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« Mortars with BFA and CFA have good quality, durability and sustainability.

« BFA can lead to a minimization of the issues related to the HVFAC.
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The effect of using biomass fly ash (BFA) on the quality, durability and sustainability of mortars was stud-
ied. Using high amounts of BFA does not lead to a production of mortars with better performance than a
plain cement mortar. However, when BFA is used in small amounts mixed with coal fly ash, mortars with
similar compressive strength, to that of a cement mortar, but with less carbonation and with better envi-

ronmental performance are obtained. Using BFA in the concrete industry can lead to a minimisation of
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issues related to the high volume fly ash concrete.
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1. Introduction

Concrete is a building material that is used for innumerable
large infrastructure developments [1]. In terms of sustainability,
one of the major issues related to the concrete industry is CO,
emissions resulting from cement production [2]. Some authors
affirm that during the production of 1000 kg of clinker, about
866 kg of CO,is generated [2], which corresponds to 5-8% of all
CO,produced by mankind [1,3]. Moreover, 60% of these emissions
result from limestone calcination, which is the main raw material
for cement production [1,2]. The fuel used to generate heat (by
combustion) for the necessary reactions to produce the clinker
minerals accounts for the remaining CO, emissions [2].

Areport [4] developed by business leaders and academics about
construction materials showed that one of the most important
opportunities for CO, emission reduction is using a low-carbon
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cement. The authors emphasise that to reduce 1 GT of CO,, by
2020 in the concrete sector, 50% of Portland cement used in
concrete will need to be replaced by a low-carbon alternative [4].
Certainly, only this solution alone does not lead to such levels of
CO, reduction, and the construction industry needs to adopt an
integrated approach, which involves using less cement in new
constructions, a decrease in cement consumption, mainly in the
concrete production and a reduction in the clinker consumption
to produce cements [5].

In order to reduce the environmental impact of the concrete
industry, several options need to be considered, and increasing
the use of supplementary cementitious materials (SCM) is one of
them [1,2]. Using these materials already happens in a large exten-
sion [1]. However, incorporating high volumes of fly ash leads to a
formation of hydrated binders with a low calcium hydroxide con-
tent, which decreases the concrete alkalinity and may lead to less
durable materials [6,7]. Hence, utilising wastes or sub-products


http://crossmark.crossref.org/dialog/?doi=10.1016/j.conbuildmat.2018.11.173&domain=pdf
https://doi.org/10.1016/j.conbuildmat.2018.11.173
https://doi.org/10.1016/j.conbuildmat.2018.11.173
http://www.sciencedirect.com/science/journal/09500618
http://www.elsevier.com/locate/conbuildmat

196 E.R. Teixeira et al./Construction and Building Materials 197 (2019) 195-207

that can compensate alkalinity losses resulting from replacing
cement is a solution that must be addressed.

Nowadays, using renewable sources, such as forestry biomass
to produce energy has been increasing. Biomass is converted to
energy by combustion, leading to a major problem that is fly ash
production. Fly ash is an environmental pollutant, requiring very
expensive management [8]. As a result, its use as a cement replace-
ment in concrete can decrease the cement needs [9], while min-
imising the issues associated to the high volume cement
replacement, since these ashes are more alkaline [10]. Some stud-
ies have been carried out and showed good results when biomass
fly ash was used as cement replacement material [11-13].

The focus of this study is to understand if BFA can be an alter-
native solution for issues related with high volume fly ash concrete
(HVFAC), mainly related with the decrease on the alkaline content,
when cement is replaced by high fly ash amounts. To broaden the
knowledge about the effect of BFA on the quality, durability and
sustainable properties of concrete, and since in some studies is
showed that the results obtained for the properties of conventional
concrete, e.g. mechanical resistance, are coincident with the results
obtained in the corresponding mortars. A group of high volume fly
ash mortars was prepared by incorporating BFA alone or blended
with coal fly ash as cement replacement material. The effect of
BFA on the workability, mechanical resistance, porosity, carbona-
tion resistance, in different curing periods, was studied.

The development of low carbon footprint mortar with the aim
of reducing the environmental impact of the Portland cement pro-
duction is one of the most important goals of the work developed.
It is important to analyse and compare the potential environmental
impacts related to the production of plain cement mortars and the
impacts resulting from the production of materials that uses BFA
(alone or blended with coal fly ash or/and hydrated lime) as raw
material substitution. One of the best approaches to develop this
type of study is to use the life cycle assessment (LCA) method
[14]. This method makes it possible to quantify the potential envi-
ronmental impacts of products or services. It quantifies both the
input flows, such as energy, water and materials, as well as the out-
put flows, such as CO, emissions, solid wastes and liquid wastes
[2,15]. LCA can estimate the potential impact on humans and on
the environment and can also identify areas with improvement
potential [2]. Based both on the abovementioned context and
methodological approach, this study quantified and compared
the potential environmental impacts resulting from the production
of different mortar formulations.

As BFA is an alkaline waste, it was also studied if slight amounts
of BFA contribute to mitigating the problems of alkalinity found in
HVFAC and the results were compared with the results obtained
for mortars with hydrated lime, since hydrated lime is an alkaline
material, which in some studies reveals good results for this
problem.

2. Materials

In the preparation of all high volume fly ash mortar mixtures,
the main goal was to reduce the cement content in order to
increase the environmental performance at least while maintain-
ing the quality and durability properties. The powder materials
used in the mixes were Portland cement CEM I 42.5R (from Secil
company, Outdo, Portugal) (C), coal fly ash (CFA), biomass fly ash
(BFA) and hydrated lime (HL) (from the Portuguese company Lusi-
cal). The physical and chemical composition of the hydrated lime
stated in the product datasheet is presented in Table 1.

