iriried applied
L sciences

Article

Chained Anomaly Detection Models for Federated
Learning: An Intrusion Detection Case Study

Davy Preuveneers *(0, Vera Rimmer !, Ilias Tsingenopoulos !, Jan Spooren !, Wouter Joosen !

and Elisabeth Ilie-Zudor 2

1 imec-DistriNet-KU Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium;
vera.rimmer@cs.kuleuven.be (V.R.); ilias.tsingenopoulos@cs.kuleuven.be (I.T.);
jan.spooren@cs.kuleuven.be (J.S.); wouter.joosen@cs.kuleuven.be (W.].)

2 MTA SZTAKI, Kende u. 13-17, H-1111 Budapest, Hungary; ilie@sztaki.mta.hu

Correspondence: davy.preuveneers@cs.kuleuven.be; Tel.: +32-16-327853

Received: 4 November 2018; Accepted: 14 December 2018; Published: 18 December 2018 ﬁ:ejgtt)g

Abstract: The adoption of machine learning and deep learning is on the rise in the cybersecurity
domain where these AI methods help strengthen traditional system monitoring and threat detection
solutions. However, adversaries too are becoming more effective in concealing malicious behavior
amongst large amounts of benign behavior data. To address the increasing time-to-detection of
these stealthy attacks, interconnected and federated learning systems can improve the detection of
malicious behavior by joining forces and pooling together monitoring data. The major challenge
that we address in this work is that in a federated learning setup, an adversary has many more
opportunities to poison one of the local machine learning models with malicious training samples,
thereby influencing the outcome of the federated learning and evading detection. We present a
solution where contributing parties in federated learning can be held accountable and have their
model updates audited. We describe a permissioned blockchain-based federated learning method
where incremental updates to an anomaly detection machine learning model are chained together on
the distributed ledger. By integrating federated learning with blockchain technology, our solution
supports the auditing of machine learning models without the necessity to centralize the training data.
Experiments with a realistic intrusion detection use case and an autoencoder for anomaly detection
illustrate that the increased complexity caused by blockchain technology has a limited performance
impact on the federated learning, varying between 5 and 15%, while providing full transparency over
the distributed training process of the neural network. Furthermore, our blockchain-based federated
learning solution can be generalized and applied to more sophisticated neural network architectures
and other use cases.

Keywords: blockchain; federated deep learning; anomaly detection; audit; performance

1. Introduction

Organizations and industries are faced with a growing number of cyber-attacks on their systems,
services, and infrastructure. Adversaries target anything of value including general platform and
service providers, as well as businesses in vertical domains such as healthcare, manufacturing, finance
retail, etc. These cyber-attacks aim at various types of damage, such as service disruption, theft of
sensitive or competitive information, user credentials, etc. As the pace of the digital transformation
increases, so does the impact of cyber-attacks. To name one example: the Industrial Internet of
Things (IIoT) and Industry 4.0 paradigms [1,2] envision manufacturing companies collaborating in
networked production systems. These cyber-physical production systems (CPPS) have their embedded
sensors linked with cloud architectures where the gathered data are used for predictive maintenance

Appl. Sci. 2018, 8, 2663; d0i:10.3390/app8122663 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6279-4430
https://orcid.org/0000-0001-9362-3538
http://www.mdpi.com/2076-3417/8/12/2663?type=check_update&version=1
http://dx.doi.org/10.3390/app8122663
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 2663 20f 21

and production optimizations. As the BrickerBot malware infecting 10 million IoT devices has
shown (https:/ /www.bleepingcomputer.com/news/security /brickerbot-author-retires-claiming-to-
have-bricked-over-10-million-iot-devices /), an unknown vulnerability in one of the connected systems
offers an ideal opportunity for an attacker to deploy malware that quickly spreads through the network.
Maersk, one of the world’s largest shipping companies, suffered massively from 2017’s NotPetya
malware outbreak (https://www.bleepingcomputer.com/news/security /maersk-reinstalled-45-000-
pcs-and-4-000-servers-to-recover-from-notpetya-attack /), needing to reinstall 45,000 PCs, 4000 servers,
and 2500 applications and estimating the cost to its business at $250 million—-$300 million.

To avoid causing the organization great financial and reputational harm, cyber-security
professionals have to respond in a timely and effective manner to such threats. As security experts
are becoming increasingly concerned about the accelerating pace of change and sophistication of the
threat landscape, they have to rely on an expanding arsenal of security services to handle known
and unknown threats adequately. The growing complexity of quickly and effectively managing
vulnerabilities and remediating IT environments has motivated a growing number of security
professionals and service providers to invest in security analytics [3] tools to gather, filter, integrate,
and link diverse types of events to gain a holistic view of the business processes and security of
an organization’s infrastructure (see Figure 1). Advanced security analytics technologies help them
cope with a variety of (un)known attacks and (un)known threat actors during different stages of a
cyber-attack lifecycle. Such security analytics solutions usually encompass machine learning (ML)
methods for anomaly detection [4] to identify unusual patterns of behavior that do not conform with
the expected activities of the enterprise business processes. Beyond the necessity to apply well-known
and important ML techniques to adapt to emerging security threats (e.g., finding the best configurations
through automated parameter optimization) dynamically, there is a need to improve the robustness
of ML-based security. As pointed out by Verma [5], any security analytics solution must deal with
(1) an active adversary, (2) the base rate fallacy, (3) the asymmetrical costs of misclassification, (4)
potential poisoning of datasets, and (5) the attack time-scale. Furthermore, they must handle sensitive
or confidential information used as input (e.g., in ML-based anomaly detection) effectively.

loT Gateways
and Hubs

Monitoring
Dashboard

Data acquisition
and control

Sensors, Machines
and
Production Assets

Cloud
Services

Monitor
and alert

Monitor
and alert

Data analytics,
machine learning
and data mining

Mobile Devices
and Applications

Enterprise

Troubleshoot o
Applications

Figure 1. Big Data analytics and security intelligence for Industry 4.0 applications.

In this work, we address the fourth and fifth challenge with a blockchain-based federated deep
learning method. A key property of federated learning is that it does not require the centralization of
training data, which has the advantage of increased the efficiency and confidentiality of the training
data. We leverage the distributed ledger to record updates to machine learning models in a manner
that is secure, transparent, highly resistant to outages, and auditable. By combining federated learning
with blockchain technology, we enable accountability for collectively-learned machine learning models.
The non-repudiation property of blockchains increases the reliability of the federated learning solution.

https://www.bleepingcomputer.com/news/security/brickerbot-author-retires-claiming-to-have-bricked-over-10-million-iot-devices/
https://www.bleepingcomputer.com/news/security/brickerbot-author-retires-claiming-to-have-bricked-over-10-million-iot-devices/
https://www.bleepingcomputer.com/news/security/maersk-reinstalled-45-000-pcs-and-4-000-servers-to-recover-from-notpetya-attack/
https://www.bleepingcomputer.com/news/security/maersk-reinstalled-45-000-pcs-and-4-000-servers-to-recover-from-notpetya-attack/

Appl. Sci. 2018, 8, 2663 30f21

The mere adoption of blockchain technology does not provide this capability out of the box, as the
only thing a blockchain offers is a distributed immutable ledger. With our solution, the traceability of
transactions—in our case, updates to a deep neural network model—is exploited for the detection of
tamper attempts or fraudulent transactions of adversaries aiming to evade anomaly detection. Indeed,
every model update—or local weight or gradient updates for deep learning—can be cryptographically
associated with an individual. Furthermore, it guarantees the integrity of incrementally-learned
machine learning models by cryptographically chaining one machine learning model to the next.

The main contribution of this work is evaluating the practical feasibility of auditing a federated
deep learning process by using blockchains, demonstrated in a realistic use case on intrusion detection
and a real-world dataset (i.e., CICIDS2017). We find that our proof-of-concept implementation—on
top of the MultiChain (https:/ /www.multichain.com) open source blockchain platform—has a limited
relative performance impact and network overhead, while providing full transparency over the
distributed deep learning process.

In Section 2, we review relevant related work and identify the gap in the current state-of-the-art.
Section 3 describes our novel approach towards accountable federated learning using blockchain
technology to ensure non-repudiation with respect to machine learning model updates. We present
the evaluation results of our proof-of-concept implementation using an anomaly detection use case
in Section 4. We conclude this work in Section 5, summarizing our main findings and highlighting
opportunities for future work.

2. Related Work

This section reviews relevant related work in the area of federated machine learning with a
particular focus on deep learning, typical attacks on machine learning methods, and the use of machine
learning in combination with blockchains.

