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Abstract
Background: Anogenital distance (AGD) is a measure of in 
utero exposure to hormonally active agents. The aim of the 
present study was to evaluate the association between pre-
natal exposure to persistent organic pollutants (POPs) and 
AGD. Methods: POP levels were measured in pregnant wom-
en, and the AGD was recorded in 43 offspring at 18 months. 
We used linear regression models to analyze the association 
between maternal POP exposure and offspring AGD. We de-
fined the anogenital index (AGI) as AGD divided by weight 
at 18 months (AGI = AGD / weight at 18 months [mm/kg]) 
and included this variable in the regression models. Results: 
AGI measure was 2.35 (0.61) and 1.38 (0.45) in males and fe-

males, respectively. AGI was inversely associated with lipid-
adjusted concentrations of PBDE-99 (β = −0.28, 95% confi-
dence interval [CI]: −0.51, −0.04) and PBDE-153 (β = −0.61, 
95% CI: −1.11, −0.11) in males. We did not find any statisti-
cally significant relationship between any POPs and AGI in 
females. Conclusions: Environmental exposure to POPs may 
affect genital development and result in reproductive tract 
alterations with potentially relevant health consequences in 
maturity. © 2018 The Author(s) 

Published by S. Karger AG, Basel

Introduction

Intrauterine exposure to environmental pollutants 
such as persistent organic pollutants (POPs), including 
organochlorine compounds (OCs) or polybrominated 
diphenyl ethers (PBDEs), could increase the risk of ad-
verse health effects in children, as the prenatal stage is 
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important to development. OCs such as 4,4-dichlorodi-
phenyltrichloroethane (DDT), hexachlorocyclohexane, 
pentachlorobenzene, hexachlorobenzene, and polychlo-
rinated biphenyls (PCBs) and organobromines such as 
PBDEs are toxic environmental pollutants that have been 
used extensively as pesticides or flame retardants [1]. 
These products were added to the list of POPs under the 
Stockholm Convention in 2009 [2]. Nowadays, their syn-
thesis is severely restricted or banned, but they persist in 
the environment and in human tissues owing to their 
high lipophilicity and biomagnifying properties [3–5].

Anogenital distance (AGD) is an anthropometric pa-
rameter that has been validated as a sensitive marker of 
intrauterine exposure to androgens and antiandrogens 
[6, 7]. According to the 1992 Princeton Consensus on 
sexual dysfunction and cardiac risk, an endocrinological 
disruptor (also known as an endocrine-disrupting chem-
ical [EDC]) is defined as an exogenous substance or mix-
ture that alters functions of the endocrine system and 
consequently causes adverse health effects in an intact or-
ganism or its progeny or subpopulations [8].

Optimal functioning of both feminine and masculine 
genitals requires a balance between androgens and estro-
gens. Female differentiation occurs largely independently 
of estrogens, whereas male sexual differentiation is an-
drogen-dependent and potentially estrogen-dependent 
[9]. Therefore, estrogen excess causes a decrease in the 
steroidogenic activity of the enzymes responsible for con-
verting progesterone to testosterone; estrogens have also 
been shown to contribute to reduced production of folli-
cle-stimulating hormone in male fetuses and a decrease 
in Sertoli cells, resulting in a low sperm count [10, 11]. 

Endocrine-disrupting molecules are found in pesti-
cides such as DDT or PCBs and in flame retardants con-
taining phenol derivatives such as PBDEs. These chemi-
cals contaminate water, soil, and food [12] and exert their 
effects by activating and modulating the estrogenic recep-
tors located in the female and male gonads. 

There is extensive medical literature supporting the as-
sociation of environmental toxicant exposure and AGD 
decreases in animals [13–15]. Some studies have used 
AGD as a measure of fetal androgenic or antiandrogenic 
action. AGD has been found to relate to body weight in 
rodents, as both measures are independent endocrine ef-
fects. AGD generally corresponds to the androgenic load 
received throughout life and can predict other androgen-
sensitive endpoints [13, 16]. Exposure to estrogen com-
pounds may have an inhibitory action on steroidogenesis 
contributing to the decrease of androgens levels and AGD 
[9].