The coal fly ash was obtained from a Portuguese thermoelectric
power plant. The biomass fly ash was obtained from a Portuguese
thermal power plant which used forest residues, such as bark from

Table 1

Physical and chemical characteristic of hydrated lime.
Granulometric: retained in 125 pm <0.0%
Free water content <1.0%
Stability (expansion) <0.2%
Ca(OH), content >93.0%
MgO content <3.0%

eucalyptus and pine as fuel to produce heat and power [16]. Fig. 1
shows the particle size distributions of the powder materials
assessed, in a liquid environment, by laser diffraction using CILAS
920 equipment. In general, cement and CFA had much finer parti-
cles when compared with BFA and the average diameter of BFA
particles was around 47 pm. The density of cement, hydrated lime,
CFA and BFA were 3130, 2230, 2420 and 2619 kg/m>, respectively
and was determined according to [17].The chemical composition of
the materials is presented in Table 2.

As can be seen, BFA showed a LOI value of 6.27% and CFA pre-
sented a value of 2.73%. According to the standard [18], which
defines and reports the specifications and conformity criteria for
fly ash incorporation in concrete, in terms of loss-on-ignition,
BFA belongs to category B (LOI < 7%) and CFA belongs to category
A (LOI < 5%). SiO, was the major chemical element (>25%, dry bs)
presented in the CFA, followed by Al,03, Fe;0s3, CaO and K,O. In
contrast, CaO was the major chemical present in BFA (>19% dry
bs), followed by SiO,, Al,03, K50, Fe;03, MgO. One of the criteria
of [18] is that the sum of SiO,, Al,03 andFe,05 needs to be higher
than 70%. In relation to this criterion only CFA meets this
requirement.

The pozzolanic activity index was determined according to [18].
Mortars with 75%wt of cement and 25%wt of CFA/BFA were pre-
pared and tested for mechanical strength after 28 and 90 days of
curing. According to the standard, the pozzolanic activity index
at 28 and 90 days cannot be below 75% and 85%, respectively. As
can be seen, the CFA meets the requirements of the standard on
contrary BFA has an index lower than required for 90 days
(Table 3). However, BFA did not presented a high pozzolanic activ-
ity index is one of the most type of biomass ash produced in Por-
tugal. BFA is also a very alkaline waste and several studies
showed that BFA can be solution for problems related with HVFAC
[19-21]. For that reasons, it was decided to use this BFA for this
study.
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Fig. 1. Particle size distribution of Portland cement, coal fly ash and biomass fly ash
[16].
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Table 2

Chemical composition of materials (oxides, % by weight).
Oxides CFA BFA Cement
Si0, 54.1 36.1 159
Cao 33 28.0 52.9
Na,0 0.5 0.9 0.8
Al,03 26.4 8.4 33
MgO 1.6 3.5 4.4
K,0 1.6 54 7.4
Fe,03 6.1 4.1 2.
P,0s5 0.8 3.2 1.1
TiO, 14 0.9 0.3
MnO 0.05 0.2 0.9
LOI 2.73 6.27 2.34

Table 3

Pozzolanic activity index.
Sample 28 days 90 days
CFA 76.0 87.9
BFA 76.1 75.0

The aggregate used for mortar preparation was a commercial
river rolled sand 0/4 mm. Additionally, a polycarboxylic ether
superplasticizer, called Glenium Sky 617, was used. No other
chemical admixtures and no viscosity-modifying admixtures were
used. In the preparation of some formulations, it was used
hydrated lime (from the Lusical industry) was used as an addition,
with the main goal of given the alkalinity lost due to the cement
substitution by high amounts of coal fly ash.

3. Experimental and analytical methods
3.1. Mortar formulations

The mortar mixture formulations are shown in Table 4. The
mixtures differ in the proportion of powder materials, water-
binder ratio and the content of superplasticizer (due to the work-
ability requirements for the mortar). All mixtures were prepared
with 1 mass basis (wt) part of binder (taken as the sum of cement,
fly ash and hydrated lime): 2.5 wt parts of aggregate. These propor-
tions were chosen due to the fact that the main aim of this study is
to find a solution for the conventional concretes, and usually the

cement dosage on a conventional plain cement concrete is around
300 kg/m> and the content of sand is equal to 750 kg/m> with a
water/binder ratio of 0.5. These proportions for mortar production
were chosen taking into account published studies that show that
the results obtained for the properties of conventional concrete are
coincident with the results obtained in the corresponding mortars.

A plain cement mortar (REF), with a water/binder ratio of 0.5,
was used as the reference for the results obtained in this study
in the different properties. This formulation was chosen as the ref-
erence since it represents a conventional concrete (where the
cement dosage is around 300 kg/m> and with a w/b=0.5), and in
this study the aim is to have a much more eco-efficient alternative
to these concretes, which are generally used.

It is known that a high volume fly ash concrete can be a feasible
alternative for the plain cement concrete replacement. This type of
concrete is produced using low cement content and can be done
with a low w/b ratio (with less water content), while maintaining
similar mechanical strength and improving the durability and the
sustainability level. As the focus of this work is to find a more
eco-efficient HVFAC solution than the plain cement mortar, three
formulations with 50% of cement replacement by coal fly ash, bio-
mass fly ash and a blend with the two ashes were studied (Table 4
- Mixtures: CFA50, BFA50 and CFA25BFA25), with a binder content
of 300 kg/m?> but with a low w/b ratio than the reference (0.35). It
is important to referrer that the content of each material per m?> of
mortar produced was calculated taken into account the density of
each material.

On the other hand, one of the issues related to high volume fly
ash concrete is the possibility of reinforcement corrosion that may
be associated to its worst carbonation behavior. As BFA are more
alkaline than CFA, small amounts of BFA (0.5, 1.3 and 5%wt)
blended with coal fly ash were also studied to verify if it is possible
to improve the alkalinity of those mortars and their carbonation
resistance. A comparison with the utilisation of hydrated lime for
the same purpose was also carried out, since it was showed in
other studies [22] that the introduction of lime minimises the
issues related to pH decreased by preventing the loss of alkalinity.
It was study small amounts of HL (0.5, 1.3 and 5%wt) once in other
studies it was seen that the best results were achieved when it is
used small amounts, as e.g. the higher carbonation resistance
was observed for samples with 2.5 and 5%wt of hydrated lime
[23]. In all remaining formulations, the proportion of cement
replacement was 50% by weight with a water/binder ratio of 0.35.

