid for arbitrary labels. In fact, arbitrary merging might even fail to produce a label tree
out of a label tree (recall the beginning of this section, where we require x 6∈ |G| to write
G[x/y]). If x and y are adjacent nodes in the label tree (i.e., there is either an edge (x, y) or
an edge (y, x) in the graph), then merging y with x is always sound. In Prop. 6, we will indeed
show admissibility of nodemerge for adjacent labels. If x and y are not adjacent, the merging
might produce a proper label tree, but break some of the past/future relations between labels
and be unsound. For example, in the valid sequent w : p `(w,y)⊕y(y,x)⊕x(x,z) x : p, we can
merge y with z (using the nodemergeF rule from the next proposition, but violating the side
condition) and obtain w : p `(w,z)⊕z(x,z) x : p. But since w is no longer to the past of x, this
is no longer a valid sequent. Still, merging a label y with a non-adjacent node z is possible
under a side condition, as stated in the next proposition.

Proposition 4 (Nodemerge I) The following rules are admissible.5

5The suffixes F and P in the rule names, for ‘future’, resp. ‘past’, are better motivated by the cases of
these rules in Prop. 6, where the side condition is z = x and y is merged with a label that is to the future,
resp. to the past of y.

9

zG+x Γ `G0⊕y(y,x)⊕xG ∆

Γ[z/y] `G0[z/y]⊕zG ∆[z/y]
nodemergeF

xG+z Γ `G⊕x(x,y)⊕yG0
∆

Γ[z/y] `G⊕zG0[z/y] ∆[z/y]
nodemergeP

Proof Firstly, note that each rule has a well-formed label tree in the conclusion: it is implicit
in the premises that z ∈ |G|, y ∈ |G0|, and |G0|∩|G| = ∅, so G0[z/y] is well-defined (z 6∈ |G0|)
and |G0[z/y]| ∩ |G| = {z}.

The proofs are analogous for the two rules and follow by induction on derivation height.

We concentrate on nodemergeP and develop the case where the last step is

w(G⊕x (x, y)⊕y G0)w′ Γ′, w : A,w′ : A `G⊕x(x,y)⊕yG0
∆

Γ′, w : A `G⊕x(x,y)⊕yG0
∆

monotL

(The case where the last step is monotR requires similar observations, and the other cases
are routine.)

Subcase w 6= y and w′ 6= y: We just need to use the IH and reapply monotL.
Subcase w = y: Then yG0w

′. Hence zG0[z/y]w′. This and the IH give a derivation
whose last step is

z(G⊕z G0[z/y])w′ Γ′[z/y], z : A,w′ : A `G⊕zG0[z/y] ∆[z/y]

Γ′[z/y], z : A `G⊕zG0[z/y] ∆[z/y]
monotL

Subcase w′ = y: Then either wG0y or w = x.
Sub-subcase wG0y: Then wG0[z/y]z. This and the IH produce a derivation with last

step:
w(G⊕z G0[z/y])z Γ′[z/y], w : A, z : A `G⊕zG0[z/y] ∆[z/y]

Γ′[z/y], w : A `G⊕zG0[z/y] ∆[z/y]
monotL

x

Sub-subcase w = x: By the hypothesis, we have xGx0 . . . xnGz. Using the IH and
admissibility of weakening, we can build a derivation ending as follows:

x(G⊕z G0[z/y])x0

x0(G⊕z G0[z/y])z Γ′[z/y], x : A, x0 : A, ..., xn : A, z : A `G⊕zG0[z/y] ∆[z/y]

Γ′[z/y], x : A, x0 : A, ..., xn : A `G⊕zG0[z/y] ∆[z/y]
monotL

...
Γ′[z/y], x : A, x0 : A `G⊕zG0[z/y] ∆[z/y]

Γ′[z/y], x : A `G⊕zG0[z/y] ∆[z/y]
monotL

�

Invertibility of ⊃L and �R will be a corollary of the next proposition. Due to the
presence of primitive monotonicity rules in L-LBiI (which bring in more cases where an
implication in the antecedent or an exclusion in the succedent of a sequent can be principal),
the essential results to achieve invertibility of the two rules need to be proved simultaneously
with admissibility of monotonicity for arbitrary formulas, which in turn needs to be proved
simultaneously with admissibility of contraction.

Proposition 5 (Admissibility of full monotonicity and contraction)

1. Let A = B ⊃ C, and, for k ≥ 0, let z1, ..., zk be labels such that xG+zi, for all i. If
Γ, x : A, z1 : A, ..., zk : A `G ∆, then Γ, x : C `G ∆.

2. Let A = B � C, and, for k ≥ 0, let z1, ..., zk be labels such that ziG
+x, for all i. If

Γ `G x : A, z1 : A, ..., zk : A,∆, then Γ `G x : B,∆.

3. If Γ, x : A, y : A `G ∆ and xGy or x = y, then Γ, x : A `G ∆.

10

4. If Γ `G x : A, y : A,∆ and yGx or x = y, then Γ `G x : A,∆.

Proof
The four statements are proved simultaneously by induction on the pair (|A|, |π|), where

|.| stands for height and π stands for the derivations implicit in the hypotheses of the four
statements. Statements (1) and (2) are proved analogously, and statements (3) and (4) also
have analogous proofs.

For proving (1), we consider the various cases that can arise in the last step of the
derivation of Γ, x : B ⊃ C, z1 : B ⊃ C, ..., zk : B ⊃ C `G ∆.

i) The cases where x : B ⊃ C and each of zi : B ⊃ C are not principal in the last step
follow by the IH and reapplication of the same rule.

ii) In the cases where the last step is monotL and either x : B⊃C or one of zi : B⊃C is
principal, the premise has an extra z : B⊃C with xG+z; so, the IH applies and immediately
gives the result.

iii) Suppose some zi : B ⊃C is principal and the last step is ⊃L. So, the second premise
of this step is Γ, x : B ⊃ C, z1 : B ⊃ C, ..., zi : C, ..., zk : B ⊃ C `G ∆, and the IH gives
Γ, x : C, zi : C `G ∆. Since xG+zi, for some m ≥ 0, y1, ..., ym, we have xGy1G...GymGzi.
The latter derivation can be weakened to give Γ, x : C, y1 : C, ..., ym : C, zi : C `G ∆. Hence,
using repeatedly part (3) of the IH on subformula C, we conclude Γ, x : C `G ∆.

iv) If x : B⊃C is principal and the last step is ⊃L, the proof is analogous to the previous
case.

Let us analyse the cases of (4) for monotonicity, i.e., where yGx.
i) If A is an atom or an exclusion, the result follows immediately by applying monotR.
ii) If neither x : A, y : A are principal in the last step, part (4) of the IH is applied to the

premises, and the same rule reapplied.
iii) The cases where either x : A or y : A is principal and A is a conjunction or disjunction

follow by: invertibility of ∧R and ∨R; use of part (4) of the IH on the conjuncts/disjuncts;
reapplication of ∧R/∨R.

iv) Finally, suppose A = B ⊃ C and x : A is principal (if y : A is principal, we argue
analogously). So we have a derivation whose last step has the form

Γ, w : B `G⊕x(x,w) w : C, y : B ⊃ C,∆
Γ `G x : B ⊃ C, y : B ⊃ C,∆ ⊃R

By invertibility of ⊃R (Prop. 3),

Γ, w : B, z : B `(y,z)⊕yG⊕x(x,w) w : C, z : C,∆

So, since y(G⊕x (x,w))+w, by nodemergeP (Prop. 4),

Γ, w : B,w : B `G⊕x(x,w) w : C,w : C,∆

Hence, by parts (3) and (4) of the IH for the subformulas B and C,

Γ, w : B `G⊕x(x,w) w : C,∆

Finally, by ⊃R,
Γ `G x : B ⊃ C,∆

We also demonstrate two cases of (4) for contraction (x = y), namely the cases where the
last step introduces the contracted formula through ⊃R or �R. The other cases are simpler.

i) The case where we have a derivation whose last step has the form

Γ, z : B `G⊕x(x,z) x : B ⊃ C, z : C,∆

Γ `G x : B ⊃ C, x : B ⊃ C,∆ ⊃R

11

This case is solved similarly to the last case of (4) above for monotonicity: invertibility of ⊃R
gives Γ, z : B,w : B `(x,w)⊕xG⊕x(x,z) z : C,w : C,∆; then, nodemergeP gives
Γ, z : B, z : B `G⊕x(x,z) z : C, z : C,∆; hence, parts (3) and (4) of the IH on the subformulas
B and C give Γ, z : B `G⊕x(x,z) z : C,∆; finally, ⊃R gives Γ `G x : B ⊃ C,∆.

ii) The case where we have a derivation whose last step has the form

Γ `G x : B, x : B � C,∆ Γ, x : C `G x : B � C, x : B � C,∆
Γ `G x : B � C, x : B � C,∆ �R

Applying part (2) of the IH to the first premise, we get Γ `G x : B, x : B,∆, from which,
by the IH on the subformula B, we obtain Γ `G x : B,∆. From this and derivability of
Γ, x : C `G x : B � C,∆, which follows by applying part (4) of the IH to the second premise,
we get Γ `G x : B � C,∆ through a �R step. �

Corollary 1 (Invertibility of ⊃L and �R)

1. If Γ, x : A⊃B `G ∆, then (i) Γ, x : A⊃B `G x : A,∆ and (ii) Γ, x : B `G ∆.

2. If Γ `G x : A �B,∆, then (i) Γ, x : B `G x : A �B,∆ and (ii) Γ `G x : A,∆.

Proof Let us argue about (1). Note that (i) follows from the assumption by weakening. For
(ii), we use (1) of the previous proposition, taking k = 0. �

We establish now the nodemerge principles for adjacent labels. These results could not
be proved together with the nodemerge principles for non-adjacent labels (Prop. 4) because
they require contraction.

Proposition 6 (Nodemerge II) The following rules are admissible:

Γ `G0⊕y(y,x)⊕xG ∆

Γ[x/y] `G0[x/y]⊕xG ∆[x/y]
nodemergeF

Γ `G⊕x(x,y)⊕yG0
∆

Γ[x/y] `G⊕xG0[x/y] ∆[x/y]
nodemergeP

Proof By induction on derivation height. We develop for nodemergeP two cases relative
to monotonicity (one of them needing contraction). The other cases are either analogous or
simpler. Assume the derivation of the premise has a last step of the form

x(G⊕x (x, y)⊕y G0)y Γ′, x : A, y : A `G⊕x(x,y)⊕yG0
∆

Γ′, x : A `G⊕x(x,y)⊕yG0
∆

monotL

Applying the IH gives Γ′[x/y], x : A, x : A `G⊕xG0[x/y]
∆[x/y], and then contraction

(Prop. 5) gives Γ′[x/y], x : A `G⊕xG0[x/y]
∆[x/y].

