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1 Introduction and summary

Theories in dimensions greater than four have become an important ingredient in the mod-

ern approach to supersymmetric quantum field theories. On the one hand, they provide

the basic building blocks, which, upon appropriate compactification, allow to understand

virtually all other lower dimensional theories. On the other hand, they often exhibit ex-

otic behavior such as global symmetries of exceptional type. However, defining interacting

quantum field theories in dimensions greater than four is challenging for perturbative quan-

tization methods based on a classical Lagrangian. In particular, the coupling “constant”

in Yang-Mills type gauge theories is dimensionful and the theories are non-renormalizable

by power counting. Nevertheless, a large body of evidence, based on field theory argu-

ments and string theory constructions, suggests that such theories can exist as well-defined

quantum field theories, making them an intriguing laboratory for exploring quantum field

theory beyond perturbation theory. Specifically in 5d, large classes of supersymmetric

gauge theories with eight supercharges are believed to flow to well-defined UV fixed points,

with the strongly-coupled superconformal field theories (SCFTs) at the fixed points realiz-

ing the unique 5d superconformal algebra F (4) [1, 2]. A particularly general and versatile

approach to engineering these 5d SCFTs and their gauge theory deformations is via 5-brane

webs in Type IIB string theory [3, 4]. It allows to construct large classes of SCFTs, some of

which allow relevant deformations that flow to gauge theories with various types of gauge

groups and matter fields, as well as other SCFTs with no gauge theory deformations at all.

In the absence of a conventional Lagrangian description, AdS/CFT dualities can pro-

vide a particularly valuable tool for quantitative studies of the 5d SCFTs — if supergravity

solutions corresponding to the string theory constructions are available and permit a clear

identification with dual 5d SCFTs. A locally unique solution to massive Type IIA super-

gravity, corresponding to the construction of a particular class of gauge theories in Type I’

string theory, has been known for some time [5, 6], and along with its orbifolds [7] has fea-

tured in numerous holographic analyses [8–13]. Solutions directly in Type IIB supergravity,

on the other hand, have only been constructed rather recently [14–17].1 This includes a

large class of physically regular solutions which naturally relate to pure 5-brane webs [16],

as well as an extension realizing additional 7-branes in the faces of 5-brane webs [17].

These physically regular solutions can account for large classes of 5-brane webs and the

corresponding field theories that can be engineered in Type IIB string theory. They are

characterized explicitly by the types and charges of 5- and 7-branes used in the Type IIB

string theory constructions for 5d SCFTs, which allows for a clear identification of the su-

pergravity solutions with corresponding 5-brane webs and 5d SCFTs. The sphere partition

functions of the dual SCFTs were studied holographically in [23, 24] and used for various

consistency checks supporting the identification with 5-brane webs. But independent field

theory results for a direct quantitative comparison were not available.

The aim of this work is to provide a quantitative match between AdS/CFT computa-

tions using the Type IIB supergravity solutions and results obtained independently from

1Previous studies of the BPS equations in Type IIB can be found in [18–20], while T-duals of the Type

IIA solution have been discussed in [21, 22].
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their proposed field theory duals. We discuss several explicit examples of 5-brane webs

of the type that the supergravity solutions are identified with, and the field theories that

they engineer. Within these theories we identify a special class of chiral operators that

correspond to strings and string-webs connected to the external legs of the 5-brane webs.

These operators have O(N) scaling dimensions in the large N limit. This information

can then be compared to the supergravity picture, where we can identify the holographic

duals of these operators as states described by strings and string-webs embedded in the

Type IIB supergravity background. Their masses are related via the AdS/CFT dictionary

to the scaling dimensions of the dual operators. In the remainder of this section we will

give a more detailed overview and summary of our results. The explicit computations are

presented in the main part of the paper.

1.1 Summary

The 5-brane webs that are identified with the solutions of [16, 17] are characterized by

large numbers of like-charged external (p, q) 5-branes. Generically, the external 5-branes of

a given brane web can be terminated on appropriate 7-branes without breaking supersym-

metry [25], and if each 5-brane is terminated on a distinct 7-brane, the field theory remains

unchanged. For brane webs with multiple 5-branes of equal charge, however, each group

of like-charged 5-branes may also be partitioned into subgroups which terminate on the

same 7-brane, and due to the s-rule different partitions lead to different SCFTs [26]. For

the brane webs that were proposed to correspond to the solutions of [16, 17], each external

5-brane is terminated on a distinct 7-brane, which is equivalent to not terminating the

external 5-branes on 7-branes at all. This leads to the maximal global symmetry among

the choices to terminate like-charged 5-branes on 7-branes, and in that sense to maximally

symmetric 5d SCFTs. We denote the charges of the external 5-branes by mutually-prime

pairs of integers (pi, qi), with i = 1, . . . , n, and the numbers of external 5-branes within each

group by Ni. Charge conservation requires
∑
Nipi =

∑
Niqi = 0. The global symmetry is

in general given by

n∏
i=1

SU(Ni)×U(1)n−3 , (1.1)

where the U(1) factors are associated to mass deformations of the 5d SCFT that correspond

to motion of the external 5-branes in groups. For some special cases with small values of

the Ni the symmetry is larger.

The general strategy for obtaining information on the spectrum of the 5d SCFTs

will be to consider deformations that lead to IR quiver gauge theories. The latter have

a conventional Lagrangian description, and a subset of the operators in the SCFT can

be constructed from the Lagrangian fields in the gauge theory. This yields operators in

representations of the global symmetry group of the gauge theory, which in general is a

subgroup of the global symmetry group of the UV fixed point. The scaling dimensions

of these operators are protected by the BPS shortening conditions, and can therefore be

extrapolated along the RG flow to the UV SCFT.

– 2 –



J
H
E
P
0
8
(
2
0
1
8
)
1
2
7

global symmetry stringy operators ∆

TN SU(N)3 (N,N,N) 3
2(N − 1)

YN SU(2N)× SU(N)2 ((2N)2
asym,N,N) 3(N − 1)

+N,M SU(N)2× SU(M)2×U(1) (N, N̄,1,1)M
3
2M

(1,1,M, M̄)N
3
2N

+N,M,k SU(N)× SU(k)× SU(M)2 ×U(1) (N, k̄,1,1)M−N
k

+1
3
2(M − N

k + 1)

(1,1,M, M̄)N
3
2N

XN,M SU(N)2× SU(M)2×U(1) (N, N̄,1,1)M 3M

(1,1,M, M̄)N 3N

�+N SU(N)6×U(1)3 (N, N̄,1,1,1,1) 3N

(1,1,N, N̄,1,1) 3N

(1,1,1,1,N, N̄) 3N

(N,1,N,1,N,1) 3
2(3N − 1)

(1,N,1,N,1,N) 3
2(3N − 1)

Table 1. The theories discussed in section 2, with their global symmetries, stringy operators and the

scaling dimensions inferred from field theory considerations. The proposed supergravity duals pre-

cisely reproduce the stringy operators and their scaling dimensions in the appropriate large-N limits.

The specific set of examples we study is summarized in table 1. This includes the 5d

TN theory, originally introduced in [26], and a theory that we call +N,M corresponding to

the intersection of D5-branes and NS5-branes, originally introduced in [4]. We have named

the theories according to the shape of the corresponding 5-brane web. The other examples

include the YN theory which corresponds to a junction of (1, 1), (−1, 1) and NS5-branes,

the +N,M,k theory which corresponds to a 5-brane web with additional 7-branes inside

a face of the web, the XN,M theory which corresponds to an intersection of (1, 1) and

(1,−1) 5-branes, and the �+N theory which corresponds to an intersection of D5, NS5 and

(1, 1) 5-branes.

The supergravity solutions corresponding to the brane webs are identified directly by

their 5- and 7-brane charges. The geometry in the solutions of [15–17] is a warped product

of AdS6 × S2 over a Riemann surface Σ, and each solution is specified by a choice of two

locally holomorphic functions A± on Σ. Physically regular solutions were constructed for

the case where Σ is a disc, and the differentials ∂A± for these solutions have isolated

poles on the boundary of Σ. These poles precisely represent the external 5-branes of the

corresponding 5-brane web, with each pole representing a group of like-charged external

5-branes, where the residue encodes the charges (pi, qi) and the number Ni of external

5-branes. Though we cannot identify the full global symmetry of the 5d SCFT in the

supergravity solution, we are able to identify the U(1) factors in (1.1). These correspond to

reductions of the RR 4-form potential on 3-cycles surrounding the poles in the geometry, as

– 3 –
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will be explained in section 3.5. For the solutions with additional 7-branes [17], Σ includes

punctures around which the supergravity fields undergo non-trivial SL(2,R) monodromy,

with the monodromy representing the 7-brane charge and the position in Σ representing

the face of the web in which the 7-brane is placed.

Our main results, as described in section 4, will be to identify the states dual to the

previously mentioned operators in terms of strings or string-webs embedded into these so-

lutions. With AdS6 in global coordinates, such that the SCFTs are realized on the cylinder

R × S4, the strings and string webs are localized at the origin in the radial coordinate of

AdS6, and extend along a one-dimensional subspace of Σ, that connects poles or poles and

punctures. The scaling dimensions of the dual operators can be obtained directly from the

Hamiltonian. We also explicitly obtain their R-symmetry charge, from the coupling to the

bulk gauge field dual to the R-symmetry current in the SCFTs, for which we identify the

relevant part in the corresponding supergravity fluctuation. Their global U(1) charges are

easily read off from the poles or punctures on Σ that the strings end on. This information

shows that the string states are BPS saturated, and agree with the field theory results on

the scaling dimensions in the large-N limit. For the +N,M theory, we also discuss explicitly

how a chiral ring relation is recovered in the supergravity dual.

