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A B S T R A C T

This work aimed at the optimization of bacterial nanocellulose (BNC) production by static culture, using
Komagataeibacter xylinus BPR 2001 (K. xylinus). Response surface methodology - central composite design was
used to evaluate the effect of inexpensive and widely available nutrient sources, namely molasses, ethanol, corn
steep liquor (CSL) and ammonium sulphate, on BNC production yield. The optimized parameters for maximum
BNC production were % (m/v): molasses 5.38, CSL 1.91, ammonium sulphate 0.63, disodium phosphate 0.270,
citric acid 0.115 and ethanol 1.38% (v/v). The experimental and predicted maximum BNC production yields
were 7.5 ± 0.54 g/L and 6.64 ± 0.079 g/L, respectively and the experimental and predicted maximum BNC
productivity were 0.829 ± 0.046 g/L/day and 0.734 ± 0.079 g/L/day, after 9 days of static culture fermen-
tation, at 30 °C. The effect of surface area and culture medium depth on production yield and productivity were
also studied. BNC dry mass production increased linearly with surface area, medium depth and fermentation
time. So long as nutrients were still available in the culture media, BNC mass productivity was constant. The
results show that a high BNC production yield can be obtained by static culture of K. xylinus BPR 2001 using a
low-cost medium. These are promising conditions for the static industrial scale BNC production, since as com-
pared to agitated bioreactors, higher productivities may be reached, while avoiding high capital and operating
costs.

Introduction

Bacterial nanocellulose (BNC) is an exopolysaccharide produced by
Komagataeibacter xylinus (formerly Gluconacetobacter xylinus), a Gram
negative and strictly aerobic bacterium of the Acetobacteraceae family
[1–6]. BNC shows several unique physicochemical and mechanical
properties, including high purity, high crystallinity, high degree of
polymerization [7], an ultrafine fiber network, high water holding and
absorbing abilities [8], high tensile strength in the wet state [9], and
the possibility to be shaped into 3D structures during synthesis. It is
biocompatible and biofunctional [10]. Due to these properties, the
biopolymer has been studied in several applications, including tissue
regeneration, drug delivery systems, vascular grafts, in vitro and in vivo
scaffolds for tissue engineering, electronic paper displays and in food
applications [11–17]. These properties and applications have generated

a growing interest in the development of new strategies aimed at large-
scale BNC production. Several fermentation technologies have been
attempted, such as agitated, air-lift, membrane and horizontal bior-
eactors, using different fermentation media and overproducing mutant
strains. Stirred tank reactors can prevent the heterogeneity of the cul-
ture broth, at the expense of a high energy cost for generation of me-
chanical power. Airlift reactors typically require only one sixth of the
energy power used in stirred tank reactors. Nonetheless, the agitation
power of an airlift reactor is limited, resulting in low fluidity of the
culture broth, especially at high cellulose concentrations. In addition,
both agitation and aeration systems have been reported to result in the
development of cellulose-negative mutants (non-cellulose producers,
Cel−) [18–20]. In the case of membrane bioreactors, the major draw-
backs include high operating costs and difficulty in collecting the cel-
lulose from the reactors following fermentation [9,18–23].
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“Traditional” static cultivation methods for BNC production, mostly
used in Asian countries, are difficult to implement on a large scale.
Although the yield is relatively high, the long fermentation times re-
quired, the need for large areas and intensive manpower and high la-
bour costs have deterred such processes from implementation in large
scale, modern facilities. Alongside the fermentation method (static
versus agitated/aerated), which impacts on the capital investment and
operating costs), the economic feasibility of BNC production is directly
dependent on product yield. The production parameters in static cul-
ture include the composition of the culture media, fermentation tem-
perature, pH and time, inoculum ratio [18,24] and surface area to vo-
lume ratio (air-liquid interface) of the culture medium (S/V) [20,25].
The greater the medium surface area, the higher the production of BNC,
given the aerobic character of the bacterium. Several reports have
analysed the optimal surface area/volume ratio for BNC production in
static culture [20,25,26], but the results obtained cannot be easily
compared, due to differences in fermentation times, culture media
composition and strains used. As with many fermentation processes, the
cost and availability of the substrates play a determining role in the
economic feasibility of the process. Thus, it is important to explore the
use of widely available low-cost substrates, especially agro-industrial
by-products, to improve BNC yield. While several reports have ad-
dressed the use of different culture media to optimize BNC production
using K. xylinus BPR 2001 under agitated condition, less attention has
been paid to the use of static culture specifically for K. xylinus BPR
2001. Those studies relied on the use of fructose and corn steep liquor
(CSL) as the carbon and nitrogen sources, combined with a large
number (sometimes more than 20) of other nutrients, such as different
vitamins, amino acids and salts. Such complex culture media are im-
practical for the large-scale implementation of a BNC production pro-
cess (Table 1).