2.1. Federated Machine Learning and Deep Learning

Machine learning (ML)-based anomaly detection [4] requires sufficient amounts of data to
establish a baseline of normal behavior, expected noise, and abnormal deviations. In complex
environments where multiple entities must be monitored for anomalies, centralizing all data for
training and testing purposes may not be feasible due to (1) resource constraints, (2) security and
privacy concerns, or (3) unacceptable communication latencies to transfer the raw data. Federated
ML [6] distributes the workload by enabling multi-party on-device learning. As federated learning is
still a relatively new technique, its applicability to optimize anomaly detection for resource- constrained
environments and the implications on the achieved performance and accuracy trade-off is still unclear
and needs to be studied. Deep learning has been investigated for federated ML [7] and has been
applied to find anomalies in system logs [8]. While federated ML minimizes the amount of raw data to
be shared or centralized, it can be considered as a tactic to preserve security and privacy. However,
recent research shows that data leakage is theoretically still possible in such collaborative learning
environments [9].

2.2. Intrusion Detection and Response Systems

In our work, we use intrusion detection [10] as a motivating use case for our blockchain-based
federated learning solution rather than as the core topic and contribution of our research. As such, we
are not aiming to provide an extensive survey about the related work on the matter, but discuss the
following works as ongoing research in the area of intrusion detection. Inayat et al. [11] provided an
extensive overview of intrusion detection and intrusion response systems. They provided a taxonomy
of different design parameters and classify existing schemes. Additionally, they identified which of the
design parameters are crucial to mitigate attacks in real time. Their contribution mainly focused on
the response design parameters to improve the decision-making process of the response according
to the statistical features of attacks. They argued that many schemes disregard semantic coherence

https://www.multichain.com

Appl. Sci. 2018, 8, 2663 40f21

and dynamic response parameters as key parameters, and therefore produce false alarms. They also
pointed out that the research on a fully-automated intrusion response system is still in its infancy.

Karim et al. [12] provided a comparative experimental design and performance analysis of
snort-based intrusion detection systems in realistic computer networks. They developed an effective
testbed with different types of operating systems in an enterprise network consisting of multiple virtual
local area networks, generating various network traffic scenarios involving a.o. high data speed, heavy
traffic, and large packet sizes. They presented a centralized parallel snort-based network intrusion
detection system (CPS-NIDS) and illustrated how their solution enhanced the performance in terms of
a reduced number of dropped packets while facilitating network security management to access and
keep records of all attack behaviors.

As our goal is not to improve the detection mechanisms of intrusion detection systems themselves,
we rather refer to various relevant surveys on this particular topic [13-16] covering more than two
decades of research that inspired the motivating use case of our work.

2.3. Machine Learning in Adversarial Settings

While progress has been made in the past few years in the domain of advanced machine learning
techniques for security—including deep learning and data/pattern mining—several key challenges
remain for which the state-of-the-art is yet to produce an adequate answer. The machine learning (ML)
algorithms used in security analytics applications are also subject to attacks. As the interest in and
use of machine learning for security applications increases, so will the awareness of cyber-criminals.
When frequently updating an ML model to account for new threats, malicious adversaries can launch
causative/data poisoning attacks to inject misleading training data intentionally so that an ML model
becomes ineffective. For example, various poisoning attacks on specific ML algorithms [17,18] were
able to bypass intrusion detection systems. More recently, Chen et al. [19] demonstrated how to
automate poisoning attacks against malware detection systems. However, keeping ML models fixed
can give rise to exploratory/evasion attacks to find the blind spots. Understanding the trade-offs
between either keeping a machine-learning model fixed or updating the model, taking into account its
complexity, is non-trivial.

Wang [20] investigated how deep learning can be applied for intrusion detection in the presence
of adversaries. Given the fact that deep neural networks have been demonstrated to be vulnerable to
adversarial examples in the image classification domain, he argued that deep neural networks also
leave opportunities for an attacker to fool the networks into misclassification. He investigated how
well state-of-the-art attack algorithms performed against deep learning-based intrusion detection, on
the NSL-KDD dataset. He discovered different levels of effectiveness, as well as varying degrees of
significance across features in terms of their rates of being selected to be perturbed by an adversary.

More recently, similar research was done by Huang et al. [21] in the area of intrusion detection
for software-defined networks (SDN). They conducted SDN-based experiments with adversarial
attacks against a deep learning detecting system, evaluating the fast gradient sign method (FGSM),
Jacobian-based saliency map attack (JSMA), and JSMA reverse (JSMA-RE) schemes as perturbation
functions for the adversarial attacks. They determined that JSMA is more suitable for use in perturbing
testing data, whereas FGSM is more suitable for perturbing the training model.

2.4. Machine Learning and Blockchains

Given all the excitement around deep learning and blockchains over the past few years, it is
not surprising that researchers and business developers are exploring both disruptive technologies to
understand how AI can help blockchains and vice versa and how both paradigms may converge in
the future. One such example is the emergence of Al marketplaces, such as SingularityNET (https://
singularitynet.io), Effect.ai (https:/ /effect.ai), and Cerebrum (https:/ /cerebrum.world), where blockchains
are used to run Al algorithms in a decentralized manner.

https://singularitynet.io
https://singularitynet.io
https://effect.ai
https://cerebrum.world

Appl. Sci. 2018, 8, 2663 50f 21

With the hype around cryptocurrencies and the development of decentralized applications
on public blockchains, a straightforward example is the use of machine learning for automated
trading of cryptocurrencies [22,23]. Chen et al. [24] used machine learning to detect Ponzi
schemes on the blockchain using various features of smart contracts and user accounts. With their
XGBoostclassification model, they were able to estimate more than 400 Ponzi schemes running on
Ethereum.

More related to our work is the anomaly detection research done by Bogner et al. [25].
They presented an IoT solution for monitoring interdependent components. It uses online machine
learning for anomaly detection optimized for interpretability, combined with the public Ethereum
blockchain to guarantee data integrity. Meng et al. [26] focused on intrusion detection systems and
collaborative intrusion detection networks. Their motivation for adopting blockchain technology was
that the latter can protect the integrity of data storage and ensure process transparency. They reviewed
the intersection of blockchains and intrusion-detection systems and identified open challenges.
DeepChain by Weng et al. [27] specifically focuses on federated learning and privacy-preserving
deep learning. They addressed a threat scenario including malicious participants that may damage
the correctness of training, a concern also relevant in our work. DeepChain gives mistrustful parties
incentives to participate in privacy-preserving learning and share gradients and update parameters
correctly. DeepChain addresses privacy requirements which are beyond the scope of our work. As a
consequence of these additional requirements, their solution relies on the availability of trusted
execution environments—like the Intel Software Guard Extensions (SGX)enclaves—and expensive
cryptographic functions—such as homomorphic encryption—to compute model updates. As a
result, their federated learning experiments on a single workstation node using the MNISTdataset
demonstrated a rather significant computational complexity, which makes the proposed solution not
practical for our use case.

2.5. Bridging the Gap

While various related works have already addressed some of the challenges identified earlier
in the Introduction, our research complements the state-of-the-art by not only investigating the
auditability of local gradient updates in a federated deep learning setting for an anomaly detection
use case, i.e., intrusion detection, but also demonstrating the practical feasibility in a more realistic
distributed deployment environment. That is why our experimental setup will also evaluate our
proof-of-concept implementation from a performance impact perspective by measuring the relative
computational overhead of blockchain interactions in a multi-node deployment setup, including
resource- constrained devices.

3. Accountable Federated Learning for Anomaly Detection

In this section, we will first elaborate on the machine learning model we chose for anomaly
detection in our intrusion detection use case. We will then proceed on how to extend the concept
towards federated deep learning with an iterative model averaging technique and accountability on
the blockchain.

3.1. Intrusion Detection with a (Deep) Neural Network-Based Anomaly Detection

Our motivating use case features a network intrusion detection scenario with multiple
interconnected devices, possibly spanning multiple collaborating enterprises. For our evaluation,
we make use of the Intrusion Detection Evaluation Dataset (CICIDS2017) (https://www.unb.ca/
cic/datasets/ids-2017.html). This dataset contains network traffic information from 12 machines
containing benign traffic and common attacks collected throughout a period of five days. The malicious
attacks include brute force FTP, brute force SSH, DoS, heartbleed, web attacks, infiltration, botnet, and
DDoS. More details of the dataset and the underlying principles of its collection can be found in the
corresponding paper [28].

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html

Appl. Sci. 2018, 8, 2663 6 0f 21

There is a large body of work on using artificial (deep) neural networks for anomaly
detection [29,30] and intrusion detection [31-33] that covers at least two decades of research.
This previous research compared different approaches in terms of the best classification accuracy
or recognition rates. The goal of our work, however, is to measure the relative computational
impact of accountability through blockchains in a federated scenario. We therefore assume a secure
environment equipped with an intrusion detection system with a machine learning model at the core
of it, performing in a federated manner.