Table 4
Mortar mixture proportions.
Mixtures C-CFA-BFA-HL Materials (kg/m3)* w/cm SP(%)
C CFA BFA HL

Control mixtures REF 300 - - - 0.50 0.00
CFA50 150 117 - - 0.35 0.25
BFA50 150 - 127 - 0.35 1.25
CFA25BFA25 150 59 63 - 0.35 0.50

Ternary HVFA blends CFA49.5HLO.5 150 116 - 1 0.35 0.25
CFA48.8HL1.3 150 114 - 3 0.35 1.25
CFA45HL5 150 105 - 11 0.35 1.25
BFA49.5HL0.5 150 - 125 1 0.35 0.25
BFA48.8HL1.3 150 - 124 3 0.35 1.25
BFA45HL5 150 - 114 11 0.35 1.25
CFA49.5BFA0.5 150 116 1 - 0.35 1.25
CFA48.8BFA1.3 150 114 3 - 0.35 1.25
CFA45BFA5 150 105 13 - 0.35 0.25

Multiple HVFA blends CFA49.5BFA0.3HL0.3 150 116 1 1 0.35 0.25
CFA48.8BFA0.6HL0.6 150 114 2 1 0.35 0.50
CFA45BFA2.5HL2.5 150 105 6 5 0.35 0.50

2 Keys: w/cm = water/cementitious materials ratio; C = cement; CFA = coal fly ash; BFA = biomass fly ash; HL = hydrated lime; SP = superplasticizer.
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3.2. Experimental procedures

The tests were conducted to assess the workability, mechanical
strength and durability properties. The experimental procedures
include, for each mixture, the evaluation of the flow spread, fresh
density, air content, flexural and compressive strength, water
absorption and carbonation resistance.

3.2.1. Workability, density and air volume content

To assess the properties of the fresh mortar, the flow spread test
was carried out according to [24]. The fresh bulk density was eval-
uated according to [25] and the air volume content of fresh mortar
was measured according to [26].

3.2.2. Mechanical resistance

Flexural and compressive strength of the mortars were deter-
mined at 7, 28, 56, 90 and 180 days on 40 x 40 x 160 mm°>prisms
according to [27]. The flexural strength was carried out in a
LLOYDS Instruments universal testing machine, with a maximum
capacity of 50 kN. The compressive strength was performed in an
ELE Auto Test press, with a capacity between 5 and 110 kN. The
results reported show the average value of three samples for each
mixture and curing period.

3.2.3. Water absorption

The water absorption test was evaluated by an immersion test
and by a capillarity test, in samples with 28, 90 and 180 days of
curing. To measure the water absorption, 40 x 40 x 160 mm? sam-
ples were previously submitted to a flexural test, which divided
each prism into two similar parts. Then, one part of the specimen
was used for the capillarity test and the other was used for the
immersion test. All mortar parts were dried until constant mass.
For the water immersion test, the specimens were immersed in
water and weighed every 24 h until the weight stabilisation which
is achieved when the difference between two consecutive mea-
surements is less than 0.1% of weight. This test quantifies the open
porosity, measured according to [28,29] and is described in more
detail in [16].

The water absorption by capillarity is characterised by the coef-
ficient of capillarity, which is obtained by calculating the slope of
the linear regression line, which links the points related to the
weight measures carried out between 10 and 90 min of testing,
in a square time root. This test was performed according to [30]
and described in more detail in [16].

3.2.4. Carbonation resistance

The accelerated carbonation test was carried out on
40 x 40 x 160 mm> samples with 28, 90, 180, 270 and 360 days
of curing period, according to [31]. After curing, the samples were
preconditioned in an isolated container with temperature and rel-
ative humidity control for a period of 14 days (80.8 + 6.5% RH and
24.2 +2.2 °C). This ensures the stabilisation of the humidity inside
the samples. Then, samples were sealed with paraffin with the
exception of two opposite faces and introduced in the accelerated
carbonation chamber, with 4.2 + 0.1%wt of CO,, 52.6 + 8.3% RH and
20.0 £ 0.8 °C. The carbonation depth was determined by spraying
1% of phenolphthalein in the solution of 70% alcohol on a broken
surface [32]. This indicator is colourless and used as an acid-base
indicator. The colour of phenolphthalein changes into pink/-
carmine red when pH is higher than approximately 9. Therefore,
when the solution is sprayed on the broken surface of the mortar,
the zone that is carbonated is uncoloured and the zone that is not
carbonated presents a pink/carmine red colour [32]. The values for
the depth of carbonation are taken from an average of 10
measurements.

3.3. Environmental assessment of mortar mixes

3.3.1. Goal and scope

The main goal was to evaluate the environmental performance
of the mortar formulations using biomass fly ash as a cement
replacement and as an alkaline material. The method used in this
study followed the phases of a Life Cycle Assessment (LCA) phases:
goal and scope definition, inventory analysis and impact assess-
ment. The comparative analysis and the aggregation of indicators
were developed using the multi-criteria decision support Method-
ology for the Relative Sustainability Assessment of Building Tech-
nologies [33-35]. The MARS-SC methodology is based on three
groups of sustainability categories: environmental, functional and
economic [34,35]. Since this research is aimed at assessing the
environmental performance of the differently produced mortars,
only the environmental category of the MARS-SC was considered
in this study.

3.3.2. Functional unit and system boundaries

The functional unit was 1 m> of ready-mixed mortar, which is
the basis for comparison throughout the study. A cradle-to-gate
analysis of the potential environmental impacts is carried out
and the boundaries of this study included the extraction of raw
materials for mortar production and preparation processes
(cement, aggregates, admixtures, coal fly ash, biomass fly ash and
hydrated lime), transportation of materials, mixing of mortar
materials and ends at the mortar plant with the final product ready
to be used in the construction field.