The early exposure to POPs could constitute an envi-
ronmental risk to human health due to implications in 
children’s genital development and their possible andro-
genic/antiandrogenic or estrogenic effect. To date, some 
studies have evaluated the relationship between the envi-
ronmental endocrine disruptors such as phthalates or 
DDT and the decrease of AGD [17–21]. To our knowl-
edge, there are no published studies on the relationship 
between exposure to PBDEs and PCBs and AGD. 

Intrauterine exposure to POPs may be a factor in de-
creased AGD among children. Thus, the aim of the pres-
ent study was to evaluate the association between prenatal 
exposure to POPs and AGD. The work was undertaken 
within the INMA (INfancia y Medio Ambiente – Envi-
ronment and Childhood) Project in Spain.

Methods

Study Design and Population
The INMA Project is a multicenter population-based mother-

child cohort study established in different areas of Spain following 
a common protocol. The project analyzes the influence of prenatal 
environmental exposures on the growth, development, and health 
of infants from gestation to childhood [22]. The present study’s 
cohort included pregnant women who agreed to participate in the 
INMA Asturias cohort and their newborns. Asturias is located in 
northern Spain on the Cantabrian coast. A total of 485 pregnant 
women were recruited at the reference Hospital San Agustín in 
Avilés (Asturias) between May 2004 and June 2007. Deliveries at 
the hospital occurred between October 2004 and February 2008. 
Pregnant women completed two detailed questionnaires on an-
thropometric and sociodemographic characteristics and lifestyle 
variables.

Analytical Techniques
Hospital staff collected maternal blood samples from 355 wom-

en during pregnancy. POP concentrations in 355 maternal blood 
samples were analyzed. Maternal blood was collected during the 
first trimester of gestation (median: 12 weeks; range: 10–13 weeks) 
by trained midwives following the INMA cohort protocol [22]. 
Aliquots of the samples were placed in Vacutainer blood collection 
tubes and stored away from light at 4  ° C (1–2 h from collection) 
until centrifugation for 15 min at 2,500–3,000 rpm. The serum ob-
tained was aliquoted into 2-mL glass cryotubes and stored at 
−80  ° C. Samples collected were analyzed at the Barcelona Institute 
of Environmental Assessment and Water Research as previously 
described [1]. 

Limits of detection for OCs ranged from 0.010 to 0.035 ng/mL. 
OC analysis was performed by gas chromatography with electron 
capture detection (Agilent Technologies 6890N, Santa Clara, CA, 
USA) using a DB-5 column protected by a retention gap (60 m × 
0.25 mm I.D., 0.25-µm film thickness; J&W Scientific, Folsom, CA, 
USA). The carrier gas was helium (constant flow 1.5 mL/min). In-
jection (2 µL) was in splitless mode at 280  ° C. Nitrogen (60 mL/
min) was the makeup gas. The electron capture detection was set 
at 310  ° C. The temperature was held at 90  ° C for 2 min, and then 
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ramped to 130  ° C/min and to 290  ° C at 4  ° C/min, with a final hold-
ing time of 20 min. The total run time was 60.67 min. The labora-
tory methods and quality control procedures for the analysis of 
organohalogen compounds have been described elsewhere [23, 
24]. PBDE congeners were analyzed by gas chromatography cou-
pled to mass spectrometry in chemical ionization mode and nega-
tive ion recording. 

Total cholesterol and triglycerides were determined in mater-
nal serum samples using colorimetric enzymatic methods in the 
General Biochemistry Laboratory of Hospital San Agustín. The 
samples were processed using a Roche Diagnostics COBAS C711. 
Total serum lipid concentrations were calculated as described by 
Phillips et al. [25] using the following formula:

ºººTL 1/4 ð2: 27 TCÞ þ TG þ 62: 3 mg × dL−1.

