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Abstract Music recommender systems have become a key technology to support
the interaction of users with the increasingly larger music catalogs of on-line music
streaming services, on-line music shops, and personal devices. An important task in
music recommender systems is the automated continuation of music playlists, that
enables the recommendation of music streams adapting to given (possibly short) lis-
tening sessions. Previous works have shown that applying collaborative filtering to
collections of curated music playlists reveals underlying playlist-song co-occurrence
patterns that are useful to predict playlist continuations. However, most music collec-
tions exhibit a pronounced long-tailed distribution. The majority of songs occur only
in few playlists and, as a consequence, they are poorly represented by collaborative
filtering. We introduce two feature-combination hybrid recommender systems that
extend collaborative filtering by integrating the collaborative information encoded
in curated music playlists with any type of song feature vector representation. We
conduct off-line experiments to assess the performance of the proposed systems to
recover withheld playlist continuations, and we compare them to competitive pure
and hybrid collaborative filtering baselines. The results of the experiments indicate
that the introduced feature-combination hybrid recommender systems can more accu-
rately predict fitting playlist continuations as a result of their improved representation
of songs occurring in few playlists.
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1 Introduction

Music recommender systems have become an important component of music plat-
forms to assist users to navigate increasingly larger music collections. Recommend-
able items in the music domain may correspond to different entities such as songs,
albums, or artists (Chen et al, 2016; Ricci et al, 2015, Chapter 13), and music stream-
ing services even organize music in more abstract categories, like genre or activity.

As a consequence of the relatively short time needed to listen to a song (compared
to watching a movie or reading a book) a user session in an on-line music streaming
service typically involves listening to, not one, but several songs. Thus, modeling
and understanding music playlists is a central research goal in music recommender
systems. As in other item domains, music recommender systems often provide per-
sonalized lists of suggestions based on the users’ general music preferences. This
approach may work to recommend music entities such as albums, artists, or ready-
made listening sessions (like curated playlists or charts) because it can be useful to
provide the users with a wide choice range. However, recommendations based on the
users’ general music preferences may be too broad for the task of automated music
playlist continuation, where it is crucial to recommend individual songs that specifi-
cally adapt to the most-recent songs played.

A common approach to explicitly address the automated continuation of music
playlists consists in applying Collaborative Filtering (CF) to curated music playlists,
revealing specialized playlist-song co-occurrence patterns (Aizenberg et al, 2012;
Bonnin and Jannach, 2014). While this approach works fairly well, it has an im-
portant limitation: the performance of any CF system depends on the availability
of sufficiently dense training data (Adomavicius and Tuzhilin, 2005). In particular,
songs occurring in few playlists can not be properly modeled by CF because they
are hardly related to other playlists and songs. Music collections generally exhibit a
bias towards few, popular songs (Celma, 2010). In the case of collections of curated
music playlists, this translates into a vast majority of songs occurring only in very
few playlists. This majority of infrequent songs is poorly represented by CF.

To overcome this limitation, we observe that songs occurring rarely in the con-
text of curated playlists are not necessarily completely unknown to us. We can often
gather rich song-level side information from, e.g., the audio signal, text descriptions
from social-tagging platforms, or even listening logs from music streaming services.
Such additional song descriptions can be leveraged to make CF robust to infrequent
songs by means of hybridization (Adomavicius and Tuzhilin, 2005; Burke, 2002).

We introduce two feature-combination hybrid recommender systems that inte-
grate curated music playlists with any type of song feature vector derived from song
descriptions. The curated music playlists provide playlist-song co-occurrence pat-
terns as in CF approaches. The song features make the proposed systems robust
to data scarcity problems. In contrast to previous hybrid playlist continuation ap-
proaches, the proposed systems are feature-combination hybrids (Burke, 2002), hav-
ing the advantage that the collaborative information and the song features are implic-
itly fused into standalone enhanced recommender systems. The proposed systems
can be used to play and sequentially extend music streams, resulting in a lean-back
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listening experience similar to traditional radio broadcasting, or to assist users to find
fitting songs to extend their own music playlists, stimulating their engagement.

1.1 Contributions of the paper

– We provide a unified view of music playlist continuation as a matrix completion
and expansion problem, encompassing

– pure CF systems, solely exploiting curated playlists,
– hybrid systems integrating curated playlists and song feature vectors.

– We introduce two feature-combination hybrid recommender systems
– readily applicable to automated music playlist continuation,
– able to exploit any type of song feature vectors.

– Still, the proposed systems are domain-agnostic. They can generally leverage
– collaborative implicit feedback data from any domain,
– item feature vectors from any domain and modality.

– A thorough off-line evaluation comparing to pure and hybrid state-of-the-art CF
baselines shows that, having access to comparable data, the proposed systems

– compete to CF when sufficient training data is available,
– outperform CF when training data is scarce,
– compete to, or outperform the hybrid baseline.

– The proposed systems further improve their performance by considering richer
song feature vectors, e.g., concatenating features from different modalities.

– The evaluation also provides a complete comparison of
– a widely-used matrix factorization CF system (Hu et al, 2008),
– its audio-based hybrid extension (van den Oord et al, 2013),
– a popular playlist-neighbors CF system (Bonnin and Jannach, 2014).

– The Appendix extends the evaluation of the proposed systems with a detailed
analysis of the contribution of each type of song feature vector, showing

– the standalone performance of each type of song feature vector,
– the incremental gains of stepwise combinations of song feature vectors.

1.2 Scope of the paper

Compiling a music playlist is a complex task. According to interviews with prac-
titioners and postings to a playlist-sharing website, Cunningham et al (2006) found
that the playlist curation process is influenced by factors such as mood, theme, or pur-
pose. They also observed a lack of agreement on curation rules, except for loose and
subjective guidelines. Krause and North (2014) studied music listening in situations.
Among other conclusions, they found that participants of their study, when asked
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to compile playlists for specific situations, selected music seeking to comply with
perceived social norms defining what music ought to be present in each situation.

The scope of our work is restricted to machine learning approaches to music rec-
ommender systems. We focus on the exploitation of data describing playlists and the
songs therein, in order to identify patterns useful to recommend playlist continua-
tions. We acknowledge the complexity of the playlist curation process, and we are
aware of the possible limitations of a pure machine-learning perspective.

1.3 Organization of the paper

The remainder of the paper is organized as follows. Section 2 reviews previous works
on music playlist continuation. Section 3 formulates music playlist continuation as a
matrix completion and expansion problem. Sections 4 and 5 describe the proposed
systems and the baselines for music playlist continuation, respectively. The evalua-
tion methodology is presented in Section 6. Section 7 describes the datasets of cu-
rated playlists and song features used in our experiments. Section 8 elaborates on
the results. Finally, conclusions are drawn in Section 9. Additional details of each
playlist continuation system, additional song feature types, and additional results are
provided in Appendices A, B and C, respectively.

2 Related work

Content-based recommender systems for automated music playlist continuation gen-
erally compute pairwise song similarities on the basis of previously extracted song
features and use these similarities to enforce content-wise smooth transitions. Such
systems have typically relied on audio-based song features (Flexer et al, 2008; Lo-
gan, 2002; Pohle et al, 2005), possibly combined with features extracted from social
tags (McFee and Lanckriet, 2011) or web-based data (Knees et al, 2006). While this
approach is expected to yield coherent playlists, Lee et al (2011) actually found that
recommending music with stronger audio similarity does not necessarily translate to
higher user satisfaction. This limitation relates to the so-called semantic gap in music
information retrieval, that is, the distance between the raw audio signal of a song and
a listener’s perception of the song (Celma et al, 2006).

Collaborative Filtering (CF) has been proven successful to reveal underlying struc-
ture from user-item interactions (Adomavicius and Tuzhilin, 2005; Ricci et al, 2015).
In particular, CF has been applied to music playlist continuation by considering col-
lections of hand-curated playlists and regarding each playlist as a user’s listening
history on the basis of which songs should be recommended. Previous research has
mostly focused on playlist-neighbors CF systems (Bonnin and Jannach, 2014; Hariri
et al, 2012; Jannach et al, 2015), but Aizenberg et al (2012) also presented a latent-
factor CF model tailored to mine Internet radio stations, accounting for song, artist,
time of the day, and song adjacency. An important limitation of most latent-factor
and playlist-neighbors CF systems is that they need to profile the playlists at training
time in order to extend them, by computing their latent factors or finding their nearest
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neighbors. As a consequence, such systems can not extend playlists unseen at training
time. To circumvent this issue, Aizenberg et al (2012) replaced the latent factors of
unseen playlists by the latent factors of their songs, and Jannach and Ludewig (2017)
showed how to efficiently implement a playlist-neighbors CF system able to extend
unseen playlists in reasonable time, even for large datasets. Song-neighbors CF sys-
tems have also been investigated (Vall et al, 2017b, 2019), and Bonnin and Jannach
(2014) proposed a successful variation consisting in computing similarities between
artists instead of between songs, even when the ultimate recommendations were at
the song level. Their system also incorporated song popularity. A common limitation
of all pure CF systems is that they are only aware of the songs occurring in training
playlists. Thus, songs that never occurred in training playlists, to which we refer as
“out-of-set” songs, can not be recommended in an informed manner. Furthermore,
songs that do occur in training playlists, but seldom, are not properly modeled by CF
because they lack connections to other playlists and songs.