The cost of the nutrients, media composition, available surface area,

fermentation depth and time, should all be considered for economic
BNC production in static culture. Here, we report optimization of BNC
production by K. xylinus BPR 2001 under static culture conditions,
using a simple culture medium composition. Optimization was per-
formed using response surface methodology (RSM) - central composite
design (CCD). The effect of four nutrients - molasses and ethanol as the
carbon sources, CSL as the nitrogen and protein source and ammonium
sulphate - on the BNC production yield (g/L) (as the response variable)
was assessed. In addition, the effect of the surface area and culture
medium depth on the BNC production yield and productivity, were
evaluated.

Materials and methods

Bacterial strain

K. xylinus subsp sucrofermentants BPR 2001 (ATCC 700178), from
the American Type Culture Collection, was used for the production of
BNC under static conditions. The strain was maintained in Hestrin-
Schramm culture medium (HS medium) [46], in solid state with 2%
(m/v) agar (Acros Organics).

Inoculum preparation and static culture fermentation

BPR 2001 cells were grown in 1 L conical flasks, containing 100mL
HS medium, comprising (in % m/v) glucose 2.0 (Fisher Chemical),
peptone 0.5 (OXOID), yeast extract 0.5 (OXOID), disodium phosphate
(Na2HPO4) 0.27 (Panreac) and citric acid 0.115 (Panreac). The initial
pH was set to 5.5 using 18% (v/v) HCL (Fisher-Chemical). The medium
was autoclaved at 121 °C, 1 bar for 20min before use. The culture was
incubated for 2 d at 30 °C under static conditions. Thereafter, the cel-
lulose pellicle formed was vigorously shaken in order to remove active

Table 1
Summary of the data available on the BNC production yield with K. xylinus BPR2001.

Carbon
Source

Nitrogen
Source

Type of culture Additives/ aBNC production yield

Fructose CSL Agitated
Jar fermenter
(with oxygen suplementation, batch and
fed-batch conditions)

• BNC yield 7.7 g/L [27];
• bComplex medium • endo-p-l,4-glucanase from Bacillus suhtilis • BNC yield 4.5 g/
L [28];
• Agar • BNC yield 12.8 g/L [29];
• Complex medium • BNC yield 7.5 g/L [30];
• Complex medium • Agar • BNC yield 14.3 g/L [31];
• KH2PO4 • (NH4)2SO4 • MgSO4·7H2O • BNC yield 1.13 g/L [32].

Agitated
Shaken flasks

• Complex medium and Polyacrylamide-co-acrylic acid • BNC yield 6.5 g/L [33];
• Complex medium • Carboxymethyl celulose • Microcrystalline celulose • Agar
and Sodium alginate • BNC yield 8.2 g/L [34].

Agitated
air-lift reactor

• Complex medium • Agar • Xanthan • BNC yield 8.7 g/L [35];
• Complex medium • BNC yield 3.8 g/L and 10.4 g/L [36,37].

Agitated
Plastic composite support rotating
disk bioreactor
(PCS-RDB),

• Complex medium • Carboxymethyl celulose • BNC yield 13 g/L [38];
• Complex medium • Microcrystalline cellulose (Avicel) • Carboxymethylcellulose
(CMC) • Agar • Sodium alginate • BNC yield 0.64 g/slice [39].

Treated Molasses Agitated
jar fermenter

• Complex medium • BNC yield 14.3 g/L and 12.8 g/L [30,40].

Wheat straw hydrolysate Agitated
Flask shaken

• Complex medium • BNC yield 10.6 g/L [41].

Wheat straw hydrolysate
Corn fibers
Distilller´s dried grains with
Solubles

Agitated
Flask shaken

• Complex medium • BNC yield 5.2 g/L
[42].

Glucose or dextrose Flask shaken • 1-Methylcyclopropene • magnesium sulphate • ammonium sulphate • BNC yield
1.2 g/L [43].

Maple syrup Yeast extract Flask shaken • Ethanol • Acetic acid • MgSO4·7H2O • Agar • BNC yield 3.2 g/L [44].
Carob Haricot bean Static • BNC yield 6.5 g/L [45].

aBNC production yield is represented as g dry BNC mass/Litre of culture media.
bBy complex medium is meant a combination of culture medium to which different vitamins, amino acids and salts were added. Sometimes the culture medium
contains about 20 or more components.
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cells entrapped within the cellulose matrix; 4 mL (10% (v/v) of the final
volume) of this inoculum was transferred to 100mL conical flasks,
containing a final volume of 40mL of different combinations of culture
media, prepared using molasses (a gift from RAR Refinarias de Açúcar
Reunidas, S.A.; Portugal), CSL (a gift from COPAM Companhia
Portuguesa de Amidos, S.A.; Portugal), ammonium sulphate (Panreac)
and ethanol (Fisher-Chemical), as described below. The inoculated
media were incubated for 9 d, at 30 °C under static conditions. After
cultivation, the BNC membranes were collected, purified and the pro-
duction yield (in g/L) was determined as described below.