Assume now the derivation of the premise of nodemergeP ends with a step of the form

y(G⊕x (x, y)⊕y G0)z Γ′, y : A, z : A `G⊕x(x,y)⊕yG0
∆

Γ′, y : A `G⊕x(x,y)⊕yG0
∆

monotL

Then yG0z, hence xG0[x/y]z. This and the IH allow a derivation ending with

x(G⊕x G0[x/y])z Γ′[x/y], x : A, z : A `G⊕xG0[x/y] ∆[x/y]

Γ′[x/y], x : A `G⊕xG0[x/y] ∆[x/y]
monotL

�
Now we turn to admissibility of cut. The proof follows partly standard ideas, but the

presence of explicit rules for monotonicity in L-LBiI introduces new issues, as more cases
where the cut formula is principal in both premises arise.

Before going to the general ideas, let us instructively see how the cut-admissibility proof
below works on an example related to our counter-example in Sect. x2.2 to eliminability of
cuts in the standard-style sequent calculus LBiI.

12

Consider the following derivation with a cut, where side formulas not contributing to
subderivations are generally omitted:

x : p `〈x〉 x : p
hyp

x : q `〈x〉 x : q
hyp

x : p `〈x〉 x : q, x : p � q �R

π
z : p `(z,x)⊕x(x,y) z : q, y : p � q

x : p � q `(x,y) y : p � q �L
y : r `(x,y) y : r

hyp

x : p � q, y : r `(x,y) y : (p � q) ∧ r ∧R

x : p � q `〈x〉 x : r ⊃ ((p � q) ∧ r) ⊃R

x : p `〈x〉 x : q, x : r ⊃ ((p � q) ∧ r) cut

where π is as follows:

z : p `(z,x)⊕x(x,y) z : p
hyp

z : q `(z,x)⊕x(x,y) z : q
hyp

z : p `(z,x)⊕x(x,y) z : q, y : p � q, x : p � q, z : p � q �R

z : p `(z,x)⊕x(x,y) z : q, y : p � q, x : p � q monotR

z : p `(z,x)⊕x(x,y) z : q, y : p � q monotR

As the cut formula is not principal in the last step of the derivation of the second premise
of the cut inference, we permute the cut upwards, until the cut formula becomes principal
in the derivations of both premises, and remove a trivial cut created on the second premise
of the ∧R step, obtaining:

x : p `(x,y) x : p
hyp

x : q `(x,y) x : q
hyp

x : p `(x,y) x : q, x : p � q �R

π
z : p `(z,x)⊕x(x,y) z : q, y : p � q

x : p � q `(x,y) y : p � q �L

x : p `(x,y) x : q, y : p � q cut
y : r `(x,y) y : r

hyp

x : p, y : r `(x,y) x : q, y : (p � q) ∧ r ∧R

x : p `〈x〉 x : q, x : r ⊃ ((p � q) ∧ r) ⊃R

Note that, contrary to the situation in the standard-style system LBiI, the permutation of
the cut above the ⊃R inference is unproblematic: it just needs rewriting of the derivation of
the first premise with the label tree (x, y), instead of 〈x〉.

Now, we can apply to π the algorithm behind admissibility of nodemergeF , obtaining
the following derivation π′:

x : p `(x,y) x : p
hyp

x : q `(x,y) x : q
hyp

x : p `(x,y) x : q, y : p � q, x : p � q, x : p � q �R

x : p `(x,y) x : q, y : p � q, x : p � q contrR

x : p `(x,y) x : q, y : p � q monotR

Since the contraction step can be permuted upwards and eventually eliminated when it
reaches the leaves, and since the last step of π′ is already the conclusion of the cut inference
above, we can simply remove the cut inference, arriving at the cut-free derivation of the
sequent

x : p `〈x〉 x : q, x : r ⊃ ((p � q) ∧ r)

we already encountered in Sect. 3.1. This removal of the cut inference in the general cut-
admissibility procedure happens through the generation of two atomic cuts (one on x : p and
the other on x : q), each having an axiom as one of the premises.

Now we present the general argument for admissibility of cuts, starting with the case of
cuts on atomic formulas.

Lemma 1 (Admissibility of atomic cuts) For all n ≥ 0,

1. if Γ `G x : p,∆ and Γ, x : p, y1 : p, ..., yn : p `G ∆ and xG+yi for all yi, then Γ `G ∆;

13

2. if Γ `G x : p, y1 : p, ..., yn : p,∆ and Γ, x : p `G ∆ and yiG
+x for all yi, then Γ `G ∆.

Proof Let us prove (1). ((2) is analogous.) The proof is by induction on the height of the
derivation (π say) of the second sequent. The cases where none of x : p, y1 : p, ..., yn : p is
principal in the last step follow by applying the IH to the premise(s) (possible because we
can invert Γ `G x : p,∆) and reapplying the rule used in the last step (in the case of an
axiom, Γ `G ∆ is also an axiom). Let us prove (1) in the other cases.

The case where π is an axiom: If x : p ∈ ∆, then the result follows by applying contrac-
tion (Prop. 5) to the first sequent. If for some i, ∆ = yi : p,∆′, then, by the hypothesis,
xGz1G...GzkGyi and the following derivation can be built from the first premise (and weak-
ening) by successive applications of monotR:

Γ `G x : p, yi : p, z1 : p, ..., zk : p,∆′

Γ `G yi : p, z1 : p, ..., zk : p,∆′
monotR

....
Γ `G yi : p, zk : p,∆′

Γ `G yi : p,∆′
monotR

The case of π ending with monotL: In this case, there is z such that xGz or yiGz for
some i and Γ, x : p, y1 : p, ..., yn : p, z : p `G ∆ has a derivation lower than π. So, by the IH,
Γ `G ∆. �

Theorem 1 (Admissibility of cut) The following cut rule is admissible:

Γ `G x : A,∆ Γ, x : A `G ∆

Γ `G ∆
cut

Proof By induction on the pair (|A|, |π| + |σ|) where |.| stands for height and π and σ are
the derivations of the first and second premises respectively.

1. The case where A is atomic has already been proved (Lemma 1).
2. The cases where x : A is not main in the last step of π or σ follow by permuting

the cut upwards (with the help of weakening) and using the IH (on premises having lower
derivation height).

3. Let us analyse the two cases where A = A1 ⊃ A2 and x : A is main in the last step
of both π and σ. (The case where A = A1 � A2 is analogous and the cases A = A1 ∧ A2

and A = A1 ∨ A2 are simpler, since monotonicity for conjunctions and disjunctions is not
primitive in L-LBiI.)

3.1 One form of cut where x : A1 ⊃A2 is principal in both premises is

π =

π1
Γ, z : A1 `G⊕x(x,z) z : A2,∆

Γ `G x : A1 ⊃A2,∆
⊃R

σ =

σ1
Γ, x : A1 ⊃A2 `G x : A1,∆

σ2
Γ, x : A2 ` ∆

Γ, x : A1 ⊃A2 `G ∆
⊃L

The proof transformation is similar to the unlabeled setting, but additionally admissibility
of nodemerge (Prop. 6) is needed. Specifically: we can weaken π to π′ preserving height and,
using the IH (on premises having lower derivation height), we can build

ρ1 =

π′

Γ `G x : A1 ⊃A2, x : A1,∆
σ1

Γ, x : A1 ⊃A2 `G x : A1,∆

Γ `G x : A1,∆
cut

14

and, then, by weakening ρ1 to ρ′1 and by the IH (on the subformulas) we derive

ρ′1
Γ `G x : A1,∆, x : A2

π1
Γ, z : A1 `G⊕x(x,z) z : A2,∆

Γ, x : A1 `G x : A2,∆
nodemergeP

Γ `G x : A2,∆
cut σ2

Γ, x : A2 `G ∆

Γ `G ∆
cut

3.2 The other case where x : A1⊃A2 is principal in both premises is when π is as above,
but σ has the form

σ =

xGy
σ1

Γ, x : A1 ⊃A2, y : A1 ⊃A2 `G ∆

Γ, x : A1 ⊃A2 `G ∆
monotL

By induction on σ1, we argue about the following more general situation: if σ1 is a
derivation of Γ, x : A1 ⊃A2, y1 : A1 ⊃A2, ..., yn : A1 ⊃A2 `G ∆ with xG+yi for all i and (as
we are assuming) π1 is a derivation of Γ, z : A1 `G⊕x(x,z) z : A2,∆ for z neither in Γ nor in
∆, then Γ `G ∆.

3.2.1 Suppose y1 : A1 ⊃A2 is principal in the last step of σ1 (the same argument applies
in case of a different yi). There are two cases, one for monotL and the other for ⊃L. The
former follows directly by the inner IH. For the latter, the two premises of the last step of
σ1 are

(i) Γ, x : A1 ⊃A2, y1 : A1 ⊃A2, ..., yn : A1 ⊃A2 `G y1 : A1,∆
(ii) Γ, x : A1 ⊃A2, y1 : A2, ..., yn : A1 ⊃A2 `G ∆

Weakening π1, we can derive Γ, z : A1 `G⊕x(x,z) z : A2, y1 : A1,∆. So, using the inner IH on
(i), it follows that

(iii) Γ `G y1 : A1,∆.

Likewise, weakening π1, we can also derive y1 : A2,Γ, z : A1 `G⊕x(x,z) z : A2,∆ and, using
the inner IH on (ii), we conclude that

(iv) Γ, y1 : A2 `G ∆.

Since xG+y1, from π1 and nodemergeP (Prop. 4) we have

(v) Γ, y1 : A1 `G y1 : A2,∆.

Using the outer IH on the subformulas A1 and A2, we can combine (iii), (iv) and (v) to
obtain Γ `G ∆.

3.2.2 If x : A1⊃A2 is principal in the last step of σ1, a similar argument applies, but uses
Prop. 6 instead of Prop. 4 and, in order to apply the inner IH, requires height preserving
weakening to add x : A1 ⊃A2 to the antecendent of the second premise.

3.2.3 The cases where none of x : A1⊃A2, y1 : A1⊃A2, ..., yn : A1⊃A2 is principal follow
by the inner IH, which can be applied because of invertibility of all rules of L-LBiI, and by
reapplication of the rule of the last step. �

We end this section with admissible rules of L-LBiI that become handy for the transla-
tions of LBiI and N-LBiI into L-LBiI. These rules guarantee that, in some cases, a node
of the label tree can be split into a pair of nodes connected by an edge, so that no paths are
lost.

Proposition 7 (Nodesplit) The following rules are admissible:

G ↓ x Γ `G0⊕yG[y/x] ∆

Γ `G0⊕y(y,x)⊕xG ∆
nodesplitF

G ↑ x Γ `G[y/x]⊕yG0
∆

Γ `G⊕x(x,y)⊕yG0
∆

nodesplitP

15

Proof Firstly, note that the conclusions have well-formed label trees. In particular, note
that implicit in G[y/x] is the assumption y 6∈ |G| and implicit in G0⊕yG[y/x] is y ∈ |G[y/x]|,
hence x ∈ |G|.