Other collaborative systems (i.e., systems based on the exploitation of playlist-
song interactions) have been presented. Zheleva et al (2010) proposed to adapt Latent
Dirichlet Allocation (LDA) (Blei et al, 2003) to modeling listening sessions. They
found that a variation of LDA that specifically considers the sessions provided better
recommendations than plain LDA. Chen et al (2012) presented the Latent Markov
Embedding, a model that exploits radio playlists to learn an embedding of songs
into a Euclidean space such that the distance between embedded songs relates to
their transition probability in the training playlists. Both systems can extend playlists
unseen at training time, but can only make informed recommendations for songs
occurring in training playlists.

Hybrid systems combining collaborative and content information are a common
approach to mitigate the difficulties of CF to represent infrequent songs. Hariri et al
(2012) represented the songs in hand-curated playlists by topic models derived from
social tags and then mined frequent sequential patterns at the topic level. The recom-
mendations predicted by a playlist-neighbors CF system were re-ranked according
to the next topics predicted. The approach proposed by Jannach et al (2015) pre-
selected suitable next songs for a given playlist using a weighted combination of
the scores yielded by a playlist-neighbors CF system and a content-based system.
The candidate songs were then re-ranked to match some characteristic of the playlist
being extended. In both cases the hybridization followed from the combination of
independently obtained scores, by means of weighting heuristics or re-ranking. For
songs occurring in few training playlists, the recommendations predicted by CF could
be boosted with content information. However, the recommendations for out-of-set
songs would solely rely on the content-based component of the hybrid systems.

McFee and Lanckriet (2012) proposed a hybrid system integrating collaborative
and content information more closely. The system was based on a weighted song
hypergraph, that is, a song graph where edges can join multiple songs, and weights
define the similarity between the (possibly many) songs connected by an edge. The
edges were defined by assigning the songs in hand-curated playlists to possibly over-
lapping song sets, which had been previously obtained through clustering of extracted
multimodal song features. The weights were found in a second step as the best pos-
sible fit given a collection of training playlists and the hypergraph edges. This sys-
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tem could better deal with out-of-set songs, as it would only need to assign them to
appropriate edges. Not strictly applied to music playlist continuation but to music
understanding and recommendation in general, van den Oord et al (2013) introduced
the use of convolutional neural networks to estimate song factors from a latent-factor
model, given the log-compressed mel-spectrogram of the audio signal of songs. Such
networks can be essentially regarded as feature extraction tools, but further combined
with latent-feature models they enable the informed recommendation of infrequent or
out-of-set songs. This approach was further combined with semantic features derived
from artist biographies by Oramas et al (2017).

Our own previous works on music playlist continuation focused on two main re-
search lines. On the one hand we studied the importance of three main playlist char-
acteristics (length, song order, and popularity of the songs included) in music play-
list continuation systems (Vall et al, 2017b, 2018b, 2019). On the other hand, more
related to the current paper, we analyzed the extent to which multimodal features
can capture playlist-song relationships, and we designed two feature-combination
hybrid recommender systems for music playlist continuation (Vall et al, 2016, 2017a,
2018a). In the current work we consolidate the second line of research. We present
the two feature-combination hybrid systems in full detail. We conduct an extensive
evaluation, comparing the proposed systems to four competitive playlist continuation
baselines, and incorporating uncertainty estimation by means of bootstrap confidence
intervals. We analyze additional audio-based features extracted applying convolu-
tional neural networks on song spectrograms. Finally, the evaluation further provides
new, insightful comparisons between well-established pure and hybrid CF systems,
namely the matrix factorization model proposed by Hu et al (2008), its hybrid ex-
tension proposed by van den Oord et al (2013), and the playlist-neighbors CF sys-
tem (Bonnin and Jannach, 2014; Hariri et al, 2012; Jannach et al, 2015).

3 Problem formulation

Let P be a collection of music playlists. Let S be the universe of songs available,
including at least the set SP of songs occurring in the playlists of the collection P, but
possibly more (i.e., S⊇ SP). A playlist p ∈ P is regarded as a set of songs, where the
song order is ignored.1 Playlists may have different lengths.

Since playlists are seen as song sets, any playlist p is a subset of the universe
of songs S. Thus, the set difference S \ p represents the songs that do not belong to
the playlist p. A song s can be regarded as playlist of one song, i.e., as the singleton
set {s}. Given a song s in a playlist p, the set difference p \ {s} removes the song s
from the playlist p. The length of a playlist p is denoted by its cardinality |p|.

We refer to any playlist p ∈ P as an “in-set” playlist, and to any song s ∈ SP as an
“in-set” song. In contrast, we refer to any playlist p /∈ P as an “out-of-set” playlist,
and to any song s /∈ SP as an “out-of-set” song.

1 Even though the process of listening to a playlist is inherently sequential, we found that considering
the song order in curated music playlists is actually not crucial to extend such playlists (Vall et al, 2018b,
2019). While more research is required to fully understand the impact of the song order in music playlists,
we feel confident that disregarding the song order does not harm the contribution of the current work.
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Fig. 1: Playlist continuation as a matrix completion and expansion problem. The ma-
trix Y encodes the playlist collection P. CF systems discover in-set potential positive
playlist-song interactions by “completing” the matrix Y. Hybrid systems can fur-
ther “expand” the matrix Y towards out-of-set songs by incorporating external song
descriptions. Systems not specializing in the playlists of P can expand the matrix
towards out-of-set playlists, possibly at the cost of slightly lower performance.

3.1 Playlist continuation as matrix completion

While a single playlist typically reflects individual preferences, a collection of play-
lists constitutes a source of collaborative implicit feedback (Hu et al, 2008; Pan et al,
2008) encoding rich playlist-song co-occurrence patterns. Similar to other recom-
mendation tasks, music playlist continuation can be regarded as a matrix completion
problem. The playlist collection P is arranged into a binary matrix Y ∈ {0,1}|P|×|SP|

of playlist-song interactions, with as many rows as playlists and as many columns
as unique songs in the playlists (Fig. 1). The interaction between a playlist p and a
song s indicates whether the song occurs (yp,s = 1) or not (yp,s = 0) in the playlist.
The matrix Y is typically very sparse and thus it can be stored efficiently by keeping
only the positive interactions (e.g., the playlist collections introduced in Section 7
have both a density rate of 0.08%).

“Completing” the matrix Y generally refers to discovering new potential posi-
tive playlist-song interactions. Songs identified as potential positive interactions to a
given playlist are then recommended as candidates to extend the playlist. That is the
approach followed by CF systems, both neighborhood-based (Bonnin and Jannach,
2014; Vall et al, 2017b, 2019) and model-based (Aizenberg et al, 2012).

We evaluate two CF baselines, one model-based and one neighbors-based. For the
model-based system, we adapt the matrix factorization model for implicit feedback
datasets by Hu et al (2008) for the task of music playlist continuation (Section 5.1).
For the neighbors-based system, we modify the playlist-neighbors CF system (Bon-
nin and Jannach, 2014; Hariri et al, 2012; Jannach et al, 2015) to adapt to the chal-
lenging sparsity of the considered playlist collections (Section 5.3).
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3.2 Playlist continuation as matrix expansion

The matrix completion framework is limited to playlists and songs within the ma-
trix. However, common use cases may require extending not-yet-seen playlists, or
considering candidate songs that do not occur in any of the playlists of the matrix.

3.2.1 Out-of-set songs

CF systems rely solely on playlist-song co-occurrence patterns. Therefore, they are
unable to recommend out-of-set songs as candidates to extend playlists, precisely be-
cause out-of-set songs do not co-occur with the playlists in the collection. Hybrid
extensions to CF overcome this limitation by incorporating external song descrip-
tions seeking to compensate for the lack of playlist-song co-occurrences. Hybrid sys-
tems can not only enable the recommendation of out-of-set songs (Fig. 1) but also
strengthen the representation of in-set but infrequent songs.

The feature-combination hybrid recommender systems proposed in this work
handle out-of-set and in-set but infrequent songs by fusing any type of song fea-
ture vectors with collaborative patterns derived from hand-curated music playlists
(Sections 4.1 and 4.2). We also evaluate the hybrid CF system proposed by van den
Oord et al (2013), which predicts song latent factors from the audio signal and passes
them to a matrix factorization model. We extend this latter approach by additionally
considering song latent factors derived from independent listening logs (Section 5.2).

3.2.2 Out-of-set playlists

Model-based CF systems relying on matrix factorization are not generally able to
extend playlists unseen at training time. However, we see that this limitation can be
overcome for the matrix factorization model considered in this work (Hu et al, 2008),
and we show how to predict continuations for out-of-set playlists (Fig. 1) provided
that latent song factors are available (Section 5.1.3).

Neighbors-based CF systems can generally extend out-of-set playlists. Still, playlist-
neighbors CF systems require a careful implementation to efficiently compute the
similarity between out-of-set playlists and large training playlist collections (Bonnin
and Jannach, 2014, Appendix A.1). This computation can be accelerated by sampling
a subset of the training playlists (Jannach and Ludewig, 2017). The moderate size of
the playlist collections considered in this work, however, does not make it necessary
to apply such sampling (Section 5.3).

The first of the hybrid systems proposed in this work specializes towards the col-
lection of training playlists (Section 4.1). It achieves a very competitive performance,
but it is not readily able to extend out-of-set playlists. The second hybrid system is de-
signed to generally model whether any playlist and any song fit together (Section 4.2).
It achieves slightly lower performance but it can handle out-of-set playlists.