In summary, we have a precise quantitative match between field theory analyses and

holographic computations of the spectrum of a class of large-scaling-dimension operators.

The results support the identifcation of the Type IIB supergravity solutions of [16, 17] with

the proposed 5d SCFTs. For the future, it would be desirable to further substantiate this

match and to further exploit the holographic descriptions to better understand this class

of 5d SCFTs. For example, with a compelling case for the precise form of the dual SCFTs,

the holographic computations of the S5 partition functions in [23, 24] may be seen as

predictions for the dual SCFTs, and it would be an interesting further check to test them.

1.2 Outline

The rest of the paper is organized as follows. In section 2 we present a number of case

studies of 5d SCFTs described by simple 5-brane webs, and describe the spectrum of stringy

operators in each case. In section 3 we give a brief review of the warped AdS6 × S2 × Σ

Type IIB supergravity solutions, discuss the charge quantization and identify, in parts, a

fluctuation dual to the conserved SCFT R-symmetry current. We also identify the bulk

gauge fields dual to the U(1) factors in (1.1). In section 4 we discuss (p, q) strings and

string webs embedded into the supergravity solutions dual to the SCFTs of section 2, and

identify them with the operators discussed there.

2 5d SCFT case studies

In this section we consider a number of examples of 5d SCFT’s that admit mass deforma-

tions leading to 5d supersymmetric quiver gauge theories with SU gauge symmetries.

– 4 –
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2.1 The TN theory

The 5d TN theory corresponds to a triple junction of N D5-branes, N NS5-branes, and

N (1,1) 5-branes, shown in figure 1(a). The global symmetry of this theory is in general

SU(N)3. For N = 2 this is just the theory of four free hypermultiplets, which has a global

symmetry Sp(4), and for N = 3 the global symmetry is enhanced to E6. This theory reduces

to the 4d TN theory upon compactification on S1 [26]. The spectrum of chiral operators of

the 4d TN theory contains a scalar operator in the tri-fundamental (N,N,N) representation

of SU(N)3 with a scaling dimension ∆ = N − 1 [27]. The corresponding operator in the

five dimensional theory has a scaling dimension ∆ = 3
2(N − 1).2 In particular for N = 2

this is a free field corresponding to the four free hypermultiplets of the T2 theory, and

for N = 3 it corresponds to a conserved current multiplet in the (3,3,3) representation

of SU(3)3, giving the E6 global symmetry of the T3 theory. The (N,N,N) operator is

naturally described in the 5-brane web construction as a 3-pronged-string connecting a

(1, 0) 7-brane, a (0, 1) 7-brane, and a (1, 1) 7-brane, as shown in figure 1(a).

The TN theory admits a relevant deformation which flows to the quiver gauge theory

given by (see figure 1) [28, 29]

[2]
x1− (2)

x2− (3)− · · · − (N − 2)
xN−2− (N − 1)

xN−1− [N ] , (2.1)

where each element (k) corresponds to an SU(k) gauge symmetry, and each element [k]

to an SU(k) global symmetry. We will use a, b to denote global indices and α, β to

denote gauge indices. We also use {xi, x̃i} to denote the scalars in the matter hyper-

multiplet corresponding to the i-th link. The global symmetry of the gauge theory is

SU(N)× SO(4)×U(1)N−2
B ×U(1)N−2

I , where the U(1)B’s are associated to the matter

fields, and the U(1)I ’s are the topological symmetries associated to the simple gauge group

factors. At the fixed point the global symmetry is enhanced by instantons to SU(N)3. This

was shown for N = 4, 5 in [29]. For N = 3 the symmetry is further enhanced to E6, as

shown in [30].

Some of the components of the tri-fundamental operator can be described in terms

of the matter fields of the IR quiver gauge theory. We can form several gauge invariant

dimension 3
2(N − 1) operators as follows:

Oa
b̃

= [x1 · · ·xN−1]a
b̃

(2.2)

Oab̃ = εαβ [x̃1]αa [x2 · · ·xN−1]β
b̃

(2.3)

O(j)b̃ = [det x̃j ]α [xj+1 · · ·xN−1]α
b̃

(2.4)

O(N−1)b̃ = [det x̃N−1]b̃ (2.5)

where a is a flavor SU(2) index, b̃ is a flavor SU(N) index, j = 2, . . . , N − 2 and we use the

shorthand

[det x̃j ]α ≡ εαα1···αj ε
β1···βj x̃α1

β1
· · · x̃αjβj , (2.6)

2More generally there are operators in the tri-k-antisymmetric representation (Nk
asym,Nk

asym,Nk
asym)

with k = 1, . . . , N − 1 and scaling dimension ∆ = 3
2
k (N − k) [28].

– 5 –
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N
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N

(a)

N

(b)

N � 1

N � 1

2
N � 2

(c)

Figure 1. Brane webs for the 5d TN theory, with the string junction/open strings representing

the long operators. The non-flavor D7-branes are denoted by an “x” rather than by a dot.

and likewise for [det x̃N−1]b̃. The determinant of the bi-fundamental field has a left-over

index since neighboring groups differ by one. All of these operators transform in the N

representation of the global SU(N) symmetry of the IR gauge theory, and correspond to

a subset of the components of the SU(N)3 tri-fundamental operator at the fixed point.

In the 5-brane web of figure 1(b) they simply correspond to an open string between a

D7-brane and on the right and a D7-brane on the left, which can be traced back to the 3-

pronged string in the original 5-brane web via a Hanany-Witten transition. The remaining

components of the tri-fundamental operator will naturally involve instanton operators.

2.2 The YN theory

Having gained confidence in the identification of the stringy operators of the TN theory,

we move on to less familiar ground, and consider a number of other theories. We begin

with another triple junction, this time of 2N (0, 1) (NS) 5-branes, N (1, 1) 5-branes, and N

(−1, 1) 5-branes, as shown in figure 2(a). The global symmetry of the so-called YN theory is

in general SU(2N)×SU(N)2. For N = 2 this is actually the E5 theory, in which the global

symmetry is enhanced to E5 = SO(10). We claim that the spectrum of chiral operators

of the YN theory contains a scalar operator in the ((2N)2
asym,N,N) representation of the

global symmetry. This operator is represented by a string-web consisting of two external

(0, 1) strings, an external (1, 1) string, and an external (1,−1) string, connected by an in-

ternal (1, 0) string, as shown in figure 2(a). The fundamental charges under the two SU(N)

factors are obvious. The reason for the antisymmetric representation under SU(2N) is that

the two (0, 1) strings are constrained by the s-rule to attach to two different (0, 1) 7-branes.

Unlike in the TN theory, the dimension of this operator in the YN theory is not known a-

priori. However, by looking at the IR quiver gauge theories we will see that ∆ = 3(N − 1).

This is also consistent with the N = 2 case, where this operator has ∆ = 3 and trans-

forms in the (6,2,2) representation of SU(4)× SU(2)2, providing the additional conserved

current multiplet responsible for the enhancement of SU(4) × SU(2)2 = SO(6)× SO(4) to

E5 = SO(10).

– 6 –
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N N

(a)
2N

(b)

N � 2 N � 2
22

2N � 2

Figure 2. Brane webs for the YN theory with N = 3, with the string junction/open strings

representing the long operators.

One of the IR quiver gauge theories can be obtained by separating the NS5-branes,

and is most easily read-off from an equivalent web obtained by moving two of the (0, 1)

7-branes upwards, figure 2(c). The resulting gauge theory is given by

[2]
x1− (2)

x2− (3)−·· ·−(N−1)
xN−1− (N)

xN− (N−1)−·· ·−(3)
x2N−3− (2)

x2N−2− [2] . (2.7)

The global symmetry of this theory is SO(4)×SO(4)×U(1)2N−4
B ×U(1)2N−3

I . This should

enhance to SU(2N)×SU(N)2 at the fixed point. Note that for N = 2 the IR theory reduces

to SU(2) with four flavors, which is the IR theory corresponding to the E5 fixed point.

The string-web connected to the two 7-branes that were moved becomes an open string

connecting a D7-brane on the left to a D7-brane on the right. This describes three types

of operators in the IR quiver gauge theory, all of scaling dimension ∆ = 3(N − 1). The

first type involves both end nodes, and includes

Oa
b̃

= [x1 · · ·x2N−2]a
b̃

(2.8)

Oab̃ = εαβ [x1 · · ·x2N−3]aα (x̃2N−2)b̃β (2.9)

Oab̃ = εαβ (x̃1)αa [x2 · · ·x2N−2]β
b̃

(2.10)

Ob̃a = εαβ ε
γδ (x̃1)αa [x2 · · ·x2N−3]βγ (x̃2N−2)b̃δ (2.11)

where a and b̃ are indices of the two flavor SU(2)’s, respectively. Together these transform

in the (4,4) representation of SO(4)× SO(4). The second type involves a single end node,

and includes

Oa(j) = [x1 · · ·x2N−j−1]aα [det x̃2N−j ]
α (2.12)

O(j)
a = εαβ (x̃1)αa [x2 · · ·x2N−j−1]βγ [det x̃2N−j ]

γ (2.13)

O(j)

b̃
= [det x̃j−1]α [xj · · ·x2N−2]α

b̃
(2.14)

Ob̃(j) = εαβ [det x̃j−1]γ [xj · · ·x2N−3]γα (x̃2N−2)b̃β (2.15)

where j = 3, . . . , N . These give N − 2 operators in the (4,1) representation and N − 2 in

the (1,4) representation. The third type does not involve the end nodes, and is given by

O(ij) = [det x̃i]α [xi+1 · · ·xN+j−3]αβ [det x̃N+j−2]β , (2.16)

– 7 –
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N
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2N

(b)

Figure 3. The S-dual of the YN web shown in figure 2, with a deformation to a quiver gauge theory.

where i, j = 3, . . . , N . These are (N−2)2 operators in the (1,1) representation. Altogether

these operators provide (N +2)2 of the components of the ((2N)2
asym,N,N) operator. The

rest will require the inclusion of instantons.