The proofs are by induction on derivation height. We concentrate on nodesplitF (the
argument is analogous for nodesplitP) and consider the case where the last step is

z(G0 ⊕y G[y/x])w Γ′, z : A,w : A `G0⊕yG[y/x] ∆

Γ′, z : A `G0⊕yG[y/x] ∆
monotL

Subcase zG0w: It suffices to use the IH and reapply monotL, which is possible because
z(G0 ⊕y (y, x)⊕x G)w.

Subcase zG[y/x]w: The sub-subcase where both z 6= y and w 6= y follows again by the
IH and reapplication of monotL. The side condition G ↓ x makes it impossible that w = y
(otherwise zGx). So the remaining sub-subcase is where z = y, hence xGw. By the IH and
weakening, it follows that Γ′, y : A,w : A, x : A `G0⊕y(y,x)⊕xG ∆. Thus, applying monotL
gives Γ′, y : A, x : A `G0⊕y(y,x)⊕xG ∆ (since x(G0 ⊕y (y, x) ⊕x G)w) and applying monotL
once more gives Γ′, y : A `G0⊕y(y,x)⊕xG ∆ (since y(G0 ⊕y (y, x)⊕x G)x).

The case where the last step is monotR is analogous to monotL. The cases corresponding
to the logical rules follow by routine application of the IH. �

4 Relating the standard-style to the other sequent cal-
culi

In this section, we study syntactic translations between LBiI and the other two systems.

4.1 From N-LBiI to LBiI

As sequents and rules of LBiI are also sequents and rules of N-LBiI, a derivation in LBiI
is also a derivation in N-LBiI. Note, however, that a cut in LBiI is rendered by a cut also
in N-LBiI. We will revisit this observation in Sect. 6 to obtain a complete class of cuts for
LBiI. For now, we move on to the converse direction.

We define simultaneously two functions on nested contexts |(−)|L and |(−)|R that produce
formulas. They are meant to be applied to antecedents and succedents of sequents. We also
introduce two further functions ‖(−)‖L and ‖(−)‖R, defined in terms of |(−)|L and |(−)|R, to
produce standard contexts instead of formulas. They are used to translate top-level sequents
and avoid unnecessary rewriting of commas as ∧ or ∨.

|∅|L = > |∅|R = ⊥
|A,Γ|L = A ∧ |Γ|L |A,Γ|R = A ∨ |Γ|R

|(Γ0 ` ∆0),Γ|L = (|Γ0|L � |∆0|R) ∧ |Γ|L |(Γ0 ` ∆0),Γ|R = (|Γ0|L ⊃ |∆0|R) ∨ |Γ|R

‖∅‖L = ∅ ‖∅‖R = ∅
‖A,Γ‖L = A, ‖Γ‖L ‖A,Γ‖R = A, ‖Γ‖R

‖(Γ0 ` ∆0),Γ‖L = (|Γ0|L � |∆0|R), ‖Γ‖L ‖(Γ0 ` ∆0),Γ‖R = (|Γ0|L ⊃ |∆0|R), ‖Γ‖R

Note that functions |(−)|L and |(−)|R are assuming some canonical form of transforming
contexts into lists, which can be realised in different ways. But for our purposes this choice is
immaterial, since the formulas produced differ only in the order of operands of conjunctions
and disjunctions.

Two observations used extensively throughout are: ‖Γ,Γ0‖L = ‖Γ‖L, ‖Γ0‖L and ‖Γ,Γ0‖R =
‖Γ‖R, ‖Γ0‖R.

Theorem 2 If Γ ` ∆ is derivable in N-LBiI, then ‖Γ‖L ` ‖∆‖R is derivable in LBiI.

16

Proof The proof is by induction on the structure of the N-LBiI derivation of Γ ` ∆. The
cases corresponding to rules other than the nesting rules are immediate, since there is a
directly matching rule in LBiI.

Case nestR: The given derivation has the form

.... π

Γ,Γ0 ` ∆0

Γ ` (Γ0 ` ∆0),∆
nestR

It can be mapped to
.... IH on π

‖Γ‖L, ‖Γ0‖L ` ‖∆0‖R

‖Γ‖L, |Γ0|L ` |∆0|R
(∧L,∨R)∗

‖Γ‖L ` |Γ0|L ⊃ |∆0|R, ‖∆‖R
⊃R

Case unnestL: The given derivation is of the form

.... π

Γ, (Γ0 ` ∆0) ` ∆

Γ,Γ0 ` ∆0,∆
unnestL

and we can transform it to

∀i. . . . , ‖Γ0‖L ` ‖Γ0‖Li , . . .
hyp

. . . , ‖Γ0‖L ` |Γ0|L, . . .
∧R∗

∀i. . . . , ‖∆0‖Ri ` |Γ0|L � |∆0|R, ‖∆0‖R, . . .
hyp

. . . , |∆0|R ` |Γ0|L � |∆0|R, ‖∆0‖R, . . .
∨L∗

‖Γ‖L, ‖Γ0‖L ` |Γ0|L � |∆0|R, ‖∆0‖R, ‖∆‖R
�R

.... IH on π

‖Γ‖L, |Γ0|L � |∆0|R ` ‖∆‖R

‖Γ‖L, ‖Γ0‖L, |Γ0|L � |∆0|R ` ‖∆0‖R, ‖∆‖R
(weakL/R)∗

�
�
�
�
�
��

‖Γ‖L, ‖Γ0‖L ` ‖∆0‖R, ‖∆‖R
cut

�

4.2 From LBiI to L-LBiI

The translation of LBiI into L-LBiI is not demanding. Essentially, it suffices to annotate
the end sequent with the sole label of a singleton label tree and follow the structure of the
LBiI-derivation bottom-up, introducing new labels at ⊃R and �L. But again (like in the
translation from LBiI to N-LBiI), a cut in LBiI is rendered by a cut in L-LBiI, which is
not so perfect, since we should not need cut in L-LBiI derivations.

Given a standard context Γ, we write x : Γ for the labeled context obtained by labeling
all formulas of Γ with x.

Theorem 3 If Γ ` ∆ is derivable in LBiI, then x : Γ `〈x〉 x : ∆ is derivable in L-LBiI.

Proof By induction on the derivation of Γ ` ∆ in LBiI. We consider two cases.
Case hyp: The given derivation

Γ, A ` A,∆ hyp

is sent to

x : Γ, x : A `〈x〉 x : A, x : ∆
hyp

17

Case ⊃R: The given derivation

.... π

Γ, A ` B
Γ ` A⊃B,∆ ⊃R

is matched with the derivation

.... IH on π

y : Γ, y : A `〈y〉 y : B

y : Γ, y : A `(x,y) y : B
nodesplitP

x : Γ, y : Γ, y : A `(x,y) y : B
weakL

x : Γ, y : A `(x,y) y : B
(monotL)∗

x : Γ `〈x〉 x : A⊃B ⊃R

x : Γ `〈x〉 x : A⊃B, x : ∆
(weakR)∗

�

The translation from L-LBiI to LBiI is best found as a compound translation through
N-LBiI (which becomes possible after the next section, where we translate between L-LBiI
and N-LBiI). We will not work out the details of such composition here, but it is quite
instructive. In particular, it gives an explanation of why it is so difficult to translate labeled
derivations into standard derivations in the case of Int. We learn that the natural way uses
exclusion. And this is not available in Int.

5 Relating labeled and nested sequent calculi

In this section, we introduce translations first between labeled and nested sequents and then
between derivations of L-LBiI and of N-LBiI. Whereas the translations for sequents are
mutual inverses, this is not the case at the level of derivations. However, we will identify
variants of L-LBiI and of N-LBiI for which also derivations are in a 1-1 correspondence.

5.1 Bijective translation of sequents

The translation of a labeled sequent into a nested sequent follows the idea that we can view
any label of the label tree as its root (intuitively, the focus of attention) and produce a
nesting structure for a nested sequent by mimicking this rooted tree.

The translation of a labeled sequent wrt. a chosen label from its label tree is defined by
recursion on the rooted tree structure by

〈〈 Γ `〈x〉 ∆ 〉〉x = Γ(x) ` ∆(x)

〈〈 Γ `G⊕x(x,y)⊕yG0
∆ 〉〉x = Λ ` (Λ0 ` Π0),Π

where Λ ` Π = 〈〈 Γ[G] `G ∆[G] 〉〉x and Λ0 ` Π0 = 〈〈 Γ[G0] `G0 ∆[G0] 〉〉y
〈〈 Γ `G0⊕y(y,x)⊕xG ∆ 〉〉x = Λ, (Λ0 ` Π0) ` Π

where Λ ` Π = 〈〈 Γ[G] `G ∆[G] 〉〉x and Λ0 ` Π0 = 〈〈 Γ[G0] `G0
∆[G0] 〉〉y

where Γ(x) = {A | x : A ∈ Γ} and Γ[G] = {x : A | x ∈ |G| and x : A ∈ Γ}.
Although a label tree has generally many decompositions, this translation is well-defined,

since all decompositions of the same label tree lead to the same result.
Intuitively, the formulas labeled with x in the given sequent are kept where they are,

whereas those with labels reachable through the labels immediately to the past of x, resp. to
the future of x, are arranged into nested sequent members of the antecedent, resp. succedent,
of the top-level nested sequent produced.

18

We define a translation of N-LBiI sequents to L-LBiI sequents, by induction on the
antecedent and succedent of the given nested sequent, by the function JΓ, A ` ∆ Kx that
follows. This function also takes a label x as argument. The root of the nesting structure of
the given nested sequent (i.e., its top level) is sent to label x in the label tree of the labeled
sequent.

J` Kx = `〈x〉
J` A,∆ Kx = Λ `G x : A,Π where Λ `G Π = J` ∆ Kx

J` (Γ0 ` ∆0),∆ Kx = Λ,Λ0 `G⊕x(x,y)⊕yG0
Π0,Π

where Λ `G Π = J` ∆ Kx and Λ0 `G0 Π0 = JΓ0 ` ∆0 Ky and y is fresh

JΓ, A ` ∆ Kx = Λ, x : A `G Π where Λ `G Π = JΓ ` ∆ Kx

JΓ, (Γ0 ` ∆0) ` ∆ Kx = Λ,Λ0 `G0⊕y(y,x)⊕xG Π0,Π

where Λ `G Π = J` ∆ Kx and Λ0 `G0 Π0 = JΓ0 ` ∆0 Ky and y is fresh

Intuitively, any formula in the top-level sequent is labeled by x and remains where it is.
Any (nested) sequent in the antecedent, resp. succedent, of the top-level sequent leads to the
creation of a new label y immediately to the past, resp. to the future, of x. The translated
elements of its antecedent, resp. succedent, are placed in the antecedent, resp. succedent, of
the sequent in the making.

