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Abstract  

Myo-inositol (Myo-Ins) plays an important role in thyroid function and autoimmunity. Myo-Ins is the 

precursor for the synthesis of phosphoinositides, which takes part in the phosphatidylinositol (PtdIns) 

signal transduction pathway, and it plays a decisive role in several cellular processes. In the thyroid 

cells, PtdIns is involved in the intracellular thyroid-stimulating hormone (TSH) signaling, via 

Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) (PIP-3). Moreover, the phosphatidyl 

inositol 3 kinases (PI3K) family of lipid kinases regulates diverse aspects of T, B, and Tregs 

lymphocyte behaviour. Different mouse models deficient for the molecules involved in PIP3 pathway 

suggest that impairment of PIP3 signaling leads to dysregulation of immune responses and, sometimes, 

autoimmunity. Studies have shown that cytokines modulate Myo-Ins in thyroid cells. Moreover, 

clinical studies have shown that after treatment with Myo-inositol plus seleniomethionine (Myo-

Ins+Se), TSH levels significantly declined in patients with subclinical hypothyroidism due to 

autoimmune thyroiditis. The treatment was accompanied by the antithyroid autoantibodies decline. 

After the treatment serum CXCL10 levels declined, confirming the immune-modulatory effect of Myo-

Ins. Additional researches are necessary in larger population to evaluate the effect on the quality of life, 

and to study the mechanism of the effect on chemokines. 

 

 

Keywords: myo-inositol, seleniomethionine, autoimmune thyroiditis, hypothyroidism, autoimmune 

thyroid diseases, CXCL10. 
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1 Introduction 

Inositol(s) (INS) are hexahydroxycyclohexanes (C6H12O6) deriving from cyclohexane, and nine 

different stereoisomeric forms exist, constituted by a ring with six carbon atoms each bound to a 

hydroxyl group. Isomers derive from the epimerization of the six hydroxyl groups [1]. INS is the main 

element of phytates [2]. Myo-inositol (Myo-Ins) is more than 99% of the intracellular INS of most 

tissues. These molecules derive from the diet (beans, citrus fruits, except from lemon, nuts, and cereals 

with elevated bran content) [3] and endogenous biosynthesis (Myo-Ins is produced from glucose [4], 

mainly from liver and kidney). Noteworthy, Myo-Ins plays a key biological role and looks to be 

essential for our health. Myo-Ins is a precursor in the synthesis of phosphatidylinositol (PtdIns) 

polyphosphates, that have important physiological functions [5]. Cellular membranes have the 

precursor of inositol trisphosphate (InsP3), phosphatidyl-Myo-Ins, a second messenger that participates 

to the regulation of numerous signals [6]. In cells, INS derivatives constitute the structural lipids, and 

take part in crucial biochemical pathways, as glucose metabolism, regulation of cell proliferation, 

morphogenesis, fertility and cytoskeleton rearrangement [7,8]. INS are involved in hormones signaling, 

which is the case of thyroid stimulating hormone (TSH), insulin and follicle stimulating hormone 

(FSH). In thyroid, modifications and imbalances in the inositol metabolism impair steps which require 

a fine regulation in hormone biosynthesis, storage, and secretion. In thyroid cells, TSH stimulates 

inositol phosphate formation in a concentration-dependent manner [9]. Thus, it was shown that the 

action of TSH in thyroid was mediated also by another second-messenger system, in addition to cAMP.  

Both the phosphatidylinositol 4,5-bisphosphate (PiP2) and the cAMP cascade control the thyroid 

hormones (THs) synthesis. These metabolic pathways are connected to the activation and inhibition of 

the hydrogen peroxide synthesis; indeed, the thyroid gland is a unique endocrine organ requiring H2O2 

for the hormone assembly. The physiologic hydrogen peroxide production is a restrictive factor in	
  the 

organification process (as for example the reaction that permits inorganic iodine to bind tyrosine 

residues by thyroid peroxidase) [10].	
  If this process is impaired, several illnesses can arise; indeed, the 

overproduction and lack of H2O2 degradation may explain, at least partially, serious pathologies such as 

thyroiditis and tumors of this gland. On the other hand, the failure in the hydrogen peroxide production 

or the impairment of its positive control system may cause diseases, such as congenital hypothyroidism 

[11]. Experimental researches have shown that partial organification defects can be caused by TSH-

receptor (TSH-R) mutations, with also a complete loss of IP signaling [12].  