3.3.3. Inventory analysis

The inventory analysis is used to quantify the inputs (e.g.
energy, materials and chemical) and outputs (e.g. emissions and
waste) of the product system [36]. Table 5 shows the inventory
of the materials and transportation considered for the specific con-
text of the Portuguese mortar industry. The life cycle analysis soft-
ware SimaPro 8.4.0.0 was used for the quantification of the impact
categories.

The consumption of raw materials, energy and fuel and the
emissions released during cement production of a Portuguese
cement plant were considered. The used source of information
was the public Environmental Declaration of the selected cement
plant [37].

For the coal fly ashes, a private Portuguese power plant, from
which the used fly ashes were coming from, was considered. The
power plants produce electricity and fly ashes as a co-product.
Therefore, it was necessary to make the allocation of the flows of
the power plant, according to the methodology proposed by other
studies, such as [38]. In the present study, an economic allocation
process, based on the market value of each power plant’s product
was carried out. A more detailed explanation of the used method-
ology can be found in [35]. In this study, the economic allocation
coefficient of 0.17% was applied to the impacts of the extraction,
transportation, and combustion of the coal on the power plant, in
the calculation of the fly ash related potential environmental
impacts.

In Portugal, biomass fly ash is classified as a waste product and
thus does not afford an economic value. Therefore, according to the
allocation rules set out by [39], no flows from the biomass thermal
power plant were allocated to its production, and only the trans-
portation from the BFA production to the mortar production was
considered.

For the other materials used in the mixtures (sand, hydrated
lime and superplasticizer), transportation processes and produc-
tion processes, generic data from the life-cycle inventory database
Ecoinvent report V3 [40] was used. This database covers the aver-
age inventory data of the main building materials and processes in
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Table 6
Indicators, units and quantification methods.

KIm
KIm
Km
Km
Km
Km

TEEEes Environmental indicators Units LCIA methods
Global warming (GWP 100) [kg CO, eq] CML 2 baseline
2000 V2.05
Ozone layer depletion (ODP)  [kg CFC-11 eq] CML 2 baseline
2000 V2.05
5 S8 Acidification potential (AP) [kg SO, eq] CML 2 baseline
2000 V2.05
Eutrophication potential (EP) [kg PO4 eq] CML 2 baseline
2000 V2.05
Formation potential of [kg CoHy4 eq] CML 2 baseline
tropospheric ozone (POCP) 2000 V2.05
Abiotic depletion potential of [M] eq] Cumulative energy
Qe 0o fossil resources (ADP_FF) demand V1.09
—oM~N—0 0
Table 7
Flow spread diameter (d), fresh density and air volume content present in each
mortar formulation.

Scmunna

—er~ooo Mortar d (mm) p (kg/m?) Vv (%)

REF 203 2232 2.8

- CFA50 150 3381 4.4

s S BFA50 138 3367 5.1

CFA25BFA25 142 3389 5.0
CFA49.5HL0.5 147 3432 3.6
CFA48.8HL1.3 146 3453 3.8
CFA45HL5 141 3436 3.5
S8craoo BFA49.5HL0.5 142 3386 438
BFA48.8HL1.3 145 3361 6.0
BFA45HL5 153 3390 43
CFA49.5BFA0.5 155 3420 3.8
CFA48.8BFA1.3 147 3430 3.8
Qe - CFA45BFA5 145 3431 4.0
f%Rcoos CFA49.5BFA0.3HLO.3 151 3427 3.7
CFA48.8BFA0.6HLO0.6 161 3410 5.0
CFA45BFA2.5HL2.5 150 3429 4.1

8= « =

00O wWwmo
different regional contexts [34]. For each considered process from
this database, a contextualisation for the Portuguese energy mix

wn . .

Y5 oBad context was made. The reason for this is the fact that the Por-
tuguese energy mix for electricity production is different from
the European average [35,41,42]. Therefore, all used processes

- from the Ecoinvent database were edited and the electricity input

Y5 oR33 flows were changed to taken into account the Portuguese energy
mix.

858005
3.3.4. Impact assessment

In this stage, the classification, characterisation, and normalisa-
tion of impact categories are carried out [2]. The life cycle inven-

o - tory data was converted into potential environmental impact,
using the life-cycle impact assessment methods. In MARS-SC, the
environmental performance assessment is based on the following
environmental impact categories (Table 6): global warming, ozone

Scno23 depletion, acidification of soil and water, eutrophication, photo-
chemical ozone creation and depletion of abiotic resources-fossil
fuels. Compared with the list of the impact categories found in

- the EN15804:2012 [43] standard, MARS-SC does not consider

R g A the depletion of abiotic resources elements as an impact category.

Qe -

—0WoOor~OOo . . . .
3.3.4.1. Normalisation and aggregation. In order to avoid the scale

B - effects in the aggregation of parameters of the different indicators

- and to minimise the possibility that some of the parameters are of

§ A¥cooo the type “higher is better” and others “lower is better”, the indica-
g tors need to be normalised [34]. The normalisation of indicators
o = . . .

g g T was carried out as described in [34,35].

=8 E CEIZS The aggregation of each environmental indicator in terms of a

global indicator, describing the overall environmental perfor-
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mance was done and the procedure is described in [35]. The results
are presented in a “radar” or Amoeba diagram, also known as a sus-
tainable profile. In the diagram, the number of rays equals the
number of indicators that are analysed [35]. In each sustainable
profile, the global performance of a respective mortar with coal/
biomass fly ash and/or hydrated lime is monitored and compared
with the reference mortar (Table 5).