Note that we have given the mathematical definition by first recursing on the antecedent
and then the succedent. In fact, the order is immaterial, one could just as well start with the
antecedent or, indeed, remove formulas/nested sequents from the antecedent and succedent in
turns, in any order. This commutativity is used extensively in our translation of derivations.
Additionally, note that, in the third and fifth clauses of the definition, we need to generate
a fresh label, but this is unproblematic, since we identify labeled sequents up to the names
of labels.

Now we establish that the maps 〈〈 · 〉〉x and J · Kx are mutual inverses, and thus establish a
bijective correspondence between labeled sequents and nested sequents. Recall that equality
of labeled sequents is up to renaming of labels: indeed, whereas translating from nested to
labeled sequents and back, we will arrive at exactly the same sequent, starting with a labeled
sequent, we might only get a sequent equal to it up to renaming of labels, because of the
generation of labels involved in the translation from nested to labeled sequents.

Theorem 4 (Bijection for sequents)

1. 〈〈 JΓ ` ∆ Kx 〉〉x = Γ ` ∆, for any x.

2. J 〈〈 Γ `G ∆ 〉〉x Kx = Γ `G ∆, for any x ∈ |G|.

Proof (1) is proved by considering first Γ empty and inducting on the structure of ∆, and
then proving the result for an arbitrary Γ, by induction on the structure of Γ. The following
auxiliary property is used: if 〈〈 Γ `G ∆ 〉〉x = Λ ` Π, then 〈〈 Γ, x : A `G ∆ 〉〉x = Λ, A ` Π
and 〈〈 Γ `G x : A,∆ 〉〉x = Λ ` A,Π. This property follows by induction on G.

(2) is proved by induction on the number of edges in G. One of the step cases (when
G is of the form G1 ⊕x (x, y) ⊕y G0) needs the property: if JΓ ` ∆ Kx = Λ `G Π and
JΓ0 ` ∆0 Ky = Λ0 `G0 Π0, then JΓ ` ∆, (Γ0 ` ∆0) Kx = Λ,Λ0 `G⊕x(x,y)⊕yG0

Π0,Π. This
property follows by induction on Γ. �

5.2 From L-LBiI to N-LBiI and back

The translations of derivations between L-LBiI and N-LBiI are more involved than those
of the previous section, but also more illuminating.

Lemma 2 (Readdressing) For any z, x ∈ |G|, if 〈〈 Γ `G ∆ 〉〉z is derivable in N-LBiI,
then so is 〈〈 Γ `G ∆ 〉〉x.

19

Proof By induction on the unique path along G∪G−1 from x to z. The base case x = z is
trivial.

We consider one of the two symmetric step cases, namely the one where xGy. In this
case, we have G = G′ ⊕x (x, y)⊕y G0, with the path from y to z lying in G0.

The given derivation is
.... π

〈〈 Γ `G ∆ 〉〉z
The nested sequent 〈〈 Γ `G ∆ 〉〉x can be derived by

.... IH on π

Λ0, (Λ ` Π) ` Π0

(Λ ` Π) ` (Λ0 ` Π0)
nestR

Λ ` (Λ0 ` Π0),Π
unnestL

where Λ ` Π = 〈〈 Γ[G′] `G′ ∆[G′] 〉〉x and Λ0 ` Π0 = 〈〈 Γ[G0] `G0
∆[G0] 〉〉y, so that

〈〈 Γ `G ∆ 〉〉x = Λ ` (Λ0 ` Π0),Π whereas 〈〈 Γ `G ∆ 〉〉y = Λ0, (Λ ` Π) ` Π0. �

Theorem 5 If Γ `G ∆ is derivable in L-LBiI, then 〈〈 Γ `G ∆ 〉〉x is derivable in N-LBiI
without cuts for any x ∈ |G|.

Proof By induction on the derivation of Γ `G ∆ in L-LBiI. We show the prototypical
cases.

Case hyp: The given derivation is of the form

Γ, x : p `G x : p,∆
hyp

By the readdressing lemma, it suffices to derive 〈〈 Γ, x : p `G x : p,∆ 〉〉x. The desired
derivation is

Λ, p ` p,Π hyp

where Λ ` Π = 〈〈 Γ `G ∆ 〉〉x.
Case monotL: The given derivation is of the form

.... π

Γ, x : A, y : A `G⊕x(x,y)⊕yG0
∆

Γ, x : A `G⊕x(x,y)⊕yG0
∆

monotL

By readdressing, it suffices to prove 〈〈 Γ, x : A `G⊕x(x,y)⊕yG0
∆ 〉〉x.

We construct this derivation:

.... IH on π, y

(Λ, A ` Π),Λ0, A ` Π0

(Λ.A ` Π), A ` (Λ0 ` Π0)
nestR

Λ, A,A ` (Λ0 ` Π0),Π
unnestL

Λ, A ` (Λ0 ` Π0),Π
contrL

Here Λ ` Π = 〈〈 Γ[G] `G ∆[G] 〉〉x and Λ0 ` Π0 = 〈〈 Γ[G0] `G0
∆[G0] 〉〉y, which gives us

〈〈 Γ, x : A `G⊕x(x,y)⊕yG0
∆ 〉〉x = Λ, A ` (Λ0 ` Π0),Π and 〈〈 Γ, x : A, y : A `G⊕x(x,y)⊕yG0

∆ 〉〉y = (Λ, A ` Π),Λ0, A ` Π0.
Case ⊃R: The given derivation is of the form

.... π

Γ, y : A `G⊕x(x,y) y : B,∆

Γ `G x : A⊃B,∆ ⊃R

20

We prove 〈〈 Γ `G x : A ⊃ B,∆ 〉〉x, which we know is enough by readdressing. The
derivation is this: IH on π, y

(Λ ` Π), A ` B
(Λ ` Π) ` A⊃B ⊃R

Λ ` A⊃B,Π unnestL

Here, Λ ` Π = 〈〈 Γ `G ∆ 〉〉x, which gives us 〈〈 Γ `G x : A ⊃ B,∆ 〉〉x = Λ ` A ⊃ B,Π and
〈〈 Γ, y : A `G⊕x(x,y) y : B,∆ 〉〉y = (Λ ` Π), A ` B.

The other cases are either analogous to the cases shown above (monotR and �L), or
simpler, as they only need the use of IH and application of the corresponding rule in N-LBiI.
In particular, no case of the translation introduces cuts (recall that readdressing adds no cuts)
and, since cut is not primitive in L-LBiI, we obtain cut-free derivations in N-LBiI. �

The translation from N-LBiI to L-LBiI is intended as an inverse for the one just seen
from L-LBiI to N-LBiI. On sequents, as seen before, it is a true inverse. On derivations,
true inversion is achieved in the following subsection, but for variants of the systems N-LBiI
and L-LBiI.

Theorem 6 If Γ ` ∆ is derivable in N-LBiI, then JΓ ` ∆ Kx is derivable in L-LBiI for
any x.

Proof By induction on the given derivation. We look at some cases. Note that the cases
for weakening, contraction and cut pose no special difficulty, since we have shown that the
corresponding rules are admissible in L-LBiI.

Case nestR: The given derivation is of the form

.... π

Γ,Γ0 ` ∆0

Γ ` (Γ0 ` ∆0),∆
nestR

We can produce this derivation of the translated sequent:

.... (IH on π)[y/x]

Λd[y/x],Λ0 `Gd[y/x]⊕yG0
Π0,Πd[y/x]

Λd[y/x],Λ0 `Gd⊕x(x,y)⊕yG0
Π0,Πd[y/x]

nodesplitP

Λd[x, y/x],Λ0 `Gd⊕x(x,y)⊕yG0
Π0,Πd

(weakL)∗

Λd,Λ0 `Gd⊕x(x,y)⊕yG0
Π0,Πd

(monotL)∗

Λd,Λ0 `Gd⊕xGu⊕x(x,y)⊕yG0
Π0,Πd

(nodesplitF/P)∗

Λd,Λu,Λ0 `Gd⊕xGu⊕x(x,y)⊕yG0
Π0,Πd,Πu

(weakL/R)∗

where Λd `Gd
Πd = JΓ ` Kx, Λu `Gu

Πu = J` ∆ Kx and Λ0 `G0
Π0 = JΓ0 ` ∆0 Ky, and

Λd[x, y/x] stands for the union of Λd[y/x] with the context formed by the x-labeled formulas
of Λd. Notice that x /∈ |Πd|, which tells us that Πd[y/x] = Πd. The side condition of the
topmost application of nodesplitD is met because Gd ↑ x. Note also that particular cases of
nodesplitF/P allow the addition of new nodes to a label tree.

Case unnestL: We are given a derivation in the form

.... π

Γ, (Γ0 ` ∆0) ` ∆

Γ,Γ0 ` ∆0,∆
unnestL

21

We make the derivation

.... IH on π

Λ,Λ0[y/x] `G0[y/x]⊕y(y,x)⊕xG Π0[y/x],Π

Λ,Λ0 `G0⊕xG Π0,Π
nodemergeF

where Λ `G Π = JΓ ` ∆ Kx and Λ0 `G0
Π0 = JΓ0 ` ∆0 Kx, hence JΓ0 ` ∆0 Ky =

Λ0[y/x] `G0[y/x] Π0[y/x].
Case ⊃R: The given derivation is of the form

.... π

Γ, A ` B
Γ ` A⊃B,∆ ⊃R

We transform it to

.... (IH on π)[y/x]

Λd[y/x], y : A `Gd[y/x] y : B,Πd[y/x]

Λd[y/x], y : A `Gd⊕x(x,y) y : B,Πd[y/x]
nodesplitP

Λd[x, y/x], y : A `Gd⊕x(x,y) y : B,Πd
(weakL)∗

Λd, y : A `Gd⊕x(x,y) y : B,Πd
(monotL)∗

Λd `Gd
x : A⊃B,Πd

⊃R

Λd `Gd⊕xGu x : A⊃B,Πd
(nodesplitF/P)∗

Λd,Λu `Gd⊕xGu
x : A⊃B,Πd,Πu

(weakL/R)∗

where Λd `Gd
Πd = JΓ ` Kx and Λu `Gu Πu = J` ∆ Kx. Notice that x /∈ |Πd|, with the effect

that Πd[y/x] = Πd. The side condition on the topmost application of nodesplitP is satisfied
as Gd ↑ x. �

Inspecting the translations of derivations between L-LBiI and N-LBiI, we see some
mismatches. The translation from L-LBiI to N-LBiI uses only primitive rules of N-LBiI.
The translation in the opposite direction uses various admissible rules of L-LBiI, notably
the nodemerge and the nodesplit rules, thus suggesting N-LBiI to be bigger than L-LBiI,
and potentially more challenging for proof search. We will revisit these translations in Sect. 6
paying special attention to the uses of weakening, contraction and cut, and extracting some
consequences.