For the task of intrusion detection itself, we adopt a one-class classification neural network for
unsupervised anomaly detection, as proposed in the work by Raghavendra et al. [29]. In such a
scenario, the assumption is that we have training data only for one class (i.e., normal baseline behavior
of benign traffic), but during testing, we may encounter anomalies or outliers, representing deviations
in normal traffic, which may be caused by cyber-attacks against the enterprise network. As most neural
network models are discriminative—i.e., they need data belonging to all possible classes to train a
classifier—we use autoencoders [34] that typically learn a representation or an encoding of a set of
data in an unsupervised manner. As such, a trained autoencoder is able to recognize the data sample
belonging to the baseline class (benign traffic in our use case) and mark any test sample that does not fit
into the nature of the data seen during training as an anomaly (a potential cyber-attack). A high-level
approach is then as follows: the autoencoder uses a certain metric—a loss function—to express how
well a test sample fits into the baseline class. In order to identify whether a test sample belongs to the
baseline class or represents an anomaly, a threshold has to be defined on top of this metric. If a loss
function value of the test sample exceeds a pre-defined threshold, this sample is therefore recognized
by the autoencoder as an anomaly, and the intrusion detection system raises an alert.

Figure 2 represents a simplified general structure of a (deep) autoencoder with an input layer,
an output layer, multiple hidden layers in the encoding and decoding parts, and a compressed layer in
the middle. An autoencoder that learns such a condensed vector in the middle is used for the task
of representation learning. Its architecture imposes a bottleneck that forces computing a compressed
representation of the input data. The decoder part will subsequently learn how to reconstruct the
original input from the compressed feature vector. An autoencoder that was trained on data of the same
structure (such as benign traffic traces in our use case) will successfully learn the correct compressed
representations, which can be used to reconstruct outputs that closely resemble the inputs. The way
that these representations can be learned is by minimizing the loss function: a reconstruction error,
computed using a distance metric, such as the L, norm, between the original input layer x and the
reconstructed output layer x’:

Ly =/|lx—x'|]?

Encoding neural Decoding neural
network network
/—/% /—/%
A N

) = . ()
4 yo \\‘ :/ \‘ N
am O AN U
) —) () g (| <
& @ Y) ;
% A O AN O N\ &
&) —) () — {) =
5 O A O ’ [\ ' 5
=% —) — — ‘ ‘ o 2
S A U AN AN\ O 8
) —) () —)
< yo \“ "/ __/ :/ \“ N _J
@ 7\\ A / ‘\\w// Ve x\‘
L /“ Compressed N)

feature vector

Figure 2. Generic architecture of an autoencoder learning a compressed representation of benign
network traffic.

Appl. Sci. 2018, 8, 2663 7 of 21

During training on the baseline class, a reconstruction error also serves as a measure of how well
the decoder network performs. In our experiments, for the training phase of the autoencoder, we split
the benign traffic of the first day in the CICIDS2017 5-day dataset into two parts, one for training and
the other one for validation, to avoid overfitting to the training data. As a result, an autoencoder learns
the structure and correlations intrinsic to the benign traffic. The data of the four remaining days in the
CICIDS2017 dataset, including both benign and malicious traffic, are used for testing. During testing,
the compressed feature vector generated by the autoencoder is used for detecting anomalies. Under
the assumption that malicious traffic deviates significantly from benign traffic, benign network flow
test samples should have a low reconstruction error, while malicious traffic test samples result in a
high reconstruction error. In order to distinguish between the benign and malicious test samples, one
has to define a threshold on the reconstruction error. A test sample reconstructed with an error below a
certain threshold would be considered benign, whereas a test sample with a reconstruction error above
the threshold would be marked as an anomaly, possibly indicating malicious network traffic. A typical
value for this threshold is the maximum reconstruction error observed on benign traffic during the
training phase of the autoencoder.

In order to achieve optimal performance in any particular machine learning application,
the hyperparameters of the (deep) neural network have to be empirically tuned. These hyperparameters
include the number of layers, the number of neurons per layer, the learning rate of the model,
regularizers, and other affecting parameters. Since the goal of this research is to illustrate the general
approach of how to integrate federated learning with blockchains to create a distributed and immutable
audit trail, we chose a rather common parameterization of our autoencoder and only tuned the main
architectural parameters. Namely, we varied the number of hidden layers, from a shallow autoencoder
having just one hidden layer up to deeper autoencoders with three hidden layers, and the number of
neurons in the hidden layers, and tested each architecture on our dataset. The CICIDS2017 dataset we
use in our experiments provides preprocessed network flow samples composed of 78 traffic features
(an overview of the available features is provided in Table 1). We selected a subset 50 features and
normalized the values between 0.0 and 1.0. A network flow input sample is fed into the autoencoder,
converted into a compressed feature vector, and decoded back into a network flow output sample.
As the provided feature vectors are initially rather high-level, it is not necessary to utilize very
deep neural networks for further feature extraction. Indeed, as will be shown in the evaluation,
an autoencoder with just three hidden layers is able to perform accurate anomaly detection on our
data. Results reported in this paper were achieved under the following neural network configuration
and parameters:

e two symmetrical encoding and decoding parts each with three dense layers;

e the total amount of five dense layers including three hidden layers;

e the number of neurons per layer 50 — 25 — 10 — 25 — 50;

e the total amount of learnable weights (25 x 50) + (10 x 25) + (25 x 10) + (50 x 25) = 3000;
e arectified linear unit (ReLU) as the activation function;

e the Adam stochastic gradient descent (SGD) optimization algorithm;

e the learning rate of 0.05;

e L, norm (or the mean squared error) as the loss function;

A different autoencoder structure or optimization algorithm may lead to better recognition results
or a faster learning process, but these are not expected to influence the relative overhead of the
blockchain interactions. The threshold to distinguish between benign and anomalous traffic optimally
may change as well. However, only if the number of weights changes, there will be an impact on the
network traffic towards both the parameter server and the blockchain.

Note that the approach we describe in our paper is straightforwardly generalized to any neural
network that uses backpropagation, including more sophisticated deep learning algorithms such as
the feedforward convolutional neural network (CNN). The main impact on the federated learning

Appl. Sci. 2018, 8, 2663 8 of 21

algorithm in the case of substituting the neural network or adding more layers would be a change
in the number of weights to share during model aggregation, e.g., in the case of intrusion detection
directly on raw network traffic data rather than on 78 high-level features, more complex deep neural
networks would be required to achieve anomaly detection rates comparable to the state-of-the-art.
We refer to other recent related work using the same CICIDS2017 dataset for more details [35,36].

Table 1. Network flow features of the CICIDS2017 dataset.

Destination Port Flow Duration Total FwdPackets Total Backward Packets
Total Length of Fwd Packets Total Length of BwdPackets Fwd Packet Length Max Fwd Packet Length Min
Fwd Packet Length Mean Fwd Packet Length Std Bwd Packet Length Max Bwd Packet Length Min
Bwd Packet Length Mean Bwd Packet Length Std Flow Bytes/s Flow Packets/s

Flow IATMean Flow IAT Std Flow IAT Max Flow IAT Min

Fwd IAT Total Fwd IAT Mean Fwd IAT Std Fwd IAT Max

Fwd IAT Min Bwd IAT Total Bwd IAT Mean Bwd IAT Std

Bwd IAT Max Bwd IAT Min Fwd PSHFlags Bwd PSH Flags

Fwd URGFlags Bwd URG Flags Fwd Header Length Bwd Header Length
Fwd Packets/s Bwd Packets/s Min Packet Length Max Packet Length
Packet Length Mean Packet Length Std Packet Length Variance ~ FINFlag Count
SYNFlag Count RSTFlag Count PSH Flag Count ACK Flag Count

URG Flag Count CWEFlag Count ECEFlag Count Down/Up Ratio
Average Packet Size Avg Fwd Segment Size Avg Bwd Segment Size ~ Fwd Header Length
Fwd Avg Bytes/Bulk Fwd Avg Packets/Bulk Fwd Avg Bulk Rate Bwd Avg Bytes/Bulk
Bwd Avg Packets/Bulk Bwd Avg Bulk Rate Subflow Fwd Packets Subflow Fwd Bytes
Subflow Bwd Packets Subflow Bwd Bytes Init_Win_bytes_forward Init_Win_bytes_backward
act_data_pkt_fwd min_seg_size_forward Active Mean Active Std

Active Max Active Min Idle Mean Idle Std

Idle Max Idle Min

For initial testing, we used the high-level Python-based Keras (https:/ /keras.io) neural network
library (on top of Tensorflow). For the implementation of the federated learning variant of the
autoencoder, we used the Deeplearning4j (DL4]) (http://deeplearning4j.org) library, which offers a
Java API to implement deep artificial neural networks and uses a C++ backend for the computation.
DL4] can import neural network models originally configured and trained using Keras. Furthermore,
DL4] easily integrates with Java-based Big Data frameworks like Hadoop and Spark and mobile
operating systems like Android.