Feature-Combination Hybrid Systems for Automated Music Playlist Continuation 9

3.3 Recommending playlist continuations

A playlist continuation system has to be able to predict a score quantifying the fitness
between a playlist p and a candidate song s. This score may be interpreted as a prob-
ability (e.g., in the proposed systems) or as a similarity measure (e.g., in neighbors-
based CF systems). After assessing the fitness between a playlist and multiple song
candidates, we select the most suitable song recommendations to extend the playlist.

4 Proposed systems

We introduce two hybrid feature-combination recommender systems. The feature-
combination hybridization scheme integrates collaborative and content information
treating the collaborative information as an additional feature associated to each
playlist-song pair (Burke, 2002). The hybridization results in an enhanced, standalone
system, informed about both types of information. This is in contrast to other hy-
bridization schemes that simply combine the predictions of independent systems.

4.1 Profiles-based playlist continuation (“Profiles”)

This system specializes towards a playlist collection by means of a song-to-playlist
classifier. As a consequence of this specialization, Profiles achieves very competi-
tive performance, but it is not readily able to extend out-of-set playlists. This system
should be used to recommend songs to stable user playlists. If new playlists needed
to be considered, the song-to-playlist classifier could be extended using incremental
training techniques (Li and Hoiem, 2017). Profiles can deal with out-of-set songs.

4.1.1 Model definition

A song s is represented by a feature vector xs ∈ RD. We are interested in the proba-
bility of song s fitting each of the playlists of a collection P.

The system is based on a song-to-playlist classifier implemented by a neural
network c : RD → R|P|. The network takes the song feature xs as input. The out-
put c(xs) ∈ R|P| is pointwise passed through logistic activation functions,2 yielding
a vector ŷs = σ

(
c(xs)

)
∈ [0,1]|P| that indicates the predicted probability of song s

fitting each of the playlists in the collection P (Fig. 2).
The song-to-playlist classifier depends on a set of learnable weights θc (omitted

so far for simplicity). The weights are adjusted on the basis of training examples
{xs,ys} (Section 4.1.2) by comparing the model’s predicted probabilities to the actual
labels ys ∈ {0,1}|P|. Precisely, the weights θc are estimated to minimize the following

2 The song-to-playlist classifier makes as many independent decisions as playlists in the collection P.
We also experimented with a softmax activation function yielding a probability distribution over playlists,
but using sigmoids provided better results according to the followed evaluation methodology (Section 6).
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Fig. 2: Sketch of the Profiles system. A song feature vector is taken as input and
processed through the network to decide the playlists of P that the song fits. The
model is trained on labeled song-to-playlist examples.

binary cross-entropy cost function

LProfiles
(
θc | {xs,ys}

)
=

−∑
p,s

yp,s log
(
ŷp,s
)
+
(
1− yp,s

)
log
(
1− ŷp,s

)
. (1)

The terms yp,s and ŷp,s denote the components of ys and ŷs corresponding to playlist
p, respectively. The dimensionality of the set of parameters θc depends on the net-
work architecture. The summation is done over all the possible playlist-song pairs,
both occurring (yp,s = 1) and non-occurring (yp,s = 0) in the training playlists. We ex-
perimented with different weighting schemes for occurring and non-occurring pairs,
as suggested by Hu et al (2008) or Pan et al (2008), but none yielded superior perfor-
mance than using equal weights.

4.1.2 Song-to-playlist training examples

SP is the set of unique songs in the playlists of P. For each song s∈ SP, ys ∈{0,1}|P| is
the column of the playlist-song interactions matrix Y corresponding to song s, which
indicates the playlists of P to which the song s belongs. The training set consists of
all the pairs of song features and playlist-indicator binary vectors {xs,ys}s∈SP .

4.2 Membership-based playlist continuation (“Membership”)

This system generally models playlist-song membership relationships, that is, whether
a given playlist and a given song fit together. This approach is related to the Profiles
system, but here we seek to discourage the specialization towards specific playlists by
generally representing any playlist by the feature vectors of the songs that it contains.
In this way, Membership can deal with out-of-set playlists and out-of-set songs.

4.2.1 Model definition

A playlist p is represented by a feature matrix Xp ∈R|p|×D that contains, in each row,
the feature vector of each song in the playlist. A song s is represented by a feature
vector xs ∈RD. A playlist-song pair (p,s) is then represented by the features (Xp,xs).

The system is based on a deep neural network with a “feature-transformation”
component t : RD→ RH and a “match-discrimination” component d : R2H → [0,1].



Feature-Combination Hybrid Systems for Automated Music Playlist Continuation 11

Fig. 3: Sketch of the Membership system. Given any playlist-song pair, its feature
matrix and vector are transformed into hidden representations that are then used to
decide if the playlist-song pair fits together. The model is trained on labeled playlist-
song pairs derived from Algorithm 1.

The playlist feature matrix Xp is transformed song-wise (i.e., row-wise) into a hid-
den matrix representation t(Xp) ∈ R|p|×H (where we slightly abuse notation for t).
This matrix is averaged over songs yielding a summarized playlist feature vector
avg(t(Xp)) ∈ RH . The song feature vector xs is also transformed into a hidden rep-
resentation t(xs) ∈ RH . Both hidden representations are passed through the match-
discrimination component that predicts the probability of the playlist-song pair fitting
together, ŷp,s = d

(
avg(t(Xp)), t(xs)

)
∈ [0,1] (Fig. 3).

The transformation and match-discrimination components depend on sets of learn-
able weights θt and θd , respectively (omitted so far for simplicity). These are ad-
justed on the basis of training examples {(Xp,xs),yp,s} (Section 4.2.2) by comparing
the model’s predicted probability for a pair (p,s) to the actual label yp,s ∈ {0,1}.
Precisely, the sets of weights θt, θd are estimated to minimize the following binary
cross-entropy cost function

LMembership

(
θt,θd

∣∣ {(Xp,xs),yp,s
})

=

−∑
p,s

yp,s log(ŷp,s)+(1− yp,s) log(1− ŷp,s) .
(2)

The dimensionalities of the sets of parameters θt and θd depend on the network ar-
chitecture.

4.2.2 Playlist-song training examples

We assume that any playlist p ∈ P implicitly defines matches to each of its own
songs. That is, each song s∈ p matches the shortened playlist ps = p\{s}. We further
assume that any song not occurring in the playlist p is a “mismatch” to the shortened
playlist ps.3 Thus, we can obtain a mismatch by randomly drawing a song from S\ p.

Following this procedure, Algorithm 1 details how to derive a training set with as
many matching as mismatching playlist-song pairs given a playlist collection P and
a universe of available songs S.

3 In the context of implicit feedback, the term “no-match” may be preferable to “mismatch” because
missing feedback does not necessarily reflect negative feedback. However, we keep the latter for simplicity.
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Algorithm 1 Derive playlist-song matches and mismatches.

Input:
P . playlist collection
S . universe of songs

Output:
matches . list of playlist-song matches
mismatches . list of playlist-song mismatches

1: matches = [] . initialize empty lists
2: mismatches = []

3: for each p ∈ P do
4: for each s ∈ p do
5: ps = p\{s} . remove s from p
6: s+ = s . s is a match to ps
7: s− = sample(S\ p) . draw a mismatch to ps
8: matches.append

((
Xps ,xs+

)
,1
)

. store training examples
9: mismatches.append

((
Xps ,xs−

)
,0
)

10: end for
11: end for
12: return matches, mismatches

4.2.3 Sampling strategy

The Membership system can be utilized as we have described so far. However, we find
that applying the following sampling strategy before we derive the training playlist-
song pairs and at recommendation time is necessary to obtain competitive results.

We set a fix playlist length n given by the length of the shortest playlist in a
collection P. Given a playlist p ∈ P, we derive all the sub-playlists p′ that result
from drawing n songs from p without replacement. However, the number of possible
draws can be large. To keep the approach computationally tractable, if the number of
possible draws is larger than |p|, we select only |p| sub-playlists by randomly drawing
n songs from p without replacement |p| times.4

We apply this procedure to each playlist of P, thus obtaining a modified play-
list collection P′ with many more, but shorter fix-length playlists. Then, we apply
Algorithm 1 to the modified collection P′ to derive training playlist-song pairs.

Once Membership is trained, we also apply the sampling strategy to predict the
match probability of an unseen playlist-song pair (p,s). We derive no more than |p|
sub-playlists out of p as described above. We let Membership predict the match prob-
ability of (p′,s) for each derived sub-playlist p′. Then we average the probabilities.

4 The number of possible sub-playlists is
(|p|

n

)
. For example, we could sample 2,002 sub-playlists of

length 5 out of a playlist of length 14. In this case, we would randomly draw 14 sub-playlists of length 5.
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5 Baseline systems

5.1 Matrix-factorization-based playlist continuation (“MF”)

This is a purely collaborative system based on the weighted matrix factorization
model proposed by Hu et al (2008). As any pure CF system, it is unable to rec-
ommend out-of-set songs. In principle it is also unable to extend out-of-set playlists,
but we see how to overcome this limitation with a fast one-step factorization update
(Section 5.1.3).

5.1.1 Model definition

We factorize the matrix of playlist-song interactions Y ∈ {0,1}|P|×|SP| into two low-
rank matrices u∈R|P|×D, v∈R|SP|×D of playlist and song latent factors, respectively,
where D is the depth of the factorization and the product Ŷ = u · vT approximately
reconstructs the original matrix Y. Precisely, the latent factors are estimated to mini-
mize the following weighted least squares cost function

LMF
(
u,v

∣∣ Y
)
= ∑

p,s
wp,s

(
yp,s−up ·vT

s
)2
, (3)

where wp,s is the weight assigned to the playlist-song pair (p,s). Following Hu et al
(2008), we define the weights by wp,s = 1+αyp,s, where α is a parameter adjusted
on a validation set. However, since the matrix Y is binary, the weighting scheme is
reduced to

wp,s =

{
w1 if yp,s = 1
1 if yp,s = 0,

and the weight w1 is adjusted on a validation set.