5.3 Isomorphic labeled and nested sequent calculi

In this subsection, we show how to obtain systems originating from L-LBiI and N-LBiI
in a 1-1 correspondence both for sequents and derivations. To this end, one option could
be to enlarge the labeled system with primitive nodemerge and nodesplit rules. However,
from a proof search perspective, this is not the best choice. Instead, we consider a nested
system smaller than N-LBiI, which essentially corresponds to the image of the translation
from L-LBiI to N-LBiI. To fully achieve isomorphic systems, we need to consider a more
bureaucratic version of L-LBiI where each sequent has a distinguished label.

5.3.1 The labeled sequent calculus L0-LBiI

Sequents of L0-LBiI have the form Γ `xG ∆ where x ∈ G and x is called the label in focus.
All rules of L-LBiI have a counterpart in L0-LBiI, but impose the principal formula to
be labeled with the label in focus. Additionally, there are refocusing rules for changing the
label in focus. The full set of rules is in Fig. 5. Note that, in the rules ⊃R, �L, monotL,
monotR, the labels in focus in the premise and in the conclusion are different. We could

22

Initial rule:

Γ, x : p `xG x : p,∆
hyp

Logical rules:

Γ `xG ∆

Γ, x : > `xG ∆
>L

Γ `xG x : >,∆ >R

Γ, x : A, x : B `xG ∆

Γ, x : A ∧B `xG ∆
∧L

Γ `xG x : A,∆ Γ `xG x : B,∆

Γ `xG x : A ∧B,∆ ∧R

Γ, x : ⊥ `xG ∆
⊥L

Γ `xG ∆

Γ `xG x : ⊥,∆ ⊥R

Γ, x : A `xG ∆ Γ, x : B `xG ∆

Γ, x : A ∨B `xG ∆
∨L

Γ `xG x : A, x : B,∆

Γ `xG x : A ∨B,∆ ∨R

Γ, x : A⊃B `xG x : A,∆ Γ, x : B `xG ∆

Γ, x : A⊃B `xG ∆
⊃L

Γ, y : A `yG⊕x(x,y)
y : B,∆

Γ `xG x : A⊃B,∆ ⊃R

Γ, y : A `y(y,x)⊕xG
y : B,∆

Γ, x : A �B `xG ∆
�L

Γ `xG x : A,∆ Γ, x : B `xG x : A �B,∆
Γ `xG x : A �B,∆ �R

Monotonicity rules:

xGy Γ, x : A, y : A `yG ∆

Γ, x : A `xG ∆
monotL

proviso: A atomic or an implication

yGx Γ `yG y : A, x : A,∆

Γ `xG x : A,∆
monotR

proviso: A atomic or an exclusion

Refocusing rules:

xGy Γ `yG ∆

Γ `xG ∆
refocP

yGx Γ `yG ∆

Γ `xG ∆
refocF

Figure 5: Labelled sequent calculus L0-LBiI

have chosen to formulate these rules having in focus in the premise the same label as in the
conclusion. The choice we adopted should fit better with bottom-up proof search, where
after (bottom-up) application of a rule we are interested in analysing the new elements of
the premise(s).

Lemma 3 (Readdressing) For any z, x ∈ |G|, if Γ `zG ∆ is derivable in L0-LBiI, then
so is Γ `xG ∆ .

Proof By induction on the unique path along G ∪ G−1 from x to z. The step cases make
use of the refocusing rules. �

Proposition 8 Γ `G ∆ is derivable in L-LBiI iff Γ `xG ∆ is derivable in L0-LBiI for any
x ∈ G.

Proof From the left to the right, the proof follows by induction on L-LBiI-derivations,
with the help of the previous readdressing lemma (each step in L-LBiI is mapped to the
corresponding step in L0-LBiI followed by a sequence of refocusing steps, possibly empty).

From the right to the left, the proof follows easily by induction on L0-LBiI-derivations
(the translation only needs to drop the label in focus at each sequent and eliminate refocusing
steps, as the premise and the conclusion become coincident at these steps). �

23

Observe that the two translations involved in the proof of the previous proposition are
essentially inverse, but not true inverses. Starting at an L-LBiI-derivation, the transla-
tion into L0-LBiI and back gives the same derivation. However, starting at an L0-LBiI
derivation, the translation into L-LBiI “forgets” the refocusing steps; when mapping back
to L0-LBiI, the sequences of refocusing steps produced by the Readdressing Lemma might
be different.

5.3.2 The nested sequent calculus N0-LBiI

Now we introduce the system N0-LBiI, which is the isomorphic counterpart of L0-LBiI in
“nested style”. The inference rules of N0-LBiI are given in Fig. 6. Contrary to N-LBiI
(but similarly to L0-LBiI), this system does not have primitive structural rules or cut rule.
Also, there are no primitive rules of nest or unnest . Instead, N0-LBiI has monotonicity
and refocus rules (similarly to L0-LBiI). Note that there is a 1-1 match between rules of
N0-LBiI and of L0-LBiI which, indeed, induces a bijective correspondence for derivations,
as we will see in the next sub-subsection.

Proposition 9 If Γ ` ∆ is derivable in N0-LBiI, then Γ ` ∆ is derivable in N-LBiI
without weakening and cut and with contraction constrained to atoms and implications on
the left and to atoms and exclusions on the right.

Proof By easy induction on N0-LBiI derivations. In relation to the rules of N0-LBiI
having no directly matching rule in N-LBiI, note that: ⊃R and �L are derivable using the
respective rule of N-LBiI, followed by an unnest step; the refocusing rules are derivable by
a nest step followed by an unnest step; the monotonicity rules are derivable by a nest step,
followed by an unnest step, followed by a contraction step (on the distinguished formula A,
which is an atom or an implication in the case of monotL, and is an atom or an exclusion
in the case of monotR). �

The fact that all sequents derivable in N-LBiI are also derivable in N0-LBiI is harder
to establish. We will do this later (Prop. 11) via the labeled systems, with the help of the
isomorphism between the N0-LBiI and L0-LBiI.

5.3.3 The isomorphism

The translation of labeled sequents into nested sequents is readily adapted to translate
labeled sequents with a label in focus. Again, the translation uses a decomposition of the
given label tree, but the choice of a particular decomposition is irrelevant, all decompositions
yield the same result.

〈〈 Γ `x〈x〉 ∆ 〉〉 = Γ(x) ` ∆(x)

〈〈 Γ `xG⊕x(x,y)⊕yG0
∆ 〉〉 = Λ ` (Λ0 ` Π0),Π

where Λ ` Π = 〈〈 Γ[G] `xG ∆[G] 〉〉 and Λ0 ` Π0 = 〈〈 Γ[G0] `yG0
∆[G0] 〉〉

〈〈 Γ `xG0⊕y(y,x)⊕xG
∆ 〉〉 = Λ, (Λ0 ` Π0) ` Π

where Λ ` Π = 〈〈 Γ[G] `xG ∆[G] 〉〉 and Λ0 ` Π0 = 〈〈 Γ[G0] `yG0
∆[G0] 〉〉

The translation of nested sequents into L0-LBiI-sequents is also an immediate adaptation
of the translation into L-LBiI-sequents (the label corresponding to the additional argument

24

Initial rule :

Γ, p ` p,∆ hyp

Logical rules:

Γ ` ∆
Γ,> ` ∆

>L
Γ ` >,∆ >R

Γ, A,B ` ∆

Γ, A ∧B ` ∆
∧L

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧B,∆ ∧R

Γ,⊥ ` ∆
⊥L Γ ` ∆

Γ ` ⊥,∆ ⊥R
Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆
∨L

Γ ` A,B,∆
Γ ` A ∨B,∆ ∨R

Γ, A⊃B ` A,∆ Γ, B ` ∆

Γ, A⊃B ` ∆
⊃L

(Γ ` ∆), A ` B
Γ ` A⊃B,∆ ⊃R

A ` B, (Γ ` ∆)

Γ, A �B ` ∆
�L

Γ ` A,∆ Γ, B ` A �B,∆
Γ ` A �B,∆ �R

Monotonicity rules:

(Γ, A ` ∆),Π, A ` Λ

Γ, A ` ∆, (Π ` Λ)
monotL

proviso: A atomic or an implication

Π ` A,Λ, (Γ ` A,∆)

(Π ` Λ),Γ ` A,∆ monotR

proviso: A atomic or an exclusion

Refocusing rules:

(Γ ` ∆),Π ` Λ

Γ ` ∆, (Π ` Λ)
refocP

Π ` Λ, (Γ ` ∆)

(Π ` Λ),Γ ` ∆
refocF

Figure 6: Nested sequent calculus N0-LBiI isomorphic to L0-LBiI

25

becomes the label in focus):

J` Kx = `x〈x〉
J` A,∆ Kx = Λ `xG x : A,Π

where Λ `xG Π = J` ∆ Kx
J` (Γ0 ` ∆0),∆ Kx = Λ,Λ0 `xG⊕x(x,y)⊕yG0

Π0,Π

where Λ `xG Π = J` ∆ Kx and Λ0 `yG0
Π0 = JΓ0 ` ∆0 Ky

JΓ, A ` ∆ Kx = Λ, x : A `xG Π
where Λ `xG Π = JΓ ` ∆ Kx

JΓ, (Γ0 ` ∆0) ` ∆ Kx = Λ,Λ0 `xG0⊕y(y,x)⊕xG
Π0,Π

where Λ `xG Π = JΓ ` ∆ Kx and Λ0 `yG0
Π0 = JΓ0 ` ∆0 Ky

The bijection between sequents of L0-LBiI and nested sequents is a consequence of the
next proposition, which is proved analogously to Thm. 4.

Proposition 10 (Bijection for sequents)

1. 〈〈 JΓ ` ∆ Kx 〉〉 = Γ ` ∆ for any label x.

2. J 〈〈 Γ `xG ∆ 〉〉 Kx = Γ `xG ∆.

Now we observe the bijection at the level of derivations.

Theorem 7 (Isomorphism)

1. If Γ `xG ∆ is derivable in L0-LBiI, then 〈〈 Γ `xG ∆ 〉〉 is derivable in N0-LBiI.

2. If Γ ` ∆ is derivable in N0-LBiI, then JΓ ` ∆ Kx is derivable in L0-LBiI for any x.

3. Furthermore, the translations of derivations from (1) and (2) are inverse maps, and so
establish bijections between the derivations of a sequent in L0-LBiI and the derivations
of the corresponding sequent in N0-LBiI.

Proof The proofs of (1) and (2) are routine inductions on the given derivations: axioms
in one system are rendered by axioms in the other system and, at the inductive steps,
we just need to use the IH followed by the corresponding rule in the other system. This
clearly induces recursive translations of derivations that are inverse (as the translations of
the sequents are inverse). Let us have a look at the mapping of some inferences for (2)
(where one also sees the mapping of the corresponding cases of (1), thanks to invertibility
of the translations for sequents).

