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Abstract 

Internet of Things (IoT) has radically transformed the world; currently, every device can be 
connected to the Internet and provide valuable information for decision-making. In spite of the 
fast evolution of technologies accompanying the grow of IoT, we are still faced with the 
challenge of providing a service oriented architecture, which facilitates the inclusion of data 
coming together from several IoT devices, data delivery among a system’s agents, real-time 
data processing and service provision to users. Furthermore, context-aware data processing 
and architectures still pose a challenge, in spite of being key requirements in order to get 
stronger IoT architectures. To face this challenge, we propose a COLLaborative ConText Aware 
Service Oriented Architecture (COLLECT), which facilitates both the integration of IoT 
heterogeneous domain context data — through the use of a light message broker — and easy 
data delivery among several agents and collaborative participants in the system — making use 
of an enterprise service bus —. In addition, this architecture provides real-time data processing 
thanks to the use of a complex event processing engine as well as services and intelligent 
decision-making procedures to users according to the needs of the domain in question. As a 
result, COLLECT has a great impact on context-aware decentralized and collaborative 
reasoning for IoT, promoting context-aware intelligent decision making in such scope. Since 
context-awareness is key for a wide range of recommender and intelligent systems, the 
presented novel solution improves decision making in a large number of fields where such 
systems require to promptly process a variety of ubiquitous collaborative and context-aware 
data. 
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1. Introduction 
Internet of Things (IoT) was introduced by Kevin Ashton in 1999 in the field of supply chain 
(Ashton, 2009), but since then the term has been applied in many other domains and used in a 
wider sense, referring to interconnected devices which can obtain and share information 
across platforms, providing added value to innovative applications. Definitely, the IoT 
definition has evolved towards concepts where service integration plays a relevant role 
(Khodadadi, Dastjerdi, & Buyya, 2016). IoT architectures have to provide essential elements 
such as sensor devices, offered services, communication networks and event context 
processing, interoperability being one key requirement for such IoT architectures, so standard 
interfaces must be provided to facilitate information submission from such devices. Besides, 
reliability and scalability are also key requirements (Buyya & Vahid Dastjerdi, 2016).  

Faced with that situation, a clear statement surfaces: one of the remaining challenges in this 
scope is the design of a Service Oriented Architecture (SOA) for IoT, which facilitates the 
inclusion of data coming from several IoT devices as well as facilitating the delivery of such 
data among system agents, which can process such data and provide services to the users (L. 
D. Xu, He, & Li, 2014). Previously outlined requirements can unquestionably be provided by a 
SOA: interoperability is one of SOA’s principles; besides, SOAs let us build systems based on 
loosely coupled modules, so that system maintenance and reliability are guaranteed, as well as 
scalability, through the use of an Enterprise Service Bus (ESB) or a federation of them  
(Papazoglou, 2012). In addition, Complex Event Processing (CEP) is the ideal technology for 
real-time event processing, which is an inherent need for current IoT architectures and can be 
used in conjunction with SOAs to improve decision-making in multiple domains (Boubeta-Puig, 
Ortiz, & Medina-Bulo, 2015). 

Concerning the matter of sharing information across platforms, collaborative architectures for 
data sharing in the scope of the IoT are an essential requirement de facto for giving additional 
value to any decision-making process (Behmann & Wu, 2015). The huge amount of data 
obtained from multiple smart devices can indeed be shared to provide streaming events in an 
information system with enriched semantic, therefore offering a wider global knowledge of 
the domain in question. Collaborative IoT (C-IoT) takes into account the IoT in a scope of 
heterogeneous elements and domains, where sensors, gateways and services can interact at 
different levels; sensors provide their sensed data; gateways add intelligence to them and take 
actions or communicate information to a higher level, and services make use of the 
information provided by the gateway to improve people’s life quality or business processes. 

It is obvious that with the aim of offering a collaborative SOA in the scope of the IoT, it is 
necessary to search for solutions and protocols that allow data exchange among IoT low 
computation capacity devices.  Such devices have been called fog devices since they are closer 
to the things that produce IoT data than to the cloud computational level; any computing 
device with connection to a network and some storage capacity can be a fog device (CISCO, 
2015). Therefore, IoT can benefit from fog computing, where the processing of local data is not 
performed in the cloud, but can be performed in smart edge devices  (Dastjerdi, Gupta, 
Calheiros, Ghosh, & Buyya, 2016). That is, these devices process all the local events and only 
send the most relevant information to the cloud, where such relevant information can be 
processed together with the information provided by other nodes. Besides, these devices can 
subscribe to the relevant information provided by other nodes and exchange data with them 
in a collaborative way, with no need to send the data to the cloud forward and back, so that 
system resources can be saved.  



Context-awareness is key for a wide range of recommender and intelligent systems 
(Sundermann, Domingues, Conrado, & Rezende, 2016) since it provides privileged information 
which is crucial for intelligent decision support systems (Kwon, 2006). One of the main open 
challenges for context-aware intelligent and expert systems is how to obtain the contextual 
information (Sundermann et al., 2016) in the scope of IoT, where multiple data can be 
obtained from several sources in the context of the domain application, the opportunities 
increase rapidly and context awareness becomes fundamental (Perera, Zaslavsky, Christen, & 
Georgakopoulos, 2014). Not surprisingly, the European Union identifies, among the Horizon 
2020 challenges, research and development for context-aware IoT computation (European 
Research Group in the Internet of Things, 2012;  The Alliance for Internet of Things Innovation, 
2015). This is why in order to fulfill the described outstanding challenges, in this paper we 
provide COLLECT: a COLLaborativE ConText-aware Service Oriented Architecture for the 
Internet of Things. Such an architecture, which is the main contribution of this paper, 
facilitates context spreading and sharing among the nodes in the architecture, therefore 
improving and speeding up intelligent decision-making in countless domains. COLLECT will 
optionally be formed of two types of node: cloud and fog nodes. Both types of node 
implement an Event-Driven Service Oriented Architecture (ED-SOA or SOA 2.0) (Papazoglou, 
2012) which combines benefits from the use of CEP in a SOA, where proposed fog nodes 
architecture is suitable for limited capacity devices. CEP is widely used in intelligent decision-
making systems (Bhargavi, Pathak, & Vaidehi, 2013)  and it will play a key role in our 
architecture. Besides, the mentioned SOA 2.0 has been enriched with a Context Broker.  

As a result, bearing in mind the requirements previously described, COLLECT permits: (1) 
Implementing collaboration among several nodes through a collaborative ED-SOA. (2) Ensuring 
system scalability through the opportunity of federating ESBs in the cloud and through 
distributed CEP and low consumption communications among the fog nodes. (3) Facilitating an 
architecture for fog devices that allows processing information and publishing and subscribing 
to distributed complex events of interest in the context of the application. And (4) Facilitating 
communications between several layers of the C-IoT in the proposed architecture: sensor data, 
the intelligence added by the gateway (our ESB) and the actions launched through the latter to 
send notifications and information of higher semantic meaning. The proposed architecture is 
illustrated and evaluated through the implementation of a case study from the field of 
healthcare IoT, one of the key domains for C-IoT applications (Behmann & Wu, 2015; Islam, 
Kwak, Kabir, Hossain, & Kwak, 2015). 

The rest of the paper is organized as follows: Section 2 presents the background required for 
understanding the technologies and paradigms used in this paper. Then, related work is 
examined in Section 3. Afterwards Section 4 explains the proposed collaborative context-
aware SOA. The case study description and implementation follow in Section 5 and the 
architecture and case-study evaluation can be found in Section 6. Finally, conclusions and 
future work are summarized in Section 7. 

2. Background 
In this section, we introduce the most relevant technologies and knowledge in order to 
facilitate understanding of the paper: context awareness, SOA, CEP, message brokers, IoT and 
fog computing. 



2.1. Context Awareness 
Dey context definition in (Dey, 2001) is specially well-known, where “Context is any 
information that can be used to characterize the situation of an entity”; such entity can be 
almost anything — an object, a person, et cetera —, that can be useful to improve the 
interaction between a user and an application as well as the application functionality itself. 
Context information is specific to each system and can rarely be generalized, therefore one 
specific type of information can be considered as part of the context in a given system but not 
in a different one. 

Context awareness supports the fact that context information, obtained from the system 
environment, is properly used by the system so as to improve its quality; that is, using 
information such as location, social attributes and other information to foresee the system’s 
needs so that we can offer more personalized systems. Therefore, a system is context-aware if 
it uses the context to provide relevant information or services to the user or to the system 
itself, adapting its system behavior to the particular needs of such specific user or system 
(Abowd et al., 1999). Context and context awareness have become a key issue for decision-
making in general and for real-time decision-making in particular (Burstein, Brézillon, & 
Zaslavsky, 2011). 