Optimization of BNC production using response surface methodology (RSM)
- central composite design

In this study, the optimization process of BNC production firstly
entailed identifying the preferred nutrients (carbon and nitrogen
sources) for BNC production based on the literature (Table 1) and
varying one factor at a time while keeping the others constant (data not
shown). Based on the collected information, preliminary fermentation
assays were performed to evaluate the effect of the selected nutrients
(and their concentrations), on BNC yield. Data collected from these
experiments allowed better determination of the boundaries for each
variable to be tested (levels of factors). Molasses and CSL are the most
economical carbon and nitrogen sources commonly used in industrial
fermentations [40,47] (Table 1). CSL is a nutrient-rich by-product
supply of amino acids, vitamins and minerals, and has been reported to
have buffering capacity [48]. According to the literature review,
ethanol and ammonium sulphate have been observed to increase BNC
production yield [20,43,49–51]. Also, certain Acetobacteraceae strains
are known to be capable of using ethanol as an additional carbon source
[18,21,49–51]. Supplementing a culture medium with ethanol also al-
lowed repression of the spontaneous mutations of BNC producing cells
(Cel+) to non-producing cells (Cel−) and increased cells ATP produc-
tion [20,49–52]. As such, these compounds were included in our media
formulations.

The optimization process then focused on evaluating the effect of
four independent variables: molasses (A) and ethanol (D) as carbon
sources, nitrogen from CSL (B) and ammonium sulphate (C), on the
yield of BNC, using response surface methodology based on central
composite design (Tables 2 and 3). The software Design Expert 7.1.5
(Stat-Ease, Inc., USA, Windows operating system) was used to de-
termine the experimental design matrix and its statistical experimental
design analysis. All the assays/formulations were performed in tripli-
cate, except the central point of the factorial design, were 5 replicates
were performed, resulting in a total of 77 experiments and 25 different
culture media formulations (Table 3). All combinations of the fermen-
tation medium included 0.27% (m/v) Na2HPO4 and 0.115% (m/v) ci-
tric acid. The initial pH used was set to 5.5 in all media. HS medium was
used as control.

Three-dimensional curves of the response surfaces were generated
using Design Expert 7.1.5 (Stat-Ease, Inc., USA, Windows operating
system) to visualize individual effects and interaction between sig-
nificant parameters. All experiments were performed independently,
following the sequential order shown in Table 3. Each run was per-
formed in triplicate and an average value of the responses was used for

the presentation of the results. The model was evaluated using the
Fisher´s statistical test for analysis or variance (ANOVA).

Effect of surface area at a constant S/V ratio on BNC production yield

The effect of surface fermentation area (S) on BNC yield was eval-
uated. Containers having variable fermentation areas and a fixed fer-
mentation broth depth (of 2.5 cm) were used, resulting in a fixed S/V
ratio of 0.4 cm−1. Fermentation broth containing molasses 4% (m/v),
CSL 0.7% (m/v) (protein basis), ethanol 1.5% (v/v), ammonium sul-
phate 0.5% (m/v), Na2HPO4 0.27% (m/v) and citric acid 0.115% (m/
v), initial pH 5.5, was sterilized. The medium was then inoculated and
transferred to the containers with the different surface areas. These
were incubated for 15 d under static conditions at 30 °C. BNC was then
collected, purified and the production yield (in g/L) determined as
described below.

Effect of surface area/culture medium depth ratio (S/L) on BNC production
yield

The effect of the culture medium depth (L) on the BNC yield was
evaluated. Containers having the same fermentation area (S, 336 cm2),
were filled with inoculated fermentation broth (as described above) at a
depth (L) of 1 cm (320mL), 2.5 cm (620mL) and 4 cm (1000mL),
yielding S/L ratios of 336, 134.4 and 84 cm and S/V ratios of 1.05, 0.54

Table 2
Levels of factors chosen for the experimental central composite design.

Sources Variable Symbol Lower
Limit
(-2)

Low
Coded
(-1)

Center
Coded
(0)

High
Coded
(+1)

Higher
Limit
(+2)

Units

Carbon Molasses (total sugars) (A) 2.00 3.13 4.25 5.38 6.50 % (m/v)
Ethanol (D) 1.00 1.38 1.75 2.13 2.50 % (v/v)

Nitrogen CSL (protein basis) (B) 0.15 0.74 1.33 1.91 2.50 % (m/v)
Ammonium Sulphate total (C) 0.00 0.63 1.25 1.88 2.50 % (m/v)

Table 3
Central Composite design matrix for the four variables. Coded values and real
values, where coded values given in parentheses.