AGD Measurements
We analyzed anoscrotal distance (anus to scrotum) and ano-

fourchetal distance (anus to fourchette) in boys and girls, respec-
tively, at 18 months. The technique for AGD measurement has 
been described in detail elsewhere [13]. Briefly, the newborn was 
in the dorsal decubitus position; both hips were flexed and light 
pressure was exerted on the infant’s thighs. Measurements were 
made with Vernier calipers. Distance was measured from the cen-
ter of the anus to the posterior convergence of the fourchette in 
female infants and to the junction of the smooth perineal skin of 
the scrotum in male infants. All AGD measurements were taken 
in the reference Hospital San Agustín in Avilés. We were able to 
measure the AGD in 44 children aged 18 months and stratified the 
measurements by sex. All measures were performed by two trained 
pediatricians.

Other Variables
We considered the following maternal characteristics: age 

(years), height (cm), pre-pregnancy body mass index (BMI), and 
weight gain during pregnancy, in accordance with the recommen-
dations of the Institute of Medicine [26]. We also considered the 
following characteristics of the newborn: birth weight (g), birth 
length (cm), weight at 18 months (g), length at 18 months (cm), 
and BMI at 18 months (kg/m2).

Statistical Analysis
Of the 44 infants for whom AGD was obtained at 18 months, 

we excluded 1 for incomplete data on prenatal exposure to POPs. 
The sample used for the analysis comprised the remaining 43 
mother-infant pairs. All statistical analyses and plotting were per-
formed using the R statistical software package [27]. p values < 0.05 
were considered statistically significant. Outcomes were evaluated 
for normal distribution and outliers by sex. Birth weight, birth 
length, weight and length at 18 months, and BMI were within nor-
mal ranges in all children; therefore, the data did not require trans-
formation. POP concentrations were logarithmically transformed 
to normalized distributions. We used the anogenital index (AGI = 
AGD / weight at 18 months [mm/kg]), as previously described by 
Swan et al. [17].

We used the crude values for comparisons between groups and 
to calculate Spearman correlation coefficients. Data were stratified 
by sex. We used linear regression models to assess the association 
between AGI and individual POPs. Both crude and adjusted values 
for height at 18 months, in males and females, were used.

Results

The median maternal age was 32 years (range: 23–41), 
the median height was 161 cm, and the median BMI was 
23.2 kg/m2. This distribution is homogeneous with the 
entire INMA Asturias cohort (data not shown). The mean 
weight and length of newborns at birth were 3.35 kg and 
50 cm, respectively.

Among the 43 infants, no genital malformations or 
disorders were detected, and no parameters appeared 
grossly abnormal in either sex. The AGD range was 17–41 
mm in male infants, with a mean (SD) of 29.15 (6.67) mm. 
In female infants, the AGD range was 10–41 mm, with a 
mean (SD) of 17.31 (7.88) mm. 

The mean (SD) AGI value was 2.35 (0.61) mm/kg in 
males and 1.38 (0.45) mm/kg in females. Figure 1 shows 
the values of AGI by age in the sampled population, strat-
ified by sex. The children’s mean (SD) weight, height, and 
BMI at 18 months were 12.35 (1.59) kg, 82.93 (3.41) cm, 
and 17.67 (1.67) kg/m2, respectively (Table 1). 