It is important to highlight that when talking about real time throughout this paper, we refer to 
quasi real time.  This term differs from the strict traditional definition of real-time 
computation, where real-time responses are expected to be received in the order of 
milliseconds or even microseconds. Generally, the term quasi real time refers to a short-time 
response from a system according to its needs, it might be in the order of milliseconds or 
maybe in seconds. For instance, as we will later see in the case study, if we need to warn a 
citizen about current air quality, a millisecond or even a second difference in the response time 
is not relevant (an hour delay would). Therefore, such systems respond rapidly to the occurring 
events but do not require strict under millisecond response.  

2.2. Service Oriented Architecture 
SOA consists of a paradigm for the design and implementation of loosely coupled distributed 
systems which use services for their implementation. These architectures provide easy 
interoperability among third-party systems in a flexible and loosely coupled way, so that the 
focus can remain on the business process rather than on the technologies. This way, system 
maintenance and evolution are facilitated when the system requires changes, and costs are 
reduced (Papazoglou, 2012). Therefore, the service orientation concept is based on the idea of 
offering a well-defined interface which provides communications based on a standard 
protocol, where currently the provider and the consumer are completely decoupled.  

With the growth of service components and processes in service oriented applications, a new 
service infrastructure is required for maintaining applications flexibly. This infrastructure must 
support well-known web service standards and provide support for a message middleware 
(Papazoglou, 2012). These requirements are fulfilled by an ESB. An ESB provides services to 
complex architectures through a messaging system, supplying interoperability among diverse 
applications and components through standard interfaces; that allows applications to be 
offered as services in the ESB. The bus also reinforces the reliability of the communication in 
the SOA as well as ensures system scalability.  

ED-SOA, or SOA 2.0., evolves from traditional SOA. In SOA 2.0., communication between users, 
applications and services is carried out by events, rather than using remote procedure calls 



(Luckham, 2012). To facilitate this paradigm, a software abstraction layer is required to 
integrate diverse heterogeneous data sources and distributed invocations (Papazoglou & 
Heuvel, 2006). These functionalities are offered by the previously explained ESB, which permits 
interoperability among several communication protocols and heterogeneous data sources and 
targets.  

2.3. Complex Event Processing 
Despite all the advantages provided by SOA 2.0, this type of architecture might not be ideal to 
analyze and correlate large amounts of data in terms of events in real time. To meet this 
requirement, it is necessary to integrate CEP (Luckham, 2012), which is a technology that 
allows the capturing, analyzing and correlating of a large amount of heterogeneous data — 
simple events — with the aim of detecting relevant situations in a particular domain (Inzinger, 
Hummer, Satzger, Leitner, & Dustdar, 2014). Event patterns specify the conditions to be met in 
order to detect such situations. These situations are named complex events and managed by a 
CEP engine, the software capable of analyzing the data in real time.  

In this paper, we are going to use the terms “domain events” and “contextual events”. Martin 
Fowler defines domain events as an event which “captures the memory of something 
interesting which affects the domain” (Fowler, 2005); indeed we are going to use this term for 
referring to simple events related to something interesting for a particular domain that 
happens and is captured in the current system node. On the other hand, we will refer to 
“contextual events” as those complex events already detected in some other node in the 
architecture, which of course also contain information of interest for the domain in question, 
but these are not simple events obtained from external sources, but complex ones generated 
from within system. 

2.4. Message Brokers 
In these types of architecture where large amounts of events are received and have to be 
processed, a message broker can be of great use. Message brokers implement an 
asynchronous mechanism which allows source and target messages to be completely 
decoupled; brokers can as well store the messages locally until they can be processed by the 
target element. These brokers may use standard message queues or be combined with a 
publish/subscribe mechanism, where messages are published according to a set of topics and 
users subscribe to the topics of their interest.  

Java message brokers are mostly based on Java Message Service (JMS). JMS allows the 
developer to focus on the application business logic and provides a versatile message API with 
diverse messaging models: point to point, load balance, publish/subscribe, et cetera. In 
particular, there are two most widely used models: queues and topics. Message queues 
implement a load balance algorithm so that only one consumer receives the message; such 
message is kept in the system until the consumer is ready to process it. In the case of message 
topics, a publish/subscribe standard mechanism is implemented, where every published 
message can be processed by all the consumers subscribed to that topic.  

On the other hand, devices with limited capacity require low consumption of message services 
and brokers. In particular, MQ Telemetry Transport (MQTT) protocol was proposed as a light 
protocol implementing a publish/subscribe mechanism for Machine-to-Machine (M2M) 
communications; the broker Mosquitto implements MQTT and is currently being frequently 
used in the scope of IoT.  



2.5. Internet of Things and Fog Computing 
In the near future, the economic impact expected from IoT applications is 11% of the 
worldwide economy (Buyya & Vahid Dastjerdi, 2016). IoT is defined as a network formed by 
interconnected physical objects uniquely identified (Atzori, Iera, & Morabito, 2010) and implies 
integration, transfer and analysis of the data coming from such objects and currently, several 
algorithms, tools, technologies and best practices enable IoT applications and architectures in 
a variety of application domains (Buyya & Vahid Dastjerdi, 2016). However, as explained in the 
introduction, IoT definition has evolved towards concepts where service integration plays a 
crucial role and where IoT proposed architectures must fulfill essential requirements such as 
interoperability, reliability and scalability. Such architectures must also provide a set of 
essential elements such as sensors, offered services, communication networks and event 
context processing.  

In this new IoT era, new additional terms arise. Now, the term smart device is used to refer to 
a device which can communicate with other devices through a network connection and that 
can proceed to some extent with autonomous computation. Such devices are also called edge 
or fog devices, since they are opposite to cloud computing nodes in the network connection. In 
this scope, the term fog computing stands for the processing of local data in the smart edge 
device rather than in the cloud (Dastjerdi et al., 2016). That is, these devices process all the 
relevant local events and save resources by only sending, to the cloud or to other fog nodes, 
the most relevant information that can be processed in the remote nodes together with their 
own one and that improves intelligent decision-making wherever it is required.  

3. Related Work 
There are multiple approaches for context adaptation in different computer science domains 
(Kapitsaki, Prezerakos, Tselikas, & Venieris, 2009): middleware and platform solutions, 
ontology-based solutions, rule-based reasoning, model driven approaches, et cetera. These 
techniques are not exclusive and a developer could opt for combining several of them in order 
to deal with context. 

Some works integrate CEP and SOA or use ESBs to follow some adaptation or provide context 
awareness. For instance, Taher, Fauvet, Dumas and Benslimane (2008) propose the adaptation 
of interactions of web service messages between incompatible interfaces. In this regard, they 
develop an architecture that integrates a CEP engine and input/output adapters for SOAP 
messages. Input adapters receive messages sent by web services, transform them into the 
appropriate representation to be manipulated by the CEP engine and send them to the latter. 
Similarly, output adapters receive events from the engine, transform them into SOAP 
messages and then they are sent to web services. CA-ESB is presented by Chanda, Sengupta, 
Kanjilal, and India (2011) as a context-aware enterprise service bus; in fact, it is a bus which 
deals with service composition based on client location; that is, services register in the system 
with a location and the closest services are selected when pursuing a service orchestration. 

Most of these proposals are focused on a unique aspect of context awareness: some of them 
on the modelling phase, others on context provisioning; others on adaptation code, et cetera; 
but none of them presents a holistic architecture which permits dealing with context 
awareness in SOAs for intelligent decision-making, providing the means for context dealing 
from data reception to delivery of context-aware services. Concerning context awareness 
approaches, the main restriction is that they focus on a particular domain and are not 
extensible to others, and they do not provide the means to allow collaboration among several 
heterogeneous nodes to share context, which would enrich the information each node has. 



This is why we propose here a context-aware architecture that can be configured for multiple 
domains.  

In the scope of expert and intelligent systems, there are several papers related to intelligent 
decision-making based on context. For instance, the paper from Uhm, Lee, Hwang, Kim, and 
Park (2011) where they support adaptive service reconstruction based on context and pattern 
analysis. Collaboration is focused from another perspective in (Papageorgiou, Verginadis, 
Apostolou, & Mentzas, 2011), where the events detected in the system and matching a 
particular pattern cause rearrangements in a particular collaboration. Bruns, Dunkel, 
Masbruch, and Stipkovic (2015) present an event-driven architecture for intelligent Machine-
to-Machine where CEP is a key technology. Using their approach, M2M systems can respond in 
a flexible, adaptable and intelligent way. However, the proposed architecture is too general 
and therefore difficult to put into practice in any domain; at the same time, however, it is 
restricted to the M2M scope. Kim. Kim, Kim and Jung (2016) present an intelligent risk 
management framework for cold chain logistics, where food context allows users to evaluate 
how a certain food will be affected by the cold chain being broken. Even though the 
applicability of the approach is quite narrow, it shows an interesting particularized example of 
how relevant context is used in the IoT and how useful it can be to be aware of it.  