The federated learning component was implemented as a Spring Boot 2.0 application (https:/ /spring.
io/projects/spring-boot) that runs within a Java 8.0 virtual machine. Each Spring Boot application instance
provides a RESTful interface through which it processes one or more network flow traces of the CICIDS2017
dataset in order to learn a local learning model for the autoencoder. Each application is deployed on one
and up to 12 desktop nodes and has its own identifier to select a proper subset of the dataset to use in the
training. Additional functionality of this Spring Boot application will be described in the next subsections.

3.2. Anomaly Detection through Federated Learning

Rather than learning an anomaly detection model and evaluating it on a single high-end machine
(as done in DeepChain [27]), we partition and distribute the CICIDS2017 dataset on a real network of
desktop nodes and resource-constrained devices. They all will participate in the federated learning
setup. This setup is depicted in Figure 3. In a centralized learning environment, the low-end and
high-end systems, whose network traffic is being monitored, send their data to a centralized deep
learning node that trains the neural network model. In a federated learning environment, K clients
(acting as gateways for the monitored systems) learn a local model. Each of the k = 1..K models has
the same structure (i.e., number of layers and neurons per layer), but they are trained with different
datasets originating from their own connected clients. Figure 4 depicts a high-level overview of the
algorithm, with the pseudocode listed in Algorithm 1.

https://keras.io
http://deeplearning4j.org
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot

Appl. Sci. 2018, 8, 2663 9of 21

Centralized deep learning Federated deep learning

gj Q High-end system m‘ Deep learning client
@ @ &
[l ﬁ Low-end system ||‘ Parameter server
anca LI)
,-" Network traffic traces / Model updates

Figure 3. Centralized versus federated learning (local optimization and sharing of new weights with
parameter server).

Algorithm 1 Federated Averaging. C is the global batch size; B is the local batch size; the K clients are
indexed by k; E is the number of local epochs; and 7 is the learning rate (adapted from [37]).

1: procedure SERVERUPDATE:
2 initialize wy
3 foreachround t =1,2,...do
4 m < max(C - K, 1
5 St < (subset m of clients)
6: for each client k € S; in parallel do
7: w 1 < ClientUpdate(k, w;)
8 end for FK
9 Wiyl < 1w
10: end fo+r K=t T
11: end procedure
12: procedure CLIENTUPDATE(k, w)
13: // Run on client k
14: B + (split data k into batches of size B)
15: for each local epoch i from 1 to E do
16: forbatch b € B do
17: w <« w — nVE(w)
18: end for
19: end for
20: return w to server

21: end procedure

To initiate the federated learning scheme, at ¢ = 0, the parameter server initializes a master model
with a first set of weights w. Second, each of the k = 1..K deep learning clients downloads this master
model from the parameter server. Third, each of the k = 1..K deep learning clients computes in parallel
anew local set of weights wf 1 using the training data of its connected monitored systems. Last, the
parameter server updates the weights of the master model w; ;1 by aggregating the weights w¥ 4q of
each client k (by weighted averaging) to create an improved master model. The cycle repeats, and a
new epoch is started until a certain stop criterion is reached.

Our methodology follows the design principles for federated learning using model averaging as
proposed by McMahan et al. [6,37]. They formalize the notion of federated learning as a problem of
federated optimization where at time ¢ > 0, the parameter server distributes the model w; to (a subset
of) K clients of the federation. In order for the model averaging to have a similar expected learning
capacity as the centralized case, three assumptions have to hold: (a) all the clients share the same initial
weights; (b) the weight updates are disseminated to the clients synchronously and irrespective of their

Appl. Sci. 2018, 8, 2663 10 of 21

participation in the last global epoch; (c) the learning rate is common amongst all the clients. With
these assumptions holding, the only variable between the federated and the centralized mode is how
apart the distributions of the local datasets are. Approaching it from the global scope of the server, we
would reframe the question as how independent and identically distributed (henceforth IID) are the
mini-batches.

; Parameter
~ Weight |:> server
initialization with master

model

Average weights
and update model

Global
epoch

R

Client @

Figure 4. Flowchart of the federated aggregation of the local weight updates into the master model.

After we fix the learning rate 7, each client k = 1..K downloads the weights from the parameter
server and then independently calculates g = VF;(w), the average gradient on its local data at the
current model w;. The clients can perform this in batch or mini-batch mode and for more than one
epoch. Then, the server aggregates these gradients and applies the following update:

. n n
Wi wp — eV f(wy) with f(wy) = Zle ;ka(wt) or Vf(w) = 211;1 ?kgf

where f(w;) is the loss function, w; the model parameters at time ¢, and 7y the size of the data partition
of client k so that n =) 1. In equal manner for each client k, the final weight update becomes:

k k K Mgk
Yk wipy & we =gl Wi <) 7 Wi

At the end of each local update, the parameter server computes the weighted average of the
local weights wf 1~ At this point, we need to address the underlying distribution of each local dataset.
The work by McMahan et al. [37] shows that model averaging, with the aforementioned assumptions
holding, is robust towards unbalanced and non-IID data distributions, with a certain overhead in
required training epochs to achieve similar model performance. For this intrusion detection use case
that learns an autoencoder model based on features of benign network traffic, we can establish a claim
for approximately-IID data given that the infrastructure, protocols, and benign user behavior are largely
the same for all clients. Moreover, when we consider this unsupervised learning case, the federated
gradient descent finds a lower dimensional manifold where the benign traffic data collectively lie,
which implies that there is a distribution that describes and generates them, irrespective of what client
from which they originate. Ultimately, the efficacy of the federated averaging algorithm compared to
the centralized version is validated in non-IID use-cases, which provides a lower bound on expected
performance.

Appl. Sci. 2018, 8, 2663 110f 21

Considering the potential upscaling of the federation, for a large value of K and especially
when the deep learning algorithms would be directly run on a heterogeneous set of powerful and
resource-constrained clients, the federated learning algorithm can be dynamically adapted to collect
weight updates w’t‘ 1 from a smaller random subset of the K nodes. Otherwise, computing the federated
average could significantly delay the computation of an updated deep learning model if the algorithm
has to always wait for the slowest contributor.

In our experimental setup, we can vary the number of deep learning clients from 1-12 as the
CICIDS2017 dataset contains network flow traces of 12 machines being monitored. With just one deep
learning client, as shown in Figure 3 on the left, we end up with a centralized learning configuration
where each of the 12 monitored systems is connected to the same deep learning client. The other
extreme configuration has 12 deep learning clients and a parameter server. In that setting, each
monitored system is connected to a single deep learning client. Each of the deep learning clients is
connected to the parameter server. In such a deployment and monitoring scenario, the monitored
system and deep learning client are unified, such that each client node in the network learns its own
autoencoder based solely on its own network traffic data. In an intermediate deployment configuration,
as depicted in Figure 3 on the right, the 12 monitored systems are connected to a few deep learning
clients, which in turn are connected to the parameter server. The CICIDS2017 dataset is partitioned
in such a way that each deep learning client processes the network flows of 2—4 monitored systems.
For all scenarios, the goal is that each deep learning client can recognize anomalous traffic or intrusions,
even if those attacks were not present in the data it used as input for its own local autoencoder.

Our Spring Boot 2.0 application provides a RESTful interface, not only to retrieve network flow
traces as discussed in the previous subsection, but also to collect and compute the aggregation of the
weights to produce the updated deep learning model, i.e., an improved autoencoder model. However,
this part of the functionality is only used on the node that acts as the parameter server.

3.3. Federated Learning in an Adversarial Setting

In an adversarial setting, one or multiple nodes in the network may be compromised.
The adversary can launch data poisoning attacks on the federated machine learning by altering
a small fraction of the training data or the weight updates in order to make the global trained classifier
satisfy the objective of the attacker whose goal is to remain undetected. The following attack scenarios
are possible, sorted in terms of their security threat impact:

e A monitored node is compromised and provides malicious network flow features such that the
connected deep learning client optimizes its local model based on erroneous traffic data.

e A deep learning client is compromised and provides malicious weight updates to the parameter
server and/or does not adopt new model updates broadcast by the parameter server.

o The parameter server is compromised and provides malicious neural network model updates
back to the deep learning clients.

Obviously, more complex attack scenarios involve a combination of these nodes being
compromised. However, the assumption of this threat model is indeed that at least one node is
under the control of the attacker. A second assumption is that the benign traffic data is not too noisy so
that the maximum of the reconstruction error on the training set can be taken as a threshold to identify
intrusions as anomalies.