# Run A:Molasses
% m (total of
sugar/v)

B:CSL
% m (total of
protein/v)

C:Ammonium
Sulphate
% (m/v)

D:Ethanol
% (v/v)

1 |2 |15 (-2) 2.00 (0) 1.33 (0) 1.25 (0) 1.75
4 |55 |72 (-1) 3.13 (+1) 1.91 (+1) 1.88 (-1) 1.38
5 |20 |49 (-1) 3.13 (-1) 0.74 (+1) 1.88 (-1) 1.38
8 |59 |74 (-1) 3.13 (-1) 0.74 (+1) 1.88 (+1) 2.13
14 |32 |68 (-1) 3.13 (+1) 1.91 (-1) 0.63 (-1) 1.38
39 |56 |58 (-1) 3.13 (+1) 1.91 (+1) 1.88 (+1) 2.13
9 |29 |52 (-1) 3.13 (-1) 0.74 (-1) 0.63 (-1) 1.38
33 |60 |66 (-1) 3.13 (-1) 0.74 (-1) 0.63 (+1) 2.13
23 |43 |71 (-1) 3.13 (+1) 1.91 (-1) 0.63 (+1) 2.13
7 |24 |64 (0) 4.25 (+2) 2.50 (0) 1.25 (0) 1.75
12 |16 |40 (0) 4.25 (0) 1.33 (-2) 0.00 (0) 1.75
21 |26 |28

|48 |65
(0) 4.25 (0) 1.33 (0) 1.25 (0) 1.75

27 |34 |62 (0) 4.25 (0) 1.33 (0) 1.25 (+2) 2.50
31 |50 |73 (0) 4.25 (-2) 0.15 (0) 1.25 (0) 1.75
35 |45 |61 (0) 4.25 (0) 1.33 (+2) 2.50 (0) 1.75
51 |54 |70 (0) 4.25 (0) 1.33 (0) 1.25 (-2) 1.00
25 |75 |76 (+1) 5.38 (+1) 1.91 (+1) 1.88 (-1) 1.38
22 |44 |77 (+1) 5.38 (-1) 0.74 (-1) 0.63 (-1) 1.38
10 |63 |69 (+1) 5.38 (+1) 1.91 (-1) 0.63 (+1) 2.13
6 |30 |42 (+1) 5.38 (-1) 0.74 (-1) 0.63 (+1) 2.13
41 |46 |57 (+1) 5.38 (+1) 1.91 (-1) 0.63 (-1) 1.38
11 |36 |67 (+1) 5.38 (+1) 1.91 (+1) 1.88 (+1) 2.13
19 |37 |53 (+1) 5.38 (-1) 0.74 (+1) 1.88 (-1) 1.38
3 |13 |47 (+1) 5.38 (-1) 0.74 (+1) 1.88 (+1) 2.13
17 |18 |38 (+2) 6.50 (0) 1.33 (0) 1.25 (0) 1.75
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and 0.34 cm−1, respectively. All were incubated for 9, 15 and 21 d
under static conditions at 30 °C. BNC was purified and the production
yield (g/L) was determined as described below.

BNC purification and BNC yield determination

After cultivation, the BNC membranes obtained were washed with
distilled water at room temperature (RT) to remove culture medium
residues, then washed with 0.1 M NaOH (Fisher-Chemical) at RT; this
solution was changed twice daily until the membranes turned com-
pletely white by visual inspection. The bleached membranes were then
washed with distilled water at RT until the pH became that of the
distilled water. The purified BNC was oven dried to constant mass at
50 °C and weighed to determine production yield (expressed in g of dry
BNC/L of culture media).

Analytical methods- Total sugars and protein quantification

Analysis of total molasses sugars was by HPLC, using a Metacarb 87
H column (300, 7.8 mm, Varian, USA), PU-2080 Plus pump (JASCO),
DG-2080-53 degasser (JASCO), AS2057-Plus automatic sample injector
(JASCO) and a 2031 Plus RI detector (JASCO) under the following
conditions: mobile phase 0.005M H2SO4, flow rate 0.5 mL/min, and
column temperature 35 °C (Oven Elder CH-150). The injected volume
was 20 μL. The concentrations of sucrose, glucose and fructose were
determined based on calibration curves obtained using pure com-
pounds. The composition of molasses (g/L) determined was sucrose
687.7 ± 1.23, glucose 20.6 ± 6.22 and fructose 12.8 ± 2.05.

Total protein analysis of CSL was performed by BCA Protein assays
kit (Pierce® BCA 23227 Protein Assay Kit, Thermo Scientific). The total
protein CSL composition was 167.5 ± 8.6 g/L.