It is also interesting to consider a second IR quiver gauge theory, corresponding to the

s-dual web, (figure 3). In this case the gauge theory is given by

(2)
y1− (4)

y2− · · ·
yN−2− (2N − 2)

yN−1− [2N ] . (2.17)

In this description the SU(2N) global symmetry is manifest, and we can explicitly con-

struct N operators of dimension ∆ = 3(N − 1) in the (2N)2
asym representation of SU(2N)

as follows:

Oab(1) = εαβ [y1 · · · yN−1]αa [y1 · · · yN−1]βb (2.18)

Oab(j) = [det ỹj ]αβ [yj+1 · · · yN−1]αa [yj+1 · · · yN−1]βb (2.19)

Oab(N−1) = [det ỹN−1]ab (2.20)

where j = 1, . . . , N − 2. Here the determinant of the bi-fundamental has two left-over

indices since neighboring groups differ by two.

2.3 The +N,M theory

Next consider the quartic junction of two sets of N D5-branes and two sets of M NS5-

branes, figure 4(a), which we call the +N,M theory. Some aspects of this theory were

originally studied in [4]. The 5-brane web construction suggests that the global symme-

try is SU(N)2 × SU(M)2 × U(1), and that there are chiral operators transforming in the

bi-fundamental representations (N, N̄,1,1)M and (1,1,M, M̄)N and their conjugates, cor-

responding, respectively, to open strings between (1,0) 7-branes, and D1-branes between

(0,1) 7-branes. By identifying subsets of these operators in the IR quiver gauge theories we

will see that their scaling dimensions are given by ∆(N,N̄) = 3
2M and ∆(M,M̄) = 3

2N . This is

consistent in particular with the special case of M = 1 which corresponds to N2 free hyper-

mutiplets, all of dimension ∆(N,N̄) = 3
2 . It is also consistent with the case of M = 2, where

the SU(N)2 × U(1) part of the global symmetry is enhanced to SU(2N) [4]. In this case

the (N, N̄) operator has a scaling dimension ∆(N,N̄) = 3, and provides the extra conserved

currents responsible for the enhancement. If both N = M = 2, the +N,M theory is the E5

theory, in which the global symmetry is further enhanced to E5 = SO(10). In this case both

– 8 –
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N
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N

M
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Figure 4. The 5-brane web of the +N,M theory: (a) The theory at the fixed point, with the

string and D1-brane representing the bi-fundamental operators. (b) The deformation leading to

the SU(N) quiver. (c) The deformation leading to the SU(M) quiver.

operators have a scaling dimension ∆ = 3, and transform in the (2,2,1,1)±2+(1,1,2,2)±2

of SU(2)4 × U(1). These are some but not all of the conserved currents required for the

enhancement. An operator with charges (2,2,2,2)0 is missing. This motivates us to con-

jecture the existence of a chiral operator in the (N, N̄,M, M̄)0 representation with scaling

dimension ∆ = 3
4NM . However this does not correspond to strings in the 5-brane web.

The IR quiver gauge theory resulting from separating the NS5-branes is given by

[N ]
x1− (N)

x2− · · · − (N)
xM− [N ] , (2.21)

with the SU(N) gauge node appearing M − 1 times. This has in general a global sym-

metry SU(N)2 × U(1)MB × U(1)M−1
I . For M = 2 the global symmetry is enhanced to

SU(2N)×U(1)B ×U(1)I . The dual quiver gauge theory resulting from separating the

D5-branes is given by

[M ]
y1− (M)

y2− · · · − (M)
yN− [M ] , (2.22)

with the SU(M) gauge node appearing N−1 times. This has in general a global symmetry

SU(M)2×U(1)NB ×U(1)N−1
I , which is enhanced for N = 2 to SU(2M)×U(1)B×U(1)I . In

both cases the global symmetry is expected to enhance at the UV fixed point to SU(N)2×
SU(M)2 ×U(1), except when either N = 2 or M = 2 or both. This was demonstrated for

M = 3 in [31] by counting 1-instanton states. The remaining U(1) factor is the sum of all

the U(1)B symmetries.

Some components of the bi-fundamental operators are realized in the IR quivers as

follows. In the first quiver theory (2.21) we have a dimension 3
2M operator

Oa
b̃

= [x1 · · ·xM ]a
b̃
, (2.23)

transforming in the (N, N̄) representation of SU(N)2, and dimension 3
2N singlets

O(i) = detxi , (2.24)
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with i = 1, . . . ,M . In addition, the former carries M units of charge under the sum of

the U(1)B symmetries, and the latter carries N units of charge. These operators satisfy a

“chiral ring relation”:

M∏
i=1

O(i) = detOa
b̃
. (2.25)

Likewise, the second quiver theory (2.21) has a dimension 3
2N operator Õa

b̃
in the (M, M̄)

representation of SU(M)2, and N dimension 3
2M singlets Õ(j), satisfying an analogous chi-

ral ring relation. The duality relates the singlet operators of one gauge theory to some of the

components of the bi-fundamental operator of the other gauge theory. In either description,

the missing components will involve combinations of the singlet operators and instantons.

2.4 The +N,M,k theory

As a further ingredient in the construction of 5d superconformal field theories one can

add 7-branes to the interior of the 5-brane webs. These 7-branes source monodromies in

the plane of the 5-brane web, and therefore the (p, q) charges of the 5-branes have to be

properly adjusted. In fact these are not truly new configurations since we can move the

7-branes out of the web and obtain an ordinary 5-brane web. In so doing additional 5-

branes are created, compensating for the removal of the monodromy. Nevertheless, from

the supergravity point of view it is useful to consider the original configuration with the

7-brane in the interior [24].

As a specific example let us consider the theory described by the 5-brane web of the

type shown in figure 5(a). This theory is a generalization of the +N,M theory discussed in

the previous section. The N D5-branes on the r.h.s. now end on k D7-branes in groups

of N
k , where k is a divisor of N . We call this the +N,M,k theory. For k = N this is

just the +N,M theory. More generally it corresponds to the low energy theory along a

specific direction on the Higgs branch of the +N,M theory, in which the global symmetry

is reduced to SU(N)× SU(k)× SU(M)2 × U(1). The spectrum of chiral operators in this

case should include an (N, k̄) of SU(N)× SU(k) coming from strings between D7-branes,

and an (M, M̄) under SU(M)2 coming from D1-branes between (0, 1) 7-branes. As we will

see below their dimensions are given by ∆(N,k̄) = 3
2(M − N

k + 1) and ∆(M,M̄) = 3
2N . This

is consistent with the k = N case, which is just the +N,M theory. It is also consistent with

another special case. For k = 2 and M = N
2 + 1 (assuming N is even) this is equivalent

to the YN
2

+1 theory discussed in section 2.2. In this case the (N, k̄) = (N,2) operator has

dimension 3, enhancing the global symmetry to SU(N + 2)× SU(N2 + 1)2, consistent with

the YN
2

+1 theory.

Now let’s move the k D7-branes on the r.h.s. to the interior. This results in the

configuration shown in figure 5(b), which consists of M NS5-branes above and below, N

D5-branes on the l.h.s. , and a monodromy cut that implements the monodromy T k. The IR

quiver gauge theory given by the deformation corresponding to separating the NS5-branes

– 10 –
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(a)

N

M

M

k

N

(b)

T k

N

M

M

(c)

N

M

TN/2

Figure 5. The +N,M,k theory: (a) The N D5-branes on the r.h.s. end on k D7-branes in groups

of N/k. (b) An equivalent description with the k D7-branes in the interior. (c) Deformation to an

IR quiver gauge theory for k = N/2.

is given by

[N ]
x1− (N)M−

N
k
−1

x
M−N

k− (N)

x
M−N

k
+1

− (N − k)− (N − 2k)− · · · − (2k)
xM−1− (k)

| y (2.26)

[k]

This has in general a global symmetry SU(N)× SU(k)×U(1)MB ×U(1)M−1
I . The position

of the k flavors in the quiver is determined by the position of the k D7-branes in the web

such that they have no D5-branes attached. Since one D5-brane is lost for each NS5-brane

crossed, the k D7-branes will end up in the N
k ’th cell from the r.h.s. . An example with

k = N
2 is shown in figure 5(c). For k = N this reduces, as expected, to the IR quiver of the

+N,M theory (2.21), and for k = 2 and M = N
2 +1 it reduces, as expected, to the IR quiver

of the YN
2

+1 theory (2.17). In particular in this case we observe that the SU(N) × SU(2)

part of the global symmetry is enhanced together with a U(1)B to SU(N + 2).

The interesting operators in the IR quiver theory include the dimension 3
2(M − N

k + 1)

operator

Oa
b̃

=
[
x1 · · ·xM−N

k
y
]a
b̃
, (2.27)

which transforms in the (N, k̄) representation of SU(N) × SU(k) and carries M − N
k + 1

units of charge under the overall U(1)B symmetry, and the dimension 3
2N singlets,

O(i) = detxi (2.28)

Õ(j) = εb̃1···b̃k

[(
y xM−N

k
+1 · · ·xM−j−1

)k]b̃1···b̃k
α1···αk

[det x̃M−j ]
α1···αk , (2.29)

where i = 1, . . . ,M− N
k and j = 1, . . . , Nk −1. These carry N units of overall U(1)B charge.
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(a)

N

N

M

M

(b)

N

N

M

M

Figure 6. Brane web for the XN1,N2 theory with N = 3 and M = 2 on the left hand side, and a

deformation to a quiver gauge theory on the right hand side.