There are various techniques to execute poisoning attacks against machine learning algorithms.
This is beyond the scope of this work, but we refer interested readers to the related work on poisoning
attacks and defenses [38-40] for more details.

3.4. Auditing the Anomaly Models and Weight Updates on the Blockchain

Given that the parameter server is the most security-sensitive component in the federated learning
setup, we will replace the direct interaction with this server with a blockchain. This way, all deep

Appl. Sci. 2018, 8, 2663 12 0f 21

learning clients and monitored systems can interact with the blockchains such that all interactions
and autoencoder model updates are traceable. The peer-to-peer architecture of a blockchain has the
additional advantage that the parameter server does not become a single point of failure, as each node
has a full copy of the ledger and can compute the aggregated weight updates.

Given that the federated learning process involves a large amount of weight updates, a public
blockchain that relies on a proof-of-work consensus protocol, such as Bitcoin or Ethereum, is not
feasible as the generation of new blocks on the ledger would be too slow. We therefore rely on a
private and permissioned blockchain that supports multiple assets and mining without proof-of-work.
The MultiChain [41] open source blockchain platform and its round-robin-based mechanism for
permitted miners to create new blocks meets the aforementioned prerequisites.

For our proof-of-concept implementation, we deploy MultiChain 2.0 (alpha 4) on 12 nodes and
deploy an idschain with the following commands on node host0Iwith IP address 192.168.100.24:

host01:~$ multichain-util create ids
host01:~$ multichaind ids -daemon

In order for host02 to connect to the ids chain on the blockchain, we grant its wallet address
1anp8 AquuvPi87LP5BQ3HPAKNDRnwKbbI9fLTuthe permission as follows:

host01:7$ multichain-cli ids grant 1anp8AquvvPi87LP5BQ3HPAKNDRnwKbb99fLTu connect
host02:”$ multichaind ids@192.168.100.24:6469 -daemon

We repeat the above process for nodes host03-host12 where each of these nodes has its own wallet
address. We then create a stream to store all updates to a machine learning model anomaly, store an
initial model of the autoencoder in JSON format under the initkey, and grant all other nodes—from
host02—host12—the permission to publish to the anomaly stream:

host01:7$ multichain-cli ids create stream anomaly false

host01:”$ multichain-cli ids publish anomaly init ’{"json":{"nb_layers": 5, ...}}’
host01:7$ multichain-cli ids grant 1lanp8AquvvPi87LP5BQ3HPAKNDRnwKbb99fLTu send
host01:”$ multichain-cli ids grant 1anp8AquvvPi87LP5BQ3HPAKNDRnwKbb99fLTu anomaly.write

Each node can then subscribe to the stream and query all items or only those with a specific key:

host01:7$ multichain-cli ids subscribe anomaly
host01:7$ multichain-cli ids liststreamitems anomaly # all items
host01:7$ multichain-cli ids liststreamkeyitems anomaly init # items with the key ’init’

On the second node host02, we publish a local model update as follows:

host02:~$ multichain-cli ids publish anomaly host02_1 ’{"json":{"deltaweights": [0.1, -0.23, ... 1}}’

MultiChain implements a consensus algorithm based on block signatures and a customizable
round-robin consensus scheme. In order for the 12 nodes to start validating blocks, they must be
granted the minepermission:

host01:”$ multichain-cli ids grant 1anp8AquvvPi87LP5BQ3HPAKNDRnwKbb99fLTu mine

The blockchain will now start mining blocks at fixed intervals. The updated weights of host02 can
then be collected on host01 as follows:

host01:”$ multichain-cli ids liststreamkeyitems anomaly host02_1

{"method":"liststreamkeyitems","params": ["anomaly","host02_1"],"id":"85490301-1541081528","chain_name":"ids"}
[

{

"publishers" : [

"1anp8AquvvPi87LP5BQ3HPAKNDRnwKbb99fLTu"

1,

"keys" : [

"host02_1"

Appl. Sci. 2018, 8, 2663 13 of 21

1,

"offchain" : false,

"available" : true,

"data" : {

"json" : {

"deltaweights" : [0.1, -0.23, ...]
}

3,

"confirmations" : 52,

"blocktime" : 1541079108,

"txid" : "6631960d2e75dcae7839653979c1d9872d1a01958fb3b93bf76422a50££d9298"
}

]

The model update has been stored, timestamped, notarized, and confirmed on the blockchain.
Each connected node can now not only validate blocks, but also audit the updated weights of each
party involved in the federated learning. If a node subscribes to a stream, it will index that stream’s
contents to enable efficient retrieval.

Each Spring Boot application instance that learns a local model of the autoencoder interacts with
an instance of the MultiChain blockchain deployed on the same node. The main reason for this is to
publish and retrieve the weight updates for the autoencoder model with minimal network latencies.
For the NVIDIA and ODROID boards, the Spring Boot application runs within a Java 8.0 virtual
machine for ARM. However, MultiChain is a native application and not publicly available for that
target. We therefore re-compiled the MultiChain 2.0 source code on both ARM embedded platforms.

4. Evaluation

In this section, we will first describe our experimental setup with more detail before evaluating
our proof-of-concept implementation in different configurations.

4.1. Experimental Setup

Our Linux-based deployment configuration consists of a mix of high-end computing nodes and
low-end embedded boards, as depicted in Figure 5:

e 18 desktop nodes with an Intel i5-2400 CPU at 3.10 GHz and 4 GB of memory

e 1 laptop with an Intel i5-3320M CPU at 2.60 GHz and 16 GB of memory

e An NVIDIA Jetson TX2 with a Quad ARM A57 processor, 8 GB of memory and 256 CUDA cores
e An ODROID U3 mini-board with a Quad Cortex-A9 processor and 2 GB of memory

All the above nodes run a 64-bit ARM or x86-64 version of Ubuntu 16.04, except for the laptop,
which runs Ubuntu 18.10 and is only used to administer the deployment remotely. The Jetson TX2
with its CUDA cores is specifically suited for deep learning on a resource-constrained device. All the
nodes are connected to a wired 1-Gbps network. Depending on the experiment, up to 12 desktop
nodes are used to run the Spring Boot application to compute local models through federated learning.
Another desktop node acts as a parameter server for blockchain-less experiments, and yet another
desktop node is dedicated to centralized learning experiments. All desktop nodes run the MultiChain
blockchain to validate new blocks.

For our deep learning experiments, we only use the data captured on Monday in the CICIDS2017
five-day dataset, as that day is confirmed (https://www.unb.ca/cic/datasets /ids-2017.html) to only
include benign traffic, whereas the next four days include the various attacks.

https://www.unb.ca/cic/datasets/ids-2017.html

Appl. Sci. 2018, 8, 2663 14 of 21

Figure 5. Hybrid deployment of high-end devices and low-end device. From left to right: desktop,
laptop, ODROID U3 mini-board, and NVIDIA Jetson TX2 embedded board.

4.2. Centralized Learning

In a first experiment, we learned an autoencoder model with a configuration described in
Section 3.1 on a single node, both with a Keras implementation on top of Tensorflow and with
our Spring Boot application that uses Deeplearning4j [42]. Figure 6 gives an overview of the training
process for 50 epochs, using 20% of the benign samples for validation to avoid overfitting. The duration
of training on a single node was 57 min, or a little more than 1 min per epoch on average. The results
show an accuracy of around 97% for both the training and validation phase, with a loss value that
stabilizes around 5.08 x 10~3. Table 2 provides an overview of the reconstruction error distribution.

acc loss
0.971 6.800e-3
0.969 6.400e-3 -|
0.967 - 6.000e-3
0.965 5.600e-3
0.963 5.200e-3
0.961 - 4.800e-3
0.000 10.00 20.00 30.00 40.00 50.00 0.000 10.00 20.00 30.00 40.00 50.00
val_acc val_loss
0.975
5.600e-3 |
0.970
0.965 5.400e-3
0.960
0.955 5.200e-3 |
0.950 5.000e-3
0.000 10.00 20.00 30.00 40.00 50.00 0.000 10.00 20.00 30.00 40.00 50.00

Figure 6. Centralized training of the autoencoder for 50 epochs on benign data only using 20% of the
data for validation to avoid overfitting (X-axis depicts epochs, and Y-axis depicts accuracy and loss
value on training and validation set).

Appl. Sci. 2018, 8, 2663 15 of 21

Table 2. Statistical breakdown of the reconstruction error.

Reconstruction Error

count 105,984.0
mean 4988194 x 103
std 9.683384 x 103
min 4.865089 x 10~7
25% 4.711496 x 105
50% 1.177916 x 104
75% 4335404 x 1074
max 1.791145 x 10!