Case ⊃R:

(Γ ` ∆), A ` B
Γ ` A⊃B,∆ ⊃R 7→

Λ, y : A `yG⊕x(x,y)
y : B,Π

Λ `xG x : A⊃B,Π ⊃R

where Λ `xG Π = JΓ ` ∆ Kx (hence, Λ `xG x : A ⊃ B,Π = JΓ ` ∆, A ⊃ B Kx and Λ, y :
A `xG⊕x(x,y)

y : B,Π = J (Γ ` ∆), A ` B Ky).

Case monotL:

(Γ, A ` ∆),Γ0, A ` ∆0

Γ, A ` ∆, (Γ0 ` ∆0)
monotL 7→

Λ,Λ0, x : A, y : A `yG⊕x(x,y)⊕yG0
Π,Π0

Λ,Λ0, x : A `xG⊕x(x,y)⊕yG0
Π,Π0

monotL

where Λ `xG Π = JΓ ` ∆ Kx and Λ0 `yG0
Π0 = JΓ0 ` ∆0 Ky.

Case refocF :

Γ ` ∆, (Γ0 ` ∆0)

(Γ ` ∆),Γ0 ` ∆0
refocF

7→

Λ,Λ0 `xG⊕x(x,y)⊕yG0
Π,Π0

Λ,Λ0 `yG⊕x(x,y)⊕yG0
Π,Π0

refocF

where Λ `xG Π = JΓ ` ∆ Kx and Λ0 `yG0
Π0 = JΓ0 ` ∆0 Ky. �

26

Proposition 11 Any sequent derivable in N-LBiI is also derivable in N0-LBiI.

Proof Let Γ ` ∆ be a derivable sequent of N-LBiI and, for a fixed label x, let JΓ ` ∆ Kx =
Λ `G Π. By Thm. 6, Λ `G Π is derivable in L-LBiI and so, by Prop. 8, Λ `xG Π is derivable in
L0-LBiI and, by the previous theorem, 〈〈 Λ `xG Π 〉〉 is derivable in N0-LBiI. Finally, observe
that 〈〈 Λ `xG Π 〉〉 = Γ ` ∆, which follows from the facts: i) 〈〈 Λ `xG Π 〉〉 = 〈〈 Λ `G Π 〉〉x
(easy induction on the label tree G); and ii) 〈〈 Λ `G Π 〉〉x = Γ ` ∆ (obtained from
JΓ ` ∆ Kx = Λ `G Π, and Thm. 4). �

5.4 Relating to deep inference nested sequent calculus for BiInt

A deep inference version of the BiInt nested sequent calculus LBiInt1 called DBiInt is
studied in [29, 30]. As characteristic of deep inference, DBiInt allows inference rules to be
applied to any sequent of a structure of nested sequents, without the need of transforming
first the latter, in order to bring the desired sequent to the “top-level”. The formulation
of DBiInt uses a notion of context with a hole, capable of identifying a position and the
surrounding context in a nested sequent, and inference rules apply to the (nested) sequent in
the hole position. Contexts may have negative or positive polarity (accounting respectively
for the occurrence of the hole in the antecedent or succedent of a nested sequent), and
this allows the formulation of some inference rules by reference only to the formula being
introduced, rather than to the nested sequent containing it. We refer to Fig. 5.1 of [30]
for the inference rules of DBiInt. Compared to LBiInt1, both the nest and the unnest
rules are dropped and considered instead are propagation rules and versions of the ⊃R and
�L rules incorporating some form of nesting and unnesting. In Chap. 5 of [30], it is shown
that DBiInt is sound and complete wrt. LBiInt1, by means of proof transformations and
admissibility of various rules in both systems. Since system N-LBiI essentially corresponds
to system LBiInt1 (the precise differences are pointed out in Subsect. 2.3), it is no surprise
that DBiInt can be related to N-LBiI and L-LBiI and also to their isomorphic variants
N0-LBiI and L0-LBiI.

We recall below the two left propagation rules of DBiInt (.L1 and .L1) using our nested
sequent notation and assuming that they are applied at the top level. Note that .L1 is
applicable in a negative context and .L2 in a neutral context. (The two right propagation
rules .R1 and .R2 are symmetric to the left propagation rules.)

Γ, A, (A,Π ` Λ) ` ∆

Γ, (A,Π ` Λ) ` ∆
.L1

Γ, A ` ∆, (A,Π ` Λ)

Γ, A ` ∆, (Π ` Λ)
.L2

These two inferences are easily shown admissible in N0-LBiI by a monotL step, followed by
a refocF step in the case of .L1; and by a refocP step followed by a monotL step in the case of
.L2. (The fact that monotL and monotR are admissible in N0-LBiI for arbitrary formulas
is established in Thm. 8.) Note also that the ⊃R and �L rules of DBiInt have the same
spirit as the respective rules of N0-LBiI. Indeed, these inferences of DBiInt at the top level
are easily shown derivable in N0-LBiI by applying refocF , resp. refocP , followed by ⊃R,
resp. �L, and a contraction step. (Admissibility of contraction in N0-LBiI is also shown
in Thm. 8.) In fact, the need of contraction in N0-LBiI to derive rules of DBiInt applies
to all logical rules because in DBiInt the introduced formula is always contracted. Since
the refocusing rules of N0-LBiI allow to bring to the top level any nested sequent inside a
structure of nested sequents, it is not hard to embed derivations of DBiInt into derivations
of N0-LBiI with the help of the admissible rules of N0-LBiI established in Thm. 8. Of
course, as the labeled sequent calculus L0-LBiI is isomorphic to N0-LBiI, we can also
embed DBiInt into L0-LBiI. But it is worthwhile noticing that the deep inference aspect
of DBiInt is actually matched better by the initial labeled system L-LBiI, since L-LBiI
does not impose that inference rules apply only if the label of the introduced formula is
in focus. Under the translation of nested sequents into labeled sequents in Subsect. 5.1,
steps of left propagation (.L1 and .L2) map into monotL steps of L-LBiI (admissible for

27

arbitrary formulas–Prop. 5). Likewise, steps of right propagation (.R1 and .R2) both map
into monotR steps.

6 Applications of the translations

Analysing the targets of the various translations in the previous two sections, we obtain
some immediate applications. Our analysis focuses on the use of weakening, contraction and
cut in the translations. The general idea is to transfer properties of L-LBiI to the other
systems. In particular, for LBiI, we find complete classes of cuts (recall that cut is not fully
eliminable in LBiI) and eliminability results for weakening and contraction.

Theorem 8 Weakening, contraction, cut, as well as the axiom and monotonicity for arbi-
trary formulas, are admissible in L0-LBiI and N0-LBiI.

Proof For L0-LBiI, the results follow from the corresponding ones for L-LBiI (Props. 1, 2
and 5, and Thm. 1) with the help of Prop. 8. For example, admissibility of cut holds because:
if Γ `xG ∆, x : A and Γ, x : A `xG ∆ are derivable in L0-LBiI, then, by Prop. 8, Γ `G ∆, x : A
and Γ, x : A `G ∆ are derivable in L-LBiI; so, by Thm. 1, Γ `G ∆ is derivable in L-LBiI
and, using Prop. 8 again, we obtain derivability of Γ `xG ∆ in L0-LBiI. In view of the
results for L0-LBiI, the isomorphism between L0-LBiI and N0-LBiI (Thm. 7) guarantees
the results for N0-LBiI. �

Next, we obtain full eliminability of weakening and cut as well as partial eliminability of
contraction for N-LBiI and reprove cut elimination for the base nested system LBiInt1 of
Goré et al. [17].

Theorem 9

1. In N-LBiI, weakening and cut are eliminable and contraction can be constrained to
atoms and implications on the left as well as to atoms and exclusions on the right.

2. Cut is eliminable in LBiInt1.

Proof (1) could be proved by inspecting the target of the translation of L-LBiI-derivations
into N-LBiI. Instead, we argue in terms of the system N0-LBiI. By Prop. 11, any sequent
derivable in N-LBiI is also derivable in N0-LBiI. As, by Prop. 9, any sequent derivable in
N0-LBiI is derivable in N-LBiI without weakening and cut, and as uses of contraction can
be limited to atoms and implications on the left and to atoms and exclusions on the right,
we are done.

(2) is a consequence of (1) and the fact that cut-free derivations of N-LBiI can be easily
mapped into cut-free LBiInt1. Recall that, excluding the cut rule, these two systems differ
in that LBiInt1 has primitive rules for weakening and contraction and in that the rules ⊃L,
�L, ∧L and ∨R of N-LBiI have some implicit contraction. However, these rules of N-LBiI
are easily derivable in LBiInt1, using the corresponding rules together with contraction and
weakening. �

In [17], cut elimination for LBiInt1 is proved by means of syntactical transformations
on derivations. Here, we do not get an internal cut elimination procedure, although we
could consider mimicking the cut elimination procedure for L-LBiI in N-LBiI (on this,
see also Subsect. 7.3). The works [17] and [28] do not pay much attention to the questions
of eliminability of weakening and of contraction in the nested systems they consider. In
particular, note that, in the system LBiInt1 of [17], contraction is a primitive rule not
eliminable and, in the proof search calculus LBiInt2 of op. cit., where the structural rules
are absorbed into the logical rules, each rule duplicates the main formula in the transition
from the conclusion to the premises.

28

Γ,Γ0,
∧

Γ �
∨

∆ ` ∆,∆0

Γ,Γ0 ` ∆,∆0
unnestL

Γ,Γ0 `
∧

Γ⊃
∨

∆,∆,∆0

Γ,Γ0 ` ∆,∆0
unnestR

Figure 7: Unnest rules for standard-style sequents

Now, we turn to LBiI. Inspecting the translation from N-LBiI to LBiI (Thm. 2), we
find that the cut rule of LBiI is used only for the translation of cuts and unnesting steps.
Let us call unnest cuts the cuts of LBiI of one of the following two forms:

Γ,Γ0 `
∧

Γ �
∨

∆,∆,∆0 Γ,Γ0,
∧

Γ �
∨

∆ ` ∆,∆0

Γ,Γ0 ` ∆,∆0
unnestcutL

Γ,Γ0 `
∧

Γ⊃
∨

∆,∆,∆0 Γ,Γ0

∧
Γ⊃

∨
∆ ` ∆,∆0

Γ,Γ0 ` ∆,∆0
unnestcutR

Here
∧

Γ and
∨

∆ are defined similarly to |Γ|L and |∆|R from Sect. 4.1. These two
special cases of cut are the ones used in the translations of the unnest rules (see the last
case of the proof of Thm. 2). As the first premise of unnestcutL and the second premise
of unnestcutR are derivable, a more practical idea is to consider single premise rules, as in
Fig. 7.