4. Results and discussion
4.1. Flow spread, fresh density and air volume content

The flow spread diameter (d), the fresh density (p) and air voids
(Vv) content of the mortar mixtures are presented in Table 7.
According to the flow spread results, all mixtures with the two
types of fly ash had lower values than the reference, which uses
only cement as binder. This is a result of the decrease in the
water/binder ratio and can be surpassed by using a superplasti-
cizer. The dosage of superplasticizer was adjusted by trial and error
to obtain a flow spread between a class ranges of 140-160 mm and
the obtained values are presented in Table 4. However, it is impor-
tant to refer that there is a significant difference in the w/b
between the reference and the others mortar formulations and this
can have an influence on the viscosity of mortars, and conse-
quently on its workability. Mortars with biomass fly ash presented
the lower diameter values. This is due to the fact that wood fly ash
presents a heterogeneous distribution of particles, with irregular
shape and fineness, which leads to a high specific surface area
and controls the compactness of mixtures [44,45]. Additionally,
the high loss on ignition (Table 2), that shows a high organic mat-
ter in the BFA composition, which can lead to an adsorption of
water molecules and result in a decrease in the free water available
for workability [21,44,46].

The density of the fresh mixtures with ash was higher than the
reference mixture. However, no significant differences in fresh
density were observed among the mixtures containing ash. The
decrease in the water/binder ratio led to an increase in the air voids
content, and the highest values observed in the mixtures with the
incorporation of high biomass fly ash content (Table 7).

4.2. Mechanical resistance

Fig. 2 presents the average flexural strength values for all mor-
tar mixtures. The replacement of cement by CFA, BFA or/and a
blend of the two types of ash led to similar or higher values on
the flexural strength, when compared with the mortar made only
with cement (REF) after 28 days of curing. This is due to the

o
)

. >

7 [ 23 [ 56

S
I

]
p—

p—
p—

Flexural strength [MPa]
o o IS B B
1 1 1 1
[—
e
A5t

CFA25BFA2S R R R ARR
CFA49.5HLO.
CFA488HL1.3
CFA43HLST
BFA4S SHL| 3 [
CFA49.5BFA(.5 s
CFA48 8BFA1.3Jus
CFA4SBFA
CFA49.5BFA0.3HLO.3
CFA48.8BFA0.6HLO.6
CFA43BFA2.SHL2.

Fig. 2. Flexural strength development over time for each mortar formulation.

504 I

7 [ 23 I 56

4;
=]
1
-

Compressive strength [MPa]
- S w
=] (=] (=] =]
1 1 1
—
CFAS () ————— |

L

REF

CFA25BFA2S
[T e —
CFA48.8HLL3
CFA4SHLS o
BFA49.5HL0.51
BFA48.8HL1.3]
BFA4SHLS
CFA49.5BFAO.5
CFA48.8BFAL3
CFA45BFAS
CFA49.5BFA03HLO.3
CFA48.8BFA0.6HLO.61
CFA4SBEA L. SH L. 5 e

Fig. 3. Compressive strength development over time.

decrease in the water/binder ratio, and it is known that a decrease
in the water/binder leads to a gain in strength [47].

Fig. 3 presents the average compressive strength values for all
mortar mixtures. It was observed that up to 90 days of curing,
the reference mortar had the highest values for the compressive
strength. After that period, the 50% of cement replacement by
CFA and by a mixture of 25% of CFA and 25% of BFA presented sim-
ilar values to 100% of cement mortar. The introduction of fly ash
leads to a delay in the hydration process, which leads to a retarda-
tion on compressive strength increase [20]. One important obser-
vation was that mortars with fly ash blended with low biomass
fly ash content led to higher values of compressive strength than
when only coal fly ash was used as a cement replacement material.
However, with hydrated lime, similar behavior is observed for the
mortar with 1.25%wt of HL. The improvement of compressive
strength can be due to CFA particles breaking down at high calcium
hydroxide content and the inner silicate phase becoming suitable
for the reaction and the production of more calcium silicate
hydrates [48]. In general, the mixtures with CFA with HL presented
the highest values followed by mixtures with CFA with BFA or BFA
and HL and followed by the mixtures with BFA and HL.

The utilisation of BFA and HL blended does not lead to mortars
with good mechanical characteristics. These were the lowest val-
ues for all mortars observed for all mortars tests.

In terms of mixtures with coal fly ash, biomass fly ash and
hydrated lime, up to 90 days of curing the values observed for com-
pressive strength were similar or higher than mortars produced
only with cement and coal fly ash. At 180 days, mortars with
0.25% of BFA and 0.25% of HL and 0.625% of BFA and 0.625% of
HL presented values for compressive strength similar to mortars
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Fig. 4. Relationship between flexural strength and the square root of compressive
strength of studied mortars.
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with 50% of CFA. [s important to note that there are several formu-
lations (BFA50, CFA25BFA25, CFA49.5HL0.5, CFA48.8HL1.3,
CFA49.5BFA0.5, CFA48.8BFA1.3, CFA45BFA5, CFA49.5BFA0.3HLO.3,
CFA48.8BFA0.6HLO0.6 and CFA45BFA2.5HL2.5), which after 90 days
can result in mortars with a similar or higher compressive resis-
tance than a plain cement mortar, but with a replacement of
cement of 50%wt.

The relationship between the normalized flexural strength and
the square root of compressive strength was also analysed for the
studies mortars (Fig. 4). It was observed that there was a direct
relationship between the compressive and flexural strength of a
given mortar, showing once again that compressive strength can
be assumed as an adequate index for all types of strength [49].
However, is possible to verify that this relationship is affected by
other parameters, such as the type of binder.

4.3. Durability analysis

4.3.1. Water absorption

The results for the open porosity obtained by water immersion
analysis are presented in Fig. 5. The reference plain cement mortar
had a higher value for water immersion coefficient than mortars
with the two types of ash. This is due to the fact that the reference
mortar presented a higher water/binder ratio, which leads to mor-
tars with higher porosity.

In general, the porosity decreased with the curing age. This was
due to the increase of hydrated compound content and with the
latent hydration during the pozzolanic reaction of ash in the pres-
ence of calcium hydroxide [50].