PI3K signaling is a complex network of interactions, that guarantee the right cell responses and to 

maintain immune homeostasis [13]. In different mouse models deficient for the molecules involved in 

PIP3 cascade it has been shown that impairment of PIP3 signaling can dysregulate immune responses 

and, sometimes, autoimmunity [14]. PI3K signaling plays a central role in determining B-cell fate 

[15]. Furthermore, the inositol poly-phosphatases are determinant for the effector and regulatory 

functions of the T-cell compartment. Moreover, PI3K controls chemokine responsiveness and antigen-

driven changes in lymphocyte trafficking. Consequently, human health can be damaged by the 

breakdown of immune system in this way giving rise to autoimmune diseases. 

 

We aim to review the role of Myo-Ins in human thyroid pathology and autoimmunity. 
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2 TSH signaling 

	
  

2.1 TH biosynthesis, storage, and secretion 

TH synthesis starts with iodide uptake and binding of TSH to its cognate receptor (TSH-R); the 

TSH/TSH-R couple is the principal trophic hormone of thyrocytes [16]. TSH-R is expressed on the the 

basolateral membrane, belongs to the G-protein-coupled seven transmembrane receptor family, the 

same that includes luteinizing hormone (LH), chorionic gonadotropin (CG) and FSH.  

 

2.2 TSH/TSH-R/PKC/IP3 and TSH/TSH-R/PKA/cAMP cascades 

Once TSH binds to TSH-R, Gsα is coupled, adenylate cyclase is activated, leading to the formation of 

cyclic AMP (cAMP), and protein kinase A (PKA) is phosphorylated, activating downstream proteins 

in the nucleus and cytosol. This pathway regulates TH synthesis, thyroidal growth and differentiation. 

At elevated TSH levels, after its bond to TSH-R, Gαq/11 is stimulated and the phospholipase C-

dependent inositol phosphate Ca2+/diacylglycerol cascade (leading to the generation of inositol 1,4,5-

triphosphate [IP3]) activates H2O2 formation and iodination. IP3 rises the intracellular Ca2+ 

concentration and it is released from the endoplasmic reticulum. H2O2 is a restrictive factor in iodide 

oxidation and organification, and coupling reaction. In addition to the TSH/TSH-R/PKC/IP3 cascade 

(and agents stimulating the PI pathway), also the TSH/TSH-R/PKA/cAMP pathway activates the 

generation of H2O2, thanks to the cross-talk between the two pathways of TSH-R signaling [16]. 

Interestingly, triiodothyronine (T3) upregulates the leptin expression via phosphatidyl inositol 3 

kinases (PI3K) in adipocytes [17].  

Phospholipases also release arachidonic and linoleic acids that can be metabolized by 

lipoxigenase to form free radicals and lipid peroxides; these radicals and peroxides provide an 

inflammatory stress that can induce apoptosis. TSH, and cAMP agonists as well, protect 

thyrocytes from apoptosis that normally would be induced by H2O2 and other molecules. In 

addition to PKA, the protective effect of TSH involves PI3K, as the inhibitors of the PI3K 

promote apoptosis in thyroid cells [16,18]. 

Several cytokines alter thyrocyte growth and function, and such cytokine effects are affected by 

TSH and cAMP. Once cytokine receptors in the plasma membrane are activated, they attract the 

cytoplasmic tyrosine kinase JAK (Janus kinase), creating docking sites for SH-2-containing 

proteins like the “signal transducer and activator of transcription” (STATs); TSH 

phosphorylates STAT-3, an action that can be blocked by inhibitors of PKC, but not by 

inhibitors of PKA [18]. 

 

3 Phosphatydylinositol and lymphocytes 

 

3.1 The regulation of PIP3 cascade 
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Deletion in different members of the PtdIns signaling cascade leads to defects in natural killer (NK) 

cell repertoire expression and effector functions, in mouse models [19]. NK cells are determinant 

against autoimmunity, cancer and infection. 