Since cut is eliminable in N-LBiI (Thm. 9), we have that unnest cuts are complete for
LBiI or, in other words, the system obtained from LBiI by replacing the cut rule by the
unnestL and unnestR rules is complete. This result can be sharpened to account also for
eliminability of weakening and contraction, if we take N0-LBiI instead of N-LBiI as the
source calculus.

Theorem 10 Let LBiI0 be the system obtained from LBiI by adding the unnest rules in
Fig.7. This system is sound and complete for BiInt and enjoys eliminability of weakening,
contraction and cut.

Proof Clearly, any sequent derivable in LBiI0 is derivable in N-LBiI (where the unnest
rules are rendered in N-LBiI by cuts). This proves soundness. Completeness is obvious,
since LBiI0 contains all rules of LBiI. For the eliminability results, it suffices to show
that, if Γ ` ∆ is derivable in N0-LBiI, then ‖Γ‖L ` ‖∆‖R is derivable in LBiI0 without
weakening, contraction and cut. (Note that: i) any sequent derivable in LBiI0 is derivable
in N0-LBiI, which follows from what was said above and Prop. 11; ii) for nest-free contexts
Γ and ∆, ‖Γ‖L = Γ and ‖∆‖R = ∆). The proof follows by induction on the height of the
derivation of Γ ` ∆ and is just a recast of the proof of Thm. 2. In this proof, we also rely
on the observation that weakening in N0-LBiI can be done preserving derivation height,
which can be easily proved in the isomorphic system L0-LBiI. We illustrate how to map
one half of the rules where there is no directly matching rule in LBiI0 (each of the rules in
the other half is “dual” to one of the rules below). Derivations of the top sequent in the
right-hand sides of the clauses below are guaranteed to exist by height-preserving weakening
in N0-LBiI and the IH. For the unnest inferences below, note the identities |‖Γ‖L|L = |Γ|L
and |‖Γ‖R|R = |Γ|R, for any nested context Γ.

Case ⊃R:

(Γ ` ∆), A ` B
Γ ` ∆, A⊃B ⊃R 7→

‖Γ‖L, |Γ|L � |∆|R, A ` B
‖Γ‖L, |Γ|L � |∆|R ` A⊃B, ‖∆‖R

⊃R

‖Γ‖L ` ‖∆‖R, A⊃B
unnestL

Case monotL:

(Γ, A ` ∆),Π, A ` Λ

Γ, A ` ∆, (Π ` Λ)
monotL 7→

‖Γ‖L, |Γ, A|L � |∆|R, ‖Π‖L, A ` ‖Λ‖R

‖Γ‖L, |Γ, A|L � |∆|R, A, |Π|L ` |Λ|R
(∧L,∨R)∗

‖Γ‖L, |Γ, A|L � |∆|R, A ` ‖∆‖R, |Π|L ⊃ |Λ|R
⊃R

‖Γ‖L, A ` ‖∆‖R, |Π|L ⊃ |Λ|R
unnestL

29

A ` B,∆0,
∧

Γ⊃
∨

(∆,∆0)

A �B,Γ ` ∆,∆0
�L-unnestR

∧
(Γ,Γ0) �

∨
∆,Γ0, A ` B

Γ,Γ0 ` ∆, A⊃B ⊃R-unnestL

proviso: proviso:
∆0 contains only atoms and exclusions Γ0 contains only atoms and implications

Figure 8: Variants of �L and ⊃R in LBiI∗0 which absorb unnest cuts

Case refocP :

(Γ ` ∆),Π ` Λ

Γ ` ∆, (Π ` Λ)
refocP

7→

‖Γ‖L, |Γ|L � |∆|R, ‖Π‖L ` ‖Λ‖R

‖Γ‖L, |Γ|L � |∆|R, |Π|L ` |Λ|R
(∧L,∨R)∗

‖Γ‖L, |Γ|L � |∆|R ` |Π|L ⊃ |Λ|R, ‖∆‖R
⊃R

‖Γ‖L ` ‖∆‖R, |Π|L ⊃ |Λ|R
unnestL

�

We end this section by presenting a refined version of the previous theorem. Indeed,
inspecting the translation in the proof above, it is easy to see that unnest cuts are used only
after ⊃R or �L and make very limited use of contraction.

Theorem 11 Let LBiI∗0 be the system obtained from LBiI by replacing ⊃R and �L by the
rules in Fig. 8.6 This system is sound and complete for BiInt and enjoys eliminability of
weakening, contraction and cut.

Proof For soundness, we can for example observe that all rules of LBiI∗0 are derivable in
LBiI0. For completeness, and the eliminability results, we can argue as in the proof of the
previous theorem, and, in particular, embed N0-LBiI into LBiI∗0: for each of the three
cases shown in the proof of Thm. 10, the required instances of ⊃R-unnestL take Γ0 to be
empty—the cases ⊃R and refocP—or to be the singleton context A—the case monotL—and
in this case A is either an atom or an implication (recall the proviso at monotL). �

The system of standard sequents LBiI∗0 is of interest for bottom-up proof search, since
it enjoys eliminability of contraction and cut and the implicit use of contraction and cut
is limited. The implicit use of contraction is confined to the rules ⊃L, �R, ⊃R-unnestL
and �L-unnestR, and only atoms, negative implications, and positive exclusions need to be
contracted. As to cuts, only unnest cuts are needed and their implicit use is confined to the
rules ⊃R-unnestL and �L-unnestR. Interpreting this in terms of bottom-up proof search in
the original system LBiI, it means that cuts in unnested form are sufficient, and are only
needed immediately before applying inferences ⊃R or �L. Such combination of unnest cuts
and ⊃R/ � L can be seen as a way to achieve invertibility in proof search, which in general
is lost at isolated applications of ⊃R/�L. Of course, to turn these ideas into a proof search
procedure with standard-style sequents, we would still have to account for termination, for
example, via some loop-detection mechanism as used in the proof search procedures for the
nested sequent systems LBiInt1 or DBiInt [17, 29, 30], or for the labelled system L [27].

7 Conclusion

7.1 Concluding remarks

Although it is easy to obtain complete proof systems for BiInt as extensions of proof systems
for Int, such extensions raise new issues. In particular, handling of contraction and cut
poses new problems: elimination of the former is made more difficult because, in addition to

6Note the similarity of the rules with the �L and ⊃R rules of N0-LBiI in Fig. 6.

30

monotonicity of truth—which is shared with Int—, BiInt directly uses the contrapositive,
i.e., antimonotonicity of falsehood; full elimination of cuts is not even possible with standard-
style sequent calculus.

In this paper, we offer a proof-theoretic study of BiInt, relying on translations between
standard-style, nested and labeled sequent calculi for BiInt, which refines the study initiated
in [28]. A clear gain obtained from this study is the ability of transferring meta-theoretic
properties between these sequent calculi. As a general strategy, we developed meta-theory
in the labeled format (including new syntactical proofs of admissibility of contraction and
cut), and read it off in the other formats. Proving meta-theoretic properties for the nested
format and for the standard format (recall in this case the incompleteness without cuts)
typically raises the need for extra machinery to provide some notion of “context”: the
labeled format can be seen as offering an implementation of such a notion. Nonetheless, in
various circumstances, it proved useful to abstract away from the “implementation details” of
the labeled system, and look for intuitions or formulate conjectures relatively to the nested
or standard systems. Another product of our study is the identification of the systems
N0-LBiI and L0-LBiI as isomorphic formulations for BiInt in the nested and labeled
formats, respectively. Although a close relationship was hinted already in our study [28],
quite some refinements were needed to promote the translations into bijections at the level
of derivations. Note that our choice to work with trees in the labeled format (see also the
discussion below on related work on labeled systems) was essential to obtain the bijection
between labeled and nested sequents.

BiInt is an interesting logic not only from the viewpoint of raising challenging mathe-
matical questions, but also because the exclusion operation can help in the study of different
proof formats. It is remarkable that, in the case of BiInt, translation of labeled sequent cal-
culus into standard-style sequent calculus (and into nested sequent calculus) becomes much
easier than for Int. In [34], Reed and Pfenning observe that relating labeled intuitionistic
derivations to standard unlabeled ones is “a surprisingly difficult question”.

7.2 Related work

Labeled systems for BiInt and Int The system L-LBiI lies between the calculi L and
L∗ of [27]. Similarly to L∗ (but not L), L-LBiI is a calculus of finite Kripke trees rather than
general Kripke structures, so that reasoning can be done in terms of immediate accessibility
→ (edge) rather than the induced accessibility (path) relation ≤ = →∗ L-LBiI, and there
are no reflexivity and transitivity rules for the immediate accessibility relation. Similarly
to L-LBiI, both L and L∗ have explicit monotonicity rules to propagate truth/falsity to
adjacent labels. In the algorithmic system L∗, monotonicity is constrained as in L-LBiI
(explicitly it is allowed only for atoms and implicitly it is also allowed on implications and
exclusions) and, in L, there is an explicit monotonicity rule with no constraints on the shape
of the main formula.

The intuitionistic fragment of L-LBiI is close to a variant of the labeled system for
intuitionistic propositional logic G3I considered by Negri in [26], but still there are important
differences. The main difference lies in the treatment of the accessibility relation. Negri
considers explicit order rules to guarantee reflexivity and transitivity of the accessibility
relation whereas we use label trees. In particular, this impacts on node merging principles,
which in our case need to guarantee that the label tree structure is preserved (compare
our Props. 4 and 6 with Lemma 3 of [11]). Additionally, G3I allows monotonicity only
implicitly, either in combination with the initial rule or in combination with ⊃L or with �R.
The fact that we have explicit monotonicity rules raises new issues in the meta-theory: this
shows up already in proving invertibility for ⊃L and �R rules (Corol. 1), but also in proving
admissibility of the cut rule, where new “principal” cases arise.