2.5 The XN,M theory

Let us now consider another quartic junction, this time of two sets of N (1,−1)5-branes

and M (1, 1)5-branes, figure 6. As in the +N,M theory, the global symmetry is generically

SU(N)2×SU(M)2×U(1), and we expect chiral operators in bi-fundamental representations

(N, N̄,1,1)M and (1,1,M, M̄)N and their conjugates, corresponding respectively to (1, 1)

and (1,−1) strings, as shown in figure 6(a). There is somewhat less direct information

in this case about the scaling dimensions of these operators from the IR quiver theories.

However, a number of special cases motivate us to conjecture that these scaling dimensions

are given by ∆(N,N̄) = 3M and ∆(M,M̄) = 3N . For N = M = 1 this is the E1 theory,

which has an E1 = SU(2) global symmetry. Our conjecture is consistent with this: the

U(1) symmetry of the X1,1 theory is enhanced to SU(2) by these operators. Note that, as

in the +N,M theory, we expect the two bi-fundamental operators to satisfy a chiral ring

relation, that reduces for N = M = 1 to an equivalence of the two operators. Furthermore,

the theory with M = 1 and N = 2 was actually studied in [32], where it was shown that it

has a global symmetry SU(4). This is also consistent with our conjecture. The X2,1 theory

has a dimension 3 operator in the (2,2)± representation of SU(2)2 × U(1), enhancing the

symmetry to SU(4).

Assuming that N ≥M , the IR quiver gauge theory is given by (see figure 6(b))

(2)
x1− (4)−·· ·−(2M−2)

xM−1− (2M)N−M+1
xN− (2M−2)−·· ·−(4)

xN+M−2− (2) . (2.30)

The global symmetry is U(1)N+M−2
B ×U(1)N+M−1

I . The S-dual quiver theory is the same,

and therefore the quiver theories for XN,M and XM,N are the same. For the two special

cases we considered above, (N,M) = (1, 1) and (2, 1), the IR gauge theory is the pure

SU(2)0 theory and the SU(2)0 × SU(2)0 quiver, where the subscripts denote the values of

the discrete theta parameters. The former is the IR deformation of the E1 theory, and

the latter is one of the theories studied in [32]. The IR gauge theory has dimension 3M

operators given by

Oi = detxi , (2.31)
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(a) (b)

Figure 7. Brane web for the �+N theory with N = 5 on the left hand side, and a deformation to

a quiver theory on the right.

where i = M, . . . , N − 1. These are presumably some of the components of the (N, N̄)

operator.

2.6 The �+N theory

As a last example we consider the sextic junction with N D5 branes, N NS5 branes and N

(1,1)5-branes, as shown in figure 7. The global symmetry is in general SU(N)6×U(1)3. We

expect the spectrum of chiral operators to include the bi-fundamentals (N, N̄,1,1,1,1),

(1,1,N, N̄,1,1), and (1,1,1,1,N, N̄), corresponding, respectively, to (1, 0), (0, 1), and

(1, 1) strings. We also expect operators transforming in the (N,1,N,1,N,1) and

(1,N,1,N,1,N) corresponding to 3-pronged strings, as in the TN theory. Below we will

identify a subset of these operators in the IR quiver gauge theory. In particular we will

see that their scaling dimensions are given by ∆(N,N̄) = 3N , and ∆(N,N,N) = 3
2(3N − 1).

This is also consistent with the simplest case of N = 1, which is the E3 theory. In this

theory the global symmetry is enhanced from U(1)3 to E3 = SU(3)×SU(2), where some of

the additional conserved currents are provided by the bi-fundamental and tri-fundamental

operators, all of which have dimension 3.

The IR quiver gauge theory (as well as the S-dual quiver theory) is given by (figure 7)

[N ]
x1− (N+1)

x2− ·· ·−(2N−1)
xN− (2N)

xN+1− (2N−1)−·· ·−(N+1)
x2N− [N ] . (2.32)

This exhibits a global symmetry SU(N)2 ×U(1)2N
B ×U(1)2N−1

I . There is a dimension 3N

operator in the (N, N̄) representation given by

Oa
b̃

= [x1 · · ·x2N ]a
b̃
, (2.33)

and N dimension 3
2(3N − 1) operators in the (N,1) and (1,N) representations

Ob̃(i) = [det x̃i]α [xi+1 · · ·x2N ]α
b̃

(2.34)

Oa(i) = [x1 · · ·xN+i−1]aβ [det x̃N+i]
β (2.35)

where i = 1, . . . , N .
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3 Type IIB warped AdS6 solutions

This section contains an overview of the warped AdS6 × S2 × Σ supergravity solutions

constructed in [14–17], to introduce the relevant notation. We discuss the near-pole be-

havior and the normalization of the 5-brane charges encoded in the supergravity solutions.

We identify, in parts, a fluctuation which is universally present for all solutions and whose

AdS6 part is a massless gauge field. We also identify the gauge fields dual to the U(1)

factors in (1.1).

3.1 Review of the solutions

The geometry in the solutions of [14–17] is a warped product of AdS6 and S2 over a

Riemann surface Σ. The metric and two-form field are parametrized in terms of functions

f2
6 , f2

2 , ρ2 and C on Σ as follows

ds2 = f2
6 ds

2
AdS6

+ f2
2 ds

2
S2 + 4ρ2|dw|2 , C(2) = C volS2 . (3.1)

The solutions to the BPS equations for preserving 16 supersymmetries are expressed in

terms of two locally holomorphic functions A± on Σ, from which we define the composite

quantities

κ2 = −|∂wA+|2 + |∂wA−|2 , ∂wB = A+∂wA− −A−∂wA+ ,

G = |A+|2 − |A−|2 + B + B̄ , R+
1

R
= 2 + 6

κ2 G
|∂wG|2

. (3.2)

The metric functions are then given by

f2
6 =
√

6G
(

1 +R

1−R

) 1
2

, f2
2 =

1

9

√
6G
(

1−R
1 +R

) 3
2

, ρ2 =
κ2

√
6G

(
1 +R

1−R

) 1
2

, (3.3)

while the axion-dilaton scalar is parametrized as follows

B =
∂wA+ ∂w̄G −R∂w̄Ā−∂wG
R∂w̄Ā+∂wG − ∂wA−∂w̄G

, B =
1 + iτ

1− iτ , τ = χ+ ie−2φ . (3.4)

Note the normalization convention for the dilaton. Finally, the complex function C
parametrizing the two-form potential is given by

C =
4i

9

(
∂w̄Ā− ∂wG

κ2
− 2R

∂wG ∂w̄Ā− + ∂w̄G ∂wA+

(R+ 1)2 κ2
− Ā− − 2A+

)
. (3.5)

To obtain physically regular solutions, additional regularity conditions have to be imple-

mented. This was carried out for solutions without monodromy in [16], and extended

to solutions with monodromy in [17]. The Riemann surface Σ is taken as the disc, or

equivalently the upper half plane, in both cases.
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3.1.1 Solutions without monodromy

With a complex coordinate w on the upper half plane, the functions A± for regular solutions

without monodromy are given by

A±(w) = A0
± +

L∑
`=1

Z`± ln(w − r`) , A0
± = −A0

∓ . (3.6)

The r` are the locations of poles in the differentials ∂wA± on the real line, and the residues

are given by

Z`+ = σ
L−2∏
n=1

(r` − sn)
L∏
k 6=`

1

r` − rk
, Z`− = −Z`+ , (3.7)

with an overall complex normalization σ and complex parameters sn inside Σ. Regularity

imposes further constraints on these parameters. With Z [`k] ≡ Z`+Z
k
− − Zk+Z`−, they are

given by

A0
+Z

k
− −A0

−Z
k
+ +

∑
6̀=k
Z [`k] ln |r` − rk| = 0 , k = 1, · · · , L . (3.8)

3.1.2 Solutions with D7-brane monodromy

The additional parameters for a solution with D7-brane punctures are the locations of

the punctures in Σ, wi, a real number ni for each puncture and a phase γi specifying the

orientation of the associated branch cut. The functions A± are given by

A± = A0
± +

L∑
`=1

Z`± ln(w − r`) +

∫ w

∞
dz f(z)

L∑
`=1

Y `

z − r`
, (3.9)

with Y ` ≡ Z`+ − Z`−, the constants related by A0
+ = −Ā0

−, and

f(w) =

I∑
i=1

n2
i

4π
ln

(
γi
w − wi
w − w̄i

)
. (3.10)

The contour for the integration in (3.9) is chosen such that no branch cuts are crossed.

The regularity constraints that the parameters have to satisfy are

0 = 2A0
+ − 2A0

− +

L∑
`=1

Y ` ln |wi − r`|2 , i = 1, · · · , I , (3.11)

0 = 2A0
+Yk− − 2A0

−Yk+ +
∑
` 6=k

Z [`,k] ln |r` − rk|2 + Y kJk , k = 1, · · · , L . (3.12)

With Sk denoting the set of branch points for which the associated branch cut intersects

the real line in (rk,∞), Jk is given by

Jk =

L∑
`=1

Y `

[∫ rk

∞
dxf ′(x) ln |x− r`|2 +

∑
i∈Sk

in2
i

2
ln |wi − r`|2

]
. (3.13)

The residues of the differentials of (3.9) at the poles r` are given by

Y`± = Z`± + f(r`)Y
` . (3.14)
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3.2 Behavior near poles and punctures

The behavior of the supergravity fields near poles and punctures has been derived in [16, 17].

We will collect the expressions here for convenience and extend the discussion to poles

with purely imaginary residues. We denote the residues at the poles by Z`±, which is the

appropriate notation for solutions without monodromy. For solutions with monodromy,

the expressions take the same form, but with Z`± replaced by Y`±.