PI3K regulate various aspects of lymphocyte behavior. After the involvement of antigen receptor, PI3K 

lead to the formation of 3-phosphorylated inositol lipid products, that function as membrane targeting 

signals for different proteins included in the generation of multiprotein complexes (called 

“signalosomes”), and in the formation of immune synapse. Class IA PI3K is the main subgroup in B-

cells, and if lost leads to strong defects in development and antigen reactivity, while in T-cells, both 

class IA and IB PI3K are involved in development and immune function. PI3K modulates the function 

of effector and regulatory (Tregs) T-cells, and in mice with PI3K-deficient T-cells these diverse 

functions cause unforeseen autoimmune phenotypes [13].   

Tregs prevent autoimmune and inflammatory disorders. The definition of the signal transduction 

pathways determinant for Tregs development and function is still going on. T-cell receptor (TCR), 

interleukin-2 receptor (IL-2R), and co-stimulatory receptor signaling have a key role in function 

of Tregs. After the stimulation of TCR, IL-2R, and CD28, the PI3K-regulated pathway is activated and 

leads to T-cell activation, proliferation, and cell survival. The two phosphatidylinositol phosphatases 

SHIP and PTEN negatively regulate the activation of the PIP3 cascade. Different mouse models 

deficient for the molecules involved in PIP3 cascade propose that impairment of PIP3 signaling can 

dysregulate immune responses and, sometimes, autoimmunity [14]. Moreover, PI3K controls 

chemokine responsivity and antigen-driven changes in lymphocyte trafficking. PI3K signaling is a 

complex network of interactions, that need to be compensated correctly in order to guarantee the right 

cell responses and to maintain immune homeostasis [13].  

Functionally silencing autoreactive B-cells that have eluded central tolerance checkpoints is a 

mechanism against autoimmune processes through the use of intravenous immunoglobulins that, in ex-

vivo stimulated human B-cells, suppressed PI3K signaling, that is known to play a central role in 

determining B-cell fate [15].  

    

3.2 Inositol Poly-Phosphatases and their targets in T-cell 

Recently chemical and genetic data have shown that the inositol poly-phosphatases are determinant for 

the effector and regulatory functions of the T-cell compartment. SHIP1 and SHIP1/2 (the 5'-inositol 

poly-phosphatases) can deviate PI(3,4,5)P3 to the infrequent but strong signaling phosphoinositide 

species PI(3,4)P2 and thus these SHIP1/2, and the inositol polyphosphate 4-phosphatase type I and 

type II enzymes (INPP4A and INPP4B) that deplete PI(3,4)P2 may amplify or inhibit effectors of PI3K 

signaling that are selectively recruited to and activated by PI(3,4)P2. Pharmaceutical manipulation of 

these enzymes for therapeutic purposes can be potentially efficient in disease settings where T 

cell function is a key in vivo target [20]. Mice genetically-deficient for the B isoform of the inositol 

1,4,5-trisphosphate 3-kinase (or Itpkb) have a severe defect in thymocytes differentiation and 

thus lack peripheral T cells. These Itpkb-deficient peripheral T cells have also an increased 

capacity to secrete cytokines upon stimulation [21].	
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Moreover, antiphospholipid antibodies are measurable in about 5% of healthy subjects. Besides lupus 

anticoagulant, anticardiolipin, and β2-glycoprotein (the major antiphospholipid antibodies), other 

autoantibodies of the antiphospholipid antibody syndrome (APLAS), are against phosphatidic acid, 

phosphatidylcholine, phosphatidylserine, phosphatidylinositol, annexin V, and 

phosphatidylethanolamine. Antiphosphatydylinositol antibodies can hamper the intracellular PI3K 

signaling [22]. 

 

4 Myo-inositol and cytokines 

Autoimmune thyroid diseases (AITD) are T-cell-mediated organ-specific autoimmune disorders, 

resulting from a dysregulation of the immune system leading to an immune attack on the thyroid gland; 

in fact, the common pathological feature of AITD is the presence of lymphocyte infiltrates into the 

gland [23, 24]. 

The central role of chemokines and cytokines in the pathogenesis of organ specific and sytemic 

autoimmune disorders, and AITD, have been reported [25-27]. In thyroidal tissues, recruited T helper 1 

(Th1) lymphocytes can induce a higher secretion of IFN-γ and TNF-α, that stimulates CXCL10 (the 

prototype of the IFN-γ-inducible Th1 chemokines) release from thyrocytes; this leads to an 

amplification feedback loop, initiates and perpetuates the autoimmune process [28-30].  