Relating sequent calculi There are several studies into the interrelationships of different
styles of sequent calculi for non-classical logics (e.g., [5] surveys work on relating hypersequent
and display sequent calculi, but also considers other extended sequent calculi), but none of

31

them applies specifically to BiInt. Neither seem they to pay much attention to explaining
the extended calculi compared to standard-style sequent calculus (cf. Sect. 6, which explains
unnest rules in terms of ordinary cuts). The observation that labeled and nested sequent
calculi are closely related is not new (see, e.g., p. 42 of [3]). However, by the time of
publication of [28], the closest detailed study of such relationship we knew of was that
developed in [36], which only applies to hypersequents and intuitionistic logic. More recent
studies relating nested and labeled systems appeared in [12, 18]. In [12], Fitting observes
that prefixed modal tableaus (which correspond to labeled systems imposing a tree structure
on the accessibility relation) and systems of modal nested sequents are “notational variants”.
Fitting details this in the context of classical modal logics (K and richer logics, including
quantified logics), by giving translations of sequents in both directions, and arguing about
the correspondence of some inference rules under such translations. In the contemporaneous
work [18], Goré and Ramanayake study the relationship between systems for classical modal
logics of labeled tree sequents, tree hypersequents and nested sequents. Inverse translations
between labeled tree sequents and tree hypersequents are given, and the calculi induced by
each of these translations are identified; in a similar way, the relationship between systems of
tree hypersequents and of nested sequents is worked out. Goré and Ramanayake specialise
the ideas to the case of provability logic GL and use the translations to transfer proof-
theoretic results (namely, cut elimination) between systems of labeled tree sequents and of
tree hypersequents for GL. This kind of application is shared with the work we initiated
in [28] and further developed in Sect. 6 of this paper, which, in particular, allowed us to
identify complete classes of cuts for the standard-style sequent calculus for BiInt. Even if,
in a sense, the ideas behind the translations between the various kind of sequents and the
results obtained in [12, 18] have a lot in common with our translations and results of Sect. 5
(specially in the case of [18]), the details are quite different. In particular, because we deal
with BiInt logic, our translations need to be more general, as our labeled system deals with
an accessibility relation not necessarily “treelike” in the oriented sense (recall creation of a
new node and edge toward the past in the exclusion-left rule) and the nested sequents are
two-sided.

7.3 Future work

This paper identifies unnest cuts as a complete class of cuts for standard-style sequent calcu-
lus for BiInt. These cuts are not analytic, i.e., the cut formula is not necessarily a subformula
of the conclusion and the subformula property is not guaranteed. Using semantical methods,
the works [21, 20] show independently that analytic cuts are complete BiInt. We would like
to investigate whether completeness of analytic cuts for LBiI (or some of its variants) could
be established by proof-theoretic methods and, in particular, understand how to express
unnest cuts with analytic cuts.

The isomorphic systems L0-LBiI and N0-LBiI and the system LBiI∗0 of ordinary se-
quents have reduced use of (implicit) contraction. This contrasts with the approach in [17],
where the proof search system LBiInt2 always keeps a copy of the main formula in the
premise(s). We would like to investigate whether contraction can be avoided in the mono-
tonicity rules of L0-LBiI and N0-LBiI, as well as in the the rules ⊃R-unnestL and �L-
unnestR of LBiI∗0. Ideally, we would also like to dispense with the contraction of the main
formula in the rules ⊃L and �R, and attain contraction-free systems for BiInt, similarly to
Dyckhoff’s system [10] for Int.

Our translations between standard-style, nested and labeled sequent calculi for BiInt
provide a framework not only for comparing proof search, but also for relating cut elimination
procedures, and to study computational interpretations of BiInt. One specific question
is to investigate the relationship between cut elimination for nested sequent calculus, as
described in Goré et al. [17], and cut elimination for the labeled system, as we develop
in Sect. 3.2. Another question is to devise ways of performing (partial) cut elimination
for the standard-style system (recall that unnest cuts are not eliminable), and then also
compare such procedures with the cut elimination procedures for the other two formats. A

32

helpful tool for performing this comparison should be term assignment. Once proof terms
are considered, a natural question to raise is about their computational interpretations and
relationship with Crolard’s computational interpretation of bi-intuitionistic logic [7], based
on a natural deduction system with multiple conclusions.

Acknowledgments. We are grateful to our anonymous referees for their very helpful com-
ments. We are also grateful to Linda Postniece for discussions. This research was financed
by Fundação para a Ciência e a Tecnologia (FCT) through project UID/MAT/00013/2013,
by ERDF through the Estonian Centre of Excellence in Computer Science (EXCS), by the
Estonian Science Foundation under grant no. 6940 and by the COST action CA15123 EU-
TYPES.

References

[1] G. Bellin & C. Biasi (2004): Towards a logic for pragmatics: assertions and conjectures.
J. of Log. and Comput. 14(4), pp. 473–506.

[2] G. Bellin & M. Carrara & D. Chiffi (to appear): On an intuitionistic logic for pragmatics.
J. of Log. and Comput. doi: 10.1093/logcom/exv036

[3] K. Brünnler (2010). Nested Sequents. Habilitation thesis, Universität Bern.

[4] L. Buisman (Postniece) & R. Goré (2007): A cut-free sequent calculus for bi-
intuitionistic logic. In: N. Olivetti, editor: Proc. of 16th Int. Conf. on Automated Rea-
soning with Analytic Tableaux and Related Methods, TABLEAUX 2007, Lect. Notes
in Comput. Sci. 4548, Springer, pp. 90–106.

[5] A. Ciabattoni & R. Ramanayake & H. Wansing (2014): Hypersequent and display
calculi—a unified perspective. Studia Logica 102(6), pp. 1245–1294.

[6] T. Crolard (2001): Subtractive logic. Theor. Comput. Sci. 254(1–2), pp. 151–185.

[7] T. Crolard (2004): A formulae-as-types interpretation of subtractive logic. J. of Log.
and Comput. 14(4), pp. 529–570.

[8] P.-L. Curien & H. Herbelin (2000): The duality of computation. In: Proc. of 5th Int.
Conf. on Funct. Prog. ICFP ’00, ACM Press, pp. 233–243.

[9] A. G. Dragalin (1979): Mathematical Intuitionism: Introduction to Proof Theory (Rus-
sian). Nauka. Translation as Transl. of Math. Monographs 67, AMS, 1988.

[10] R. Dyckhoff (1992): Contraction-free sequent calculi for intuitionistic logic. J. of Symb.
Logic 57(3), pp. 795–807.

[11] R. Dyckhoff & S. Negri (2012): Proof analysis in intermediate logics. Arch. of Math.
Log. 51(1-2), pp. 71–92.

[12] M. Fitting (2012): Prefixed tableaus and nested sequents. Ann. of Pure and Appl. Log.
163(3), pp. 291–313.

[13] G. Gentzen (1969): Investigations into Logical Deduction. In: M. E. Szabo editor: The
Collected Papers of Gerhard Gentzen, North-Holland, pp. 68–131.

[14] N. Goodman (1977): The logic of contradiction. Zeitschr. f. math. Logik und Grundl.
d. Math. 27(8–10), 119–126.

[15] R. Goré (2000): Dual intuitionistic logic revisited. In: R. Dyckhoff, editor: Proc. of
9th Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX 2000, Lect. Notes in Artif. Intell. 1847, Springer, pp. 263–267.

33

[16] R. Goré & L. Postniece (2008): Combining derivations and refutations for cut-free
completeness in bi-intuitionistic logic. J. of Log. and Comput. 20(1), pp. 233–260.

[17] R. Goré & L. Postniece & A. Tiu (2008): Cut-elimination and proof-search for bi-
intuitionistic logic using nested sequents. In: C. Areces & R. Goldblatt, editors: Ad-
vances in Modal Logic 7, College Publications, pp. 43–66.

[18] R. Goré & R. Ramanayake (2012): Labelled Tree Sequents, Tree Hypersequents and
Nested (Deep) Sequents. In: T. Bolander, T. Braüner, S. Ghilardi, & L. Moss, editors:
Advances in Modal Logic 9, College Publications, pp. 279–299.

[19] S. C. Kleene (1952): Introduction to Metamathematics. D. van Nostrand.

[20] T. Kowalski & H. Ono (2017): Analytic cut and interpolation for bi-intuitionistic logic.
Rev. of Symb. Log. 10(2), pp. 259–283.

[21] O. Lahav & A. Avron (2013): A unified semantic framework for fully structural propo-
sitional sequent systems. ACM Trans. Comput. Log. 14(4), pp. 27.

[22] P. Lukowski (1996): Modal interpretation of Heyting-Brouwer logic. Bull. of Sect. of
Logic 25(2), pp. 80–83.

[23] S. Maehara (1954): Eine Darstellung der intuitionistischen Logik in der klassischen.
Nagoya Math. J. 3(4), pp. 45–64.

[24] C. Monteiro (2006): Caracterizações semânticas e dedutivas da lógica bi-intuicionista.
Master’s thesis, Universidade de Trás-os-Montes e Alto-Douro.

[25] S. Negri (2005): Proof analysis in modal logic. J. of Philos. Logic 34(5–6), pp. 507–544.

[26] S. Negri (2007): Proof analysis in non-classical logics. In: C. Dimitracopoulos &
L. Newelski & D. Normann & J. Steel, editors: Logic Colloquium 2005, Lect. Notes
in Logic 28, Cambridge University Press, pp. 107–128.

[27] L. Pinto & T. Uustalu (2009): Proof search and counter-model construction for bi-
intuitionistic propositional logic with labeled sequents. In: M. Giese & A. Waaler, editors:
Proc. of 18th Int. Conf. on Automated Reasoning with Analytic Tableaux and Related
Methods, TABLEAUX 2009, Lect. Notes in Artif. Intell. 5607, Springer, pp. 295–309.

[28] L. Pinto & T. Uustalu (2011): Relating sequent calculi for bi-intuitionistic propositional
logic. In: S. can Bakel & S. Berardi & U. Berger, editors: Proceedings of 3rd Workshop
on Classical Logic and Computation, CLaC 2010, Electronic Proceedings in Theoretical
Computer Science 47, pp. 55–72.

[29] L. Postniece (2009): Deep Inference in Bi-intuitionistic Logic. In: H. Ono, M. Kanazawa
& R. Queiroz, editors: Proc. of 16th Int. Wksh. on Logic, Language, Information and
Computation, WoLLiC 2009 (Tokyo, June 2009), Lect. Notes in Artif. Intell. 5514,
Springer, pp. 320–334.

[30] L. Postniece (2010): Proof Theory and Proof Search of Bi-Intuitionistic and Tense Logic.
PhD thesis, Australian National University, Canberra.

[31] C. Rauszer (1974): A formalization of the propositional calculus of H-B logic. Studia
Logica 33(1), pp. 23–34.

[32] C. Rauszer (1974): Semi-boolean algebras and their applications to intuitionistic logic
with dual operators. Fund. Math. 83, pp. 219–249.

[33] C. Rauszer (1977): Applications of Kripke models to Heyting-Brouwer logic. Studia
Logica 36(1–2), pp. 61–71.

34

[34] J. Reed & F. Pfenning (2009): Intuitionistic letcc via labeled deduction. Electron. Notes
in Theor. Comput. Sci. 231, pp. 91–111.

[35] G. Restall (1997). Extending intuitionistic logic with subtraction. Unpublished note.

[36] R. Rothenberg (2010). On the Relationship between Hypersequent Calculi and Labelled
Sequent Calculi for Intermediate Logics with Geometric Kripke Semantics. Ph.D. Thesis,
University of St Andrews.

[37] H. Wansing (2016): Falsification, natural deduction and bi-intuitionistic logic. J. of Log.
and Comput. 26(1), pp. 425–450.

35