5.1.2 Minimization via Alternating Least Squares

The cost function (3) is minimized via Alternating Least Squares (ALS), an iterative
optimization procedure consisting in subsequently keeping one of the factor matrices
fixed while the other is updated. The initial factor matrices u0, v0 are set randomly.
At iteration k, the song factors vk are obtained by minimizing an approximation of
the original cost function where the playlist factors have been fixed to uk:

L̃MF
(
v
∣∣ u = uk,Y

)
= ∑

p,s
wp,s

(
yp,s−uk

p ·vT
s

)2
. (4)

The playlist factors uk+1 for the next iteration are obtained analogously, by minimiz-
ing the approximate cost function where the song factors have been fixed to vk:

L̃MF
(
u
∣∣ v = vk,Y

)
= ∑

p,s
wp,s

(
yp,s−up ·vkT

s

)2
. (5)
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The approximate cost functions (4) and (5), where one of the factor matrices has
been fixed, become quadratic on the other, unknown factor matrix. Thus, they have
a unique minimum and it can be found exactly. At each iteration, the original cost
function (3) is expected to move closer to a local minimum and the procedure is
repeated until convergence.

5.1.3 Extension of out-of-set playlists

In principle, CF systems based on matrix factorization can only extend in-set play-
lists, for which latent playlist factors have been pre-computed at training time. How-
ever, we observe that ALS enables a fast procedure to obtain reliable playlist factors
for out-of-set playlists.

Firstly, we have to insist that ALS is an iterative optimization procedure whose
updates are solved exactly. Given the song factors matrix v∗, one update solving for
cost function (5) yields the playlist factors matrix u∗ deterministically. As an exam-
ple, imagine two independent optimization processes factorizing the same matrix but
initialized differently. If, by chance, both processes reached the same song factors
matrix v∗ at whichever iteration, then both processes would derive u∗ as the next
playlist factors matrix, regardless of when and how they had arrived at v∗ in the first
place. A simple corollary of this observation is that, given the song factors matrix
v∗, the playlist factors matrix u∗ derived next is always an equally good solution,
regardless of how many ALS iterations had occurred before arriving at v∗.

Assume that the playlist collections P and P′ are disjoint. We are interested in
predicting continuations for the playlists in the collection P′, but at training time
we only have access to the collection P. Even though the playlist collections are
disjoint, the songs within them are likely not. We arrange the collections P and P′ into
respective matrices Y and Y′ of playlist-song interactions. We factorize the matrix Y
until convergence and keep only the song factors v∗. We can now perform one ALS
update solving for the following cost function, which is similar to cost function (5)
but combines the song factors v∗ (derived from Y) with the matrix Y′:

L̃Out-of-set
(
u
∣∣ v = v∗,Y′

)
= ∑

p,s
wp,s

(
y′p,s−up ·v∗Ts

)2
. (6)

This yields playlist factors u′ for the playlists in P′. We can finally predict extensions
for the playlists in P′ by reconstructing Ŷ′ = u′ ·v∗T .

Even though the playlist factors are the result of a single ALS update, they are
as reliable as the song factors used to derive them. This follows from the reasoning
presented above, together with the condition that matrix Y′ is not much more sparse
than Y, as this could degrade the results.

5.2 Hybrid matrix-factorization-based playlist continuation (“Hybrid MF”)

This is a hybrid extension to the just-presented weighted matrix factorization model
for implicit feedback datasets (Section 5.1). It is based on the exploitation of song
latent factors derived from sources other than the playlist-song matrix Y, and it is
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enabled by an appropriate application of the ALS procedure. This is a hybrid system
because the song latent factors are derived from independent song descriptions, such
as independent listening logs (Section 7.2.1) or the audio signal (Section 7.2.2).

Let ve be a song factors matrix corresponding to the songs in Y but derived from
external song descriptions. We perform one ALS update solving for cost function (5)
but replacing vk by ve. This yields a playlist factors matrix u corresponding to the
playlists in Y. We can then predict recommendations by reconstructing Ŷ = u ·veT .

Using this system is not advised when the matrix Y contains sufficient training
data. However, it can be helpful to deal with infrequent songs (poorly represented
by pure CF), and it enables the recommendation of out-of-set songs. The distinction
between in-set and out-of-set playlists is not meaningful for this system because the
song latent factors are derived independently from any playlist collection. Then, one
ALS iteration adapts to whichever playlist collection is being considered.

5.3 Playlist-neighbors-based playlist continuation (“Neighbors”)

This is a CF system based on playlist-to-playlist similarities. A playlist p is rep-
resented by a binary vector sp ∈ {0,1}|S| indicating the songs that it includes. The
similarity of a pair of playlists p,q is computed as the cosine between sp and sq, i,.e.,

sim(p,q) = cos(sp,sq) =
sp · sq

‖sp‖‖sq‖
. (7)

Given a reference playlist collection P, the score assigned to a song s as a candidate
to extend a playlist p (which need not belong to P) is computed as

score(s, p) = ∑
q∈P(s)

sim(p,q), (8)

where P(s) are the playlists from the collection P that contain the song s. The system
considers the song s to be a suitable continuation for the playlist p if s has occurred
in playlists of the collection P that are similar to p.

This system is closely related to the playlist-based k-nearest neighbors system
(Bonnin and Jannach, 2014; Hariri et al, 2012; Jannach et al, 2015). The difference
is that we consider the whole collection P as the neighborhood of p instead of con-
sidering only the k playlists most-similar to p. We found in preliminary experiments
that, given the sparsity of the playlist collections, considering as many neighbors as
possible is beneficial for the computation of the playlist-song scores.

5.4 Popularity-based playlist continuation (“Popularity”)

This system computes the popularity of a song s according to its relative frequency
in a reference playlist collection P, i.e.,

pop(s) =
|P(s)|
|P|

, (9)

where P(s) are the playlists from the collection P that contain the song s. Candidate
songs to extend a playlist are ranked by their popularity.
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5.5 Random playlist continuation (“Random”)

This is a dummy system included as a reference. The fitness of any playlist-song pair
(p,s) is randomly drawn from a uniform distribution U [0,1].

6 Evaluation

We conduct off-line experiments to assess the performance of the playlist continua-
tion systems. Following the evaluation approaches used in the literature (Aizenberg
et al, 2012; Bonnin and Jannach, 2014; Hariri et al, 2012; Jannach et al, 2015), we
devise a retrieval-based task to measure the ability of the systems to recover withheld
playlist continuations. Even though off-line experiments can not directly assess the
user satisfaction as user experiments do, they provide a controlled and reproducible
approach to compare different systems.

6.1 Off-line experiment

Given a playlist p, we assume that a continuation pc, proportionally shorter than p, is
known and withheld for test. For example, if continuations were set to have a length
of 25% their original playlist length, two playlists of 8 and 12 songs would have con-
tinuations of 2 and 3 songs, respectively. This follows the evaluation methodology
used by Aizenberg et al (2012) but differs from the one used by Hariri et al (2012),
Bonnin and Jannach (2014), and Jannach et al (2015), where the withheld continua-
tions have always one song regardless of the length of the playlist p.

We let the system under evaluation predict the fitness of the playlist-song pair (p,s)
for each song s ∈ S \ p. The set of recommendable songs is restricted to S \ p not to
recommend songs from the very playlist p. We rank the candidate songs in the or-
der of preference to extend p given by the system predictions. On the basis of this
ordered list of song candidates, we compute rank-based metrics reflecting the abil-
ity of the system to recover the songs from the playlist continuation pc. We find
the rank that each song in the withheld continuation pc occupies within the ordered
list of song candidates. We compute two additional metrics for the continuation pc
as a whole: the reciprocal rank, i.e., the inverse of the top-most rank achieved by a
song from pc within the ordered list of song candidates, and the recall@100, i.e.,
the amount of songs from pc within the top 100 positions of the ordered list of song
candidates (Fig. 4) (Manning et al, 2009, Chapter 8).

This process is repeated for all the playlists we set to extend. We finally report
the median rank over all the songs in all the continuations, the mean reciprocal rank
(MRR) over all the continuations, and the mean recall@100 (R@100) over all the
continuations. We construct 95% basic bootstrap confidence intervals for each of the
reported metrics (DiCiccio and Efron, 1996). Since these are not necessarily symmet-
ric, to avoid clutter in the tables, we will show the nominal metric value plus/minus
the largest margin. For example, a median rank of 1091 with a confidence interval of
(1001, 1162) will not be reported as 1001± 71

90, but as 1001±90.
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Fig. 4: Illustration of the off-line experiment for one playlist. A system extends the
playlist p = (s3,s6,s2). It ranks all the songs available according to its predictions,
leaving out the songs in the playlist p. The songs in the continuation pc = (s1,s4)
attain, respectively, ranks 3 and 1 in the ordered list of candidate songs. The first hit
is at rank 1, thus the continuation’s reciprocal rank is 1

1 . If we recommend the top-2
results, one of the two is a hit, therefore the continuation’s recall@2 is 1

2 .