Studies have shown that cytokines modulate myo-inositol in thyroid cells. A first study investigated the 

action of IFN-γ on the production of inositol phosphates and intracellular Ca2+ mobilization in primary 

cultures of human thyrocytes using the fluorescent Ca2+ indicator fura-2. IFN-γ increased the 

production of inositol mono-, bis-, and trisphosphates and caused a dose-dependent increase in 

intracellular Ca2+. The tyrosine protein kinase inhibitor, genistein, inhibited the production of inositol 

phosphates and the IFN-γ-induced increase of Ca2+, with no effects on ATP, suggesting that the 

mobilization of intracellular Ca2+ and the production of inositol phosphates are determinant for the 

effect of IFN-γ in human thyroid cells [31,32]. 

Whether myo-inositol might be able to modulate the chemokines production in thyroid cells remains 

to be elucidated. 

 

5 Myoinositol in autoimmune thyroiditis and hypothyroidism 

A double-blind randomized controlled trial has been conducted by Nordio et al. [33] in order to 

evaluate the efficacy of Myo-Ins and Se combination in patients with subclinical hypothyroidism. They 

enrolled 48 women having subclinical hypothyroidism and elevated serum anti-thyroglobulin (AbTg) 

antibodies levels (> 350 IU/ml). Patients were randomly divided in group A including twenty-four 

subjects treated daily with oral 83 µg Se in soft gel capsule; and in group B with twenty-four patients 

taking a combined treatment Myo-Ins 600 mg plus 83 µg Se (oral tablets, for six months). Therefore 

TSH, AbTPO, AbTg, Myo-Ins, and Se plasma concentrations were measured showing the favorable 

effect of the therapy with Se in patients affected by subclinical hypothyroidism, that is significantly 
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ameliorated by the combination with Myo-Ins. In group B a significant decline (31%) of TSH levels 

has been observed (4.4 ± 0.9 vs 3.1 ± 0.6 µIU/ml, P < 0.01), whereas no changes were seen in group A. 

AbTPO and AbTg levels significantly decreased in both groups. AbTg levels lower than the threshold 

have been found in eleven patients of group B, in treatment with Myo-Ins plus Se, vs three patients of 

the group A. Thyroid ultrasonography showed a normalized echogenicity in these patients [33].  

Another study by Morgante et al. [34] investigated on the prevalence of subclinical thyroid 

dysfunctions in infertile polycystic ovary syndrome (PCOS) patients and also evaluated if insulin 

sensitizers in insulin resistant PCOS patients could ameliorate thyroid function, upon 6 months of 

treatment. A significant high prevalence of subclinical thyroid dysfunction has been observed in PCOS 

patients, overall in those overweight, obese and with insulin resistance (IR). A treatment of six months 

with insulin sensitizers (containing Inositol) decreased TSH levels in insulin resistant PCOS patients, in 

a significant manner. 

More recently, one hundred and sixty-eight patients with HT and TSH levels between 3 and 6 µIU/ml 

were evaluated by Nordio et al. [35]. Patients were randomly divided into 2 groups; in one group they 

were treated with Myo-Ins+Se and in the other with only Se. Treatment with Myo-Ins+Se leads to a 

significative decrease of TSH, AbTPO and AbTg levels, and also to an improvement of thyroid 

hormones and personal wellbeing [35].  

Moreover we have conducted a study enrolling twenty-one Caucasian patients with newly diagnosed 

euthyroid chronic AT, treated with Myo-Ins plus Se tablets (600 mg/83 µg, assumed twice/day for six 

months). We have observed a reduction of TSH levels after the treatment. Therefore this leads to 

hypothesize that the combined treatment is effective in reducing the risk to develop hypothyroidism in 

individuals affected by AITD. We also found that anti-thyroid autoantibodies decreased after treatment, 

as well as CXCL10 levels, thus confirming the immune-modulatory effect exerted by the treatment 

[36].  

