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List of abbreviations  

µL microliter 
µM micromolar 
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ASP amnesic shellfish poisoning 
CFP ciguatera shellfish poisoning 
CPDB consensus path DB 
CTX ciguatoxin 
DA domoic acid 
DMSO dimethilsulfoxide 
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mM millimolar 
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1. Background information 

 

1.1 Harmful algal blooms and marine biotoxins 

 

Marine biotoxins are a large group of compounds produced by several organisms in the 

marine environment, e.g. algae, corals and cyanobacteria, that can accumulate in filtrating 

shellfish and finfish [1, 2]. Human consumption of marine products such as molluscs 

(clams, razor clams, mussels, oysters), crustaceans (lobsters, crabs) and fish (sardines, 

barracuda, snappers, puffer fish, among others) contaminated with these toxins can lead to 

food poisoning, of which symptoms can vary from paralysis, diarrhoea, amnesia to death, 

depending on the ingested toxin [3-5]. Worldwide, algae toxins are responsible for 

approximately 60,000 human intoxications annually [6]. Monitoring the micro-organisms 

responsible for the production of marine biotoxins is of value, but the occurrence of these 

micro-organisms does not always correlate well with the presence of toxins in seafood 

samples. For instance, saxitoxins (STXs) are toxins produced by dinoflagellates from 

Alexandrium spp. e.g. A. catenella and A. ostendelfii [7], domoic acid (DA) by species of Pseudo-

nitzschia and okadaic acid (OA) and dinophysistoxins (DTXs) are mainly produced by 

Dinophysis fortii, D. acuminata, D. acuta, D. caudata, D. sacculus and D. norvegica; while in cases 

where these algae were detected, often no toxins were detectable in shellfish [8]. The 

opposite can also occur, i.e. DA, OA and DTX were found in shellfish, while no toxin 

producing algae were detected [9-13]. The yessotoxins (YTXs) are mainly produced by 

Proceratium reticulatum, Lingulodinium polyedrum, Gonyaulax polyhedra and Gonyaulax spinifera, but 

there are examples showing that while the algae are gone, the YTX levels exceed the 

permitted levels [14, 15]. Regarding the azaspiracids (AZAs), the toxin producing Azadinium 

spinosum is only known since 2009 and till now there are no data available on the correlation 

between its occurrence and the detection of AZAs in shellfish [16]. The correlation is thus 

complex and similar is valid for other marine biotoxins. However, it should also be noticed 

that in Florida the monitoring of Karenia brevis in order to prevent intoxications by 

brevotoxins (PbTXs), seems to work adequately [17]. Since it is not possible to avoid the 

uptake of toxins from shellfish and the lack on an efficient method to remove them before 

consumption, it is necessary to regulate and monitor levels in shellfish [18]. 
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Marine biotoxins can be classified based on their chemical structure, chemical properties 

or the effects produced in humans. From an analytical point of view, marine biotoxins can 

be separated in two groups based on chemical properties, i.e. hydrophilic and lipophilic 

toxins.  

 

1.2 Hydrophilic toxins 

 

The more water soluble hydrophilic toxins have low molecular weight including domoic 

acid (DA), saxitoxin (STX) and tetrodotoxin (TTX) [19]. Table 1 summarises the 

hydrophilic toxins and some of their characteristics including their mode of action. 

 

Table 1. Hydrophilic toxins 

Toxin Chemical 
structure 

Source Syndrome Mode of action Ref. 

Saxitoxins 
(STX) 

Purine derived Alexandrium 
spp, 
Gymnodinium 
and Pyrodinium 
spp. 

Paralytic 
shellfish 
poisoning 
(PSP) 

Inhibition of the 
voltage-gated 
sodium channels 

[7] 

Tetrodo-
toxins 
(TTX) 

Heterocyclic 
Guanidine 
derived  

Vibrio spp, 
Pseudomonas 
spp, Shewanella 
spp, 
Alteromonas 
tetraodontis 

Tetrodo-
toxin 
poisoning 

Inhibition of the 
voltage-gated 
sodium channels 

[20-22] 

Domoic 
acid (DA) 

Cyclic amino 
acid  

Pseudo-nitzschia 
pungens,  

Amnesic 
shellfish 
poisoning 
(ASP) 

Activation of 
glutamate 
receptors 

[23, 24] 

Palytoxins 
(PlTX) 

Complex 
polyhydroxylated 
compounds 

Osteoptisis spp, 
Palythoa spp 

Palytoxin 
poisoning 

Modification of 
NA+/K+ ATPase 
ion pump 

[25, 26] 
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1.3 Lipophilic toxins 

 