The SL(2,R) invariant Einstein-frame metric functions near a pole rm, expressed in

radial coordinates centered on the pole, w = rm + reiθ, are given by

f2
6 ≈ 2 · 3 1

4κmr
1
2 | ln r| 34 , ρ2 ≈ κm

2 · 33/4
r−

3
2 | ln r|− 1

4 , f2
2 ≈ 4r2 sin2θ ρ2 , (3.15)

with a constant κm. With |dw|2 = dr2 + dθ2 in (3.1), the S2 combines with the dθ2 term

to form an S3 around the pole. The complex three-form field strength F(3) = dC(2) near

the pole is given by

F(3) =
8

3
Zm+ volS3 , volS3 = sin2θ dθ ∧ volS2 . (3.16)

For poles with a non-vanishing real part of the residue, the dilaton and axion are given by

e−2φ ≈
√

3κ2
m

|Zm+ − Zm− |2
r | ln r|− 1

2 , χ ≈ i Z
m
− + Zm+

Zm− − Zm+
. (3.17)

For poles with a purely imaginary residue, the corresponding expressions can be obtained

from an S-duality transformation. For a purely real residue, such that the pole corresponds

to NS5 branes, χ ≈ 0. An SU(1, 1) transformation, as defined in section 2.2 of [16], with u =

i and v = 0, transforms a pole with a real residue to a pole with an imaginary residue. For

a vanishing axion this transformation acts as φ→ φ′ = −φ, while χ′ = χ = 0. We thus find

e+2φ ≈
√

3κ2
m

4|Zm+ |2
r| ln r|−1/2 , χ ≈ 0 , for Zm+ = Zm− . (3.18)

For solutions with monodromy, the expressions for the near-pole solution hold with Zm±
replaced by Ym± . Near a puncture wi with a D7-brane monodromy, the metric and axion-

dilaton scalar τ are given in terms of a local coordinate z with the puncture at z = 0 by

ds2 ≈ ds2
AdS6×S2 + Im(H)|dz|2 , τ ≈ H+ τ̃0 , H = − in

2
i

2π
ln z . (3.19)

3.3 5-brane and 7-brane charges

The poles were identified with (p, q) 5-branes in [16, 17], with the real/imaginary part of

the residue related to the NS5/D5 charge, and the punctures were identified with 7-branes.

We now discuss the normalization of the 5-brane and 7-brane charges.

The complex two-form C(2) splits into real and imaginary parts, corresponding to the

NS-NS two-form field B2 and the R-R two-form potential CRR
(2) ,

C(2) = B2 + iCRR
(2) . (3.20)
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The charge quantization conditions are derived from the coupling of fundamental strings

and D1-branes to B2 and CRR
(2) , respectively. For the normalization of the supergravity

action and brane tensions we follow the conventions of [33]. A fundamental string couples

to B2 through −T
∫
B2, and the Dirac quantization condition yields

T

∫
S3

dB2 = 2πNNS5 , T =
1

2πα′
, (3.21)

with an integer NNS5. Taking the S3 formed around the pole rm, and using the near-pole

behavior of F(3) = dC(2) in (3.16), yields

Re(Zm+ ) =
3

4
α′NNS5 , (3.22)

where NNS5 is the number of NS5 branes at the pole. Simliarly, the coupling of D1-branes

to CRR
(2) yields Im(Zm+ ) = 3

4α
′ND5, and thus

Zm+ =
3

4
α′(NNS5 + iND5) . (3.23)

When referring to (p, q) 5-branes we use p = ND5 and q = NNS5, such that a (1, 0) 5-brane

corresponds to one D5-brane and a (0, 1) 5-brane to one NS5-brane.

For solutions with monodromy, (3.23) holds with Zm+ replaced by Ym+ . For D7-brane

punctures, the monodromy of the axion-dilaton scalar as given in (3.19) around z = 0 is

τ → τ + n2
i . Since τ → τ + 1 for a single D7 brane, we conclude that the number of

D7-branes at the puncture wi is given by

ND7 = n2
i . (3.24)

3.4 R-symmetry gauge field fluctuation

The S2 factor in the geometry of the AdS6 × S2 × Σ solutions, with its corresponding

isometries, geometrically realizes the R-symmetry of the dual SCFTs. It suggests that

there should be a fluctuation around generic AdS6×S2×Σ solutions which corresponds to

a massless SU(2) gauge field on AdS6, holographically dual to the conserved R-symmetry

current in the SCFT. This fluctuation is part of the multiplet including the metric fluctu-

ation dual to the energy-momentum tensor, identified recently in [34]. In this section we

identify the parts of the gauge field fluctuation that will be relevant for determining the

R-symmetry charges of the string states to be discussed in the next section.

With KI , I = 1, 2, 3 denoting the Killing vector fields on a unit radius S2 and AI a

set of one-forms on AdS6, the general ansatz for the metric perturbation in the spirit of

non-Abelian Kaluza-Klein reduction3 is obtained by replacing

dxµ → dxµ +Kµ
I A

I . (3.25)

The combination on the right hand side is invariant under the linearized gauge transfor-

mations

δxµ = −Kµ
I λ

I , δAI = dλI , (3.26)

3A review can be found in [35] and an interesting historical note in [36].
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where λI is a set of functions on AdS6 that are of the same order as AI in the (implicit) small

parameter characterizing the perturbative expansion. With an explicit parametrization of

the S2 in the metric (3.1) as

ds2
S2 = dθ2

1 + sin2θ1 dθ
2
2 , (3.27)

a basis for the S2 Killing vector fields in the full AdS6 × S2 × Σ spacetime is given by

K1 = sin θ2∂θ1 + cot θ1 cos θ2∂θ2 ,

K2 = cos θ2∂θ1 − cot θ1 sin θ2∂θ2 , K3 = ∂θ2 . (3.28)

The dual one-forms K̃I = (gS2)µνK
µ
I dx

ν satisfy d?S2 K̃I = 0, so we can introduce functions

fI with ?S2K̃I = dfI . They are given by

f1 = − sin θ1 cos θ2 , f2 = sin θ1 sin θ2 , f3 = cos θ1 . (3.29)

The perturbation to the metric (3.1) resulting from (3.25) then takes the form

ds2
S2 →

(
dθ1 +Kθ1

I A
I
)2

+ sin2θ1

(
dθ2 +Kθ2

I A
I
)2

. (3.30)

Provided that AI satisfies the equation of motion for a massless gauge field on AdS6,

0 = ∇̂m(dA)mn , (3.31)

where ∇̂m denotes the canonical covariant derivative on unit radius AdS6, the perturbed

Ricci tensor takes a particularly simple form. Namely, its components in the perturbed

frame

ẽA = eA + δeA , δeA = KA
I A

I , (3.32)

are identical to the components of the unperturbed Ricci tensor in the unperturbed frame.

This facilitates solving the perturbed Einstein’s equations.

In order to solve the full linearized equations of motion, this ansatz has to be ex-

tended to the entire set of bosonic supergravity fields. For the warped product geometries

considered here, this entails a proper treatment of the dependence on Σ and of the non-

trivial background values for the remaining supergravity fields. In particular, the complex

three-form field strength given by

F(3) = dC ∧ volS2 , (3.33)

is by itself not invariant under the infinitesimal gauge transformations (3.26). The replace-

ment in (3.25) indeed acts non-trivially on the volume form, resulting in

volS2 → volS2 − dfI ∧AI . (3.34)

This restores invariance of (3.33) under the gauge transformations (3.26), but the result

is not closed and further terms are required. Invariance under the gauge transforma-

tions (3.26) together with the Bianchi identity for F(3) implies that the perturbation to the

two-form potential takes the form

C(2) + δC(2) = CvolS2 + dC ∧ fIAI + . . . , (3.35)
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where the dots denote terms involving AI only through the linearized field strength

F I = dAI . The complete perturbation may also involve a non-trivial 4-form potential

δC(4): while the symmetry of the background solution was sufficient to fix C(4) = 0, this is

not the case anymore in the perturbed configuration. We will leave a complete discussion

of the linearized equations of motion and their solution for the future. The part that will

be relevant in the next section is the term explicitly involving AI in (3.35), whose form is

fixed by invariance under the linearized gauge transformations (3.26).

3.5 Gauge fields from 3-cycles

Recall that to each pole on the boundary of Σ there is an associated 3-cycle. This 3-cycle

is given by fibering the S2 over a curve that starts at the boundary of Σ on one side of the

pole and ends at the boundary of Σ on the other side of the pole. Since the reduction of the

RR 4-form potential over such a cycle gives a 1-form in AdS6, we seem to obtain L massless

vector fields, i.e. U(1) gauge fields. However, this overcounts the number of massless vector

fields in two ways. First, the sum of the L cycles is a trivial cycle since, if there are no

punctures in the interior of Σ, it can be contracted to a point inside Σ. So there are

L− 1 nontrivial 3-cycles. Second, the fields obtained in the reduction are not all massless.

Cycles with a non-vanishing complex 3-form flux F(3) lead to a massive, or more generally

gapped, U(1) gauge field. This can be seen indirectly by considering a charged particle,

which is described in the Type IIB picture by a D3-brane wrapping the corresponding

3-cycle. If the total F(3) flux is non-vanishing the D3-brane has a tadpole that requires

attaching strings of the appropriate type to it. The charged particle will therefore come

with strings going to the boundary of AdS6, signaling that the corresponding gauge field

is confined. The number of massless U(1) gauge fields is given by the number of linearly

independent 3-cycles on which F(3) = 0. Let us denote the basis of 3-cycles corresponding

to the poles by {c`}, where ` = 1, . . . , L, and
∑

` c` = 0. The cycles with vanishing flux

are then given by
∑

` a`c`, where a` are non-negative integers satisfying
∑

` a`Z
`
± = 0. The

space of solutions is L − 2 dimensional, but the condition
∑

` c` = 0 reduces it to L − 3.