Statistical analysis

The statistical analyses One-way and Two-way ANOVA were per-
formed using GraphPad Prism version 5 for Windows, GraphPad
Software, San Diego, California, USA.

Results and discussion

Response surface methodology – central composite design

A statistically designed study was conducted to investigate the in-
dividual and interactive effect of four medium components on BNC
yield. The experimental results from the 77 experiments (Table 3) are

presented in Fig. 1. The first set of optimal statistical conditions,
maximizing BNC production yield by K. xylinus BPR 2001 under static
culture were obtained with experiments 41, 46 and 57, which corre-
sponded to the same medium composition, i.e. molasses 5.38% (m/v),
CSL 1.91% (m/v) (protein basis), ammonium sulphate 0.63% (m/v),
ethanol 1.38% (v/v) (Table 3). Under these conditions, 87% of the
initial sugars were consumed by the bacteria after 9 d static culture
fermentation, as determined by total sugars assay (results not shown).
The average BNC production yield and productivity were
7.5 ± 0.54 g/L and 0.829 ± 0.046 g/L/day, respectively (Fig. 1). In-
dependent assays were performed (triplicates) under the optimal con-
ditions and the results for BNC production yield were confirmed
(p > 0.05). This average yield value, as obtained with a low-cost for-
mulation represents a 6.3 fold increase in BNC production yield com-
pared with the HS medium (Fig. 1, HS control). Interestingly, the ex-
periment trials 51, 54 and 70, corresponding to a medium composition
of molasses 4.25% (m/v), CSL 1.33% (m/v) (protein basis), ammonium
sulphate 1.25% (m/v) and ethanol 1.0% (v/v), resulted in a similar BNC
production yield (p > 0.05). These trials generated an average BNC
production yield of 7.0± 0.25 g/L. While achieving a (statistically)
similar yield, in this second set of experiments, with the exception of
ammonium sulphate, all other nutrients were used in smaller amounts.
This had a positive impact on the cost of the culture media. It should be
noted that much higher BNC productivities have been reported in the
literature (Table 1), under agitated conditions and using complex
medium. However, for industrial production, it is necessary to consider
capital investment and operating costs. Scaling up of BNC fermentation
implies first the use of increasingly larger seed vessels for inoculum
propagation. Under agitated conditions, multiple agitated fermenters
(stirred tank or airlift fermenters) also have to be used. Together, this
equipment represents a significant capital investment. In addition, high
operating costs are involved, associated mainly with the fermenters’
operation and cleaning processes. In contrast, the capital investment
and operating cost of a cleanroom, for static culture, should be lower
[23,53].

RSM is a four factorial design (Table 2) where 3D contour plots or
surface curves (Supplementary material, Figure S1 and Fig. 2) can be
generated by linear effects, quadratic effects and two-way interactions
between the factors. From these profiles, a semi-empiric model (Eq. 1)
can be derived that best fits the experimental data. This allows calcu-
lation of the optimal responses of the system, in this case the maximum
BNC yield. The parameters and results from the CCD experiments are
presented in Tables 3 and 4, Fig. 1 and supplementary material Figure
S1. The statistical significance of the quadratic model was tested
through F- and p- values (Table 4). Results from ANOVA indicated that

Fig. 1. Experimental BNC production yield using different medium formulations after 9 d, 30 °C in static conditions. Bars with standard deviations represent the
means of triplicate experiments.
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the quadratic regression used to produce a second order model was
significant, as revealed from the p- and F-values: the calculated Model
F-value of 29.56 and the p-value of< 0.0001 indicate that the model is
significant (i.e. there is only 0.01% probability that the value of “Model
F-Value” is due to noise). The “Lack of Fit-F-Value” of 2.81 indicates
that the Lack of Fit is significant. There is only a 0.74% chance that a
"Lack of Fit F-value" this large could occur due to noise. Also, a sig-
nificant lack of fit (0.0074, Table 4) suggests that there may be some

systematic variation, unaccounted for in the hypothesized model. This
may be due to the exact replicate values of the independent variable in
the model that provide an estimate of pure error.

The second–order polynomial equation of the model fitted for BNC
production before eliminating the non-significant terms is:

BNCproduction yield (g/L) = + 12.77+ 0.24 * molasses + 0.30 * CSL
– 1.80 * ammonium sulphate – 8.06 * ethanol + 0.093 * molasses *
CSL+0.037 * molasses * ammonium sulphate – 0.19 * molasses *

Fig. 2. Response surface curves for BNC production yield. Effect of: (A) CSL and molasses; (B) molasses and ammonium sulphate; (C) molasses and ethanol; (D) CSL
and ammonium sulphate; (E) CSL and ethanol; (F) ethanol and ammonium sulphate, on BNC production yield.