The lipophilic toxins are high molecular weight compounds including a variety of non-

related toxins, e.g. OA, AZAs and PbTX. OA and its derivatives DTXs are known for 

causing diarrhoeic shellfish poisoning (DSP) [27]. Other toxins such as YTXs, 

pectenotoxins (PTXs) and cyclic imines (CIs) do not cause any known syndrome. In 

addition, other toxins like pinnatoxins (PnTX), gymnodimines (GYM) and pteriatoxins 

(PtTX) will be present in the lipophilic extract as well [2, 19, 28, 29]. A summary of the 

lipophilic toxins and some of their characteristic including the mode of action is shown in 

table 2.  
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Table 2. Lipophilic toxins 
 
Toxin Chemical 

structure 
Source Syndrome Mode of action Ref.  

Okadaic acid 
(OA), 
dinophysistoxins 
(DTXs), 
pectenotoxins 
(PTXs) 

Polyether Dynophisis spp, 
Prorocentrum 
spp.  

Diarrhoeic 
shellfish 
poisoning 
(DSP) 

Inhibition of 
serine/ 
threonine 
phosphatases 
(OA and DTXs) 
PTX not known 

[28, 30, 
31] 
 

Azaspiracids 
(AZAs) 

Polyether Azadinium 
spp, 
Amphidoma 
spp.  

Azaspiracid 
poisoning 
(AZP) 

Unknown, in vitro 
multiple cellular 
effects 

[32-34] 

Yessotoxins 
(YTXs) 

Polyether  Protoceratium 
reticulatum, 
Lingulodinium 
polyedrum and 
Gonyaulax 
spinifera 

No record 
of human 
intoxication 

Unknown, in vitro 
multiple cellular 
effects, 
cardiotoxic  

[35, 36] 
 
 

Brevetoxins 
(PbTXs) 

Cyclic 
polyether 

Karenia brevis Neurologic 
shellfish 
poisoning 
(NSP) 

Activation of the 
voltage-gated 
sodium channels 

[17, 37] 
 

Ciguatoxins 
(CTX) 

Cyclic 
polyether 

Gambierdiscus 
toxicus 

Ciguatera 
poisoning1 

Activation of the 
voltage-gated 
sodium channels 

[38, 39] 
 

Other toxins: 
Cyclic imines 
Spirolide (SPX), 
Pinnatoxins 
(PnTXs), 
Gymnodimines 
(GYMs), 
Pteriatoxins 
(PtTXs) 
 

Cyclic 
imines 

Various 
species, 
Alexandrium 
spp, Karenia 
sp.  

No record 
of human 
intoxication 

Still unknown, 
probably 
interaction with 
nicotinic and 
muscarinic 
acetylcholine 
receptors 

[39, 40] 

1 By consumption of contaminated fish 
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2. Types of poisoning

2.1 Paralytic shellfish poisoning (PSP) 

Saxitoxin (STXs) and several closely related analogues form the group of toxins causing 

paralytic shellfish poisoning (PSP) [2]. They are produced by marine algae from the genus 

Alexandrium spp, Gymnodinium spp. and Pyrodinium spp. In the case of fresh water, these 

toxins are produced by some types of cyanobacteria from genus Anabaena, Cylindrospermopsis, 

Aphanizomenon, Planktothrix and Lyngbya [7, 41, 42]. 

STX is a hydrophilic toxin that can easily be extracted by water [43]. A total of 57 analogues 

of STX have been reported [7, 44, 45]. STX causes inhibition of voltage-gated sodium 

channels (VGSC) [43, 46]. This channel is responsible for the initial depolarization phase 

in neurons and other electrically excitable cells, such as cardiac cells or skeletal muscle cells, 

and its inhibition leads to paralysis in humans and other animals [41]. The symptoms can 

vary from slight numbness in the lips, mouth and tongue, numbness of extremities, 

headache, dizziness, vomiting, nausea and diarrhoea, to death due to paralysis of muscles 

involved in respiratory processes and death comes by asphyxia [18, 42]. Death can occur 

within 2 to 12 hours after ingestion of contaminated shellfish. Victims that survive more 

than 12 hours might recover. There is no antidote to STX intoxication and the only 

treatment consists on giving life support to the patient [43, 46]. 