In particular we can find multiple approaches related to ambient assisted living, such as (De 
Backere, Bonte, Verstichel, Ongenae, & De Turck, 2017), where the system obtains context 
information from heterogeneous sources, but all related with an unique local node in the 
architecture. Another relevant work on the topic is CoCaMAAL (Forkan, Khalil, & Tari, 2014), a 
cloud-oriented context-aware middleware in ambient assisted living. Other papers focuses on 
context-awareness in hospitals (Immanuel & Raj, 2015). The great advantage would be 
combining the context from several scopes, let’s say the ambient assisted living house sensors, 
with the hospital context when the dependent people are there. This is what we provide with 
COLLECT: a multi-node and multi-domain architecture which makes use of context in a 
collaborative way. 

In the scope of collaborative SOAs, most works are focused on mobile phone collaboration or 
team work (Rubinsztejn, Endler, Sacramento, Gonçalves, & Nascimento, 2004; Benítez-
Guerrero, Mezura-Godoy, & Montané-Jiménez, 2012). In the scope of the IoT, there are two 
relevant surveys. Perera, Zaslavsky, Christen and Georgakopoulo (2014) present a survey about 
context-oriented computation for the IoT. Among the frameworks studied in the survey, two 
works can be highlighted. Firstly, the framework presented by Badii Crouch and Lallah (2010) is 
focused on context acquisition and processing and they provide a context ontology and a rule 
based reasoning engine. This work could be complementary to ours, where we could make use 
of the provided context and their reasoning. Secondly, Katasonov, Kaykova, Khriyenko, Nikitin, 
and Terziyan (2008) describe a middleware where communications among the different agents 
providing and consuming context are based on semantic descriptions. Even though the survey 
mostly revolves around on context acquisition, where high quality papers are described, those 
concerning context management are not useful for collaborative architectures. The authors of 
the survey also have their own proposal: they supply CA4IOT, a context-aware framework for 
IoT (Perera, Zaslavsky, Christen, & Georgakopoulos, 2012). Their architecture is centred on 
helping the user to choose, among the available sensors, which are more suitable to resolve 
their problems. Therefore, their main aim is automating, selecting, filtering and reasoning data 
coming from several sensors. Once more, this semantic proposal could be used in conjunction 
with ours. The survey presented by Gil, Ferrández, Mora-Mora and Peral  (2016) is focused on 
several fields of IoT (general purpose surveys, data-oriented ones, data mining and data cloud 
integration); as we can see they are mainly focused on the acquisition and analysis of IoT data. 
The fact is that we do not find relevant works that, rather than focusing on IoT context-aware 



data acquisitions, look into the matter of providing a collaborative architecture which would 
benefit from such context. 

4. COLLECT Overview 
COLLECT is a COLLaborativE ConText-aware Service Oriented Architecture for the Internet of 
Things, which is composed of several collaborative nodes. As explained in the introduction, we 
can have two types of node in the architecture: cloud nodes and fog nodes. Figure 1 shows a 
COLLECT architecture where only one cloud node and two fog nodes have been included for 
simplicity. However, the architecture could have additional nodes of both types; typically more 
fog nodes than cloud nodes, or even only fog nodes, always depending on the domain 
requirements. 

Figure 1. COLLECT: Collaborative Context-Aware Service Oriented Architecture 

The cloud node is expected to have many resources and permits storing large amounts of data 
and which provides high processing capacity for events, patterns and notifications. The fog 
node is expected to have limited capacity, having been released from the need to store data 
and all irrelevant events being discarded.  

For instance, imagine that we want to have a system (which will be later proposed as the case 
study in this paper) that lets us predict when there is going to be an increase in patients with 
respiratory problems attending hospital emergency services, for example with the aim of 
having enough lung specialists available at the hospital in such situations. We could have a 
cloud node processing huge information about air quality, pollen concentrations and weather 
forecasts; this cloud node could provide alerts when weather conditions, air quality detected 
and pollen concentrations are at levels which can be dangerous for people with respiratory 
problems. Several fog nodes could be located in a number of hospitals and would receive 
information about local patient admissions and alerts from the cloud node, and they could also 
be subscribed to external alerts (as explained below).  

Communications between nodes would be as follows: 

The cloud node sends all the detected complex events to a light message broker, so that any 
node in the fog (or additional nodes in the cloud, if interested) can subscribe to them. In the 



example, that means that dangerous values of current air quality for people with respiratory 
problems would be submitted to the light message broker. We could have, for instance, a topic 
for all the alerts in every hospital’s area of influence. Let us explain it: people who attend a 
particular hospital are usually from a specific geographic area; therefore, every topic would 
include the alerts from the air quality stations in the said area; so each hospital only receives 
those alerts which are relevant to it. From now on, we will call such geographic areas as the 
hospital’s area of influence. This node, with higher capacity, could also send notifications to 
interested parties, outside the fog nodes, this being out of the scope of this paper.  

A fog node can subscribe to the complex event topics provided by a cloud node (these will be 
contextual complex events of the domain). This means that nodes in the hospitals can 
subscribe to the air quality alerts offered by the cloud node in order to be aware of when air 
quality conditions are unsuitable for patients with respiratory problems.  

A fog node can subscribe to domain event topics provided by the system (these will be 
domain events). Therefore, nodes in the hospitals subscribe to the local topic in which hospital 
patient admissions are registered. 

A fog node sends contextual complex events detected in such node to a light message broker 
to which any node in the architecture can subscribe. This means that, for example, when a 
hospital is aware of unsuitable air quality conditions for people with respiratory problems 
within its area of influence and there has been an important increase on the number of 
patients with breathing conditions attending the hospital emergencies, it can submit a local 
alert to a message topic to which other hospitals can subscribe. 

A fog node can subscribe to the contextual complex event topics provided by other fog nodes 
(these will be contextual complex events for this node). This means that a hospital can 
subscribe to the alerts submitted by the others, so as to predict situations that already 
happened in other hospitals and be prepared for them. For instance, imagine that one 
hospital, having level 3 air quality for particular pollutants within its area of influence, 
experiences a peak of patients with respiratory conditions by emergency admissions. Other 
hospitals, being aware of such situation, can take action when air quality for the same 
pollutants reaches level 3 in their area of influence and receive the first emergency admission 
of patient with breathing problems. 

A fog node sends relevant complex events detected in such node to the system in charge of 
the named node actions. Once a “situation of danger” is predicted, it is submitted to another 
topic to which an actuator or notification system is subscribed in order to anticipate actions 
before the emergency is already there. Even though it is not shown in the illustration, it is 
assumed that for each fog node there will be a system pursuing required actions; the said 
system will be subscribed to the topic receiving the relevant domain complex events detected 
in the named node. Since the action system can be completely decoupled thanks to the use of 
a message broker, we have placed it outside the node to alleviate the node processing load 
and therefore such action system is out of the scope of this paper.  

4.1. COLLECT Architecture Components 
As previously explained, in COLLECT, we are going to have a SOA deployed in the cloud and 
one or more SOAs deployed in the fog. Both components and internal communications are 
explained in the following sub-sections. 



4.1.1. Components Description 
The Context-Aware SOA deployed in the cloud is not the main aim of this paper, since the 
collaboration is fostered in the fog nodes. In any case, such cloud context aware SOA would 
also integrate CEP; would receive data from IoT platforms, sensors or from a message broker 
and could be similar to the one described in (Boubeta-Puig, Ortiz, & Medina-Bulo, 2017), but 
with the additional requirements of sending relevant detected complex events to a light 
message broker that implements MQTT. 

It is assumed that the context-aware architecture to be deployed in the fog will have to be 
deployed in a smart device with limited capacity to a greater or lesser degree and which does 
not require data storage, since irrelevant data are discarded and relevant ones are sent to a 
message broker to which other fog or cloud nodes or action system could subscribe. Such 
architecture, represented in Figure 2, is explained in the following paragraphs. 

Figure 2. Context-aware SOA node in the fog 

Enterprise Service Bus. An ESB is in charge of routing and facilitating communication in a SOA. 
In the proposed architecture, the bus channels the following communications: reception of 
simple events coming from heterogeneous domains and environments, reception of complex 
events providing contextual information to the system, event transformation and routing to 
the CEP engine, complex event reception notified by the CEP engine, complex event routing to 
the context broker and relevant complex event submission to (1) the topic  to which other 
nodes in the architecture subscribe and (2) the topic to which the domain-specific action 
system subscribes.  