The replacement of coal fly ash by biomass fly ash did not lead
to an improvement on the open porosity, for all curing ages. Using
biomass fly ash or/and hydrated lime in mortars with coal fly ash
lead to similar results to those observed in mortars only with
cement and coal fly ash.

Fig. 6 shows the average values of the results obtained for the
water absorption by capillarity for the three ages studied (28, 90
and 180 days). Based on the capillarity absorption, the correspond-
ing coefficients were determined and are presented in Fig. 7.

The results showed that capillarity absorption is influenced by
the water/binder ratio and by the binders used to produce mortars.
The reference mortar presented the highest values for the capillar-
ity absorption, and this is mainly due to the fact that this mortar
was prepared with a 0.5 water/binder ratio. A higher water/binder
ratio led to a production of a more porous material [51].

At 28 days, the replacement of cement by biomass fly ash did
not lead to a better result in terms of capillarity absorption when
compared with mortars with coal fly ash. However, when the
two pozzolanic materials were used as a cement replacement,
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Fig. 6. Curves for the capillary absorption of mortars with 28, 90 and 180 days.

the produced mortars presented the lowest values for the water
absorption capillarity tests. This reduction in the values is due to
the CFA inclusion and its synergic effect with the biomass fly ash.
The synergy between the two types of ash led to the pores blocking
by physical actions due to the new products of pozzolanic reaction
results in lower permeability mortars [52,53]. The synergic effect
of coal fly ash with other pozzolanic materials and its effect on
porosity was also observed in other studies [51].

The introduction of hydrated lime on mortar with biomass fly
ash did not have a significant effect on the water absorption. How-
ever, in mortars with coal fly ash and 0.5% of HL lead to higher val-
ues of water absorption and the saturation point was achieved
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Fig. 7. Coefficient of water absorption by capillarity of mortars.

sooner than in the mortars with 1.25 or 5% of HL. The introduction
of small quantities of biomass fly ash in mixes with cement and
coal fly ash led to mortars with lower absorption values, which
showed that these mortars have higher bulk density than mortars
containing only coal fly ash. Similar results were observed when
small quantities of biomass fly ash and hydrated lime were used
in coal fly ash mortars.

It can be observed that, with the increase in the curing time (90
and 180 days), no significant differences between mortars with ash
were noted. Using fly ash in construction materials, delays the
cement hydration reaction and during the curing time, the calcium
hydroxide dissolved in the water presented in mortar reacts with
the fly ash to form solid reaction products that will fill the capillary
pores partially or completely.

4.3.2. Carbonation

In Fig. 8, the depth of carbonation for the studied mortar formu-
lation at 28, 90, 180, 270 and 360 days of curing is presented. As
shown, the depth of carbonation increased with the duration of
the carbonation test. For all curing ages, it is clear that the cement
replacement by the two types of fly ash led to an increase in the
rate of carbonation [54]. This might be due to the consumption
of calcium hydroxide in the pozzolanic reaction, which occurs even
before the initiation of carbonation. Due to the consumption of
hydrates, the alkalinity of pore solution of mortars decreased [54].

The results related with the carbonation depth in each formula-
tion were fitted to the classical expression, which relates the car-
bonation depth with the square root of time, to obtain the
carbonation rate constant [55].

X = Veo, Vit (1)

It is important to take into account that this expression does not
consider other factors that affect the penetration of the carbona-
tion front, such as the relative humidity and temperature [55,56].

As can be observed in Table 8, the reference mortar presents the
lower carbonation constant rate for all curing ages. This is due to
the fact that cement mortars are less permeable to CO, penetration
than mortars with less cement. Mortars with pozzolanas had a
higher consumption of CH and this led to a decrease in the alkalin-
ity of mortar. The decrease in the alkalinity is one of the condition-
ing parameters for the development of the carbonation reaction
[23,57].

In general, mortars with CFA and HL presented a decrease in the
carbonation coefficient with the increase in the curing age (Fig. 8
and Table 8). A longer exposure time to the humidity cure leads
to a higher hydration of cement, a smaller porosity, a reduction
on permeability and consequently to a more compact microstruc-

ture. In this case, the velocity of carbonation penetration is reduced
[58].

The utilisation of biomass fly ash and hydrated lime was to mit-
igate the carbonation issue related to mortars with high cement
replacement substitutions such the CFA50 mortar presented in this
study. To do this, the carbonation rate of this mortar was compared
with the rest of the studied mortars. Mortars with biomass fly ash/
hydrate lime mixed with coal fly ash presented values similar or
lower than mortars with CFA. It is noted that the introduction of
biomass fly ash leads to an increase in the alkalinity of mortars
and has a good synergy with coal fly ash, which is reproduced in
a lower carbonation rate and in a production of mortars with
higher durability than the mortars with coal fly ash and cement
as a binder. The good synergy between the two types of fly ash
can also be related with the fact that the utilization of the two
ashes together had an influence in the porosity of mortars (Figs. 5
and 7). This can lead to a conclusion that the lower carbonation
rate can be also due to the packing effect that results when the
two ashes are used together.

4.3.3. Environmental assessment

Table 9 presents the values obtained from the quantification of
the environmental impact categories determined for each mortar
formulation. The results showed that the reference mortar presents
the highest values for all environmental impact categories. The
high CO, emission is related with the amount of cement, which
is a result of clinker production [59,60].

The results showed that the increase in the content of biomass
fly ash in mortars leads to an increase in the values for the different
environmental impact indicators. This is due to the fact that mor-
tars with higher content of BFA need more superplasticizer to
maintain similar workability (Table 4). The superplasticizer is a
chemical admixture that has a significant impact on the LCA of
mortars. It can also be observed that hydrated lime led to an
increase on the environmental impact of the produced mortars.
The mortar with 45%wt of BFA and 5%wt of HL (BFA45HL5) pre-
sented higher values for the majority of the environmental
impacts. However, using coal fly ash blended with small amounts
of biomass fly ash led to the production of mortars with lower val-
ues on all environmental impact categories.