In principle, we use the maximum value in the above table to define a threshold (e.g., 1.8 x 107!
for the reconstruction error to distinguish benign from anomalous behavior, with the assumption that
benign traffic has a lower reconstruction error and the malicious traffic a higher reconstruction error.
However, setting this value too high may lead to some malicious traffic going unnoticed, while setting
it too low may flag benign traffic as anomalous. Setting a proper value for the threshold depends on
whether one wants to minimize the false positives or the false negatives. This optimization concern is
application specific and ideally the result of a broader hyperparameter search experiment to find the
optimal neural network model and/or thresholds. However, this assessment falls beyond the scope of
this work.

4.3. Federated Learning With Varying the Number of Deep Learning Clients

In a federated learning setup, we vary the number of nodes involved in the distributed deep
learning process from 2-12 and repeat the training for 50 epochs. We expect the overall training to take
less time given that the workload is shared and that the size of the neural network (i.e., the number
of weights) is fairly small to cause significant network delays. However, we do anticipate that more
epochs are required to reach the same loss value on the training and test sets due to the federated
averaging of the weight updates of the individual local models. An overview of the experiment
runtimes in minutes and the number of epochs to converge is depicted in Figure 7.

The results appear to confirm our assumptions. Whereas the centralized learning converges
after around 20 epochs, this value increases with more nodes. The overall training time for 50 epochs
goes down as more nodes contribute to the distributed learning process. However, it is clear that
the scalability of our solution is non-linear. We posit out that this outcome is partly due to a naive
synchronous implementation of the aggregation at the parameter server, and we anticipate improved
runtimes with an asynchronous implementation of the federated model averaging algorithm. A similar
approach or method akin to model compression will be essential when the number of local deep
learning clients increases significantly.

Another contributing factor to the average epoch time—and hence the model updates in our
synchronous implementation—is the heterogeneity in computational resources available on the deep
learning clients. If we replace one of the 12 desktop nodes with either the ODROID or the NVIDIA
Jetson TX2 embedded boards and their slower ARM processors, our naive synchronous aggregation
algorithm must wait for the slowest node. For the Jetson TX2 board, this issue can be mitigated by
leveraging the CUDA cores of the board. This accelerates the deep learning by at least a factor of
four compared to the ARM processor, as long as the deep learning model fits into the memory of
the graphics chip. An asynchronous version of the aggregation model may alleviate the resource
heterogeneity problem as well, as long as weight updates against older deep learning models are
discarded.

Appl. Sci. 2018, 8, 2663 16 of 21

Federated learning in time and epochs
60

50

40
5
E 0 m Time
[
£
= 20
’ -
0
1 2 4 6 12
Number of deep learning servers
50
45
40
35
[%2)
S 30
o
N
(=]
8 M Epochs
£
z

(5]

25

20

15

10

0
2 4

Number of deep learning servers

Figure 7. Federated training the autoencoder on benign data only using 20% of the data for testing.

4.4. Federated Learning with Blockchain Support

With the addition of the MultiChain blockchain, both the weight updates and revised models are
stored with each epoch on the blockchain. There are now two strategies to leverage the blockchain:

1. A parameter server receives the weight updates directly from the deep learning servers and
immediately processes them.

2. A parameter server only processes those weight updates that have been stored and validated on
the blockchain.

In both scenarios, the deep learning clients store their weight updates on the blockchain. However,
depending on the block generation time (i.e., 15 s by default for MultiChain), the federated model
averaging would be delayed a fair amount of time in the second scenario, especially if the parameter
server waits for multiple block confirmations. However, the impact of this block generation and
confirmation delay is relative to the actual duration of a single epoch, which for a single deep learning
client is more than 1 min. Furthermore, we can reconfigure the block confirmation time in MultiChain
to as low as 2 s and pause the block generation on a chain if there are no new weight updates as a
method to reduce the number of blocks in a chain.

The results of the first scenario are depicted in Figure 8. There is a slight delay caused by the
blockchain—with a computational overhead varying between 5% and 15%—due to the fact that each
deep learning client now also stores the local weight updates on the blockchain. The parameter server
also stores the updated model on the blockchain. With a growing number of nodes, the blockchain
needs to be synchronized more frequently. This causes interference in the network, albeit minimal.
In the second scenario, the delays are more outspoken due to the block generation and confirmation
times, even when waiting for just one block confirmation. For a target block time of 15 s, the time to
generate a new autoencoder model update increased up to 41 s. We were able to reduce this to 13 s

Appl. Sci. 2018, 8, 2663 17 of 21

by lowering the target block time to 5 s. Additionally, it is not possible to change the target block
dynamically time at runtime depending on the number of connected deep learning nodes, as this
would be a security risk. An adversary could attempt to reduce this time and add blocks in a malicious
manner.

Average epoch time

40 | Without blockchain
m With blockchain
30
20
0
1 2 4 6 12

Number of deep learning servers

Time (sec)

Figure 8. Average epoch time in seconds with and without the blockchain when the deep learning
clients directly interact with the parameter server.

To minimize latencies, our proof-of-concept implementation relies on the first strategy, where
the parameter server keeps track of unconfirmed weight updates for up to four block generations.
In that case, it rolls back to a previous autoencoder model stored on the blockchain and discards any
unconfirmed weight updates. In an online learning scenario with infrequent data updates, the second
strategy is more appropriate.

4.5. Auditing the Federated Learning Process

Note that the blockchain can only guarantee the immutability and verify the integrity of the data
stored on the blockchain. It cannot assure the veracity of the data. Any party that is granted the
permission to write to a stream can store any data and launch a poisoning attack on the federated
deep learning process. Additional functionality is required to monitor and audit the content of the
blockchain, both for (1) the local weight updates by the deep learning servers and (2) the averaged
model updates by the parameter server.

If the federated averaging algorithm is known, each client connected to the MultiChain blockchain
with a receive permission can verify the computation of the model updates by the parameter server.
Ideally, this functionality is offered by means of a smart contract, but the capability of running code
directly on the blockchain—and not by relying on external services—is not supported by MultiChain
(contrary to blockchain solutions like Ethereum and Hyperledger Fabric).

A similar observation can be made for the weight updates by the local deep learning servers.
However, the computational complexity of the stochastic gradient descent algorithm makes execution
as a smart contract impractical. As a result, external monitoring for poisoning attacks [38-40] needs to
be put in place to audit the veracity of the data stored on the blockchain, possibly in an offline manner.
We implemented an additional countermeasure for making poisoning attacks more challenging by:

e Creating two streams, one for local weight updates and another one for averaged model updates.
e Granting deep learning clients to write only to the first stream and read only from the second.

If a deep learning client were compromised, an adversary could not learn from the weight
updates of the other deep learning clients to launch a carefully- crafted poisoning attack that will also
go undetected by the local models of the other deep learning clients.

Appl. Sci. 2018, 8, 2663 18 of 21

4.6. Discussion, Limitations, and Validity Threats

In this work, we proposed a solution that integrates blockchain technology with federated learning
to help audit the model updates of the federated deep learning clients. Our results demonstrated a
limited performance overhead imposed by the MultiChain blockchain in a specific security use case of
federated intrusion detection. Generalizing these results to other applications is not trivial. However,
certain hypotheses can be made about the general tendencies of our approach. We believe that our
integration approach is especially beneficial for security use cases where inference is performed directly
on raw data (rather than on the preprocessed data, such as the CICIDS2017 dataset). In this case, the
relative performance overhead of the blockchain will reduce even further, as federated learning will
be exempt of the costly transmission of vast amounts of raw data. At the same time, analogous use
cases will presumably require using deeper neural networks with more sophisticated architectures,
necessary for automatic feature extraction. Deeper models in turn will have their own not easily
estimated impact on performance overhead. To begin with, they will require relatively increased local
processing in order to compute the model updates at each client in the federation, which may affect the
latency of global updates. Secondly, a higher amount of learnable parameters in a deeper architecture
will require storing more data on the blockchain. In order to confirm these assumptions, numerous
federated learning deployments have to be systematically validated in different application scenarios
that vary in the nature of data, processing, and network capacity.

Another consequence of the proposed integration approach is a trade-off between the local
rate of convergence on the clients and the audit frequency of the global model updates. On the
one hand, iterating more frequently at each client locally before computing the federated average
allows converging faster at the nodes. On the other hand, having fewer local iterations causes more
federated averages to be computed and stored on the distributed ledger. More frequently-chained
model updates on the blockchain improve the auditability of the machine learning model. However,
as most blockchains create new blocks at fixed time intervals, we propose to align the federated
averaging algorithm with the block creation period to minimize any latencies.