Context Broker. The context broker will be in charge of managing the context knowledge 
(implicit in the contextual complex events to which the system is subscribed)  as well as 
submitting the  relevant complex events detected to the contextual event topic or to the 
action topic, depending on the patterns found. The context broker is composed of three 
modules which are explained in Section 4.2. The three modules interact with other elements 
which are distributed along the architecture: the CEP engine and the message broker which 
manages the relevant complex events detected in the node.    

 



CEP engine. Domain-specific event patterns are deployed in the CEP engine for early intelligent 
detection of relevant alerts for the domain in question, including management of the context 
knowledge obtained from other nodes in the collaborative architecture. 

Data suppliers. There are two types of data suppliers in this node; in both cases data enter the 
system with a push model so that events reach the system without the need of performing any 
query. In particular, the architecture subscribes to one or several message topics provided by a 
light message broker. 

o On the one hand, we receive the domain-specific data coming from 
heterogeneous sources and domains. Please bear in mind that even though we 
speak about data coming from diverse domains, they are specific to a 
particular domain where we need to detect relevant events. For instance, for 
the previously explained example, we can obtain heterogeneous events from 
diverse domains such as the hospital admission or air quality station 
measurements, but the system application domain is unique: patients with 
respiratory conditions and illnesses exacerbation. 

o On the other hand, we receive contextual data from other nodes in the 
architecture. They are also relevant data from the domain in question, but 
they are complex events with contextual knowledge that can be useful to 
detect other events in the current node and to prevent non-desired situations 
in the domain in question. For instance, one hospital may be interested in 
knowing when another hospital, with the same air quality level in its area of 
influence, experiences a peak in patients with breathing problems by 
emergency admissions. 

Complex events topic-based message broker. Relevant complex events detected in the local 
node are sent to certain topics in the message broker to which other nodes subscribe or to 
which the domain-specific action system is subscribed. This message broker has been included 
inside the node but it could also be extracted from it, and it would be up to the software 
engineer to balance the processing requirements versus the data communications ones 
according to the particular system’s available resources and requirements. 

4.1.2. Components Integration and Communication  
As previously explained, the ESB is in charge of routing all communications.  

1. First of all, the bus communicates with the CEP engine through the component 
developed by Boubeta-Puig et al. (2014). 

a. Firstly, patterns are deployed in the CEP engine through the use of an initial 
load file. Additional patterns can be added to the engine with additional load 
files at any time. In both cases, the bus manages the load file and deploys the 
patterns in the CEP engine. 

b. Afterwards, when data reach the system they are adapted to the appropriate 
event format to be sent to the CEP engine and the bus routes them to the 
latter. 

c. Finally, when the CEP engine detects that a pattern has been matched, it 
returns the new complex event generated by the pattern detection to the ESB, 
where it is managed as appropriate. 



2. The bus receives data through the message broker that manages the message topics of 
domain events and contextual events.  

3. The bus sends the detected relevant complex events to the node message broker, 
which manages several message topics according to the contextual complex events to 
which other nodes can subscribe and those to which the action system subscribes.  

4.2. The Context Broker 
It is important to be aware that complex events provide context knowledge implicitly, and that 
bearing in mind the device’s limited capacity, no context knowledge is stored in databases and 
its reasoning is implicit in the patterns deployed in the CEP engine.  

Therefore, the context broker is composed of three modules, represented in Figure 3: the 
context knowledge manager, the context reasoner and the context-based adviser. In the 
following paragraphs we explain these three modules within the context broker. 

Figure 3. COLLECT Context Broker 

Context Knowledge Manager. The context knowledge manager is in charge of receiving the 
contextual complex events that reach the system through the message topic and letting them 
reach the CEP engine. As previously explained and shown in Figure 2, this procedure takes part 
of the process of events transforming and routing to the ESB. For the presented example, this 
knowledge would be, for instance, the air quality alerts emitted by the cloud node or local 
alerts from other hospitals. 

Context Reasoner. The context reasoner will be implicit in the contextual events processing 
patterns deployed in the CEP engine. It is the pattern designer who provides the reasoner with 
rules through the pattern definition and programming. Here, we would have patterns that take 
into account air quality alerts, other hospital alerts and patients who are currently arriving at 
hospital emergency services.  

Context-Based Adviser. The context-based adviser, depending on whether the detected 
patterns require actions and/or are related to additional contextual complex events of 
interest, redirects them to the corresponding message topic.  For instance, alerts relevant to 



other hospitals would be sent to the topic in question, situations predicted based on what 
happened in other hospitals and the domain events would go to the action one. 

4.3. Architecture Implementation 
In this section, we describe the implementation and functionality of our proposed 
architecture. For the implementation we had to select an ESB, a CEP engine and an MQTT light 
message broker. We selected Mule open source ESB (MuleSoft, 2017) due to its ability to 
integrate itself with cloud platforms as well as multiple tools and domain scenarios;  Esper, 
since it is a recognized CEP engine, which provides Esper Event Processing Language (EPL) 
(EsperTech, 2017a) for event pattern implementation; and Mosquitto (Eclipse, 2016) because 
it is a widely known light message broker for M2M that facilitates reducing communication 
load and smart devices can subscribe to them through the use of MQTT protocol.  

4.3.1. Implementation Flows  
The key element in our SOA is the ESB, in particular Mule ESB, and its integration with Esper 
CEP engine and Mosquitto broker. The Mule ESB uses flows as its main control structure in 
order to manage the messages and communications among the different elements connected 
to the bus. Currently, Mule application starts processing a message received by an inbound 
endpoint and a set of processing and routing actions are implemented in the flow (MuleSoft, 
2016). In order to provide the collaborative context-aware SOA, a Mule application has been 
implemented for cloud and fog nodes. Flows have been enumerated for clarity purposes, but 
they all run in parallel, even though some of them are loosely coupled: Flow 2 and 3 outputs 
are sent to Esper and Flow 4 receives the complex event detected by Esper  The flows, 
explained in the following paragraphs, are continuously running independently. 

Required flow for the Context-Aware SOA deployed in the cloud: 

Figure 4. Flow extended with Mosquitto broker in the cloud SOA 

For the cloud node, we would need to ensure that there is a flow that sends the relevant 
complex events detected to the MQTT message broker topic to which the remaining nodes can 
subscribe. The flow in Figure 4 would be an example of it, which extends the previously 
mentioned architecture presented in (Boubeta-Puig et al., 2017). 

Implemented Flows for the Context-Aware SOA deployed in the fog: 

FLOW 1. Pattern deployment in the CEP engine. As we can see in Figure 5, in this flow the EPL 
patterns are read from a file where they are separated by commas; then they are deployed in 
the CEP engine through the use of the connector implemented by Boubeta-Puig et al. (2014). 



Figure 5. Fog Flow 1. Pattern deployment in the CEP engine 

FLOW 2. Domain-specific data reception. As shown in Figure 6, this flow receives the 
Mosquitto broker data through a message topic to which it is subscribed. Data reach the 
system in JSON and are transformed into a Java Map and submitted to CEP engine. We can 
receive data from as many MQTT domain topics as the system requires. Following up from the 
previous example, these data could be patient admissions or, for instance, regional news on air 
quality alerts. 

Figure 6. Fog Flow 2. Domain-specific data reception. 

FLOW 3. Contextual data reception. Thorough the flow in Figure 7, data from a Mosquitto 
broker topic are received in the system. Data reach the system in JSON and are transformed 
into a Java Map and submitted to the CEP engine. We can receive data from as many MQTT 
domain topics as the system requires, either events coming from other fog nodes or coming 
from the cloud node. 

Figure 7. Fog Flow 3. Contextual data reception. 

FLOW 4. Complex event detection and submission to the message broker. In this flow, as shown 
in Figure 8, relevant complex events are received. Depending on the type of event, the context 
broker, after transforming them to JSON, submits them either to the topic to which other fog 
nodes subscribe or to the topic to which the domain action system subscribes.  



Figure 8. Fog Flow 4. Complex events detection and their submission to the Mosquitto Broker 

4.3.2. Architecture Functionality 
The SOA deployed in the cloud will follow the same functionality explained in (Boubeta-Puig et 
al., 2017) with the only difference of additionally publishing complex events of interest in a 
Mosquitto topic. That is, in a nutshell, the SOA receives data from several sources through a 
message queue or through querying an IoT platform, these data are saved and processed by 
the CEP engine and, when an alert is detected, a notification can be sent to subscribed users; 
additionally detected alerts are now sent to the Mosquitto broker. 