Table 4
ANOVA analysis of the Response Surface Reduced Quadratic Model, before eliminating the non-significant terms.

Before eliminating non-significant terms

Source Sum of
Squares

Df Mean
Square

F-Value p-value
Prob > F

Model 64.50 14 4.61 29.56 < 0.0001 Significant
A-molasses 1.63 1 1.63 10.43 0.0020 Significant
B-CSL 22.90 1 22.90 146.93 < 0.0001 Significant
C-ammonium sulphate 12.89 1 12.89 82.71 < 0.0001 Significant
D-ethanol 19.27 1 19.27 123.64 < 0.0001 Significant
AB 0.18 1 0.18 1.16 0.2851
AC 0.032 1 0.032 0.20 0.6525
AD 0.30 1 0.30 1.92 0.1705
BC 7.191E-003 1 7.191E-003 0.046 0.8306
BD 9.847E-003 1 9.847E-003 0.063 0.8024
CD 1.44 1 1.44 9.24 0.0035 Significant
A^2 3.340E-003 1 3.340E-003 0.021 0.8841
B^2 9.256E-003 1 9.256E-003 0.059 0.8083
C^2 0.15 1 0.15 0.99 0.3226
D^2 3.19 1 3.19 20.45 < 0.0001 Significant
Residual 9.66 62 0.16
Lack of Fit 3.39 10 0.34 2.81 0.0074 Significant
Pure Error 6.27 52 0.12
Cor Total 74.16 76 4.61 29.56 < 0.0001 Significant
R2 0.8697
Adj R2 0.8403
Pred R2 0.7992
Adeq Precision 18.993
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ethanol + 0.033 * CSL * ammonium sulphate + 0.065 * CSL * ethanol
+ 0.74 + ammonium sulphate * ethanol + 6.65E-03 * molasses2 +
0.041 * CSL2 – 0.15 * ammonium sulphate2 + 1.85 * ethanol2 (Eq. 1)

{Degree of freedom=14; F-value= 29.56; p-value<0.0001;
R2=0.8697}

Model terms with values of p-value Prob > F (Table 4) lower than
0.05 indicated that the model terms are significant; for p-value Prob
> F higher than 0.1, the model terms are non-significant. In this case,
the model terms A (molasses), B (CSL), C (ammonium sulphate), D
(ethanol), CD and D2 were considered significant. The R2 value provides
a measure of how much variability in the observed response values can
be explained by the experimental factors and their interactions. The
closer R2 value to 1.00, the stronger the model is and the better it
predicted the observed response. It was suggested that the R2 value
should be at least 0.80, for a good model fitness [54]. Here, the cal-
culated R2 value of 0.8697 (Table 4), indicated that 13.03% of the total
variation could not be explained by the empirical model; this expresses
a good enough quadratic fit to navigate the design space. Thus, the
response surface model developed in this study for predicting the BNC
production may be considered satisfactory. The signal to noise ratio was
measured by Adeq Precision value (of 18.993); a ratio greater than 4
also indicates that this model can be used to navigate the design space.

From the above, the second order polynomial equation of the model
fitted for BNC production, after eliminating the non-significant terms
(Table 4), is:

BNCproduction yield (g/L)= 13.43+ 0.13 * molasses + 0.96 * CSL -
1.97 * ammonium sulphate - 8.99 * ethanol + 0.74 * ammonium sul-
phate * ethanol + 1.91 * ethanol2 (Eq. 2)

{Degree of freedom=6; F-value= 70.70; p-value<0.0001;
R2=0.8584}

whereby the F-value increased, meaning that the mean squares of the
model are larger than the square residual average. Thus, with a higher
the F-value, the more significant p-value for ANOVA and the more
significant the model is.

The optimal concentrations of the four factors that maximized BNC
production yield were predicted using the optimization function of the
statistical experimental designs Design Expert 7.1.5. Molasses 5.38%
(m/v), CSL 1.91% (m/v) (protein basis), ammonium sulphate 0.63%
(m/v), ethanol 1.38% (v/v) were chosen as the optimal concentrations
(optimized medium), allowing the highest BNC yield. The predicted
medium composition coincided with experiment trials 41, 46 and 57
(Table 3). No statistical differences were observed between the pre-
dicted maximum production yield and productivity (6.64 ± 0.4 g/L
and 0.737 ± 0.079 g/L/d) and the experimental results
(7.5 ± 0.54 g/L and 0.829 ± 0.046 g/L/d) (p > 0.05). The optimized
results were also confirmed (p > 0.05) by conducting a further fer-
mentation experiment in triplicate at the above-optimized values, re-
sulting in a production yield and productivity of 7.6± 0.56 g/L and
0.849± 0.062 g/L/d, respectively. A Parity plot illustrating the dis-
tribution of experimental (actual) and predicted (model) values is
shown in Supplementary material, Figure S1. Data points are scattered
along the diagonal line, also suggesting that the model is adequate to
explain BNC production within the experimental range studied.