At 18 months, we analyzed the AGI measurements for 
correlation with measures of body size and with maternal 
characteristics. In males, AGI was correlated with BMI 
(Rho = –0.61; p value = 0.004). In females, AGI was cor-
related with height at 18 months (Rho = –0.52; p value = 
0.05) (Table 1). We also used a simple linear regression 
model to assess the association of each POP with AGI, 
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Fig. 1. AGI (mm/kg) by children’s age at examination.
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stratified by sex. Table 2 shows the model’s values; model 
1: crude nonadjusted model, model 2: adjusted for height 
at 18 months. Male offspring AGI was inversely associ-
ated with maternal serum concentrations of PBDE-99  
(β = −0.28, 95% confidence interval [CI]: −0.51, −0.04) 
and PBDE-153 (β = −0.61, 95% CI: −1.11, −0.11). In fe-
male offspring, we did not observe any statistically sig-
nificant association between maternal serum of POPs and 
AGI (Table 2). 

Discussion

We found a negative association between AGI at 18 
months of age and prenatal exposure to PBDE-99 and 
PBDE-153 in males. Although these findings should be 
confirmed in larger samples, this research provides im-
portant epidemiological evidence that prenatal exposure 
to POPs might be associated with shortened AGD in off-
spring.

Prenatal androgen action can be quantified using the 
AGD as a biomarker of the antiandrogenic effects of 
EDCs in humans. The external genitalia are sexually di-
morphic at birth. Various protocols have been used to 
measure AGD. We selected the protocol developed by 
Salazar-Martinez et al. [13] because that group was the 
first to study the AGD in both sexes (measured from the 

center of the anus to the base of the scrotum in males and 
from the center of the anus to the posterior fourchette in 
females) [28, 29]. Cryptorchidism and hypospadias are 
less-reliable markers of endocrine disruption than the 
AGD [30]. It may therefore be a useful tool in population 
studies on the effects of POPs.

In our study, the mean AGD value in males at 18 
months (29.15 mm) was 8.15–10.05 mm higher than the 
measures published in 3 previous studies carried out in 
Mexican newborns [13, 20, 29]. However, when we com-
pared the mean (SD) AGI index, we found that our index 
was 2.35 (± 0.61), i.e., 2–3 times less than the data report-
ed by Swan et al. [17] (7.4 mm/kg), Huang et al. [19] (7.16 
mm/kg), or Torres-Sanchez et al. [21] (6.0 mm/kg). 

In females, the mean value of the AGD at 18 months 
(17.31 mm) was similar to the one reported by Phillip et 
al. [31] (16.1 mm) in an Israeli population, but was 6.41 
mm higher than the mean values recorded by Callegari et 
al. [32] in the US, and 7.31 mm higher than values re-
ported by Salazar-Martinez et al. [13]. The mean AGI 
(1.38 mm/kg) was also lower than the AGI reported by 
Huang et al. [19] (5.37 mm/kg). These differences could 
be attributable to measurements taken at different ages; 
in this aspect it would be interesting to standardize the 
measurement (through the AGI for example) so that the 
results were more reliable and comparable and system-
atic error may also explain the variation. 

Table 1. Characteristics of the population: the Asturias INMA cohort

Physiological variables n Mean ± SD Min. P25 Median P75 Max. Rho 
Spearmana

(female)

p
value

Rho 
Spearmana

(male)

p value

Infant
AGD at 18 months, mm

Male 27 29.15±6.67 17 23.5 29 35 41 – – – –
Female 16 17.31±7.88 10 13 14.5 18.5 41 – – – –

AGI, mm/kg
Male 25 2.35±0.61 1.31 1.98 2.29 2.72 4 – – – –
Female 14 1.38±0.45 0.76 0.98 1.2 1.43 2.36 – – – –

Birth weight, g 43 3.35±3.65 2.72 3.07 3.31 3.61 4 –0.691 0.060 0.109 0.600
Birth height, cm 43 49.98±1.57 47 49 50 51 54 –0.303 0.290 0.257 0.213
Weight at 18 months, g 39 12.35±1.59 9.67 11.21 12.2 13.45 16 –0.468 0.090 –0.358 0.078
Height at 18 months, cm 35 82.93±3.41 77 80.5 83 84.8 93 –0.517 0.050 –0.318 0.158
BMI at 18 months, kg/m2 35 17.67±1.67 12.9 16.5 17.5 18.7 20.8 –0.287 0.317 –0.606 0.004