The SOA deployed in the Fog will have the following functionality: 

• Initially, event patterns are deployed in the system through flow number 1 (Figure 5). 
Additional patterns can be deployed at any time. 

• The following messages reach the system throughout its lifecycle and are transformed 
into Java Maps for their submission to the CEP engine: 

o Domain-specific data reaching the system through the subscription to one or 
more message topics (Flow 2, Figure 6).  

o Contextual complex events reaching the system through the subscription to 
one or more message topics (Flow 3, Figure 7). 

• The CEP engine processes all received events and, through the context reasoner 
implicit in the patterns, it detects new relevant contextual complex events as well as 
new action ones (Flow 4, Figure 8).  

• The context-based adviser is responsible for routing the new complex events of 
interest to the corresponding topic: the topic to which other nodes in the collaborative 
architecture subscribe (contextual events) and the topic to which the action-taking 
system does (Flow 4, Figure 8). 

5. Case Study 
IoT applications for health care are taking great relevance nowadays (Islam et al., 2015); in this 
regard, air quality is one of the key topics in the focus of IoT applications. Indeed, air quality 
deserves special attention since it plays an essential role for citizens nowadays. Year after year, 
the world altogether is increasingly more conscious and worried about air pollution and how it 
can affect their daily lives. Among other consequences, air pollution can seriously affect 
citizens’ health; particularly, it may worsen and favor certain illnesses or even cause death to 
specific risk groups (World Health Organization, 2013). This is why the whole society is 



becoming more interested in this topic, paying extra attention to air quality. Moreover, health 
administration systems are paying special attention to it, since bad air quality implies a risk for 
citizens’ welfare and the cost of a higher number of patients being admitted in emergency 
services.  

The fact is that due to this worldwide concern, several IoT systems for air quality monitoring 
have been created over the last years. Nevertheless, the problem is that monitoring alone is 
not enough: correlation with hospital data and collaboration among them is required. 

Since there is a lack of an internationally recognized standard for measuring air quality levels, 
several indexes have been created over the last years for reporting air quality.  These provide 
us with information about how polluted or clean the air is in a particular area and which 
related effects on citizens’ health might be a concern. In order to calculate the current air 
quality level for a particular location, each index requires the most relevant pollutants to be 
measured: Particulate Matter (PM2,5  and PM10), Carbon Monoxide (CO), Ozone (O3), Nitrogen 
Dioxide (NO2) and Sulphur Dioxide (SO2).  For testing purposes we have used the ranges and 
indexes provided by the US Environmental Protection Agency (EPA) as our air quality level 
classification (U.S. Environmental Protection Agency, 2014) (U.S. Environmental Protection 
Agency, 2016). In the referenced documents, we can find the categorization about general air 
quality based on a parameter calculated for the Air Quality Index (AQI), its influence on the 
public, as well as recommendations; we also present itemized information based on every air 
pollutant concentration which is relevant to citizen health. Depending on the concentration of 
each pollutant, citizen health might be affected in a different way. For instance, for level 4 of 
Ozone values in 8-hour periods the health concerns are: “Greater likelihood of respiratory 
symptoms and breathing in people with lung disease (such as asthma), children, older adults, 
people who are active outdoors (including outdoor workers), people with certain genetic 
variants, and people with diets limited in certain nutrients; possible respiratory effects in 
general population” (U.S. Environmental Protection Agency, 2016). Analogous information is 
provided for the 6 defined levels for all the relevant pollutants (PM2,5, PM10, CO, O3, NO2 and 
SO2). 

5.1. Air4HealthAdmin Description 
Air4HealthAdmin is a collaborative context-aware SOA which provides a cloud node and 
several fog nodes for hospitals’ intelligent decision-making regarding sudden rises in people 
with respiratory problems.  

The cloud node consists of an architecture, which processes all the data from several air 
quality stations and sends notifications to registered users based on every station air quality. 
Equally, it submits all the relevant complex events detected to the message topic; that is, every 
time a pollutant changes level within the hospital’s areas of influence, detected complex 
events are submitted to the message topics.  

Fog nodes will be devices with limited capacity deployed physically in hospitals within a 
particular area. In particular, when implementing the case study, each of these nodes has been 
deployed in a Raspberry Pi 3 Model B, with 1GB of RAM memory and a 2GHz 64-bit quad-core 
ARMv8. These devices will receive (1) the data of emergency patient admissions, (2) the 
relevant complex events from the cloud node, (3) the relevant complex events from other fog 
nodes to which this node has subscribed. 



The objective is that once a hospital receives a set of events coming from heterogeneous 
environments which trigger a complex event of interest, this can be used as an early warning 
for the remaining hospitals. This way, when there are evidences (simple events) that the same 
situation could be happening in another hospital, they can take special measures. For instance, 
let’s assume than hospital 1 detects that when O3 reaches level 4 they start receiving many 
asthmatic people with respiratory insufficiency in emergency admissions (many standing for 
when the number of patients exceed a particular threshold). Under these circumstances, a 
complex event could be submitted to the topic to which other hospitals are subscribed 
warning that they have level 4 of O3 and that asthmatic patients are suffering from respiratory 
distress . Hospital 2 might have a good level of O3 and not worry about the warning; they could 
even have a level 4 of O3 and not worry because they are not receiving emergency patients 
with asthma, but it could also be the case that they also have a level 4 of O3 and observe that 
the cadency for asthma patients through the emergency services is increasing. Then, without 
the need to reach the threshold of shortage patients in emergency, knowing that they have 
had this problem in other hospitals with such circumstances of air quality, they can start taking 
certain precautionary actions. Among them, for instance, they could send an alert to the 
doctor on duty, prepare rooms for this type of patients or require doctors who are off duty to 
come to hospital, warn patients who are registered in the hospital database such as people 
with asthma or simply warn the citizens subscribed to a notification system via their mobile or 
electronic mail.  

5.2. Air4HealthAdmin Technical Requirements 
As previously said, the cloud node, which is processing all the information about air pollutant 
values, should send the relevant detected air quality alerts per area of influence to the topics 
in a Mosquitto broker to which fog nodes can subscribe. We have used an emulator to send 
pollutant values for several geographic areas to the cloud node, so that relevant alerts can be 
detected (otherwise we would have to wait until such pollutant levels are reached locally in 
order to test the system). 

For the fog node, the software engineer will have to do the following tasks: 

• Decide the topics to which the local node will subscribe in the message broker to 
receive domain events. In the case study, making use of an emulator, we will send the 
messages of patient admissions in hospital emergency services with relevant 
symptoms. All fog nodes will subscribe to these topics. 

• Decide the topics to which the local node subscribes in the message broker to receive 
contextual events. In the case study, both fog nodes subscribe to the cloud topic and 
to the other fog node topic.  

• Configure the context broker: (1) creating patterns which establish a relation between 
context types and relevant complex event types (as we will see in the following 
subsection); (2) as well as setting which complex events detected in the local node are 
sent whether to the action topic or to the topic to which other nodes subscribe.  

5.3. Air4HealthAdmin Context and Patterns 
In this section, we are going to explain the type of contextual events available for the 
Air4HealthAdmin case study and the patterns defined in order to obtain added knowledge  
through the complex event processing of such contextual events and other domain events 
from the domain in question.  



5.3.1. Contextual Event Types 
The types of events that the CEP engine can receive are the following; their schemas are 
shown in Listing 1: 

• Quality of air alerts. For this type of events, we will receive the air quality station in 
which the alert was detected; the alert description — the pollutant which raised the 
alert —, the kind of alert — using an identifier for the pollutant which raised the alert 
—, the alert level — according to EPA categories — and the value taken by the 
pollutant. 

• Patient admission with certain symptoms: In this type of event, we will receive the air 
quality station to which influence area the patient belongs to, a patient identifier, the 
symptom — for instance, fever — and the value, when necessary — for instance, 39 
degrees —. 

• Local Hospital Alerts. These types of event are complex events detected in the local 
node, which contain the hospital identifier, the air quality station of the influence area 
the hospital belongs to, the alert description — the pollutant which raised the alert —, 
the kind of alert — using an identifier for the pollutant which raised the alert —, the 
alert level — according to EPA categories — and the total number of patients with 
relevant symptoms.   

• External Hospital Alerts. These types of events are complex event detected in another 
node of the collaborative architecture, which contain the hospital identifier, the air 
quality station of the influence area that the hospital belongs to, the alert description 
— the pollutant which raised the alert —, the kind of alert — using an identifier for the 
pollutant which raised the alert —, the alert level — according to EPA categories — 
and the total number of patients with relevant symptoms.    