Effect of terms on bacterial nanocellulose production

3D response surface graphs (Fig. 2) were plotted to illustrate the
interaction of the different paired factors and to determine the optimum
of each paired factor for maximum response. Each graph represents the
combinations of two test factors in relation to BNC production yield (g/
L). The data in Fig. 2 A indicate that the increase in both the carbon
(molasses) and protein/nitrogen sources (CSL) resulted in increased
BNC production. From the combined effect of molasses and ammonium

sulphate concentration (Fig. 2 B), the highest production was obtained
with the lowest ammonium sulphate concentration and the highest
molasses concentration. Similar results were obtained with the com-
bined effect of molasses and ethanol (Fig. 2 C). The effects of CSL and
ethanol concentrations, and of CSL and ammonium sulphate, on BNC
production yield are illustrated in Fig. 2 D and E. Yield increased as the
concentrations of CSL and ethanol/ammonium sulphate increased and
decreased, respectively. The main medium combination of ethanol and
ammonium sulphate (CD, Table 4) showed the highest p-value for
Prob > F (0.0035) and therefore represents a more significant model
term combination. Finally, BNC production yield increased with the
decrease in ethanol and ammonium sulphate (Fig. 2 F). Ethanol is a
well-known carbon source during BNC fermentation and ammonium
sulphate is a source of nitrogen [20,49–52]. It is possible that higher
concentrations of these nutrients could have led to a substrate growth
inhibition and/or affected BNC production. Indeed, Figs. 2 B, C, D and
E, where ethanol or ammonium sulphate are present, all show an in-
crease in BNC yield, along with the decrease in these nutrients.

Effect of variable surface area, at constant S/V ratio

Under static culture conditions, due to the aerobic nature of K. xy-
linus, BNC is produced at the air/liquid interface. As synthesis pro-
gresses, the extracellular 3D nanofibrillar pellicle accumulates down-
ward into the culture medium, while the metabolically active layer
remains at the uppermost interface. In the lower pellicle layer, en-
trapped cells become inactive or die due to lack of oxygen. BNC yield is
known to be dependent on the interplay between surface area and
volume of the culture medium and the fermentation time [55]. Previous
studies have examined the ratio of surface area to medium volume,
attempting to optimize the BNC yield. In one case [26], an optimal
surface area/volume ratio of 2.2 cm−1 was reported whereas another
[20] found that a ratio (S/V) of 0.71 cm−1 gave the highest yield using
the strain Acetobacter xylinum E25 and 7 days of fermentation. In ad-
dition, it was reported [25] that a ratio of 0.39 cm−1 gave the best yield
using Gluconacetobacter xylinus ATCC 53,524 and 14 d of fermentation.

Here, containers with different areas but with a fixed culture
medium depth (2.5 cm) and consequently constant S/V ratio (0.4 cm−1)
were used to produce BNC under static culture for 15 d. The amount of
BNC dry mass (g) was observed to be directly proportional to the sur-
face area (Fig. 3 A). On the other hand, at a constant S/V ratio of
0.4 cm−1, no statistically significant differences (p > 0.05) in pro-
duction yield (g/L) nor in productivity (g/L/day) were observed be-
tween the different surface areas (Fig. 3 B). Accordingly, total sugar
consumption (around 72%) and the remaining medium after fermen-
tation (around 17%) were also similar in all assays. These results show
that the selected culture medium depth and fermentation time were
sufficient to allow the bacteria to produce a BNC pellicle at maximum
productivity (Fig. 3 B).

Effect of variable medium depth at constant surface area

When grown under static conditions, a BNC pellicle forms at the
air–surface interface. The thickness of this pellicle increases with time,
up to a point of stagnation. This is proposed to occur due to oxygen or
nutrient limitations: the bacteria across the top layer have poor access
to nutrients due diffusional limitations, while those on the bottom layer
are deprived of oxygen.

