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Abstract. In this paper the experimental results of tensile properties and indentation properties, 

as a function of pyramidal and spherical indenters, of Copper-Chromium-Zirconium alloy, in 

the macro-scale range at room temperature, are presented and compared. Measurements are 

performed on three Cu-Cr-Zr samples in order to evaluate different heat treatments: two 

samples are aged for 2 hours in a vacuum furnace at 480 °C, 550 °C and one sample is kept as 

received. The experimental procedures for the measurement of indentation modulus, by using 

the primary hardness standard machine at INRiM, and tensile modulus, by means of 

engineering tensile tests at CIRA, are described. 

1. Introduction 

Elastic properties of materials, in mechanical engineering and material science, can be evaluated by 

means of several different experimental techniques, based on static, quasi-static and dynamic methods. 

Observed elastic response may vary as a function of different measurement procedures and other 

boundary conditions, as a consequence some differences in elastic moduli can be easily achieved. 

Moreover the internal (microstructural) length-scale of the material system is also known to influence 

the measured mechanical properties. In order to quantify the differences in the elastic behaviors, a 

comparison at macroscale level between tensile properties and indentation properties, measured with 

indenters of different shapes, are presented. As it is well known, tensile modulus is the elastic response 

of a sample subjected to the action of a distributed load on a surface area, on the other hand the 

indentation modulus is properly the elastic response of the sample subjected to the action of a 

concentrated load in a single point. Occurring deformations in indentation tests are not linear, 

depending on the shape of indenter and on the indentation depth. This phenomenon, observed at 

micro- and nanoscale [1], is known as indentation size effect. In this work material under investigation 

is a Copper-Chromium-Zirconium alloy (chemical composition: 1%Cr, 0.06%Zr, rest Cu), with 

different thermal aging. Cu-Cr-Zr alloy is the primary candidate for structural, high heat flux 

components in future fusion reactors. This alloy is precipitation-hardened and the dominant length 

scale responsible for strengthening of the material is average spacing between Cr precipitates.  

Tensile modulus is determined on the basis of stress-strain measurements, according to Standard 

methodologies (e.g., ASTM E8, ISO 10275, ISO 6892-1). Occurring deformations of the sample 

http://creativecommons.org/licenses/by/3.0


XXII World Congress of the International Measurement Confederation (IMEKO 2018)

IOP Conf. Series: Journal of Physics: Conf. Series 1065 (2018) 062010

IOP Publishing

doi:10.1088/1742-6596/1065/6/062010

2

 

 

 

 

 

 

subjected to a tensile stress, are measured by means of a newly developed optical technique (3D 

Digital Image Correlation) allowing to obtain a global and accurate high definition mapping of 

displacements and deformations, instead of local information.  

Indentation modulus, as well as hardness, is determined from accurate measurements of indentation 

load, displacement, contact stiffness and hardness impression imaging. Measurements are performed 

with both pyramidal and spherical indenters, on the basis of ISO 14577-1 Standard and improved 

methodologies from literature [2-6].  

 

2. Elastic properties 

Elastic properties, in terms of tensile modulus E and indentation modulus EIT of Copper-Chromium-

Zirconium alloy samples, are evaluated in the macro-scale range at room temperature of 23±2°C. 

2.1. Tensile modulus E 

Tensile modulus E is calculated by dividing the measured incremental tensile stress σ by the 

engineering extensional strain ε in the linear (elastic) region of the occurring stress-strain curve, 

applying the classical Hooke’s law at a constant strain rate, E=/. Plotting stress as a function of 

strain, the value of elastic modulus is determined by means of a linear fit, below the yield point y, as 

shown below in Figure 1. 

2.2. Indentation modulus EIT  

The method for measuring indentation modulus by indentation technique was introduced by Oliver 

and Pharr in 1992 [7]. Indentation modulus EIT depends on several parameters and boundary 

conditions and it is expressed as:  

 

 𝐸𝐼𝑇 =
1−𝜈𝑠

2

2√𝐴𝑝

𝑆√𝜋
−
1−𝜈𝑖

2

𝐸𝑖

 (1) 

 

where s is the Poisson ratio of tested material, i and Ei are the Poisson ratio and the Young’s 

modulus of the indenter material, S is contact stiffness, i.e. the incremental ratio between unloading 

force and related displacement at maximum depth of indentation and Ap is the projected contact area, 

i.e. the value of the indenter area function at the contact depth.  

The projected contact area Ap depends on the depth hc of the contact of the indenter with the sample at 

FMAX and on type of indenter: for Vickers diamond pyramidal indenter, with a vertex angle , 

Ap=(2hc∙tan2)
2
 and for Brinell tungsten carbide spherical indenter, with a radius R, Ap=hc∙(2R-hc). 