• Global Alert. These types of events are global complex events detected in the local 
node,  which contain the hospital identifier, the air quality station of the influence area 
that the hospital belongs to, the alert description — the pollutant which raised the 
alert —, the kind of alert — using an identifier for the pollutant which raised the alert 
—, the alert level — according to EPA categories — and the total number of patients 
with relevant symptoms.   

Listing 1. Air4HealthAdmin Contextual Event Schema 
AlertAirQuality(StationId integer, KndAlrtDscr string, KindAlert integer, 
AlertLevel integer, Value double); 

Admissions(StationId integer, PatientId integer, Symptom String, Value 
double); 

HospitalAlert(HospitalId string, StationId integer, KndAlrtDscr string, 
KindAlert integer, AlertLevel integer, Total long); 

ExtHospitalAlert(HospitalId string, StationId integer, KndAlrtDscr string, 
KindAlert integer, AlertLevel integer, Total long); 

GlobalAlert(HospitalId string, StationId integer, KndAlrtDscr string, 
KindAlert integer, AlertLevel integer, Total long); 

5.3.2. Contextual Events Pattern Definition 
Based on the presented types of contextual complex events that we can have in the system, 
the following patterns have been defined.  

The pattern in Listing 2 detects when patients with breathing shortage or chest tightness are 
reaching a hospital through emergency admissions; these are relevant respiratory symptoms 
which patients may have when air quality for several pollutants reaches level 3. 



Listing 2. Pattern detecting patient admissions with relevant respiratory symptoms with level 3 air quality 
@Name('Grp_SymptomAir_B01_3')  

INSERT INTO Grp_SymptomAir_B01_3 

SELECT adm1.StationId as StationId, COUNT (DISTINCT adm1.PatientId) as Total 

FROM Admissions.win:time(1 hour) adm1 

WHERE adm1.Symptom = "shortness of breath" OR 

           adm1.Symptom = "chest tightness" 

GROUP BY adm1.StationId; 

Pattern in Listing 3 detects a local hospital alert when, having a level 3 air quality alert for O3, 
PM2.5 and PM10, NO2 or SO2, at least 3 patients (we used a low threshold for testing purposes) 
coming from the area of influence of the station which detected the air quality alert with the 
symptoms in Listing 2 are received in the hospital over a period of one hour. 

Listing 3. Pattern detecting patient admissions with relevant respiratory symptoms with level 3 air quality 
@Name('HospitalAlert')  

INSERT INTO HospitalAlert 

SELECT "Hospital_002" as HospitalId,  

    a1.StationId as StationId, 

       a2.KndAlrtDscr as KndAlrtDscr, 

       a2.KindAlert as KindAlert, 

       a2.AlertLevel as AlertLevel, 

       a1.Total as Total 

FROM Grp_SymptomAir_B01_3.win:time(1 hour) as a1,  

          AlertAirQuality.win:time(1 hour) as a2 

WHERE a1.StationId  = a2.StationId AND 

           ( a2.KndAlrtDscr = "O3" OR 

             a2.KndAlrtDscr = "PM25" OR 

             a2.KndAlrtDscr = "PM10" OR 

             a2.KndAlrtDscr = "NO2" OR 

             a2.KndAlrtDscr = "SO2"  

           ) AND  

           a2.AlertLevel = 3 AND 

           Total > 10; 

The pattern in Listing 4 detects a global precautionary alert  — an alert which requires an 
action — in a hospital when, having received an alert of type HospitalAlert from another 
hospital, the local hospital receives 3 patients with the symptoms in Listing 2 (pattern 
Grp_SymptomAir_B01_3) coming from the area of influence of a station with level 3 air quality 
alert for the pollutants previously mentioned. It is important to be aware of the differentiation 
of local and external complex events HospitalAlert: when we receive a contextual complex 
event of type HospitalAlert from another hospital, Mule flow renames it as ExtHospitalAlert. 

Listing 4. Pattern detecting a global precautionary alert with level 3 air quality 
@Name('GlobalAlert')  

INSERT INTO GlobalAlert 

SELECT "Hospital_002" as HospitalId,  

            a1.KndAlrtDscr as KndAlrtDscr, 

            a1.KindAlert as KindAlert, 



            a1.AlertLevel as AlertLevel, 

            gs1.Total as Total 

FROM Grp_SymptomAir_B01_3.win:time(1 hour) as gs1,  

          AlertAirQuality.win:time(1 hour) as a1, 

          ExtHospitalAlert.win:time(1 hour) as h1 

WHERE  ( a1.KindAlert   = h1.KindAlert AND  

a1.AlertLevel  = h1.AlertLevel AND  

     gs1.Total > 3 ) AND 

          ( h1.KndAlrtDscr = "O3" OR 

            h1.KndAlrtDscr = "PM25" OR 

            h1.KndAlrtDscr = "PM10" OR 

            h1.KndAlrtDscr = "NO2" OR 

            h1.KndAlrtDscr = "SO2"  

          ) AND  

          h1.AlertLevel = 3; 

The three following patterns show how another global alert is detected. The pattern in Listing 
5 detects when wheezing patients are admitted into hospital emergencies and group them by 
the station of their area of influence. The pattern in Listing 6 detects when, having a level 4  
alert for NO2 or SO2, at least 2 patients (we used a low threshold for testing purposes) with 
wheezing symptoms and coming from the area of influence of the station with level 4 air 
quality alert have been admitted into hospital emergencies over a period of one hour. The 
pattern in Listing 7 detects a global precautionary alert in a hospital when, having received a 
contextual complex event of type HospitalAlert from another hospital, a patient belonging to 
the area of influence of the station with a level 4 air quality alert for NO2 or SO2 is admitted 
into emergencies with wheezing symptoms.  

Listing 5. Pattern detecting patient admissions with relevant respiratory symptoms with level 4 air quality 
@Name('Grp_SymptomAir_B03_4')  

INSERT INTO Grp_SymptomAir_B03_4 

     SELECT adm1.StationId as StationId, COUNT (DISTINCT adm1.PatientId) as 
Total 

     FROM Admissions.win:time(1 hour) adm1 

     WHERE adm1.Symptom = "chest wheezing"  

     GROUP BY adm1.StationId; 

Listing 6. Pattern detecting patient admissions with relevant respiratory symptoms with level 4 air quality 
@Name('HospitalAlert')  

INSERT INTO HospitalAlert 

     SELECT "Hospital_001" as HospitalId,  

       a1.StationId as StationId, 

       a2.KndAlrtDscr as KndAlrtDscr, 

       a2.KindAlert as KindAlert, 

       a2.AlertLevel as AlertLevel, 

       a1.Total as Total 

     FROM Grp_SymptomAir_B03_4.win:time(1 hour) as a1,  

          AlertAirQuality.win:time(1 hour) as a2 

     WHERE a1.StationId  = a2.StationId AND 

           ( a2.KndAlrtDscr = "NO2" OR 



             a2.KndAlrtDscr = "SO2"  

           ) AND  

           a2.AlertLevel = 4 AND 

           Total > 2; 

Listing 7. Pattern detecting a global precautionary alert with level 4 air quality  
@Name('GlobalAlert')  

INSERT INTO HospitalAlert 

     SELECT "Hospital1" as HospitalId,  

            a1.KndAlrtDscr as KndAlrtDscr, 

            a1.KindAlert as KindAlert, 

            a1.AlertLevel as AlertLevel, 

            gs1.Total as Total 

     FROM Grp_SymptomAir_B03_4.win:time(1 hour) as gs1,  

          AlertAirQuality.win:time(1 hour) as a1, 

          HospitalAlert.win:time(1 hour) as h1 

     WHERE  

  ( h1.HospitalId  != "Hospital_001" AND  

    a1.KndAlrtDscr = h1.KndAlrtDscr  AND  

  a1.KindAlert   = h1.KindAlert AND  

  a1.AlertLevel  = h1.AlertLevel AND  

     gs1.Total > 1 ) AND 

          ( h1.KndAlrtDscr = "NO2" OR 

            h1.KndAlrtDscr = "SO2"  

          ) AND  

          h1.AlertLevel = 4; 

6. Evaluation 
In this section, we explain firstly the performance tests we carried out for the architecture 
deployed in fog nodes in general, secondly the performance tests pursued for the 
Air4HealthAdmin case-study and finally we discuss our proposal strengths and weakness. 

6.1.  Fog Node Architecture Performance Evaluation 
We have developed performance tests for the architecture deployed in the fog nodes. In 
particular, such a fog node architecture has been deployed in a Raspberry Pi 3 Model B ARM 
Cortex-A53 CPU 1.2GHz 64-Bit, with 1GB of RAM memory and with a SanDisk Ultra 16GB card. 
Java Virtual Machine (JVM) 8 on the Raspberry Pi has 512Mb of RAM memory assigned. Data 
enter and leave the node through a local network with a router switch 10/100. 