Mother 
Height, cm 43 162.51±6.04 150 160 161 166 175 –0.245 0.398 –0.239 0.342
BMI, kg/m2 43 24.39±5.1 18.4 20.6 23.2 26.8 40.2 –0.004 0.988 0.037 0.854
Age, years 43 32.16±4.29 23 29.5 32 35 41 –0.337 0.230 –0.049 0.815

P25, 25th percentile; P75, 75th percentile; AGD, anogenital distance; AGI, AGD / weight at 18 months; BMI, body mass index. a Spearman correlation 
coefficient with the AGI variable.
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The distributions of multiple POPs between maternal 
serum and cord serum or placenta are generally corre-
lated, suggesting maternal-to-fetus transfer [5]. Vizcaino 
et al. [33] have suggested an association between prenatal 
exposure to POPs and inadequate gestational weight 
gain. While few reports on the possible effects of POP ex-
posure on fetal growth have been published to date, some 
evidence suggests that prenatal exposure to these com-
pounds could be associated with disturbed hormone lev-
els during pregnancy [34–36]. Prenatal exposure to PCBs 
has been related to lower birth weight, decreased thyroid 
function, and modification of the sex ratio at birth [37, 
38]. In another study in the same population of the pres-
ent work, it was pointed out that PBDEs may impair fetal 
growth in late pregnancy and reduce birth size [39].

The association of AGD with POPs in maternal serum 
may reflect the effect of prenatal exposure to POPs that 

act as androgens. This association could provide indirect 
evidence of postnatal changes in AGD in response to an-
drogen activity. To date, epidemiological data on AGD 
changes resulting from prenatal exposure to androgens, 
estrogens, and EDCs are limited. Decreased AGD and 
genital defects have been reported in male infants whose 
mothers had been exposed prenatally to EDCs [17]. An-
other study [21] evaluated a reduced anal position index, 
defined as the ratio of AGD to the distance between the 
coccyx and the scrotum, and found reduced values in 
male infants whose mothers had high first-trimester 
blood levels of 1,1-dichloro-2,2-bis(p-chlorophenyl)eth-
ylene, a metabolite of the pesticide DDT. In contrast, a 
study of 781 newborns in Chiapas, Mexico [20], did not 
find an association between exposure to the antiandrogen 
1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene and AGD 
[20]. 

Table 2. Measures of association between POP concentration and anogenital distance measured in children in a 
linear regression model

Geometric mean 
(95% CI)

Model 1 Model 2

β 95% CI β 95% CI

Maternal serum
HCB 

Male 79.57 (51.39, 123.2) –0.07 –0.49, 0.34 0.01 –0.43, 0.45
Female 63.14 (35.72, 111.61) –0.08 –0.48, 0.30 –2.28 –0.05, 0.05

4,4-DDD
Male 1.41 (0.78, 2.53) –0.36 –0.60, –0.12 –0.30 –0.62, 0.01
Female 1.28 (0.69, 2.34) –0.10 –0.59, 0.39 –0.06 –0.63, 0.50

2,4-DDD
Male 0.76 (0.67, 0.86) –1.19 –2.47, 0.07 –0.92 –3.22, 1.38
Female 0.75 (0.70, 0.80) 1.51 –2.90, 5.93 3.75 –1.05, 8.55

PCB-28
Male 2.84 (1.63, 4.94) –0.23 –0.57, 0.10 –0.11 –0.61, 0.37
Female 4.74 (2.32, 9.67) –0.08 –0.39, 0.23 –0.06 –0.42, 0.29

PCB-52
Male 1.54 (1.36, 1.75) –1.19 –2.46, 0.07 –0.92 –3.22, 1.38
Female 1.53 (1.44, 1,63) 1.51 –2.90, 5.94 3.75 –1.05, 8.56