R1 R2 R3 R4 
STX H H H 
GTX-2 H H OSO3

- 
GTX-3 H OSO3

- H 
Neo OH H H 
GTX-1 OH OH OSO3

- 

GTX-4 OH OSO3
- H 

Figure 1. Structure of Saxitoxin and analogues 
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2.2. Tetrodotoxin poisoning 

 

Tetrodotoxin (TTXs) is one of the oldest toxins described. It is not produced by microalgae 

like STX. Most likely TTXs are produced by bacteria and it has been described that Vibrio 

spp. and Pseudomona spp. are able to produce TTX [22]. Worldwide TTX is known because 

of the intoxications produced by the consumption of “Fugu” (raw meat of puffer fish) in 

Japan [21, 47]. The accumulation of this toxin occurs in species of fish from the 

Tetraodontidae family, in which TTX is concentrated mostly in the ovary and liver, 

although other organs including skin, intestine, and muscle can also contain the toxin 

depending on the species of puffer fish [20]. Lately, TTX is of concern because it has been 

found in shellfish from European coastal areas [48, 49]. The mode of action of TTX is 

similar to that of STX, i.e. the inhibition of the VGSC in a selective manner [50]. 

  R1 R2 R3 R4 

 

TTX H OH CH2OH OH 
4-epiTTX OH H CH2OH OH 
11-norTTX-6(S)-
ol H OH H OH 

11-norTTX-6(R)-
ol H OH OH H 

11-oxoTTX H OH CH(OH)2 OH 
 

Figure 2. Structure of Tetrodotoxin and analogues 

 
2.3 Amnesic shellfish poisoning (ASP) 

 

Domoic acid (DA) is a toxin produced by algal blooms of the diatoms Pseudo-nitzschia spp. 

and is an excitatory neurotransmitter amino acid. DA is an analogue of the neurotoxin 

kainic acid and binds to the glutamate receptor, resulting in sodium channel opening and 

membrane depolarisation [23]. It causes symptoms progressing from gastrointestinal 

distress and diarrhoea to death. Individuals can experience alteration of memory function, 

hallucination, confusion and amnesia: therefore, the name amnesic shellfish poisoning 

(ASP). Since amnesia does not always occur, the poisoning is also called domoic acid 

poisoning (DAP) [39, 51, 52]. DA was first found in Canada in 1989, but nowadays it is 

found worldwide [2]. 
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DA 

Figure 3. Structure of Domoic Acid 

2.4 Neurologic shellfish poisoning (NSP) 

Brevetoxin (PbTX) is a toxic compound produced by algae from the genus Karenia, e.g. K. 

brevis. PbTX is a VGSC activator, causing influx of Na+ ions into the cell leading to blocking 

of nerve excitability causing neurotoxic shellfish poisoning (NSP). The symptoms can vary 

from diarrhoea, vomiting, cramps, respiratory difficulties and eventually death. Cases have 

been reported mainly in the United States and New Zealand [17], therefore there are no 

regulatory limits in Europe or South America. 

PbTX-2 PbTX-3 PbTX-9 

Figure 4. Structure of Brevetoxins 
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2.5 Ciguatera poisoning  

 

Ciguatera toxin (CTX) is produced by the dinoflagellate Gambierdiscus spp. and ciguatera 

poisoning is a syndrome caused by consumption of subtropical or tropical marine 

carnivorous fish, e.g. barracuda, snapper, moray eel among others [53]. The accumulation 

of the toxin occurs through the food chain [2]. It is the most common form of intoxication 

reported in the US by consumption of seafood, and the most common poisoning caused 

by (shell)fish worldwide. Symptoms can occur within the first 12 hours after consumption 

of contaminated fish, starting with abdominal pain, diarrhoea, nausea and vomiting. 

Neurologic and cardiac problems can also occur later on, and the toxin can even cause 

respiratory distress, coma and death. The hallmark sign of ciguatera poisoning is the so-

called paradoxical thermal sensation, i.e. cold objects feel hot and hot objects feel cold. 

These symptoms together with the history of reef fish consumption are enough to diagnose 

ciguatera poisoning [52-54]. 

  

 

P-CTX-1 (CTX1B) 

 

P-CTX-2 (52-epi-54-deoxyCTX1B) 

 

P-CTX-3 (54-deoxyCTX1B) 

 

Figure 5. Structure of Ciguatera toxins 
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2.6 Azaspiracid poisoning (AZP) 

Azaspiracid (AZA) and its analogues are polyether toxins with two spiro-ring assemblies, a 

cyclic amine and a carboxylic acid [55-57]. AZA-1 and AZA-2 are produced by the 

dinoflagellates Azadinium spinosum. AZA-3 and the other 30 analogues described are 

metabolites of AZA-1 or AZA-2 that are formed within the shellfish [58, 59]. The primary 

mode of action of AZA underlying the induction of azaspiracid poisoning (AZP) is not 

known yet. Toxic effects include cytoskeletal rearrangement [60, 61], decreased levels of F-

actin [57] and induction of apoptosis [62, 63]. AZA-1 has been reported to induce mRNA 

expression of genes involved in cholesterol and fatty acid synthesis in Jurkat cells indicating 

that AZA-1 activates these processes. [64]. 