6.2 Weak and strong generalization

We consider two evaluation settings as proposed by Aizenberg et al (2012). The first
setting, or “weak generalization” setting, assumes that only one playlist collection P
is available. The playlists are used to train a playlist continuation system. Then, the
system recommends continuations to the very training playlists. The second setting,
or “strong generalization” setting, assumes that two disjoint playlist collections P
and P′ are available. The playlists in the collection P are used to train a playlist
continuation system. Then, the system recommends continuations to the playlists in
the collection P′, which it has not seen before.

7 Datasets

We compile two datasets, each consisting of a collection of hand-curated music play-
lists and feature vectors for each of the songs in the playlists.

The playlists are derived from Art of the Mix5 and 8tracks,6 two on-line platforms
where music aficionados can publish their playlists. Previous research in automated
music playlist continuation has focused on these databases precisely because of the
presumable careful curation of their playlists (Bonnin and Jannach, 2014; Hariri et al,
2012; Jannach et al, 2015; McFee and Lanckriet, 2011, 2012).

The song feature vectors are extracted from song audio clips gathered from the
content provider 7digital,7 and from social tags and listening logs obtained from the
Million Song Dataset (MSD)8 (Bertin-Mahieux et al, 2011), a public database pro-
viding an heterogeneous collection of data for a million contemporary songs.

5 http://www.artofthemix.org
6 https://8tracks.com
7 https://www.7digital.com
8 https://labrosa.ee.columbia.edu/millionsong

http://www.artofthemix.org
https://8tracks.com
https://www.7digital.com
https://labrosa.ee.columbia.edu/millionsong
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7.1 Playlist collections

For Art of the Mix, we use the playlists published in the AotM-2011 dataset, a pub-
licly available corpus of playlists crawled by McFee and Lanckriet (2012). The songs
in the playlists that also belong to the MSD come properly identified. For 8tracks,
we are given access to a private corpus of playlists. These playlists are represented
by plain-text song titles and artist names. We match them against the MSD to get
access to song-level descriptions and for comparability with the AotM-2011 dataset.
The songs that are not present in the MSD are dropped from both playlist collections
because we can not extract feature vectors without their song-level descriptions.

7.1.1 Playlist filtering

We presume that playlists with several songs by the same artist or from the same al-
bum may correspond to a not so careful compilation process (e.g., saving a full album
as a playlist). We also observe that social tags, which we use for feature extraction,
can contain artist or album information. Therefore, we decide not to consider artist-
and album-themed playlists to ensure the quality of the playlists and to prevent leak-
ing artist or album information into the evaluation. We keep only playlists with at
least 7 unique artists and with a maximum of 2 songs per artist (the thresholds were
manually chosen to yield sufficient playlists after the whole filtering process).

This type of filtering, which we already proposed in our previous works (Vall
et al, 2017a,b, 2018a,b, 2019), has also been adopted in the RecSys Challenge 2018.9

On the other hand, other previous works have typically not filtered the playlists by
such criteria (Hariri et al, 2012; McFee and Lanckriet, 2011, 2012) and have even
investigated the exploitation of artist co-occurrences (Bonnin and Jannach, 2014). We
believe that either approach conditions the type of patterns that playlist continuation
systems will identify. Thus, filtering the playlists or not can be regarded as a design
choice depending on the use case and the target users.

To ensure that the playlist continuation systems learn from playlists of sufficient
length, we further keep only the playlists with at least 14 songs. The final length of the
playlists may still be shortened because we drop songs missing some type of song-
level description, for which we can not extract all the feature vector types. Finally, in
order to set up training and evaluation playlist splits, we discard playlists that have
become shorter than 5 songs after the song filtering.

The filtered AotM-2011 dataset has 2,711 playlists with 12,286 songs by 4,080
artists. The filtered 8tracks dataset has 3,269 playlists with 14,552 songs by 5,104
artists. Detailed statistics for the final playlist collections are provided in Table 1.

7.1.2 Playlist splits

We create training and test playlist splits for the weak and strong generalization set-
tings. For the weak generalization setting, we split each playlist leaving approxi-
mately the final 20% of the songs as a withheld continuation. For the strong gener-
alization setting, we split each playlist collection into 5 disjoint sub-collections for

9 https://recsys-challenge.spotify.com/details

https://recsys-challenge.spotify.com/details
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Table 1: Descriptive statistics for the AotM-2011 and the 8tracks playlist collections.
We report the distribution of playlist lengths, number of artists per playlist, and song
frequency in the dataset (i.e., the number of playlists in which each song occurs).

dataset statistic min 1q med 3q max

AotM-2011 Playlist length 5 7 9 11 26
Artists per playlist 4 7 9 11 26
Song frequency 1 1 1 2 42

8tracks Playlist length 5 8 10 12 38
Artists per playlist 3 8 10 11 34
Song frequency 1 1 1 2 140

Fig. 5: Illustration of the playlist splits. In the weak generalization setting every play-
list is split withholding the last songs as a continuation. In the strong generalization
setting the playlist collection is split into disjoint sub-collections. One sub-collection
is used to train the system. Every playlist in the other sub-collection is split withhold-
ing the last songs as a continuation. The red stripes indicate the playlists used to train
the systems. The blue stripes indicate the playlists that the systems have to extend.
The green stripes indicate the withheld continuations used for evaluation.

cross validation. At each iteration, 4 disjoint sub-collections are put together for train-
ing and the playlists therein are not split. The playlists in the remaining sub-collection
are used for evaluation and are split as in the weak generalization setting (Fig. 5). The
playlists in the training splits of both generalization settings are further split leaving
approximately the final 20% of the songs as withheld continuations for validation.

7.2 Song feature extraction

For all the feature types we extract 200-dimensional vectors. According to our exper-
iments, feature vectors of this dimensionality carry enough information.
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7.2.1 Latent factors from independent listening logs (“Logs”)

The Echo Nest Taste Profile Subset10 is a dataset of user listening histories from
undisclosed partners. It contains (user, song, play-count) triplets for songs included
in the MSD. We factorize the triplets using the already discussed weighted matrix
factorization model for implicit feedback datasets (Hu et al, 2008) with a factorization
depth of 200 dimensions. However, the weighting scheme now depends on the play-
counts. We use the obtained song latent factors as song feature vectors.

7.2.2 Latent factors from audio signal (“Audio2CF”)

Following the work by van den Oord et al (2013), we build a feature extractor to
predict collaborative filtering song factors from song spectrograms. We use a convo-
lutional neural network inspired by the VGG-style architecture (Simonyan and Zis-
serman, 2014) consisting of sequences of 3×3 convolution stacks followed by 2×2
max pooling. To reduce the dimensionality of the network output to the predefined
song factor dimensionality, we insert, as a final building block, a 1×1 convolution
having 200 feature maps followed by global average pooling (Lin et al, 2013).

We assemble a training set for the feature extractor using the latent factors of the
songs from the Echo Nest Taste Profile Subset (Section 7.2.1) and the corresponding
audio previews downloaded from 7digital. To prevent leaking information, we dis-
card the songs present in the playlist collections. We use the trained feature extractor
to predict song latent factors for the songs in the playlist collections, given audio
snippets that we also download from 7digital.

7.2.3 Semantic features from social tags (“Tags”)

The Last.fm Dataset11 gathers social tags that users of the on-line music service
Last.fm12 assigned to songs included in the MSD. Along with the tag strings, the
dataset provides relevance weights describing how well a particular tag applies to a
song, as returned by the tracks.getTopTags function of the Last.fm API.13

We extract semantic features from the tags assigned to a song using word2vec
(Mikolov et al, 2013). Even though we have experimented with word2vec models
trained on very large text corpora (e.g., on GoogleNews14), we obtain best results us-
ing models trained on custom, smaller but music-informed text corpora (more details
can be found in our previous works (Vall et al, 2017a, 2018a)).

For each unique song in the playlists, we look up its social tags in the music-
informed word2vec model. If a tag is a compound of several words (e.g., “pop rock”),
we compute the average feature. Since a song may have several tags, the final seman-
tic feature is the weighted average of all its tags’ features, where the weights are the
relevance weights provided by the Last.fm Dataset.

10 https://labrosa.ee.columbia.edu/millionsong/tasteprofile
11 https://labrosa.ee.columbia.edu/millionsong/lastfm
12 https://www.last.fm
13 https://www.last.fm/api/show/track.getTopTags
14 https://code.google.com/archive/p/word2vec

https://labrosa.ee.columbia.edu/millionsong/tasteprofile
https://labrosa.ee.columbia.edu/millionsong/lastfm
https://www.last.fm
https://www.last.fm/api/show/track.getTopTags
https://code.google.com/archive/p/word2vec
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8 Results

Tables 2 and 3 report the results achieved in the weak and strong generalization set-
tings, respectively. The Profiles system can only operate in weak generalization and
therefore it only appears in Table 2. The purely collaborative systems, i.e., MF and
Neighbors, can not predict scores for out-of-set songs. During the evaluation of these
systems, if a withheld continuation contains an out-of-set song, it is simply ignored.
Thus, the overall performance of MF and Neighbors is not directly comparable to
the performance of the other systems. To make this information clear, Tables 2 and 3
report the number N of songs in the withheld continuations that each system could
consider, and the results corresponding to MF and Neighbors are displayed in italics.
A fair comparison of the hybrid systems and MF is provided in Section 8.4, where
the performance of each system is shown as a function of how often the songs in the
withheld continuations occurred in training playlists.