We therefore get L− 3 massless U(1) gauge fields, in agreement with the number of U(1)

factors in the global symmetry (1.1). We illustrate this in figure 8 for an example with

L = 4 corresponding to (±1, 0) 5-branes and (0,±1) 5-branes.

4 BPS states from supergravity

In this section we realize supergravity solutions that are expected to describe the large-N

limits of the field theories discussed in section 2, and study (p, q) strings and string-webs

embedded into the solutions. Using the gauge field fluctuation discussed in section 3.4,

we identify BPS states and compute the scaling dimensions of the corresponding dual

operators from the supergravity description.

4.1 (p, q) strings in warped AdS6

In this section we discuss the general features of (p, q)-string embeddings into the warped

AdS6 solutions. For the unit-radius AdS6 factor of the background geometry we use global
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(a)

(1,0) (-1,0)

(0,1)

(0,-1)

-

-
-

-

(b)

(-1,0)(1,0)

(0,1)

(0,-1)

-

-

-

-

(c)

(-1,0)(1,0)

(0,1)

(0,-1)

-

-

-

-

Figure 8. 3-cycles in the solution corresponding to (±1, 0) and (0,±1) 5-branes. (a) The basis

cycles c(±1,0), c(0,±1) carry nonzero flux. (b) The cycle c(1,0) + c(−1,0) has a vanishing flux. (c) The

cycle c(0,1) + c(0,−1) also has a vanishing flux, but it is equivalent to the cycle c(1,0) + c(−1,0).

coordinates

ds2
AdS6

=
du2

1 + u2
− (1 + u2)dt2 + u2ds2

S4 , (4.1)

such that the dual SCFT is realized on R × S4. We seek static configurations where the

embedding wraps the time direction, t, in AdS6 and a one-dimensional subspace of Σ, which

we parametrize by a real coordinate ξ. We fix the spatial position in AdS6 to u = 0, such

that an entire SO(5) subgroup of the spatial isometries in SO(2, 5) is preserved along with

time translations. This corresponds in the SCFT to an operator insertion at the origin in

radial quantization, and the on-shell Hamiltonian of the (p, q) strings is then related to the

scaling dimension of the dual operator. We denote the metric induced by the Einstein-

frame metric on the worldvolume by g, and for the class of embeddings discussed here it

is given by

g = −f2
6dt

2 + 4ρ2
∣∣w′∣∣2 dξ2 , w′ =

∂w

∂ξ
. (4.2)

In the following we will discuss the action and equations of motion for (p, q) strings in more

detail, and derive the conditions for them to end on a pole on the boundary of Σ.

4.1.1 Action and equation of motion

A (p, q) string is a bound state of q D1-branes and p fundamental strings. From the

point of view of the worldvolume gauge theory of q coinciding D1-branes it corresponds

to turning on p units of electric flux [37]. Alternatively, one can directly work with an

SL(2,R) covariant formulation of the string action. This can be realized by introducing

two worldvolume gauge fields [38, 39], which, however, carry no degrees of freedom and

can in turn be integrated out. We will work with the SL(2,R) covariant action as given

in [40], where the worldvolume gauge fields have been eliminated.4 The string action is

then given by

S(p,q) = −T
∫
d2ξ
√
qTMq

√
− det(g)− T

∫ (
pB2 − qCRR

(2)

)
, T =

1

2πα′
. (4.3)

4A detailed account of how the different formulations are related can be found in [41].
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CRR
(2) and B2 are the pullbacks of the background R-R and NS-NS two-form fields, respec-

tively, and g denotes the pullback of the SL(2,R)-invariant Einstein-frame metric. With

the dilaton in the conventions of [14–16] (see eq. (3.4)),

qTMq = e2φ

(
p

q

)T (
1 −χ
−χ χ2 + e−4φ

)(
p

q

)
. (4.4)

The action for fundamental strings is recovered for (p, q) = (±1, 0), while the action for

D1-branes is recovered for (p, q) = (0,±1).

The pullbacks of the NS-NS and R-R background two-form fields to the worldvolume

vanish, since they have no components in the time direction. Reduced to the embedding

ansatz described above, the action therefore becomes

S(p,q) =

∫
dtdξL(p,q) , L(p,q) = −2Tf6ρ|w′|

√
qTMq . (4.5)

The resulting equation of motion for the embedding function w(ξ) reads

0 =
w̄′′

w̄′
− w′′

w′
+
(
w̄′∂w̄ − w′∂w

)
ln
(
f2

6ρ
2qTMq

)
. (4.6)

4.1.2 Boundary conditions

Eq. (4.6) constrains the embedding of the string inside Σ. Natural end points are the poles

on the boundary of Σ, corresponding to 5-branes, and punctures in Σ corresponding to

7-branes. To determine which poles a string can end on, we analyze the behavior of the

on-shell Lagrangian in (4.5) near a pole. From the near-pole behavior of the Einstein-frame

metric functions in (3.15), we conclude that f2
6ρ

2 = O(r−1| ln r|1/2), which is not integrable

at r → 0. A finite action is therefore obtained only if

lim
r→0

qTMq = 0 . (4.7)

At a pole with NS5 charge, e−2φ vanishes as the pole is approached and e2φ diverges.

Realizing (4.7) therefore requires

p− qχm = 0 , (4.8)

where we introduced χm ≡ limw→rm χ. With (3.17) and (3.23), χm evaluates to

χm =
ND5

NNS5
. (4.9)

Near a D5-pole, e−2φ in (3.18) diverges as r → 0, and qTMq remains finite only if q = 0.

In order for a (p, q) string ending on a generic (P,Q) 5-brane pole to have finite action, the

string charges therefore have to be related to the 5-brane charges by

Pq − pQ = 0 . (4.10)

This is as expected from string theory. In particular, only fundamental strings can end on

D5-brane poles and only D1-branes can end on NS5-brane poles.
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4.1.3 Scaling dimension and charge

The scaling dimension of the dual operator for a given (p, q) string embedding is given by

the on-shell Hamiltonian, and can be obtained here as

∆(p,q) =

∫
dξL(p,q) . (4.11)

The (p, q) string also couples to the background two-form field. Although this coupling van-

ishes for the background solution, due to the specific form of the embedding, the coupling

to the fluctuation δC(2) discussed in section 3.4 is non-trivial. The coupling is

δS(p,q) = T

∫ (
pδB2 − qδCRR

(2)

)
= T

∫
(pRe(dC)− q Im(dC)) ∧ fIAI . (4.12)

Turning on the I = 3 Cartan direction, for which fI = cos θ1, and choosing the highest

weight state in the multiplet corresponding to locating the string at θ1 = 0, we can identify

the R-charge as

Q(p,q) = T

∫
Σ(p,q)

(pRe(dC)− q Im(dC)) , (4.13)

where Σ(p,q) denotes the cycle that the string wraps in Σ. For string embeddings that do

not cross branch cuts, this becomes the difference in T (pRe(C)− q Im(C)) between the two

end points of the string.

With the expressions for scaling dimension and R-charge in hand, we will be able to

explicitly verify that the BPS relation for the supersymmetric states of interest here, which

is [42, 43]

∆ = 3Q , (4.14)

is satisfied for the strings and string webs to be discussed in the next sections.

4.2 The +N,M and XN,M solutions

Let us begin with the solution dual to the +N,M theory, originally introduced in section 4.2

of [16]. The poles on the real line are placed at

r1 = 1 , r2 =
2

3
, r3 =

1

2
, r4 = 0 , (4.15)

and the regularity conditions fix A0
+ = Z2

+ ln 3−Z1
+ ln 2. The parameters s1, s2 are chosen

as the two solutions to the quadratic equation

M
(
4s2 − 6s+ 2

)
+ iN(2− 3s)s = 0 , (4.16)

and are both in the upper half plane. Finally, the overall normalization of the residues, σ,

is chosen as

σ =
4M − 3iN

8
α′ . (4.17)
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Σ

N D5N D5

M NS5

M NS5

F1
D1

Figure 9. Disc representation of the solution with residues given in (4.18) along with the embed-

dings of a D1-brane and a fundamental string.

The residues produced by this choice of parameters are pairwise opposite equal and given by

−Z1
+ = Z3

+ =
3

4
iα′N , Z2

+ = −Z4
+ =

3

4
α′M . (4.18)

With the results of section 3.3, these are the appropriate residues for an intersection of

N D5-branes and M NS5-branes, and this solution is thus expected to be the holographic

dual for the +N,M theory discussed in section 2.3.

The solution has two Z2 symmetries, which will be instrumental in discussing the string

embeddings. Their action takes a simple form after mapping the upper half plane to the

unit disc centered at the origin, such that the poles are on the intersections of the boundary

of the disc with the real and imaginary axes. Combining an SL(2,R) transformation on

the upper half plane, mapping three of the poles to {−1, 0, 1} and the remaining one to

infinity, with a Cayley transform, yields

w =
f(z) + 1

f(z) + 2
, f(z) = i

1 + z

1− z , (4.19)

where w is the complex coordinate on the upper half plane and z the coordinate on the

disc. This leads to the solution in the form illustrated in figure 9. The poles are mapped

to the boundary of the disc as follows

r1 → z = 1 , r2 → z = −i , r3 → z = −1 , r4 → z = i . (4.20)

When formulated in the z coordinate on the disc, the supergravity fields transform as

follows under reflection across the real and imaginary axes

z → ±z̄ : (f2
6 , f

2
2 , ρ

2, τ, C − C0)→ (f2
6 , f

2
2 , ρ

2,−τ̄ ,±(C̄ − C̄0)) , (4.21)

where C0 is the value of C at the center of the disc, C0 = C|z=0.

4.2.1 String embeddings

As discussed in section 4.1, fundamental strings can connect D5-brane poles with finite

action, while D1-branes can connect NS5-brane poles with finite action. We thus expect to

find these two embeddings in the supergravity solution corresponding to a D5/NS5 brane
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intersection. The embeddings are expected to take a particularly simple form in the z

coordinate where Σ corresponds to a disc and the Z2 symmetries are transparent.