Containers with the same surface area (336 cm2) were used to
evaluate the interplay of these parameters on BNC production yield and
productivity, while varying the culture medium depth and fermentation
time (Fig. 4). After 9 d fermentation (Fig. 4 A), no statistical differences
were observed in the obtained dry mass of BNC using different culture
medium depths (1, 2.5 and 4 cm). The same was observed after 15 d for
the cultures carried out with a medium depth of 2.5 and 4 cm. BNC
production increased linearly with time, until a plateau was reached
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(Fig. 4 B). Decline in production occurred earlier for the cultures with
less fermentation medium. For a higher volume (4 cm depth), produc-
tion progressed linearly until day 21 (Fig. 4 B). The highest BNC pro-
duction yield (g/L) and productivity (g/L/day) were achieved using a
culture depth of 1 cm, as calculated for day 9 (Fig. 4 B and C). In this
case, the remaining liquid volume (6% of the initial) and sugars (15% of
the initial) were already very low (Fig. 4 D). This suggested that the
most efficient production may achieved by maximizing the S/V ratio.
Indeed, even higher production yields and volumetric productivities
would be reached by further reduction of the culture depth and

cultivation time. However, this would not be a feasible alternative for a
large-scale static culture of BNC production process, since it would
demand a high number of shallow containers and require the frequent
replacement of the cultivation vessels (i.e. high cycle times). On the
other hand, the BNC mass productivity expressed as g/day, actually
increased slightly over time and culture medium depth, as can be
concluded by comparing the slopes obtained in Fig. 4 A. Mass pro-
ductivity for the 4 cm culture depth was higher (0.351 g/day) than
those using 1 cm (0.287 g/day) and 2.5 cm (0.296 g/day), possibly due
to a slower production rate at the early stage of the fermentation (a lag

Fig. 3. (A) Relationship between BNC dry mass (g) and surface area (cm2), after 15 d of static fermentation. (B) BNC production yields (g/L) and BNC productivity
(g/L/day) obtained using containers with different surface area. after 15 d of static culture. For A and B a fixed culture medium depth of 2.5 cm was used. Bars with
standard deviations represent the means of triplicate experiments.

Fig. 4. (A) Relationship between the BNC dry weight (g) and the medium depth (cm) at different fermentation periods. The BNC productivity (g/day) was obtained
from the slope of the linear regressions: (1 cm) - [0–9 days]; (2.5 cm) - [0–15 days] and (4 cm) - [0–21 days]. (B) BNC production yield (g/L) at different depths,
using the same surface area. (C) BNC productivity (g/L/day) at different depths, using the same surface area. Different letters between distinct columns denote
significant differences using two-way ANOVA (p < 0.05). (D) Total sugars consumed and remaining volume of culture medium after 9, 15 and 21 d for each tested
culture medium depth. Data are presented as average ± standard deviations of experiments run in triplicate.
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phase). This could be explained by a lower cell density at early stages,
while as the fermentation progressed, for 1 cm culture depth (lower
volume), nutrients will have been consumed, limiting productivity. It is
important to recall that, for a fixed surface area, cell density is roughly
the same, regardless of culture media depth, because bacteria grow at
the interface air/liquid. Thus, mass productivity may represent a more
relevant parameter of the performance of the static culture fermenta-
tion system than the volumetric productivity.

These results demonstrate that, for a culture medium depth of 4 cm,
there were no oxygen or nutrient limitations affecting BNC production
for up to 21 d, since mass productivity was constant within that time
range. In this case, although significant fraction of sugars were still
available (34% of the initial), the residual liquid volume was already
very low (7% of the initial), hence the BNC production was likely to
decline thereafter (Fig. 4 D). Furthermore, these results allow one to
plan a cost-effective large scale production of BNC, by equating the
volume of fermentation trays and fermentation periods; lower volumes
will have shorter cycling times and higher volumetric productivity, but
possibly higher operating costs (related to trays discharging, refilling
with new fermentation batch and downstream BNC processing),
whereas larger volumes may require wider fermentation areas, as the
trays will be stored for longer fermentation times, but larger equipment
will be required for the downstream processing.

Conclusions

In this study, response surface methodology with central composite
design was used to optimize the culture medium formulation for K.
xylinus BPR 2001, using inexpensive and widely available nutrient
sources. Through RSM, the optimum medium composition was % (m/v)
molasses 5.38, CSL 1.91 (protein basis), ammonium sulphate 0.63 and
ethanol 1.38% (v/v). With this composition, after 9 d static culture
fermentation, BNC production yield and productivity were of
6.4 ± 0.54 g/L and 0.74 ± 0.079 g/L/day, respectively. For 15 d
fermentation, at a fixed culture media depth, a direct correlation be-
tween the fermentation area and BNC dry mass was observed. Also, at a
fixed fermentation area, an almost linear BNC productivity of
0.32 ± 0.037 g/L/day, could be maintained for up to 21 d, using a
4 cm culture medium depth. Moreover, for this experimental set up, no
nutrient diffusional limitations were observed, the mass productivity
being fairly constant overtime.

To date, most studies on BNC production by K. xylinus BPR 2001
have used agitated bioreactors and complex culture medium. This work
demonstrates that is possible to obtain high yields in static culture,
using low cost substrates and a minimal medium composition. This
strain and substrates combination should expectably decrease the costs
of BNC production.
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