8.1 Interpreting the results

Figure 6 displays the complete recall curve achieved by the playlist continuation sys-
tems on the AotM-2011 dataset in the weak generalization setting (all the hybrid sys-
tems use the Logs features). To highlight that MF and Neighbors can only deal with
in-set songs, their recall curves are represented with dashed lines. Profiles, Member-
ship, MF and Hybrid MF bend considerably to the upper left corner. This shows that
they keep on predicting relevant songs as their recommendation lists grow. Neighbors
starts similarly, but it quickly flattens, not finding additional relevant recommenda-
tions as its recommendation list grows. However, if we look closer at the top 200
results (detail box in Fig. 6), we find that Neighbors actually starts comparably well
to MF, and even better than Profiles and Membership. Its quick decline is likely ex-
plained by the high sparsity of the datasets: half of the songs occur in one training
playlist, and three quarters of the songs occur in no more than 2 training playlists (Ta-
ble 1). Neighbors is only able to successfully predict recommendations for the most
frequent songs, which co-occur often, but it is unable to do so for the vast majority
of infrequent songs. Similarly, Popularity performs reasonably well for the top-most
positions of the recommendation list, but its performance quickly degrades.

The median rank (corresponding approximately to the dots at 50% recall in Fig. 6)
summarizes the overall distribution of ranks attained by a system. The MRR and
R@100 capture the performance at the top positions of the recommendation lists. Fo-
cusing on the overall performance of the systems, Profiles, Membership and MF are
clearly preferable over Neighbors. Looking at the top positions only, Neighbors might
appear preferable. It could be argued that only the top positions matter, because a user
could not possibly look further than the top 10 recommendations. While this reason-
ing seems valid in on-line systems, where users react to the predicted recommenda-
tions, we believe that it is inaccurate in the context of off-line experiments. Assessing
the usefulness of music recommendations is highly subjective. Given a playlist, there
are multiple songs that a user could accept as relevant continuations. However, off-
line experiments only accept exact matches to the withheld ground-truth continuation
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Fig. 6: Recall curve on the AotM-2011 playlist collection in weak generalization. The
top 200 positions are detailed in the box. MF and Neighbors, only evaluated for in-set
songs, are displayed with a dashed line.

(McFee and Lanckriet, 2011; Platt et al, 2002). For this reason, measuring the perfor-
mance of a system focusing only on the top positions of recommendation lists can be
misleading. Off-line experiments should be regarded as approximations of the final
system performance, and the performance should be measured by the system’s global
merits. Throughout this section, we will mostly rely on the median rank as the metric
to assess the global behavior of the playlist continuation systems.

8.2 Overall performance of the playlist continuation systems

For now we only let the proposed systems use the Logs and Audio2CF features,
which the Hybrid MF system can also utilize. This makes the comparison fair.

8.2.1 Weak generalization

Profiles and Membership obtain lower (better) median rank than Hybrid MF using
Logs and Audio2CF features, respectively (Table 2). Using Logs features, Profiles
and Membership obtain higher (better) R@100 than Hybrid MF, but their MRR is
comparable. Using Audio2CF features, the MRR and R@100 of Profiles, Member-
ship and Hybrid MF are comparable in the AotM-2011 dataset, but Membership is
clearly better than Profiles and Hybrid MF in the 8tracks dataset.

For all the hybrid systems (Profiles, Membership and Hybrid MF) the Logs fea-
tures yield better results than the Audio2CF features, regardless of the metric con-
sidered. The improvements are not equally pronounced in all the combinations of
systems and datasets, but the gains are clear. This is expected because Audio2CF fea-
tures are an approximation of Logs features derived from the audio signal of songs.
Despite its remarkable results, the Audio2CF features can not bridge the music se-
mantic gap (Celma et al, 2006; van den Oord et al, 2013).
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The performance of Profiles and Membership is comparable. Overall, Profiles can
achieve a higher performance when using Logs features, but Membership is superior
using Audio2CF features, especially in the 8tracks dataset.

Finally, we comment on the performance of the pure CF baselines. MF obtains
a clearly lower (better) median rank than Neighbors. On the other hand, Neighbors
obtains MRR and R@100 comparable to MF. The reason for this apparent mismatch
between median rank, MRR and R@100 was just exposed in Section 8.1.

8.2.2 Strong generalization

Membership obtains a clearly lower (better) median rank than Hybrid MF, regardless
of the feature used (Table 3). Using Logs features, Membership and Hybrid MF ob-
tain comparable MRR and R@100. Using Audio2CF features, the MRR and R@100
of Membership and Hybrid MF are comparable in the AotM-2011 dataset, but Mem-
bership is clearly better in the 8tracks dataset.

For the hybrid systems, again the Logs features yield better results than the Au-
dio2CF features. Indeed, the different information that these two features carry is
independent of the generalization setting used to evaluate the systems.

Compared to one another, the pure CF baselines behave similarly as in weak gen-
eralization. MF obtains lower (better) median rank than Neighbors. However, Neigh-
bors obtains R@100 comparable to MF and MRR superior than MF, especially in the
AotM-2011 dataset.

8.2.3 Robustness to strong generalization

We analyze the robustness of each system (but Profiles) to the strong generalization
setting by comparing whether its performance degrades from Table 2 to Table 3.

Membership performs comparably well in both generalization settings regardless
of the feature utilized, the metric considered, and the dataset. This result indicates that
regarding playlist-song pairs exclusively in terms of feature vectors (the key charac-
teristic of Membership) does favor generalization and discourages the specialization
towards particular training playlists.

The performance of MF is also comparable in weak and strong generalization.
This supports the approach detailed in Section 5.1.3, by which latent song factors
derived from the factorization of a collection of training playlists can be successfully
utilized to extend out-of-set playlists.

We pointed out in Section 5.2 that Hybrid MF does not distinguish between in-
set and out-of-set playlists. Now we observe that the performance of Hybrid MF is
identical in both generalization settings. Only the confidence intervals are slightly
different due to the randomness involved in bootstrap resampling.

The performance of Neighbors is not harmed in strong generalization. In fact, it
is slightly superior for the 8tracks dataset and superior for the AotM-2011 dataset.
Popularity is also not affected when recommending out-of-set playlists.
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Table 2: Weak generalization results. The first two columns indicate the system and
feature names (if any). The third column indicates the number N of songs in the with-
held continuations involved in each experiment. MF and Neighbors, only evaluated
for in-set songs, are displayed in italics. The median rank is relative to 12,286 and
14,552 unique songs for the AotM-2011 and the 8tracks datasets, respectively. Lower
is better. For MRR and R@100 higher is better. Systems clearly outperforming the
best result of Hybrid MF (non-overlapping 95% CIs) are indicated in bold. MF or
Neighbors clearly outperforming one another are indicated in italic bold.

AotM-2011 - weak generalization

system feature N med rank MRR [%] R@100 [%]

Profiles Audio2CF + Tags + Logs 4473 891±63 2.49±0.41 15.91±1.23
Logs 4473 1091±90 1.91±0.33 13.34±1.12
Audio2CF 4473 2298±127 0.75±0.20 6.68±0.83

Membership Audio2CF + Tags + Logs 4473 1052±73 2.18±0.37 14.88±1.16
Logs 4473 1391±101 1.71±0.34 11.25±1.01
Audio2CF 4473 2042±113 1.08±0.25 7.56±0.88

MF — 2835 1572±150 2.21±0.45 13.50±1.36

Hybrid MF Logs 4473 2404±164 1.47±0.32 8.86±0.92
Audio2CF 4473 2921±164 0.74±0.21 5.60±0.77

Neighbors — 2835 5112±321 2.66±0.55 11.84±1.28
Popularity — 4473 5217±570 1.03±0.27 6.34±0.80
Random — 4473 6163±218 0.10±0.03 0.98±0.34

8tracks - weak generalization

system feature N med rank MRR [%] R@100 [%]

Profiles Audio2CF + Tags + Logs 6289 556±38 3.90±0.43 23.51±1.21
Logs 6289 718±58 3.62±0.44? 20.03±1.12
Audio2CF 6289 1988±90 1.13±0.24 8.21±0.80

Membership Audio2CF + Tags + Logs 6289 652±46 3.73±0.44 20.43±1.12
Logs 6289 986±68 2.89±0.37 16.92±1.04
Audio2CF 6289 1149±69 2.49±0.35 15.50±1.02

MF — 4299 1198±145 4.04±0.56 18.62±1.29

Hybrid MF Logs 6289 1677±138 2.79±0.41 15.88±1.05
Audio2CF 6289 2636±142 1.09±0.24 7.03±0.75

Neighbors — 4299 3566±318 4.93±0.64 19.50±1.32
Popularity — 6289 3352±272 1.80±0.33 9.71±0.81
Random — 6289 7094±234 0.15±0.06 0.78±0.24
? The 95% bootstrap CIs for the MRR of Profiles (Logs) and Hybrid MF (Logs) do not overlap.

However, this is not apparent from the table because, for readability, we only display the largest
margin of the CIs.
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Table 3: Strong generalization results. The first two columns indicate the system and
feature names (if any). The third column indicates the number N of songs in the with-
held continuations involved in each experiment. MF and Neighbors, only evaluated
for in-set songs, are displayed in italics. The median rank is relative to 12,286 and
14,552 unique songs for the AotM-2011 and the 8tracks datasets, respectively. Lower
is better. For MRR and R@100 higher is better. Systems clearly outperforming the
best result of Hybrid MF (non-overlapping 95% CIs) are indicated in bold. MF or
Neighbors clearly outperforming one another are indicated in italic bold.