For a fundamental string with (p, q) = (1, 0), we expect the embedding to correspond

to the segment of the real axis connecting the poles on the real line in figure 9. The equation

of motion (4.6) for such an embedding with z̄ = z = ξ turns into

0 = (∂z̄ − ∂z) ln
(
e2φf2

6ρ
2
)
. (4.22)

Due to the transformation of the supergravity fields under reflection across the real line

as given in (4.21), the derivative acts on a term which is even under reflection across the

real line, and therefore vanishes. The anticipated embedding therefore indeed satisfies the

equation of motion. In the w coordinates the embedding corresponds to a half circle in the

upper half plane connecting r1 and r3, namely,

wF1 =
1

4

(
3 + eiξ

)
, ξ ∈ [0, π] . (4.23)

This is the supergravity realization of the fundamental string connecting D7-branes in

figure 4(a).

By S-duality, one expects to find a D1-brane which takes the form of a straight line

connecting the NS5-poles in figure 9 along the imaginary axis. The equation of motion (4.6),

with z = iξ and (p, q) = (0, 1), evaluates to

(∂z̄ + ∂z) ln
(
f2

6ρ
2τ τ̄
)

= 0 . (4.24)

Again, due to the transformation of the supergravity fields under reflection across the

imaginary axis, as given in (4.21), the derivative acts on a function which is even under

reflection across the imaginary axis, and vanishes. The embedding therefore again solves

the equation of motion. In the upper half plane the solution for the D1-brane embedding

is a half circle connecting r2 and r4,

wD1 =
1

3

(
1 + eiξ

)
, ξ ∈ [0, π] . (4.25)

This provides the supergravity realization of the D1-brane connecting (0, 1) 7-branes in

figure 4(a).

To determine the scaling dimension and R-charge of the string states, we realized

the background solution for a large number of explicit choices for N and M , and evalu-

ated (4.11) and (4.13) numerically. We found striking agreement, up to machine precision

of O(10−16), with simple analytic formulas. The results for the scaling dimensions and

R-charges are

∆F1 =
3

2
M , QF1 =

1

3
∆F1 ,

∆D1 =
3

2
N , QD1 =

1

3
∆D1 . (4.26)

In particular, scaling dimension and charge for the fundamental string are independent of N

and depend linearly on the number of NS5-branes, while the results for the D1-brane are in-

dependent of M and depend linearly on the number of D5-branes. The scaling dimensions,
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Figure 10. The chiral ring relation as realized in the dual geometry: N fundamental strings

between the D5-brane poles are equivalent to a D3-brane wrapping the sum of the two D5-brane

cycles, which is equivalent to a D3-brane wrapping the sum of the two NS5-brane cycles, which in

turn is equivalent to M D1-branes between the NS5-brane poles.

including their N and M dependence as well as numerical coefficients, agree precisely with

those obtained from the field theory discussion in section 2.3, and summarized in table 1,

in the limit of large N and M .

Finally, the global U(1) charge of these states can be determined as follows. Recall that

the global U(1) symmetries correspond to the flux-free combinations of 3-cycles surrounding

the poles. In this case there is only one, corresponding to the sum of the (1, 0) and

(−1, 0) cycles, or equivalently to the sum of the (0, 1) and (0,−1) cycles. A D3-brane

wrapping either of these cycles describes a particle charged under the U(1) symmetry.

In the first case it is equivalent to the combination of a D3-brane on the (1, 0) cycle

and a D3-brane on the (−1, 0) cycle connected by N fundamental strings, as required by

tadpole cancellation on both 3-branes, and in the second case to D3-branes on the (0, 1)

and (0,−1) cycles connected by M D1-branes. The equivalence of the two combinations

is naturally interpreted as the geometrical description of the chiral ring relation (2.25),

figure 10. We can also conclude from this, with a suitable choice of normalization, that the

single fundamental string state carries M units of U(1) charge, and the single D1-brane

state carries N units of U(1) charge, as seen in section 2.3.

4.2.2 The XN,M solution

The supergravity solution dual to the XN,M theory is closely related to the dual of the

+N,M theory. It is realized by the same choice of parameters that was used for the +N,M

solution, except for a different choice of σ, which is now given by

σ =
1 + i

8
α′(4M − 3iN) . (4.27)

This realizes the residues for an intersection of N (1,−1) 5-branes and M (1, 1) 5-branes,

Z1
+ = −Z3

+ =
3

4
α′(1− i)N , Z2

+ = −Z4
+ =

3

4
α′(1 + i)M . (4.28)

We now have (1,−1) strings connecting the (1,−1) 5-brane poles at r1 and r3, and (1, 1)

strings connecting the (1, 1) 5-brane poles at r2 and r4. The results for the scaling dimen-
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sions and charges are

∆(1,−1) = 3M , Q(1,−1) =
1

3
∆(1,−1) ,

∆(1,1) = 3N , Q(1,1) =
1

3
∆(1,1) . (4.29)

These results are related to the ones for the D5/NS5 intersection in (4.26) by a simple

rescaling by a factor 2. This can be understood from the supergravity perspective as

follows: the solution realizing an intersection of N D5 and M NS5 branes can be related

by an SL(2,R) transformation to an intersection of N/
√

2 (1,−1) 5-branes and M/
√

2

(1, 1) 5-branes. Likewise, the configuration with N D5 branes, M NS5 branes and a

fundamental string or a D1-brane is related by SL(2,R) to a configuration with N/
√

2

(1,−1) 5-branes, M/
√

2 (1, 1) 5-branes and a (1,−1)/
√

2 or (1, 1)/
√

2 string, respectively.

For this configuration, the scaling dimensions of the string states are still given, respectively,

by 3/2N and 3/2M . Upon rescaling M and N , as well as the string charges, by factors

of
√

2, to realize the XN,M solution with a (1,−1) or (1, 1) string, we recover the result

in (4.29).

We emphasize that this reasoning is justified in the supergravity approximation, where

the SL(2,Z) duality of Type IIB string theory is enhanced to SL(2,R). This corresponds

to the “large-N” limits of the +N,M and XN,M theories. In the string theory description,

where the 5-brane charges are quantized and the S-duality group is reduced to SL(2,Z),

the corresponding brane webs are not related by S-duality.

As in the +N,M solution, we can determine the global U(1) charge of these states by

considering a D3-brane wrapping a flux-free combination of 3-cycles. This shows that the

(1,−1) string carries M units of charge and the (1, 1) string carries N units of charge. As

before this also provides a geometrical description of a chiral ring-like relation analogous

to (2.25). However, in the case of the XN,M theory we do not have an explicit realization

of this relation in terms of operators in the quiver gauge theory, since we are not able to

construct both operators simultaneously in a given gauge theory.

4.3 The TN and YN solutions

In this section we realize the supergravity solution corresponding to the TN theory. This

solution was originally introduced in an SL(2,R) transformed version in [16]. We start

with a slightly more general charge assignment and specialize to the TN case at the end.

The solution has three poles, L = 3, which are located at

r1 = 1 , r2 = 0 , r3 = −1 . (4.30)

The regularity conditions are solved by setting A0
+ = σs1 ln 2, and the remaining parame-

ters are chosen as

s1 =
iN

iN + 2M
, σ =

3

4
α′
iN

s1
. (4.31)

This realizes the residues for a junction of M NS5 branes and N D5 branes,

Z1
+ =

3

4
α′M , Z2

+ =
3

4
iα′N , Z3

+ = −3

4
α′(M + iN) . (4.32)
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Figure 11. Disc representation of the 3-pole solutions with residues given in (4.32). The dashed

blue line shows a string junction connecting all three poles, with α = N/M .

This solution has three Z2 symmetries, which are again transparent on the disc. We

map the upper half plane with coordinate w to the unit disc centered at the origin with

coordinate z via

w =
i√
3

1− z
1 + z

. (4.33)

The solution then takes the form illustrated in figure 11, with the poles at the cubic roots

of 1. There are three distinguished lines, for which the supergravity fields have simple

transformations under reflection, and these are the diameters from a given pole to the

diametrically opposed point. For reflection across the real line we have

z → z̄ :
(
f2

6 , f
2
2 , ρ

2, τ − χ2

)
→
(
f2

6 , f
2
2 , ρ

2, χ2 − τ̄
)
, (4.34)

where χ` denotes the asymptotic value of χ at the pole r`. This symmetry can be under-

stood as follows: we can transform the charge assignment in (4.32) to a configuration where

Z1
+ = −Z3

+ by an SL(2,R) transformation which leaves Z2
+, i.e. the residue at the D5-brane

pole, invariant. This is a D7-brane monodromy transformation and simply produces a shift

in the axion. The configuration with Z1
+ = −Z3

+ now has a manifest reflection symmetry,

which is analogous to z → z̄ in (4.21). Applying the inverse SL(2,R) transformation,

back to the residues in (4.32), produces the transformation of the supergravity fields under

reflection as given in (4.34). By analogous reasoning, one finds that the Einstein-frame

metric functions are invariant under z → e4πi/3z̄ and z → e8πi/3z̄, while the axion-dilaton

scalar changes by an SL(2,R) transformation.

4.3.1 String embeddings

The transformations in (4.34) are sufficient to show that the equation of motion for a

fundamental string is satisfied along z ∈ R, which in the w coordinate on the upper half

plane corresponds to the imaginary axis

wF1 =
iξ

1− ξ , ξ ∈ (0, 1) . (4.35)

Likewise, the two further Z2 symmetries discussed above suggest that there are also solu-

tions for D1-branes connecting the NS5 pole r1 to the diametrically opposed point along

the diameter in the z coordinate, and (N,M) strings connecting the (N,M) 5-brane at r3

– 27 –



J
H
E
P
0
8
(
2
0
1
8
)
1
2
7

to the diametrically opposed point on the boundary of Σ. Mapping back to w, this yields

the following additional embeddings

wD1 =
1− 2e−iξ

3
, w(N,M) =

2eiξ − 1

3
, ξ ∈ (0, π) . (4.36)

They indeed satisfy the equation of motion (4.6) with the appropriate charge assignments.