In both cases, the depth hc of the contact of the indenter with the sample at FMAX, is determined as a 

function of frame compliance Cf, as follows:   

 

 ℎ𝑐 = ℎMAX − 𝜀 ∙
𝐹MAX

𝑆
− 𝐶𝑓 ∙ 𝐹MAX (2) 

 

in which hMAX is the maximum indentation depth, FMAX is the maximum of applied force,  is a value 

depending on the indenter geometry and the extent of plastic yield in the contact (for both Vickers and 

Brinell =0.75), S is the contact stiffness and Cf is determined, for each single measurement as a 

function of maximum experimental indentation depth hMAX and the indentation depth hv measured 

from the actual hardness impression on the sample [4], i.e., Cf = (hMAX- hv)/FMAX.   

In particular for Vickers indenter hv=0.5l∙cot(0.5), in which l is the side length measured from the 

actual hardness impression, and for Brinell indenter hv=R-(R
2
-r

2
)

1/2
, in which r is the measured radius 

of the resulting hardness impression on the sample. 
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In Figure 1 the experimental data needed for the tensile and indentation modulus determination are 

depicted: a typical experimental stress-strain curve, with the linear (elastic) region below the yield 

strain value y, and an experimental loading-unloading curve of indentation test, as a function of 

applied force F and occurring displacement h. A typical Vickers hardness impression, with measured 

diagonal d and side length l, is also shown.  

 

 
Figure 1. Typical experimental stress-strain curve and loading-unloading curve of indentation test. 

 

3. Experimental results and comments 

Tensile modulus of Cu-Cr-Zr alloy is determined from uniaxial tensile tests by means of an Instron 

4505 universal testing machine with a 50kN load cell installed. The displacement rate is set to 0.1 

mm/min. Strain is measured using a 3D Digital Image Correlation system. Geometrical dimensions 

and shape of the samples are in accordance with proportionality stated in international Standards. 

Indentation modulus (and hardness) is determined from both Vickers and Brinell procedures, by 

applying the typical loads (corresponding to the maximum of applied force, FMAX) recommended for 

hardness tests, i.e., 3 kg, 30 kg and 100 kg for Vickers and 31.2 kg, 62.5 kg and 187.5 kg for Brinell. 

Brinell tests are performed by using two spherical indenter (diameter D1=2.5 mm and D2=1.0 mm).  

Occurring maximum indentation depth hMAX is measured by a laser interferometric system. Moreover 

the average diagonal dav and the calculated square side l for Vickers impressions, as well as the 

average diameter d and the calculated radius r for Brinell impressions, used for the evaluation of 

hardness impression depth hv, are measured from optical microscopy. Contact stiffness S=F/h is 

evaluated on the basis of Doerner-Nix linear model [8].  

In Table 1 the experimental results of tensile test, in terms of tensile modulus E and yield stain y and 

hardness test, in terms of Vickers hardness HV and Brinell hardness HBW, are shown. 

 

Table 1. Elastic properties and hardness values of Cu-Cr-Zr samples treated with different aging.  

 E  

(GPa) 
y  

(MPa) 

HBW 

D=1.0mm 

HBW 

D=2.5mm 
HV 100 HV 30 HV 3 

Id0 (no aged) 95.1 44.7 75.2 62.9 57.8 62.7 90.0 

Id3 (aged 480 °C) 115.4 175.3 134.0 129.1 134.7 139.2 147.7 

Id5 (aged 550 °C) 107.7 101.8 118.5 110.8 111.8 115.6 134.8 

 

 

As it is possible to notice from HV values, an increase of the hardness by decreasing the applied load 

(and as a consequence the indentation depth), can be observed, such as a kind of indentation size effect 

[8-12], also at macroscale level. On the other hand, for HBW values, similar effect is not achieved, as a 

function of load, but as a function of indenter radius, as observed from experimental results at micro- 
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and nanoscale [1].  A similar behavior can be observed from values of the indentation modulus EIT, as 

shown in graphs of Figure 2. It is important to underline that the effects due to the frame compliance 

Cf (sample compliance Cs is negligible) are taken into account, in the experimental results, by using 

relation (2). On average measured frame compliance Cf  ranges between 100 nm/N and 10 nm/N, 

depending on applied loads. 

 

 

Figure 2. Comparison between indentation modulus EIT and tensile modulus E (dotted line) of CU-Cr-

Zr alloy samples expressed as a function of measured indentation depth hMAX. 

4. Conclusion 

A comparison between tensile and indentation properties at macroscale level, of 3 samples of Cu-Cr-

Zr alloy, previously aged at different temperatures, is presented. The Cu-Cr-Zr alloy is the primary 

candidate as a component in future fusion reactors. Tensile modulus is determined on the basis of 

stress-strain measurements. Indentation modulus (and hardness) is determined from both Vickers and 

Brinell tests, by applying standard methods and an improved procedure, allowing to avoid effects due 

to the frame compliance during the test. Experimental results show systematically that the elastic 

response is indentation depth dependent, as well as load dependent. This behavior is generally 

observed at micro- and nanoscale level and it is defined in terms of indentation size effect.   
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