AotM-2011 - strong generalization

system feature N med rank MRR [%] R@100 [%]

Membership Audio2CF + Tags + Logs 4473 1150±72 1.88±0.33 13.69±1.13
Logs 4473 1552±96 1.42±0.29 10.71±1.04
Audio2CF 4473 2065±120 0.93±0.21 7.05±0.85

MF — 2849 1428±135 2.72±0.53 15.43±1.44

Hybrid MF Logs 4473 2404±164 1.47±0.31 8.86±0.94
Audio2CF 4473 2921±164 0.74±0.21 5.60±0.78

Neighbors — 2849 4502±304 4.89±0.82 15.16±1.43
Popularity — 4473 5143±583 1.03±0.27 7.28±0.85
Random — 4473 6161±188 0.13±0.05 1.23±0.37

8tracks - strong generalization

system feature N med rank MRR [%] R@100 [%]

Membership Audio2CF + Tags + Logs 6289 710 ±51 3.46±0.43 20.40±1.12
Logs 6289 1038 ±78 2.85±0.39 15.90±1.03
Audio2CF 6289 1317 ±86 2.58±0.37 14.54±0.99

MF — 4298 997.5±109.5 4.48±0.61 20.32±1.35

Hybrid MF Logs 6289 1677 ±138 2.79±0.41 15.88±1.04
Audio2CF 6289 2636 ±142 1.09±0.24 7.03±0.75

Neighbors — 4298 3045.5±390.5 5.27±0.68 20.43±1.41
Popularity — 6289 3293 ±278 1.76±0.32 9.32±0.78
Random — 6289 6876 ±158 0.14±0.06 0.73±0.25

8.3 Combined features

Until now we only considered the proposed systems with Logs and Audio2CF fea-
tures to make the comparison to Hybrid MF fair. However, Profiles and Membership
can flexibly exploit any type of song feature vector. In particular, they can utilize
feature vectors resulting from the concatenation of other feature vectors. This simple
approach already yields performance gains.

To illustrate this effect, we now consider the Tags features as well. For each song,
we create a combined feature by concatenating its Audio2CF, Tags and Logs feature
vectors. Since each individual feature vector has 200 dimensions, the resulting feature
vector is 600-dimensional. Profiles and Membership achieve clearly better results
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with the combined feature than with the Logs feature in terms of median rank and
R@100, and modest but visible improvements in terms of MRR (Tables 2 and 3).

We have just exposed an example of a combined feature vector to illustrate the
capability of the proposed systems. Appendix B introduces additional feature types,
and Appendix C provides an exhaustive evaluation of the results achieved using all
the feature types and their combinations.

8.4 Infrequent and out-of-set songs

We analyze the performance of the hybrid systems Profiles, Membership and Hybrid
MF, as well as the performance of the purely collaborative system MF, as a function
of how often the songs in the withheld continuations occurred in training playlists. We
restrict the analysis to the weak generalization setting, but the results are comparable
in the strong generalization setting. Figure 7 reports the results. Profiles and Mem-
bership can use Audio2CF, Logs, or the combined feature described in Section 8.3.
Hybrid MF can only use Audio2CF and Logs features. For the sake of space, MF is
represented together with Hybrid MF in the figure. The legend, which indicates the
color associated to each feature, points to MF with a dummy feature called “None.”

MF can not recommend out-of-set songs, and it achieves very low performance
for songs that occurred in only one training playlist. This is expected because purely
collaborative systems can not derive patterns in absence of sufficient playlist-song co-
occurrences. MF steadily improves its performance as songs become more frequent in
training playlists, until it achieves a very competitive performance for songs occurring
in 5+ training playlists.

Hybrid MF with Logs features outperforms MF for very infrequent songs. Its
performance improves as songs become more frequent, but it does not achieve the
high performance of MF for frequent songs. Hybrid MF with Audio2CF features
only outperforms MF for very infrequent songs, but MF quickly becomes better.

Profiles and Membership compete with Hybrid MF in terms of R@100, both
using Logs and Audio2CF features. In terms of the median rank, Profiles and Mem-
bership compete with Hybrid MF using Audio2CF features, and they are generally
superior using Logs features. Profiles and Membership further improve their perfor-
mance using the combined feature, with which they perform reasonably well even for
out-of-set and very infrequent songs. Using the combined features or Logs features,
and despite some fluctuations, the proposed systems improve their performance as
songs become more frequent, with results competitive with those of MF for songs
occurring in 5+ training playlists, especially in the 8tracks dataset.

8.5 Additional remarks on the sparsity of playlist collections

The hybrid systems discussed throughout the paper mitigate the sparsity of the play-
list collections by introducing inherent song relationships derived from content in-
formation. In this way, they provide performance improvements over systems based
exclusively on the playlist collections. An alternative, compatible approach to reduce
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(a) AotM-2011: weak generalization

(b) 8tracks: weak generalization

Fig. 7: Weak generalization results as a function of how often the songs in the with-
held continuations occurred in training playlists. Left, center and right panels corre-
spond to different systems. Upper and lower panels report the median rank (lower is
better) and the R@100 (higher is better). The central values in the boxes correspond
to the nominal metric value, and the ends correspond to the 95% CI. Each color cor-
responds to a feature type (MF is labeled as “None”). The text annotations on top
indicate the number of songs in the withheld continuations falling in each box.
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Table 4: Selection of weak generalization results in the AotM-2011 dataset for in-set
songs only. The first two columns indicate the system and feature names (if any). The
third column indicates the number N of songs in the withheld continuations involved
in each experiment. The median rank is relative to 12,286 unique songs. Lower is
better. For MRR and R@100 higher is better.

AotM-2011 - weak generalization on in-set songs

system feature N med rank MRR [%] R@100 [%]

Profiles Audio2CF + Tags + Logs 2835 735±76 2.64±0.50 17.76±1.53
Membership Audio2CF + Tags + Logs 2835 756±73 2.39±0.45 18.08±1.54
CAGH — 2835 821±89 1.78±0.36 15.18±1.41
Artists — 2835 1463±140 0.76±0.20 8.33±1.13

the sparsity of playlist collections consists in representing songs by their artists. Bon-
nin and Jannach (2014) proposed the Collocated Artists Greatest Hits (CAGH) sys-
tem, a song-neighbors CF system where the pairwise song similarities are replaced
by the pairwise similarities of their artists, and the obtained playlist-song scores are
further scaled by the frequency of the songs in the training playlists. We have exper-
imented with CAGH, as well as with a variation of CAGH where the playlist-song
scores are not scaled by the song frequency, which we name “Artists.” For compar-
ison, we also evaluate Profiles and Membership for in-set songs only (Table 4). By
design, CAGH is likely suffering from a bias towards popular songs that should be
investigated in more detail. That is, the apparent outstanding performance of CAGH,
even if only for in-set songs, may be the result of averaging accurate predictions for
few but frequent songs, with poor predictions for many but infrequent songs (Vall
et al, 2017b, 2019). In any case, Artists should not be affected by such bias and also
provides competitive results that seem to validate the assumption that songs can be
successfully approximated by their artists. This points to an interesting line for fu-
ture work, namely the combination of hybridization and artist-level representations
to reduce the sparsity in playlist collections.

9 Conclusion

We have introduced Profiles and Membership, two feature-combination hybrid rec-
ommender systems for automated music playlist continuation. The proposed systems
extend collaborative filtering by not only considering hand-curated playlists but also
incorporating any type of song feature vector. We have designed feature-combination
hybrids, that is, systems that consolidate collaborative and content information into
enhanced, standalone systems. Even though we have focused on music playlist con-
tinuation, the proposed systems are domain-agnostic and can be applied to other item
domains.

We have conducted an exhaustive off-line evaluation to assess the ability of the
proposed systems to retrieve withheld playlist continuations, and to compare them to
the state-of-the-art pure and hybrid collaborative systems MF and Hybrid MF. The
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results of the off-line experiments indicate that Profiles and Membership compete
with MF when sufficient training data is available and outperform MF for infrequent
and out-of-set songs. Profiles and Membership compete to, or outperform Hybrid MF
when using Logs or Audio2CF features. The flexibility of the proposed systems to
exploit any type of song feature vector provides a straightforward means of further
improving their performance by simply combining different song feature vectors.

We have also evaluated MF, Hybrid MF and Neighbors thoroughly. Hybrid MF
outperforms MF only for very infrequent songs. Thus, if we were restricted to use
MF and Hybrid MF, it would seem advisable to use Hybrid MF for infrequent songs
(occurring in up to 3 training playlists in our experiments) and switch to MF for more
frequent songs. It should be noted that the proposed systems, Profiles and Member-
ship, take care of this switch automatically. We have also investigated why Neighbors
obtains competitive MRR and R@100 metrics but very poor median rank, and we
have discussed the interpretation of these metrics.

We have observed the low predictive performance of Audio2CF features, derived
exclusively from audio. While this can be explained by the music semantic gap, us-
ing Audio2CF features (or other purely audio-based features) as standalone features
should be restricted to the recommendation of new releases, where the audio signal
is the only song information available.

Preliminary experiments point to building artist-level representations into hybrid
recommender systems as a promising line of future work.
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Dieleman S, Schlüter J, Raffel C, Olson E, Sønderby SK, Nouri D, Maturana D,
Thoma M, Battenberg E, Kelly J, Fauw JD, Heilman M, Almeida DMd, McFee B,
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A Additional system details

A.1 Profiles

A.1.1 System configuration

We conducted an initial, non-exhaustive exploration of architectures on a validation set by evaluating net-
works with {2,3,4} hidden layers, {50,100,200,500} hidden units, learning rate values in {0.1,0.5,1.0},
and batch sizes of {10,50,100,200} songs. We also experimented with the hyperbolic tangent, the logistic
function, and the rectifier as activation functions for the hidden layers.