A natural object to consider in order to implement the appropriate boundary conditions

for open strings is a string junction, formed out of the segment of each of these strings

connecting the pole to the center of the disc. This yields a string junction connecting all

three poles, as illustrated in figure 11, with α = N/M . Note that the (p, q) string charges

are conserved at the trivalent vertex. In the supergravity description one can realize e.g.

a (−α, 0) string with generic α; for a full string theory description the constraints from

charge quantization have to be taken into account. This will be implemented automatically

when we specialize to N = M shortly. Adding the contribution of the various segments of

the string junction to the Hamiltonian, we find the scaling dimension and charge as follows,

∆(−α,0)−(0,−1)−(α,1) =
3

2
N , Q(−α,0)−(0,−1)−(α,1) =

1

3
∆(−α,0)−(0,−1)−(α,1) . (4.37)

For M = N , the background solution describes a junction of N D5-branes and N NS5-

branes, and realizes the supergravity dual for the TN theory discussed in section 2.1. With

α = 1 in that case, the string junction joins a D1-brane and a fundamental string with

a (1, 1) string, with charge and scaling dimension given in (4.37). The string junction is

the supergravity realization of the junction shown in figure 1(a), and the scaling dimension

precisely agrees with that of the trifundamental operator discussed in section 2.1 in the

large-N limit.

It would be interesting to generalize this configuration to the general k case, whose

scaling dimension is ∆ = 3
2 k (N − k). Note that this is symmetric under the exchange

k ↔ N − k. Hence, it is natural to expect this configuration to be similar to a k-string.

4.3.2 The YN solution

By analogy with the discussion for the +N,M and XN,M solutions, the YN solution can

be obtained from the TN solution by an SL(2,R) transformation combined with a charge

rescaling, and the corresponding field theories are related at large N . More specifically,

the supergravity solution for a junction of N D5-branes and N NS5-branes with N (1, 1)

5-branes is related by SL(2,R) to the supergravity solution for a junction of N/
√

2 (1, 1)

5-branes and N/
√

2 (−1, 1) 5-branes with N/
√

2 (0,−2) 5-branes. The string junction

describing the BPS state in the TN solution, which was joining a fundamental string and a

D1-brane with a (1, 1) string, is mapped by this SL(2,R) transformation to a junction of a

(1, 1)/
√

2 string and a (−1, 1)/
√

2 string with a (0,−2)/
√

2 string. Rescaling the 5-brane

charges and the string charges by factors of
√

2 in order to realize the YN solution with

a junction of (1, 1), (−1, 1) and (0,−2) strings again produces a factor 2. The resulting

scaling dimension and charge are

∆(1,1)−(−1,1)−(0,−2) = 3N , Q(1,1)−(−1,1)−(0,−2) =
1

3
∆(1,1)−(−1,1)−(0,−2) . (4.38)

This supergravity result for the string web shown in figure 2(a) precisely agrees with the

scaling dimension of the ((2N)2
asym,N,N) operators discussed in section 2.2 at large N .
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Σ

N D5

M NS5

M NS5

k D7

Figure 12. Disc representation of the D5/NS52/D7 supergravity solution, with the black dot-

dashed line showing the branch cut. The fundamental string connecting the D5-brane pole to the

D7 brane puncture is shown as purple dashed line, the D1-brane connecting the NS5-brane poles

is shown as blue dashed line.

4.4 The +N,M,k solution

We now turn to a configuration with D7-brane monodromy, and identify string probes in

the setup engineered in section 4.3 of [24]. It has three poles, and the parameters associated

with the seed solution are chosen as

r1 = 1 , r2 = 0 , r3 = −1 , σ =
3

2
α′M , s1 =

iN

2M
. (4.39)

The location of the branch point, w1, the phase γ1 fixing the orientation of the associated

branch cut, and the strength of the monodromy n2
1 are chosen as

n2
1 = k , w1 = iλ , λ = cot

(
πN

2Mk

)
, γ = −1 , (4.40)

with k > 0. This satisfies the regularity conditions and realizes the residues

Y1
+ =

4

3
α′M , Y2

+ =
4

3
α′iN , Y3

+ = −4

3
α′M . (4.41)

This produces a solution with one external stack of N D5-branes, two external stacks of M

NS5-branes, and k D7-branes at w1. The supergravity solution is illustrated in figure 12.

It realizes the dual for the +N,M,k theory discussed in section 2.4, and the corresponding

brane webs are illustrated in figure 5.

In this background we expect to find a fundamental string connecting the D5-brane

pole to the D7-brane puncture, as well as a D1-brane connecting the two NS5-brane poles.

For the fundamental string connecting the D5-brane pole to the D7 branes, the embedding

can be inferred from a Z2 symmetry of the setup, which acts as reflection across the

imaginary axis in the disc representation of figure 12. The embedding of the fundamental

string into the upper half plane is given by

wF1 = iξ , ξ ∈ (0, λ) , (4.42)

and indeed solves the equation of motion. The scaling dimension and charge are

∆F1 =
3

2

(
M − N

k

)
, QF1 =

1

3
∆F1 . (4.43)
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This realizes the (N, k̄,1,1) operator of table 1 and the scaling dimension agrees with the

field theory arguments of section 2.4 at large M and N/k.

For the D1-brane there is no simple symmetry argument fixing the embedding. How-

ever, the qualitative form of the embedding can be inferred, and that qualitative form of

the embedding is sufficient to deduce the scaling dimension of the dual operator. To argue

for the form of the embedding, we start with the limit where k is large, and the puncture

approaches the boundary of the disc at the point diametrically opposed to the D5-brane

pole in figure 12. As discussed in more detail in section 4.4 of [24], the solution reduces

to a four-pole solution without monodromy in that limit. For this four-pole solution we

found the embedding of the D1-brane in section 4.2, and it corresponds to a vertical line

connecting the NS5-brane poles. As the puncture is moved inwards along the equator of

the disc, decreasing k, the embedding gets deformed, to qualitatively take the form illus-

trated in figure 12. The scaling dimension can be inferred from the R-charge, which can

be computed from the values of the background two-form field at the end points of the

embedding, as discussed in section 4.1.3. This yields

QD1 =
1

2
N . (4.44)

Using the BPS relation (4.14), we then conclude that ∆D1 = 3
2N , in agreement with the

value inferred from field theory considerations in section 2.4.

4.5 The �+N solution

We now realize an intersection with six external 5-brane stacks, as discussed in section 2.6,

corresponding to a six-pole supergravity solution with residues

Z1
+ = iZ2

+ = −Z4
+ = −iZ5

+ =
3

4
α′N , −Z3

+ = Z6
+ =

3

4
α′(1 + i)N . (4.45)

To exploit the symmetries of this setup, we start the construction directly on the disc. We

introduce a coordinate on the disc, z, a mapping from the disc to the upper half plane, f ,

and place the poles as follows,

r` = f(e
iπ`
3 ) , f(z) =

i− z
1− iz . (4.46)

On the disc we expect a simple transformation of the configuration under discrete transfor-

mations mapping the poles and residues into each other, in particular under z → −z and

z → z̄. We recall that the {sn} have an interpretation as the locations of auxiliary charges

for a certain electrostatics potential in the construction of [16]. They should be mapped into

themselves under the discrete symmetry transformations. To realize the residues in (4.45)

and solve the regularity conditions in (3.8), we choose

sn = f

(
− 4

√√
3− 2 einπ/2

)
, n = 1, · · · , 4 , (4.47)

while the overall normalization σ and constant A0
+ are fixed as

σ = −9

2
(1 + i)α′N , A0

+ =
3

8
(1− i)α′N ln(7 + 4

√
3) . (4.48)
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Σ

(1, 1)(−1,−1)

(−1, 0)

(1, 0)(0,−1)

(0, 1)

(1, 1)

F1

D1

((a))

Σ

(1, 1)(−1,−1)

(−1, 0)

(1, 0)(0,−1)

(0, 1)

(1, 1)

(0,−1)

(−1, 0)

((b))

Figure 13. Disc representation of the 6-pole solutions with residues given in (4.45). On the left

hand side strings connecting like poles. On the right hand side the three-junction.

There are various embeddings of strings and string junctions into these solutions.

There are three strings connecting poles with opposite-equal 5-brane charges, as shown in

figure 13(a). The scaling dimensions and R-charges are given by

∆F1 = 3N , ∆D1 = 3N , ∆(1,1) = 3N ,

QF1 =
1

3
∆F1 , QD1 =

1

3
∆D1 , Q(1,1) =

1

3
∆(1,1) . (4.49)

This agrees precisely with the scaling dimensions derived in section 2.6 and summarized

in table 1. Using segments of the strings, one can also form 3-pronged string junctions

connecting three poles. With a (1, 1) string connecting the (−1,−1) 5-branes at r3 to

the center of the disc, a (−1, 0) string connecting the NS5-branes at r1 to the center and

a (0,−1) string connecting the D5-branes at r5 to the center of the disc, one forms the

junction shown in figure 13(b). The scaling dimension and R-charge are

∆(1,1)−(−1,0)−(0,−1) =
9

2
N , Q(1,1)−(−1,0)−(0,−1) =

1

3
∆(1,1)−(−1,0)−(0,−1) . (4.50)

An analogous junction can be formed to connect the remaining three poles, with the same

result for the scaling dimension. These results agree with the results of section 2.6 at

large N .
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