In this work, we used an intrusion detection security use case in order to demonstrate the
feasibility of the introduced approach to the integration of federated learning and blockchain
technology. The type of neural network we used in our experiments, i.e., the autoencoder, has a
fairly simple architecture, while more advanced neural networks have been proposed in the literature
for anomaly and network intrusion detection. Our approach remains equally applicable and scalable
to deeper or more complex neural networks, such as convolutional neural networks, as well as to other
use cases that could benefit from federated learning. However, the federated averaging algorithm
has to be tuned accordingly for each particular application in order to get the best results, which may
indirectly affect the interaction with the MultiChain blockchain.

5. Conclusions

In this work, we explored federated deep learning as a use case for permissioned blockchains
using the latter to audit the distributed learning process. Our federated learning experiments using
(a) an autoencoder for anomaly detection, (b) a real-world intrusion detection dataset (i.e., CICIDS2017),
and (c) MultiChain as the underlying blockchain technology illustrated the practical feasibility to
create an immutable audit trail. We obtained a limited relative performance overhead caused by the
blockchain of about 5-15%, while providing full transparency over the distributed learning process.

However, there are some validity threats that need to be taken into consideration when aiming
to generalize the obtained results. First of all, the performance overhead caused by the blockchain is
closely tied to the complexity of a (deep) neural network at the core of the federated learning algorithm.
Since the adopted model averaging algorithm relies on iterative sharing and averaging of weights that
need to be stored on a blockchain for audit, the total amount of weights of the neural network will
define the performance impact of the proposed approach. In our work, an autoencoder with three
hidden layers is leveraged as an anomaly detection method, with a total amount of 3000 weights.

Appl. Sci. 2018, 8, 2663 19 of 21

A deeper autoencoder or another deep learning model, such as CNN networks with more hidden layers,
would require storing many more learnable parameters for auditable model averaging. However,
these deep models normally operate on raw input data, and the relative computational overhead
of federated learning on a blockchain in comparison to a centralized approach will still be limited.
Secondly, in our experiments with a growing number of desktop nodes, we ensured that each deep
learning client had the same amount of traffic traces to process in order to compute each local deep
learning model. In practice—and as shown in Figure 3 on the right—the amount of data to be processed
may be unbalanced. An unequal availability of computational resources and network bandwidth
capacity may skew the results, especially for significantly larger deployments. Finally, we assume
that the blockchain itself is not compromised. MultiChain is tolerant to a misbehaving minority of
nodes, but not to a global network-level attack. Furthermore, our experimental setup relied on a single
administrator that managed the governance of the blockchain. The assumption is that this central
administrator can be trusted and, e.g., does not grant extra permissions to colluding adversaries.

As future work, we aim to improve the model aggregation algorithm to cope not only with
heterogeneous hardware, but also with unreliable network connectivity and intermittently-connected
nodes. A transition to the Hyperledger Fabric blockchain may allow for some of the auditing
functionality to be executed as smart contracts, so that poisoning attacks can be mitigated before
the weight updates are stored on the blockchain.

Author Contributions: Conceptualization, D.P,, VR, LT, J.S.,, WJ.,, and EL-Z.; data curation, V.R.; funding
acquisition, W.J. and E.L-Z.; project administration, D.P. and W.J.; software, D.P,; supervision, D.P. and W.J.;
writing, original draft, D.P.,; writing, review and editing, V.R., L.T., and J.S.

Funding: This research is partially funded by the Research Fund KU Leuven. Work for this paper was supported
by the European Commission through the H2020 project EXCELL (http:/ /excell-project.eu/) under Grant
No. 691829. In addition, it was also funded by imecthrough ICON RADIANCE(HBC.2017.0629). RADIANCE is a
project realized in collaboration with imec. Project partners are BARCO, Skyhaus, and Skyline communications,
with project support from VLAIO(Flanders Innovation and Entrepreneurship).

Acknowledgments: We gratefully acknowledge the support of NVIDIA Corporation with the donation of the
Titan Xp GPU used for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sadeghi, A.R.; Wachsmann, C.; Waidner, M. Security and Privacy Challenges in Industrial Internet of Things.
In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco,
CA, USA, 8-12 June 2015; ACM: New York, NY, USA, 2015; pp. 54:1-54:6. [CrossRef]

2. Preuveneers, D.; Zudor, E.I. The intelligent industry of the future: A survey on emerging trends, research
challenges and opportunities in Industry 4.0. JAISE 2017, 9, 287-298. [CrossRef]

3. Verma, RM,; Kantarcioglu, M.; Marchette, D.].; Leiss, E.L.; Solorio, T. Security Analytics: Essential Data
Analytics Knowledge for Cybersecurity Professionals and Students. IEEE Secur. Privacy 2015, 13, 60-65.
[CrossRef]

4. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. Acm Comput. Surv. 2009, 41, 15:1-15:58.
[CrossRef]

5. Verma, R. Security Analytics: Adapting Data Science for Security Challenges. In Proceedings of the Fourth
ACM International Workshop on Security and Privacy Analytics, Tempe, AZ, USA, 19-21 March 2018; ACM:
New York, NY, USA, 2018; pp. 40—41. [CrossRef]

6. Konecny, J.; McMahan, H.B.; Yu, EX,; Richtarik, P.; Suresh, A.T.; Bacon, D. Federated Learning: Strategies
for Improving Communication Efficiency. arXiv 2016, arXiv:1610.05492

7. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, Fort Lauderdale, FL, USA, 20-22 April 2017; Singh, A., Zhu, X.J., Eds.; Volume 54,
pp. 1273-1282.

http://excell-project.eu/
http://dx.doi.org/10.1145/2744769.2747942
http://dx.doi.org/10.3233/AIS-170432
http://dx.doi.org/10.1109/MSP.2015.121
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1145/3180445.3180456

Appl. Sci. 2018, 8, 2663 20 of 21

10.
11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Du, M,; Li, F; Zheng, G.; Srikumar, V. DeepLog: Anomaly Detection and Diagnosis from System
Logs Through Deep Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, 30 October—3 November 2017; ACM: New York, NY, USA, 2017;
pp. 1285-1298. [CrossRef]

Hitaj, B.; Ateniese, G.; Perez-Cruz, F. Deep Models Under the GAN: Information Leakage from Collaborative
Deep Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, Dallas, TX, USA, 30 October-3 November 2017; ACM: New York, NY, USA, 2017; pp. 603-618.
[CrossRef]

Sundaram, A. An Introduction to Intrusion Detection. XRDS 1996, 2, 3-7. [CrossRef]

Inayat, Z.; Gani, A.; Anuar, N.B.; Khan, M.K; Anwar, S. Intrusion response systems: Foundations, design,
and challenges. J. Netw. Comput. Appl. 2016, 53-74. [CrossRef]

Karim, I; Vien, Q.T; Le, T.A.; Mapp, G. A Comparative Experimental Design and Performance Analysis of
Snort-Based Intrusion Detection System in Practical Computer Networks. Computers 2017, 1, 6. [CrossRef]
Lunt, T.F. A Survey of Intrusion Detection Techniques. Comput. Secur. 1993, 12, 405-418. [CrossRef]
Mitchell, R.; Chen, LR. A Survey of Intrusion Detection Techniques for Cyber-physical Systems.
ACM Comput. Surv. 2014, 46, 55:1-55:29. [CrossRef]

Vasilomanolakis, E.; Karuppayah, S.; Miithlhduser, M.; Fischer, M. Taxonomy and Survey of Collaborative
Intrusion Detection. ACM Comput. Surv. 2015, 47, 55:1-55:33. [CrossRef]

Zarpelo, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A Survey of Intrusion Detection in Internet of
Things. J. Netw. Comput. Appl. 2017, 84, 25-37. [CrossRef]

Rubinstein, B.L; Nelson, B.; Huang, L.; Joseph, A.D.; Lau, S.h.; Rao, S.; Taft, N.; Tygar,].D. ANTIDOTE:
Understanding and Defending Against Poisoning of Anomaly Detectors. In Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement, Chicago, IL, USA, 4-6 November 2009; ACM: New York,
NY, USA, 2009; pp. 1-14. [CrossRef]

Biggio, B.; Nelson, B.; Laskov, P. Poisoning Attacks Against Support Vector Machines. In Proceedings
of the 29th International Coference on International Conference on Machine Learning, Edinburgh, UK,
26 June-1 July 2012; pp. 1467-1474.