Table 10 presents the normalisation of the values obtained for
each environmental impact category. The normalisation of the val-
ues allows a better understanding for each mortar that has a better
environmental performance. It can be observed that the three mor-
tars with coal fly ash blended with small amounts of biomass fly
ash  presented the best environmental performance
(CFA49.5BFA0.5, CFA48.8BFA1.3 and CFA45BFA5).

Table 11 presents the sustainable profiles and the overall envi-
ronmental performance for each mortar formulation. In the pro-
files, the shadowed area represents the performance of each
mortar studied. At the level of each impact category, the best mor-
tar is the one that has a value closest to one. It can be observed that
CFA49.5BFA0.5, CFA48.8BFA1.3 and CFA45BFAS5 mortars presented
the best environmental performance and the reference mortar pre-
sented the worst performance.

The use of hydrated lime influences the environmental perfor-
mance of mortars with coal and/or biomass fly ash. Moreover, mor-
tars with high content of biomass fly ash did not present as good
environmental performances as that of coal fly ash mortar. How-
ever, this is due to the fact that, to produce these mortars, the
amount of superplasticizer increases significantly and this param-
eter leads to an increase on the environmental impacts.

It is important to mention that these results showed that using
some of these formulations (essentially the formulations with coal
fly ash blended with small amounts of biomass fly ash) to produce
high volume fly ash mortar could lead to a production of a more
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Fig. 8. Carbonation depth measured in mortars with 28, 90, 180, 270 and 360 days curing.

eco-friendly construction material. This conclusion can be
obtained, since the difference between the formulations presented
in this study and the mortar formulations is the presence of gravel,
and as the content of aggregates is almost similar for all formula-
tions, their effect on the life cycle assessment will be the same
for all formulations, where the binder part of mortar is the most
important parameter for the LCA. The possibility of producing of
a material with a better environmental performance can be a solu-
tion for the sustainability of mortar and concrete industry.

5. Conclusions

One of the solutions to mitigate the problems of high volume of
fly ash mortar can be using small amount of biomass fly ash
blended with coal fly ash. Since, the use of small amounts of
biomass fly ash on mortars with high volume coal fly ash content
leads to a production of mortars with similar quality properties
than mortars with coal fly ash, showing a good synergy between
the two ashes. BFA blended with CFA seems to have a positive
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Table 8
Carbonation rate constant for the different mortar formulations for the different curing periods.
Samples 28 days 90 days 180 days 270 days 360 days
mm/min®>®
REF 0.77 0.77 0.68 0.77 0.76
CFA50 1.40 1.59 134 1.31 1.31
BFA50 2.19 1.88 1.66 1.66 1.98
CFA25BFA25 1.61 1.86 1.41 1.48 1.40
CFA49.5HLO.5 1.40 1.28 1.29 1.30 1.41
CFA48.8HL1.3 143 1.33 1.27 1.38 1.54
CFA45HL5 1.35 1.28 1.19 1.21 1.13
BFA49.5HLO.5 1.74 1.61 1.71 1.97 1.68
BFA48.8HL1.3 1.89 1.69 1.86 1.47 1.61
BFA45HL5 1.73 149 1.47 1.52 1.56
CFA49.5BFA0.5 1.34 1.39 1.25 1.26 1.21
CFA48.8BFA1.3 143 1.46 1.23 1.34 1.26
CFA45BFA5 1.48 1.32 1.24 1.28 1.37
CFA49.5BFA0.3HL0.3 1.50 1.32 1.22 1.34 1.27
CFA48.8BFA0.6HL0.6 133 1.28 1.25 1.26 1.30
CFA45BFA2.5HL2.5 1.39 1.33 1.36 144 133
Table 9
Values obtained for the different envrionmaental impact indicator for each mortar formulation.
Mortar Formulations Environmental impact categories
GWP100 ODP AP EP POCP ADP_FF
[kg CO; eq] [kg CFC-11 eq] [kg SO, eq] [kg PO4 eq] [kg CoHy eq] [M] eq]
REF 5.66E+02 2.70E-05 1.29E+00 3.26E-01 5.20E-02 3.06E+03
CFA50 3.41E+02 1.94E-05 8.72E-01 2.33E-01 3.61E-02 2.27E+03
BFA50 3.56E+02 2.05E-05 9.42E-01 2.36E-01 4.01E-02 2.61E+03
CFA25BFA25 3.36E+02 1.90E-05 8.27E-01 2.19E-01 3.47E-02 2.02E+03
CFA49.5HLO.5 3.33E+02 1.88E-05 8.10E-01 2.22E-01 3.38E-02 2.10E+03
CFA48.8HL1.3 3.37E+02 1.91E-05 8.16E-01 2.23E-01 3.47E-02 2.11E+03
CFA45HL5 3.53E+02 2.00E-05 8.41E-01 2.27E-01 3.79E-02 2.18E+03
BFA49.5HLO0.5 3.58E+02 2.06E-05 9.44E-01 2.36E-01 4.05E-02 2.51E+03
BFA48.8HL1.3 3.62E+02 2.09E-05 9.51E-01 2.38E-01 4.14E-02 2.53E+03
BFA45HL5 3.66E+02 2.11E-05 9.57E-01 2.39E-01 4.23E-02 2.55E+03
CFA49.5BFA0.5 3.31E+02 1.87E-05 8.07E-01 2.22E-01 3.34E-02 2.09E+03
CFA48.8BFA1.3 3.31E+02 1.87E-05 8.07E-01 2.21E-01 3.34E-02 2.08E+03
CFA45BFA5 3.31E+02 1.87E-05 8.06E-01 2.20E-01 3.34E-02 2.07E+03
CFA49.5BFA0.3HL0.3 3.39E+02 1.92E-05 8.35E-01 2.29E-01 3.53E-02 2.09E+03
CFA49.5BFA0.6HL0.6 3.38E+02 1.92E-05 8.34E-01 2.29E-01 3.52E-02 2.08E+03
CFA48.8BFA2.5HL2.5 3.48E+02 1.98E-05 8.49E-01 2.30E-01 3.73E-02 2.06E+03
Table 10
Normalised values of the studied environmental impact categories.
Mortar Formulations Environmental impact categories
GWP100 OoDP AP EP POCP ADP_FF
[kg CO, eq] [kg CFC-11 eq] [kg SO, eq] [kg PO4 eq] [kg CoH4 eq] [M] eq]
REF 0.00 0.00 0.00 0.00 0.00 0.00
CFA50 0.96 0.91 0.86 0.88 0.86 0.76
BFA50 0.90 0.78 0.72 0.85 0.64 0.43
CFA25BFA25 0.98 0.97 0.96 1.00 0.93 1.00
CFA49.5HLO.5 0.99 0.98 0.99 0.97 0.98 0.93
CFA48.8HL1.3 0.97 0.95 0.98 0.96 0.93 0.91
CFA45HL5 0.91 0.84 0.93 0.93 0.75 0.85
BFA49.5HLO.5 0.89 0.77 0.71 0.84 0.62 0.53
BFA48.8HL1.3 0.87 0.74 0.70 0.83 0.57 0.51
BFA45HL5 0.85 0.71 0.68 0.82 0.52 0.49
CFA49.5BFA0.5 1.00 1.00 1.00 0.98 1.00 0.94
CFA48.8BFA1.3 1.00 1.00 1.00 0.98 1.00 0.94
CFA45BFA5 1.00 1.00 1.00 1.00 1.00 0.95
CFA49.5BFA0.3HL0.3 0.97 0.93 0.94 0.91 0.90 0.94
CFA49.5BFA0.6HL0.6 0.97 0.94 0.94 0.91 0.90 0.94
CFA48.8BFA2.5HL2.5 0.93 0.87 0.91 0.90 0.79 0.96
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Table 11
Normalised values that described the global assessment of each mortar formulation.