Myo-Ins exerts a favorable effect on TSH thanks to its biological role in the TSH hormone signaling. It 

is indeed able to regulate the H2O2-mediated iodination [37] and the impairment of inositol-depended 

TSH signaling cascade can lead to TSH resistance, and hypothyroidism [12]. Therefore, the treatment 

with Myo-Ins may rise the second messenger, and improve TSH sensitivity. 

IFN-γ-inducible protein 10 (IP-10), also known as CXCL10, binds to the chemokine (C-X-C motif) 

receptor 3 (CXCR3), promoting the pathogenesis of different autoimmune diseases, systemic (such as 

systemic lupus erythematosus, systemic sclerosis, mixed cryoglobulinemia, or Sjogren syndrome), or 

organ specific (such as Graves’ disease and Graves’ Ophthalmopathy, Type 1 diabetes) [28, 38, 39].  

IFN-γ stimulates CXCL10 secretion through CD4+, CD8+, and natural killer (NK), also by thyrocytes. 

Elevated CXCL10 levels in peripheral fluids are, then, a marker of Th1 orientated immune response. 

CXCL10 serum levels are high in patients affected by AT, particularly in those having a hypoechoic 

ultrasonographic pattern, that is a sign of a more severe lymphomonocytic infiltration, and in patients 

with hypothyroidism. Hence, CXCL10 may be a marker of a more aggressive and stronger 
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inflammatory response in the thyroid gland, which causes thyroid damage and thyroid dysfunction [40-

47].  

A study evaluated if blood mononuclear cells (PBMC) from Hashimoto's thyroiditis (HT) and 

control women were protected from in vitro H2O2-induced oxidative stress upon treatment with 

antioxidants. H2O2 alone reduced PBMC proliferation, and it decreased furtherly and dose-

dependently in either group, particularly with Myo-Ins+Se in HT. Vitality was reduced by H2O2 

alone in controls and in the HT patients, but it was rescued by the three additions. The Comet 

score was rised above baseline in controls and in HT women by H2O2 alone. In either group, 

genotoxicity was contrasted dose-dependently by each addition. Chemokines levels were 

increased by H2O2 alone, and more in HT women than in controls. These concentrations were 

reduced dose-dependently (often under baseline) by each addition in either group, in particular 

with Myo-Ins+Se (up to about -80% of baseline). The evaluated antioxidants exert favorable 

effects on PBMC exposed in vitro to H2O2-induced oxidative stress both in controls and HT 

women, and the association Myo-Ins+Se was the most effective [48].  

The immune-modulatory effect exerted by the combination of Myo-Ins and Se on CXCL10 suggests 

that they are capable of modulating the Th1 immune response, then these findings prompt to 

investigate on autoimmune diseases associated with the predominant Th1 immune response; the 

mechanisms need to be further explored [49, 50]. 

Moreover more recently Nordio et al. [51] carried out a retrospective, observational study 

enrolling 642 patients with suspected hypothyroidism undergoing ultrasound. In the analysis 

only patients having subclinical hypothyroidism or TSH levels borderline associated to thyroid 

nodules defined as class I and II were taken into account. The Authors concluded that a 

reduction of the size, number and elasticity score of thyroid nodules and of TSH levels was 

observed in patients with subclinical hypothyroidism after treatment with Myo-Ins plus Se [51].  

 

6 Conclusion 

Myo-inositol (Myo-Ins) plays an important role in thyroid function and autoimmunity. Myo-Ins 

is the precursor for the synthesis of phosphoinositides, is involved in the phosphatidylinositol 

(PtdIns) signal transduction cascade, and it plays a decisive role in several cellular processes.  

Several mouse models deficient for the molecules involved in PIP3 pathway suggest that 

impairment of PIP3 signaling leads to dysregulation of immune responses and, in some cases, 

autoimmunity.  

Clinical studies have shown that after treatment with Myo-Ins+Se, TSH levels significantly declined in 

patients with subclinical hypothyroidism due to autoimmune thyroiditis. The treatment was 

accompanied by the antithyroid autoantibodies levels decline. Furthermore, after the treatment serum 

CXCL10 declined, confirming the immune-modulatory effect of Myo-Ins. Additional researches are 

necessary in larger population, to evaluate the effect on the quality of life, and to study the mechanism 

at the basis of chemokines modulation. 
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