As a guidance for the tests to be developed we have followed the statements used by Esper for 
their performance evaluation (EsperTech, 2017b), but characterizing the statements for the 
type of events of our proposed case study in Section 5 (see Listing 1); such statements are 
shown in Listing 8, where we have ordered the statements from lesser to higher complexity.  

Listing 8. Pattern statements used for performance evaluation of the architecture in a fog node 
@Name('Statement1')  

INSERT INTO Statement1 

SELECT * 

FROM Admissions adm1 



 

@Name('Statement2')  

INSERT INTO Statement2 

SELECT * 

FROM Admissions adm1 

WHERE adm1.Symptom = "shortness of breath"  

 

@Name('Statement3')  

INSERT INTO Statement3 

SELECT * 

FROM Admissions.win:length(1) adm1 

WHERE adm1.Symptom = "shortness of breath"  

 

@Name('Statement4')  

INSERT INTO Statement4 

SELECT * 

FROM Admissions.win:time(10 min) adm1 

WHERE adm1.Symptom = "shortness of breath"  

 

@Name(' Statement5')  

INSERT INTO Statement5 

SELECT adm1.StationId as StationId, COUNT (DISTINCT adm1.PatientId) as Total 

FROM Admissions.win:time(10 min) adm1 

WHERE adm1.Symptom = "shortness of breath"  

 

@Name(' Statement6')  

INSERT INTO Statement6 

SELECT adm1.StationId as StationId, COUNT (DISTINCT adm1.PatientId) as Total 

FROM Admissions.win:time(10 min) adm1 

WHERE adm1.Symptom = "shortness of breath"  

GROUP BY adm1.StationId; 

For every statement we performed four different test sets with several income events ratio; in 
particular for 50, 100, 200 and 300 events per second. The tests were prepared so that every 
simple event implies the generation of one complex event; therefore, in every test for each 
statement 50, 100, 200 and 300 complex events per second are detected and resubmitted, 
respectively. In every case, we measured the response time for every statement (the time 
passed from the instant a new event enters in the architecture until the corresponding 
generated complex event is notified), RAM memory used and percentage of CPU throughput. 
For every test, such values have been obtained as the average of the values obtained along the 
10 minutes of execution after the JVM warm-up period, once the system was stable (JVM 
requires a period of execution — warm-up — to provide the best performance results; usually 
such performance is obtained after around 5 minutes of execution). 

As we can see in Table 1, the response times are reasonable, as well as the memory and CPU 
usage. Please bear in mind that the event rate supported by the system differs from the one in 
Esper benchmarks due to several factors, such as (1) the fact of the system been deployed in a 
limited capacity device, rather than in a powerful station; (2) the use of events of 223 bytes of 



size, rather those used in Esper performance tests of maximum 28 bytes; (3) the fact of 
measuring the performance for the whole architecture (through the ESB and input and output 
Mosquitto brokers), rather than directly with the CEP engine and (4) the fact of having to 
manipulate all the events received (a JSON element with an average of 5 fields) to obtain the 
relevant data and to format it according to the Esper engine requirements (Java Maps, in our 
case). 

Table 1. COLLECT fog node performance tests results 

 Test Set 
(Events/s) 

Response 
Time (s) 

Memory 
Usage (Mb) 

CPU Throughput  
(%) 

Statement 1 

50 0.018 303 8.58 
100 0.010 307 8.30 
200 0.017 302 23.77 
300 0.011 300 30.78 

Statement 2 

50 0.015 303 7.55 
100 0.011 303 7.87 
200 0.011 301 24.01 
300 0.020 300 28.83 

Statement 3 

50 0.020 302 7.93 
100 0.015 305 7.85 
200 0.025 302 12.97 
300 0.011 304 20.39 

Statement 4 

50 0.009 303 10.24 
100 0.018 306 12.45 
200 0.010 303 23.53 
300 0.023 298 31.81 

Statement 5 

50 0.015 306 7.61 
100 0.020 305 7.78 
200 0.014 303 27.16 
300 0.024 302 31.07 

Statement 6 

50 0.010 305 7.95 
100 0.019 304 7.71 
200 0.011 305 23.65 
300 0.012 302 31.19 

 

6.2. Air4healthAdmin Performance Evaluation 
We have developed performance and stress tests for Air4HealthAdmin. We have tested the 
system with two Raspberries Pi — with the previously explained characteristics — which play 
the role of fog collaborative nodes. Both Raspberries have the same characteristics, except for 
the memory card,  in the first case it is a Kingston (C10) 8GB card and in the second a SanDisk 
Ultra 16GB one, writing accesses being somehow slower in the first than in the second card. 
The node in the cloud was deployed in a workstation with i3-540 (4M cache memory, 3.6 GHz), 
8GB of RAM memory and SATA2 hard drive. Communication between nodes has been carried 
out through a local network with a router switch 10/100.  

We made the tests with an emulator which sends data for several air quality stations to the 
cloud node and data for patient admissions to the fog nodes. The emulator can  generate 
random values as well as manually specified particular ones, and consists of an extension of 
the one explained in (Garcia de Prado, 2016). Every Raspberry Pi represents a different 
hospital.  Therefore, each Raspberry Pi receives the same data about air quality alerts and their 
own patient admissions data, in both cases through topics coming from a Mosquitto broker to 



which they are subscribed. Equally, both Raspberries Pi will receive contextual events of 
interest from the other node in the fog through another Mosquitto broker topic. 

Performance tests have been pursued using temporal windows of 10 minutes (rather than 1 
hour) in order to force the system. Besides, as previously mentioned, thresholds for number of 
patients with relevant symptoms have been set with low values to force the system to create 
and detect a higher number of complex events. Every test set has been performed for 20 
minutes — enough time to check the effect of the time windows —, checking that system 
behavior did not deteriorate over time. Performance test results are shown on Table 2 and 
Figure 9 and Figure 10. 

Table 2. Air4HealthAdmin performance tests results 

TEST SET 1 2 3 4 
Local events received per minute 100 175 250 400 
External events received per minute 130 220 334 464 
Total of events received per minute 230 395 584 864 
Total of local events received  2000 3500 5000 8000 
Total of external events received  2600 4400 6680 9280 
Relevant detected events to be sent to the topic to 
which other nodes subscribe  

2580 4400 6600 9680 

Relevant detected events to be sent to the topic to 
which actions system subscribe 

5140 8720 13260 12400 

Total of relevant detected events 7720 13120 19860 22080 
Local response time (RT) Rasp. 1 and Rasp. 2 (seconds) 0 0 0 0 
External response time (RT) Rasp. 1 (seconds) 0.292 0.569 1.58 35.448 
External response time (RT) Rasp. 2 (seconds) 0.04 0.42 1.861 30.835 

 

Figure 9. Received and detected events for Air4HealthAdmin fog node in performance tests 

As can be seen in Figure 9, every node responds appropriately to an entry of around 864 
events per minute, out of which 400 events consist of air quality alerts and patient admissions 
(in equal parts, approximately) and 464 are contextual events detected by another node in the 
architecture, to which the local node is subscribed. The chart shows, for the 4 test sets in Table 
2 (230, 395, 584 and 864 events per minute received in the node, respectively), how many of 
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them are domain events (Local events per minute), how many are contextual events coming 
from another node (External events per minute), the total of local and remote events received 
(Received local events and Received external events) and the total of relevant complex events 
detected for their submission to a topic to which other nodes can subscribe (Relevant events 
for other nodes), and to the topic to which the action system is subscribed (Relevant events for 
actions). 

Figure 10. Collaborative architecture fog nodes response times 

In the chart in Figure 10, we can see the response times for tests with 230, 395, 584 and 864 
incoming events per minute (test sets in Table 2). We have observed response times 
depending on local events (Local RT) and depending on remote events (External RT); that is, 
how long the system takes to detect a complex event from the time in which a local event is 
created in the system, and how long it takes to detect a complex event from the time an 
external event is created in another node, respectively. We have grouped the local response 
times for both Raspberries since both of them respond in less than a millisecond. However, we 
can see that external response times are separate for both Raspberries since there is a small 
difference in their response times, even though it is not relevant. What can be clearly observed 
is that, as long as we increase the speed of events per minute submitted to the node, and 
therefore the number of submitted and detected events increases, the remote response time 
worsens. This fact can be due to the communication management between both nodes, since 
they have to place in the topic a higher number of relevant contextual events to be 
communicated between nodes through the message broker. 