Mortar Sustainable Profile Performance ND Mortar Sustainable Profile Performance ND
REF - 0.00 BFA48.8HL1.3 100 0.74
obpP
CFA50 10 0.89 BFA45HL5 AP 0.72
ADPFFO
ooP oDP
BFA50 100 0.76 CFA49.5BFA0.5 A 0.99
onp obp
CFA25BFA25 ! 0.97 CFA48.8BFA1.3 0.99
obp
CFA49.5HL0.5 AP 0.98 CFA45BFA5 100 0.99
'ADP_FF, EP
POCP GWP
oDP oDpP
CFA48.8HL1.3 100 0.96 CFA49.5BFA0.3HL0.3 100 0.94
ADP_FF EP ADP_FF EP
POCP GWP POCP GWP
onp oDpP
CFA45HL5 100 0.88 CFA48.8BFA0.6HL0.6 100 0.94
ADP_FF EP ADP_FF EP
poCP GwP pPoCP Gwp
oop obP
BFA49.5HL0.5 100 0.77 CFA45BFA2.5HL2.5 100 0.90

ADP_FF

poCP Gwp

ADP_FF P

poCP GWP

contribution on the durability of mortar when compared with mor-
tar with only coal fly ash as supplementary cementitious material,
but essentially with a better environmental performance than a
plain cement mortar, leading to a production of a more eco-
efficient material.

This work studied the effect of cement replacement by coal and
biomass fly ash on the quality, durability and environmental per-
formance of mortars. This study also attempts to understand if
slight amounts of hydrated lime or biomass fly ash (an alkaline
waste) have a contribution for the problems related to mortar with
a high amount of cement replacement by coal fly ash, mainly the
carbonation issue.

The study showed that biomass fly ash has an influence on the
workability and to maintain a similar flow spread the superplasti-

cizer dosage needed to be increased. Replacing cement by CFA, BFA
or/and a blend of the two different types of ash led to similar or
higher values on the flexural strength, when compared with the
mortar made only with cement. It was observed that both type
of fly ash retarded the gain of compressive strength, but after
90 days of curing, the CFA mortar and the mortar with a blended
of BFA and CFA presented similar values to the reference. Thus,
one can produce similar mortars/concrete than plain cement mor-
tars/concrete, but with half of cement content. It is important to
note that using BFA and hydrated lime in the same mixture does
not lead to mortars with good mechanical resistance. However,
mortars with fly ash blended with low biomass fly ash content lead
to higher values of compressive strength than when just coal fly
ash is used as cement replacement material.
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The replacement of coal fly ash by biomass fly ash did not lead
to an improvement on the open porosity, for all curing ages. Using
biomass fly ash or/and hydrated lime in mortars with coal fly ash
leads to similar results to those observed in cement and coal fly
ash.

The introduction of small quantities of biomass fly ash in mixes
with cement and coal fly ash produced mortars with lower water
absorption by capillarity values, which showed that these mortars
have less porosity than the mortars only with coal fly ash.

Cement replacement by fly ash led to an increased on the rate of
carbonation. Reference plain cement mortar presents the lower
carbonation constant rate for all curing ages. Mortars with fly ash
and with hydrated lime presented a decrease in the carbonation
coefficient with the increase in the curing age. Mortars with bio-
mass fly ash/hydrate lime mixed with coal fly ash presented simi-
lar values or lower than mortars with coal fly ash. It is noted that
the introduction of biomass fly ash leads to an increase in the alka-
linity of mortars and has a good synergy with coal fly ash, which is
reproduced in a lower carbonation rate.

In terms of sustainable performance, the CFA49.5BFAO0.5,
CFA48.8BFA1.3 and CFA45BFA5 mortars presented the best envi-
ronmental performance and the reference mortar presented the
worst performance. The utilisation of hydrated lime influences
the environmental performance of mortars with coal and/or bio-
mass fly ash. Moreover, mortars with a high content of biomass
fly ash did not present a good environmental performance when
compared with coal fly ash mortar. However, this is due to the fact
that to produce these mortars, the amount of superplasticizer
increases significantly, and this parameter leads to an increase in
the environmental impacts.
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