PBDE-28
Male 0.16 (0.13, 0.21) –0.38 –0.78, 0.01 –0.24 –0.67, 0.19
Female 0.23 (0.15, 0.35) 0.04 –0.28, 0.37 0.01 –0.40, 0.29

PBDE-99
Male 0.39 (0.26, 0.58) –0.31 –0.53, –0.09 –0.28 –0.51, –0.04
Female 0.90 (0.50, 1.65) 0.04 –0.22, 0.31 0.04 –0.21, 0.30

PBDE-153
Male 1.54 (1.36, 1.75) –0.41 –0.87, 0.04 –0.61 –1.11, –0.11
Female 1.53 (1.44, 1,63) 0.11 –0.20, 0.41 0.09 –0.20, 0.40

Model 1, crude nonadjusted model; Model 2, model adjusted by height at 18 months. HCB, hexachlorobenzene; 
2,4-DDD, 2,4-dichlorodiphenyldichloroethane; 4,4-DDD, 1,1-dichloro-2,2–bis(4-chlorophenyl)ethane; PCBs, 
polychlorinated biphenyls; PBDEs, polybrominated diphenyl ethers.
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In humans, there is also evidence supporting a rela-
tionship between non-POPs and a decrease in AGD. One 
literature review concluded that AGD in newborns may 
express the degree of intrauterine hormonal alteration 
following exposure to hormonal disruptors [40]. One ob-
servational study [17] of 134 newborn males linked ex-
posure to phthalates to AGD. Another study [19] of 65 
newborns compared maternal urinary phthalate levels 
with phthalate concentrations in amniotic fluid and de-
gree of AGD, finding a positive correlation between am-
niotic and urinary phthalate levels. In a second work, 
Swan et al. [18] reported, in a cohort of 736 children at 
31 months of age, inverse associations between first-tri-
mester exposure to diethylhexyl phthalate and AGD in 
boys.

In females, only two studies have evaluated the expo-
sure to non-POPs. Swan et al. [18] concluded that no 
phthalates metabolites were associated with AGD mea-
sure in girls. In contrast, Huang et al. [19] found a sig-
nificantly negative correlation between amniotic fluid 
MBP (monobutyl phthalate) and AGD. As our study par-
ticularly showed, Torres-Sanchez et al. [21] did also not 
find an association between 1,1-dichloro-2,2-bis(p-chlo-
rophenyl)ethylene and AGD.

Our study has limitations that should be recognized. 
The measurement of AGD has been made by two differ-
ent pediatricians and it can lead to variability in the re-
sults even though they have been previously trained. The 
movement of the child while the pediatrician performs 
the physical exam can also influence the measure. We 
have determinations in maternal serum for persistent or-
ganic compounds but not for other compounds such as 
phthalates or PFAs which can affect the former measure-
ments. Finally, divided by sexes, the numbers are quite 
small, which could limit the power; however, this study 
could serve as a basis for new studies including a larger 
sample size. One of the main strengths of the study is that 
we have been able to measure the concentration of dif-
ferent POPs in maternal blood, some of them forbidden 
nowadays, in order to check the effect they may have on 
the genital development over a population as vulnerable 
to changes as children. Another strength is that we rep-
resented the AGD stratified by sex and analyzed the re-
sults separately, paying attention to the female popula-
tion because in the literature reviewed to date there are 
not many references which study this group in detail. 

In summary, we found a negative association between 
AGD and exposure to PBDE-99 and PBDE-153 in males 
at 18 months of age, but no association with other POPs. 
We did not find any noteworthy relationship between 

POPs and AGI in females. Our findings suggest that even 
at low levels of environmental exposure, POPs may affect 
genital development and result in reproductive tract al-
terations with potentially relevant health consequences 
in maturity. Large-sample longitudinal studies are war-
ranted to confirm the association between POP exposure 
and AGD, as well as the long-term effects on health.
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