Finally, through the stress tests we have forced the system, in order to see at which speed of 
incoming events per minute the system would stop working properly.  Table 3 shows the 
results for the stress tests for the first (R.1) and second (R.2) Raspberry. The table shows the 
events entering the system per minute (Events per min.), the incoming local events (Local 
events), events coming from another node which are entering the system (External events), 
and total relevant events detected in the node (Relevant events). 
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Table 3. Air4HealthAdmin stress tests results for both Raspberry Pi 

RASPBERRY PI R. 1 R. 2 R. 1 R. 2 R. 1 R. 2 
Test set 1 2 3 
Local events received per minute 400 650 1000 
External events received per minute 464 484 724 399 396 347 
Total of events received per minute 864 884 1374 1049 1396 1347 
Total of local events received  8000 13000 20000 
Total of external events received  9280 9680 14480 7980 7920 6940 
Total of relevant events detected 22080 24780 19500 33180 17640 22560 

 

The chart in Figure 11 shows the first Raspberry’s behavior for the three test sets presented in 
Table 3. As can be observed for Raspberry 1, the system behaves properly when having an 
entry of almost 900 events per minute, out of which 400 events consist of local events; 
however, when the entry is higher, for instance with an entry of 650 local events per minute 
(total of 1374 events per minute), the number of detected relevant events does not increase 
but drops, as compared to the previous speed; when we increase the speed to up to 1000 local 
events per minute (total of 1396 events per minute), both external events and relevant 
detected events drop, which evidences that the system has collapsed.   

Figure 11. Stress test results for Raspberry 1 

The chart in Figure 12 shows analogous results for the second Raspberry. As we can see, this 
one responds better than the previous one: at 650 local events per minute (total of 1049) 
events per minute) it still respond properly; however at 1000 local events per minute (total of 
1347 events per minute) it also collapses. Even though this can be a collateral effect of the 
poor performance of the first one at such speed of events per minute, we estimate that the 
system is not responding properly to an entry of 1000 events per minute in total. 

According to the tests performed, we can see that the collaborative architecture responds 
properly, since it is an architecture designed for smart devices with limited resources. We have 
to bear in mind that we have forced the number of events entering the system (it is not 
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realistic to have 200 air quality alerts per minute in a local area and 200 emergency hospital 
admissions per minute due to respiratory problems); besides, we would never receive 
contextual complex events from a remote node with a cadency of 464 events per minute). This 
fact allows us to scale the system for additional nodes, where the system designer must bear 
in mind the limitations in the number of topics of interest to which a node can subscribe. It is 
also important to remember that in these tests we have used Community versions of software, 
which have lower quality performance features than Enterprise ones, and also that 
communications have been done through a local network.  We could also place the local 
message broker outside the smart device so as to alleviate the processing load in the node. 

Figure 12. Stress test results for Raspberry 2 

6.3. Discussion 
In this section, we discuss the strengths and weaknesses of the proposal through the results of 
the evaluation and the comparison to other related works. 

Through the case study evaluation, we can highlight the following strengths: we have 
confirmed that (1) the node in the cloud processes the data coming from the emulator and 
sends the detected quality of air alerts to the Mosquitto broker; (2) fog nodes receive the data 
from the cloud Mosquitto topic to which they are subscribed and they process these data 
together with the domain events (patient admissions) and contextual events (other hospital 
local alerts) entering the system through additional message topics; and (3) fog nodes obtain a 
greater knowledge of the domain in real time, thanks to contextual events being exchanged 
among nodes, and they can make intelligent decisions foreseeing situations of interest for the 
domain in question.  

Besides, it has also been proved that smart devices with limited capacities, such as a Raspberry 
Pi, can receive and process events coming from heterogeneous sources through the proposed 
architecture in real time, as well as being able to send complex events of interest to a message 
broker to which other nodes in the collaborative architecture can subscribe. Performance tests 
have shown satisfactory results regarding the amount of messages expected to receive in the 
case study. Stress tests have shown the limit of the system concerning the number of events 
which can be received per minute.  
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Of course, COLLECT architecture, out of the particular case study, has limitations: we cannot 
process a huge number of events per second in the fog nodes; our fog nodes will be able to 
deal with a reduced number of events per second, as shown in Sections 6.1 and 6.2, and this is 
the main weakness of the system. However, precisely what we expect from a fog node is 
having to deal with a reduced number of events, since we have the cloud node to deal with 
higher number of events and only send to the fog ones those which are relevant for them. If 
we have a fog node in a hospital; how many patients can the emergency reception desk 
employee attend per minute? Obviously much less than the number supported by the fog 
node. If we are interested on relevant alerts from other hospitals, how many alerts will we 
receive per minute? For sure quite less than those supported by the system. Likewise, not all 
the events detected in our local node are relevant for other nodes in the architecture and we 
only need to send them those which are relevant for them and which will be easily handle by 
COLLECT. As a result, using COLLECT has the implication that the fog nodes can process a 
limited rate of events per second. However, let us highlight that replacing the proposed fog 
nodes by other more expensive ones with highest computing capacity, according to the 
requirements of the particular scenario, is not an issue; still keeping the essential goal of the 
proposed collaborative architecture. 

Concerning the other approaches in the literature, we want to emphasize once more that most 
context-aware related approaches focuses on separate aspects of context-awareness, such as 
context modelling, provisioning, et cetera. The main strength of our work is the provision of a 
holistic architecture to deal with the context from the instant it enters the system until it is 
used to improve decision making in any node of the collaborative architecture. Of course, we 
require from other approaches in order to deal with initial context modeling, for instance using 
an ontological approach and we plan to work on this in the future. On the other hand, in the 
scope of IoT, even though some current proposals cover the fact of integrating heterogeneous 
context data for its processing, we could not find an architecture where third party relevant 
context could be shared among the different nodes participating in the architecture. Finally, 
context-aware expert systems mainly focus on particular fields or areas of application, again 
with the handicap of not benefitting from the chance of sharing context from multiple parties. 

7. Conclusions 
In this paper, we have presented an unprecedented collaborative context-aware service 
oriented architecture for the Internet of Things, the main contribution of the paper, which 
permits improving intelligent decision-making in IoT scopes facilitating real-time context 
spreading along the nodes in the architecture. Thanks to this novel approach, composed of 
both fog and cloud nodes, we process local IoT data with no need for submission to the cloud; 
therefore two additional contributions being (1) avoiding additional resource consumption to 
edge devices and (2) saving costs in cloud hosting. That way, cloud nodes focus on performing 
higher computational tasks which can be useful for several fog nodes. Besides, this 
architecture can also be useful to anonymize and preserve confidential data in the fog, so that 
such type of information does not have to travel towards the cloud through the Internet. 

To conclude, COLLECT, unlike other traditional IoT architectures, lets us benefit from the great 
advantage of being able to infer more meaningful knowledge from real-time correlation of 
several heterogeneous domains and context data through distributed CEP, paving the way to 
collaborative intelligent decision-making.  



COLLECT complements other approaches in the scope of expert and intelligent systems. Most 
of the existing approaches focus on information clustering and recommendation algorithms 
based on the use of privileged and intelligent systems, while COLLECT covers the open issue of 
how to obtain third-party contextual information by providing a software architecture to easy 
context information processing and sharing, as well as supplying real-time processing and 
delivery of such information to the interested parties in order to facilitate and speed up 
intelligent decision making. In general, other works of expert and intelligent systems, as 
explained in the related work section, focus on obtaining the context for a particular domain in 
an isolated mode (they can obtain heterogeneous data but all from domain-specific sources); 
we go one step further fostering collaboration among several nodes and therefore enriching 
the context information and improving the decision-making process in expert and intelligent 
systems. 

In our near future work, we plan to extend COLLECT with real-time prediction which will let us 
improve intelligent decision-making in the domain in question; for whose aim contextual 
information is essential (Y. Xu, Yin, Deng, N. Xiong, & Huang, 2016). For this purpose, well-
known expert system algorithms could be integrated in the context reasoner. We also plan to 
carry out research on how to incorporate a user profile in order to improve final user 
experience in the IoT scopes where it is required as similarly done, for instance, in the scope of 
the world wide web (Hawalah & Fasli, 2014); the user profile would be a key part of the expert 
knowledge base. Last but not least, we also plan, on the one hand, to extend our previous 
work on an ontological taxonomy for context-awareness (Peinado, Ortiz, & Dodero, 2015) to 
integrate it with COLLECT; on the other, to integrate our model-driven editor for real-time 
decision-making (MEdit4CEP) to facilitate the definition of such contextual domain and 
decision-making in a graphical way (Boubeta-Puig et al., 2015). 
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