Given the results of the initial exploration, we systematically explored all the combinations of net-
works with {2,3} hidden layers and with {50,100,200} hidden units. We decided to fix the number of
layers to 3 and the number of units to 100. We further fixed the learning rate to 0.5, the batch size to
50 songs, and the hyperbolic tangent as the activation function for hidden layers. The output layer of the
network is passed through logistic functions by design (Section 4.1.1).

We used batch normalization (Ioffe and Szegedy, 2015). We also experimented with different dropout
probabilities (Srivastava et al, 2014) and with L1 and L2 regularization to prevent overfitting. We finally
decided to use dropout with probabilities 0.1 and 0.5 at the input layer and the hidden layers, respectively.
The feature vectors were standardized and L2-normalized.

The networks were optimized to minimize the cost function (1) using AdaGrad (Duchi et al, 2011)
with Nesterov momentum (Nesterov, 1983). We trained for a maximum of 1,000 epochs but stopped before
if the value of the cost function on the validation set did not decrease for 50 epochs. The cost function drove
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Table 5: Membership architecture. The input to the system are the features (Xp,xs) of a playlist-song pair
(p,s). Xt

p denotes the t-th row of the feature matrix Xp, i.e., the t-th song of the playlist p. The upper part of
the table corresponds to the feature transformation component t, and the lower part of the table corresponds
to the match-discrimination component d. The boldface layers DEk, BNk in the transformation component
t share their weights for all the songs in the playlist p and for song s (Section 4.2.1). The dimensionality
of each layer is annotated in parentheses. DE: Dense layer, RE: Rectifier activation function, BN: Batch
Normalization (Ioffe and Szegedy, 2015), DR: Dropout (Srivastava et al, 2014).

the optimizer, but the best model was chosen on the basis of the highest recall achieved on the validation
set. We also used the recall on the validation set to decide an appropriate number of epochs for the final
training on the entire training set. We implemented the networks using Lasagne (Dieleman et al, 2015),
which is built on top of Theano (Team, 2016).

A.1.2 Computational requirements

The instance of this system trained on the AotM-2011 dataset using Logs features has 323,144 learnable
weights (almost 4 and 10 times fewer than Membership and MF, respectively). The system is trained with
any variant of stochastic gradient descent (Bottou et al, 2018) using mini-batches. That is, even if a much
larger playlist collection were considered, the system could still be trained efficiently in the same manner.
Training the aforementioned system until it achieved the reported results required 666.07 seconds (roughly
11 minutes) on a desktop computer with an Intel Core i5-4570 CPU. The system required 4.46 seconds to
make the predictions necessary for the weak generalization evaluation. The implementation of this system
was not optimized to obtain fast training and prediction times.

A.2 Membership

A.2.1 System configuration

We conducted an heuristic exploration of architectures and hyperparameters. We chose the architecture
detailed in Table 5, which we found to provide good performance. We selected the hyperparameters that
yielded lowest cost on the validation set. We used an initial learning rate of 0.001 and a batch size of 100
playlist-song pairs (50 matches and 50 mismatches). The features were not standardized nor normalized.

The networks were optimized to minimize the cost function (2) using Adam (Kingma and Ba, 2015).
We trained for a maximum of 1,000 epochs but stopped before if the value of the cost function on the
validation set did not decrease for 25 epochs. We implemented the networks using Lasagne (Dieleman
et al, 2015) and Theano (Team, 2016).
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A.2.2 Computational requirements

Membership is computationally more demanding than Profiles, meaning that we need to use a larger neural
network to obtain competitive results. This is reasonable after all, because by not specializing towards the
training playlists, Membership accomplishes a much more general task. The instance of this system trained
on the AotM-2011 dataset using Logs features has 1,159,681 learnable weights (almost 3 times fewer than
MF). The system is trained with any variant of stochastic gradient descent (Bottou et al, 2018) using
mini-batches. That is, even if a much larger playlist collection were considered, the system could still be
trained efficiently in the same manner. Training the aforementioned system until it achieved the reported
results required 3649.90 seconds (roughly 1 hour) on a GeForce GTX 1080 Ti GPU. On the same GPU,
the system required 1193.88 seconds (roughly 20 minutes) to make the predictions necessary for the weak
generalization evaluation. The implementation of this system was not optimized to obtain fast training and
prediction times.

A.3 MF and Hybrid MF

A.3.1 System configuration

We used the validation set to experiment with different values for the weight w1 (Section 5.1.1). We found
that using w1 = 2 yielded best results. MF and Hybrid MF use L2 regularization to prevent overfitting (Hu
et al, 2008). We did not describe the regularization in Section 5.1.1 for simplicity, but the discussion and
properties of ALS remain valid. We decided to use a weight of 10 for the L2 regularization term based on
experiments on the validation set.

A.3.2 Computational requirements

The instance of MF trained on the AotM-2011 dataset has 2,999,400 learnable weights. The system is
trained efficiently with ALS. Training MF until it achieved the reported results required 190.08 seconds
(roughly 3 minutes) on a desktop computer with an Intel Core i5-4570 CPU. MF required 0.22 seconds to
make the predictions necessary for the weak generalization evaluation. Hybrid MF required 2.48 seconds
to complete the weak generalization evaluation, including the ALS update and the predictions. We used the
publicly available implementation of MF provided by Frederickson (2018), which is highly optimized to
obtain fast training times. The predictions, which simply consist in the multiplication of low rank matrices,
are very fast.

A.4 Neighbors

This system does not require adjusting any hyperparameters or learning any weights. The weak evaluation
of Neighbors on the AotM-2011 dataset using a desktop computer with an Intel Core i5-4570 CPU required
0.81 seconds to compute the pairwise playlist similarities given by equation (7) and 1.38 seconds to com-
pute the playlist-song scores given by equation (8). Given the moderate size of the considered AotM-2011
and 8tracks playlist collections, both operations could be implemented as fast matrix multiplications.

B Additional song features

B.1 Semantic features from audio signal (“Audio2Tag”)

The on-line music service Jamendo15 hosts songs under Creative Commons16 licenses and allows free
downloads. We obtain a dump of the Jamendo database, that includes, among other types of information,

15 https://www.jamendo.com
16 https://creativecommons.org

https://www.jamendo.com
https://creativecommons.org
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the social tags assigned to songs hosted in Jamendo. Then, we use the code released by Sonnleitner and
Widmer (2016) to collect the audio files corresponding to the database dump. This results in a collection
of roughly 200k songs independent of the playlists collections and the MSD, for which both a full-length
audio file and a list of social tags is known.

We build an auto-tagger system based on a convolutional neural network. The network takes a song
spectrogram as input, processes it, and predicts the probability of this song being labeled with each of a
series of known tags. We train this network using the audio files and the social tags from the Jamendo
database. We use only the tags that have been assigned to at least 1,000 songs, resulting in 156 unique tags
and 187,663 songs.

The tagging network is similar to the Audio2CF feature extractor (Section 7.2.2). It is inspired by the
VGG-style architecture (Simonyan and Zisserman, 2014) and consists of sequences of 3×3 convolution
stacks followed by 2×2 max pooling. To reduce the dimensionality of the network output to the predefined
number of tags, we insert, as a final building block, a 1×1 convolution having 156 feature maps followed
by global average pooling (Lin et al, 2013). Each output neuron, which corresponds to one of the tags,
is followed by a logistic activation function to obtain a valid tag probability. However, we use the 156-
dimensional output layer before it is passed through the activation function as the Audio2Tag feature.

We use the trained auto-tagger to predict Audio2Tag features for the songs in the playlist collections,
given audio snippets downloaded from 7digital. This approach is related to the systems presented by Liang
et al (2015) and Choi et al (2016).

B.2 I-vectors from timbral features

I-vectors were first introduced in the field of speaker verification (Dehak et al, 2011), but recently they
have also been successfully utilized for music similarity and music artist recognition tasks (Eghbal-zadeh
et al, 2015a,b).

The MSD splits songs into segments of variable length (typically under a second) and provides 12-
dimensional timbral coefficients for each segment similar to MFCCs (Rabiner and Juang, 1993). We build
a Gaussian mixture model with 1,024 components using the segment-level timbral features of a collection
of representative songs (more details can be found in our previous works (Vall et al, 2017a, 2018a)). Using
the unique songs in the playlists, we derive the total variability space yielding 200-dimensional i-vectors.
Following the standard i-vector extraction pipeline, we further transform the obtained i-vectors using a
linear discriminant analysis model (Hastie et al, 2008) fit on the training playlists.

C Additional results

We provide additional results to demonstrate the performance of Profiles and Membership with differ-
ent types of song features, and with stepwise combinations of two or three types of song features. Ta-
bles 6 and 7 report weak generalization results for the AotM-2011 and the 8tracks datasets, respectively.
Tables 8 and 9 report strong generalization results for the AotM-2011 and the 8tracks datasets, respectively.

We also analyze the performance of Profiles, Membership and Hybrid MF simulating the recom-
mendation of new song releases. To this end, we pretend that the audio signal is the only type of song
description available, and we only consider songs that occurred in 4 or less training playlists. Tables 10
and 11 report the results for the AotM-2011 and the 8tracks datasets, respectively.

Besides the median rank, the MRR and the R@100, Tables 6–11 also report the Mean Average Preci-
sion (MAP), the R@10 and the R@30.
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