Chen, S.; Xue, M,; Fan, L.; Hao, S.; Xu, L.; Zhu, H.; Li, B. Automated poisoning attacks and defenses in
malware detection systems: An adversarial machine learning approach. Comput. Secur. 2018, 73, 326-344.
[CrossRef]

Wang, Z. Deep Learning-Based Intrusion Detection With Adversaries. IEEE Access 2018, 6, 38367-38384.
[CrossRef]

Huang, C.H.; Lee, TH.; Chang, L.h; Lin,].R,; Horng, G. Adversarial Attacks on SDN-Based Deep Learning IDS
System. In Mobile and Wireless Technology 2018; Kim, K.J., Kim, H., Eds.; Springer: Singapore, 2019; pp. 181-191.
Madan, I; Saluja, S.; Zhao, A. Automated Bitcoin Trading via Machine Learning Algorithms. 2014. Available
online: http://cs229.stanford.edu/proj2014/Isaac%20Madan, %20Shaurya%20Saluja, %20Aojia%20Zhao,
Automated%?20Bitcoin%20Trading %20via%20Machine%20Learning%20Algorithms.pdf (accessed on 22
November 2018).

Bikowski, K. Application of Machine Learning Algorithms for Bitcoin Automated Trading. In Machine
Intelligence and Big Data in Industry; Springer: Cham, Switzerland, 2016; pp. 161-168.

Chen, W.; Zheng, Z.; Cui, J.; Ngai, E.; Zheng, P; Zhou, Y. Detecting Ponzi Schemes on Ethereum: Towards
Healthier Blockchain Technology. In Proceedings of the 2018 World Wide Web Conference, Lyon, France,
23-27 April 2018; pp. 1409-1418. [CrossRef]

Bogner, A. Seeing is Understanding: Anomaly Detection in Blockchains with Visualized Features.
In Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11-15
September 2017; ACM: New York, NY, USA, 2017; pp. 5-8. [CrossRef]

Meng, W.; Tischhauser, E.W.; Wang, Q.; Wang, Y.; Han, J. When Intrusion Detection Meets Blockchain
Technology: A Review. IEEE Access 2018, 6, 10179-10188. [CrossRef]

Weng, J.; Weng, J.; Zhang, J.; Li, M.; Zhang, Y.; Luo, W. DeepChain: Auditable and Privacy-Preserving
Deep Learning with Blockchain-Based Incentive. Cryptology ePrint Archive, Report 2018/679.
2018. Available online: https://www.semanticscholar.org/paper/DeepChain%3A-Auditable-and-Privacy-
Preserving-Deep-Weng-Weng /07{229cc6e5b80fc8ffbbb3e4db85142466f55a9 (accessed on 16 December 2018).

http://dx.doi.org/10.1145/3133956.3134015
http://dx.doi.org/10.1145/3133956.3134012
http://dx.doi.org/10.1145/332159.332161
http://dx.doi.org/10.1016/j.jnca.2015.12.006
http://dx.doi.org/10.3390/computers6010006
http://dx.doi.org/10.1016/0167-4048(93)90029-5
http://dx.doi.org/10.1145/2542049
http://dx.doi.org/10.1145/2716260
http://dx.doi.org/10.1016/j.jnca.2017.02.009
http://dx.doi.org/10.1145/1644893.1644895
http://dx.doi.org/10.1016/j.cose.2017.11.007
http://dx.doi.org/10.1109/ACCESS.2018.2854599
http://cs229.stanford.edu/proj2014/Isaac%20Madan,%20Shaurya%20Saluja,%20Aojia%20Zhao,Automated%20Bitcoin%20Trading%20via%20Machine%20Learning%20Algorithms.pdf
http://cs229.stanford.edu/proj2014/Isaac%20Madan,%20Shaurya%20Saluja,%20Aojia%20Zhao,Automated%20Bitcoin%20Trading%20via%20Machine%20Learning%20Algorithms.pdf
http://dx.doi.org/10.1145/3178876.3186046
http://dx.doi.org/10.1145/3123024.3123157
http://dx.doi.org/10.1109/ACCESS.2018.2799854
https://www.semanticscholar.org/paper/DeepChain%3A-Auditable-and-Privacy-Preserving-Deep-Weng-Weng/07f229cc6e5b80fc8ffbbb3e4db85142466f55a9
https://www.semanticscholar.org/paper/DeepChain%3A-Auditable-and-Privacy-Preserving-Deep-Weng-Weng/07f229cc6e5b80fc8ffbbb3e4db85142466f55a9

Appl. Sci. 2018, 8, 2663 21 of 21

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset
and Intrusion Traffic Characterization. In Proceedings of the 4th International Conference on Information
Systems Security and Privacy, Funchal, Portugal, 22-24 January, 2018; pp. 108-116. [CrossRef]

Chalapathy, R.; Menon, A K.; Chawla, S. Anomaly Detection using One-Class Neural Networks. arXiv 2018,
arXiv:1802.06360

Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Siddiqui, S.A.; Binder, A.; Miiller, E.; Kloft, M.
Deep One-Class Classification. In Proceedings of the 35th International Conference on Machine Learning,
Stockholm, Sweden, 10-15 July 2018; Dy, J., Krause, A., Eds.; PMLR: Stockholmsmaéssan, Stockholm, Sweden,
2018; Volume 80, pp. 4393-4402.

Ayesh, A.5.D.D.A. Intelligent intrusion detection systems using artificial neural networks. ICT Express 2018,
4,95-99. [CrossRef]

Ryan, J.; Lin, M.J.; Miikkulainen, R. Intrusion Detection with Neural Networks. In Proceedings of the 1997
Conference on Advances in Neural Information Processing Systems 10; MIT Press: Cambridge, MA, USA, 1998;
pp- 943-949.

Hodo, E.; Bellekens, X.; Hamilton, A.; Dubouilh, P; Iorkyase, E.; Tachtatzis, C.; Atkinson, R. Threat analysis
of IoT networks using artificial neural network intrusion detection system. In Proceedings of the 2016
International Symposium on Networks, Computers and Communications (ISNCC), Hammamet, Tunisia,
11-13 May 2016; pp. 1-6. [CrossRef]

Baldi, P. Autoencoders, Unsupervised Learning and Deep Architectures. In Proceedings of the 2011
International Conference on Unsupervised and Transfer Learning Workshop, Washington, DC, USA, 2 July
2011; Volume 27, pp. 37-50.

Min, E.; Long, J.; Liu, Q.; Cui, J.; Cai, Z.; Ma, J. SU-IDS: A Semi-supervised and Unsupervised Framework
for Network Intrusion Detection. In Cloud Computing and Security; Sun, X., Pan, Z., Bertino, E., Eds.; Springer:
Cham, Switzerland, 2018; pp. 322-334.

Radford, B.J.; Richardson, B.D.; Davis, S.E. Sequence Aggregation Rules for Anomaly Detection in Computer
Network Traffic. arXiv 2018, arXiv:1805.03735

McMahan, H.B.; Moore, E.; Ramage, D.; y Arcas, B.A. Federated Learning of Deep Networks using Model
Averaging. arXiv 2018, arXiv:1602.05629.

Jagielski, M.; Oprea, A.; Biggio, B.; Liu, C.; Nita-Rotaru, C.; Li, B. Manipulating Machine Learning: Poisoning
Attacks and Countermeasures for Regression Learning. In Proceedings of the 2018 IEEE Symposium on Security
and Privacy (SP), San Francisco, CA, USA, 21-23 May 2018; pp. 19-35. [CrossRef]

Wang, Y.; Chaudhuri, K. Data Poisoning Attacks against Online Learning. arXiv 2018, arXiv:1808.08994
Steinhardt, J.; Koh, PW.,; Liang, P. Certified Defenses for Data Poisoning Attacks. arXiv 2017, arXiv:1706.0369.
Greenspan, G. Multichain Private Blockchain—White Paper. 2017. Available online: https://arxiv.org/pdf/
1706.03691.pdf (accessed on 16 December 2018).

Deeplearning4j: Open-Source, Distributed Deep Learning for the JVM, 2014. Available online: https:
/ /deeplearning4j.org (accessed on 22 November 2018).

@ (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.1016/j.icte.2018.04.003
http://dx.doi.org/10.1109/ISNCC.2016.7746067
http://dx.doi.org/10.1109/SP.2018.00057
https://arxiv.org/pdf/1706.03691.pdf
https://arxiv.org/pdf/1706.03691.pdf
https://deeplearning4j.org
https://deeplearning4j.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Federated Machine Learning and Deep Learning
	Intrusion Detection and Response Systems
	Machine Learning in Adversarial Settings
	Machine Learning and Blockchains
	Bridging the Gap

	Accountable Federated Learning for Anomaly Detection
	Intrusion Detection with a (Deep) Neural Network-Based Anomaly Detection
	Anomaly Detection through Federated Learning
	Federated Learning in an Adversarial Setting
	Auditing the Anomaly Models and Weight Updates on the Blockchain

	Evaluation
	Experimental Setup
	Centralized Learning
	Federated Learning With Varying the Number of Deep Learning Clients
	Federated Learning with Blockchain Support
	Auditing the Federated Learning Process
	Discussion, Limitations, and Validity Threats

	Conclusions
	References