R1 R2 R3 R4 
AZA-1 H H CH3 H 
AZA-2 H CH3 CH3 H 
AZA-3 H H H H 
AZA-4 OH H H H 
AZA-5 H H H OH 

Figure 6. Structure of Azaspiracids 

2.7 Diarrhoeic shellfish poisoning (DSP) 

Okadaic acid (OA) and dinophysistoxins (DTX) are toxins causing diarrhoeic shellfish 

poisoning (DSP). They are produced by dinoflagellates from the genders Dynophysis spp. 

and Prorocentrum spp. [65]. OA has been reported to be a tumour promoter in vivo in mouse 

skin and rat stomach [31, 66]. OA and DTX analogues inhibit protein phosphatases, 

particularly PP1 and PP2A, causing permanent phosphorylation of proteins leading to 

effects on regulation of glycogen metabolism, transcription, cell differentiation, apoptosis 

and DNA replication in several cell lines [67, 68]. Other effects described are genotoxicity 

through the formation of DNA adducts in human fibroblasts and keratinocytes [69], 
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aneugenic effect in Caco-2 and CHO-K1 cell lines [70, 71], cytotoxicity in several cell lines 

in vitro, i.e. peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y 

neuroblastoma cells [72]. Yessotoxins (YTXs) and pectenotoxins (PTXs) do not cause 

diarrhoea but are co-extracted with the DSP toxins in the same lipophilic extract. YTXs are 

polycyclic ether toxins and are regulated apart from DSP toxins since they do not share the 

mode of action, i.e. inhibition of phosphatases. Over 30 analogues of YTX have been 

isolated. No human toxicity has been attributed to this toxin, even with high amounts 

reported in shellfish [36]. Mice injected with YTX die, but mice fed with high oral doses 

did not show diarrhoea or any other adverse effects [73]. The mode of action of YTX is 

still unknown, but at the cellular level, damage in cardiomyocytes has been observed, e.g. 

activation of autophagy signalling, suggesting a cardiotoxic potential [74], and also genomic 

alterations in vitro [75]. Pectenotoxins are a group of polyether toxins and are regulated 

together with the DSP toxins. No correlation with human cases has been described so far, 

and no acute oral toxicity has been described in mice when administered with PTX-2 [28]. 

In vitro, pectenotoxin has shown to be hepatotoxic and induced depolymerisation of F-actin 

[39]. 

  R1 R2 R3 

 

OA CH3 OH H 
DTX-1 CH3 CH3 H 
DTX-2 H CH3 H 
DTX-3 H or CH3 H or CH3 Acyl 
    

 

Figure 7. Structure of Okadaic Acid and Dinophysis toxins 
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n R1 
YTX 1 
Homo YTX 2 

45OH YTX 1 

45OH homo YTX 2 

Figure 8. Structure of Yessotoxins 

R1 
PTX-1 CH2OH 
PTX-2 CH3 

PTX-2sa 

Figure 9. Structure of Pectenotoxins 
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3. Detection methods 

 

3.1 Mouse bioassay 

 

The oldest method for the detection of marine biotoxins is the mouse bioassay (MBA). In 

general, the method consists of injecting a sample intraperitoneal in three mice, and the 

occurrence of death in a period of 24 hours is monitored. The sample is considered positive 

if at least 2 of 3 mice die within 24 hours. There are 2 different protocols, i.e. for the 

detection of PSP toxins and for the detection of DSP toxins. 

The MBA for PSP toxins consists on the injection of three 20-gram mice with 1mL of an 

acidic extract obtained from shellfish products. The time taken for the mice to die is 

recorded, and samples should be diluted to ensure that death occurs within 5 and 15 

minutes. Then, the toxicity of the sample can be calculated referring to dose-response 

curves established using STX standards. This quantification of the toxins is established in 

mouse units (MU), being “1 MU is the amount of injected toxin which would kill a 20g 

mouse in 15 minutes, and it is equivalent to 0.18 µg of STX” [2]. This MBA has several 

drawbacks, e.g. death time is not always linear with toxin levels, the assay is labour intensive, 

and because sacrifice of large amounts of animals is needed it is considered unethical. 

However, the method has been properly validated (AOAC Official Method 959.08: 

Paralytic Shellfish Poison, biological method) and it is still in use in several countries [2].  

The MBA for DSP toxins was developed in 1978 in Japan, after several people showed 

gastrointestinal complaints such as diarrhoea, nausea and vomiting after shellfish 

consumption [76]. Since 1981 the MBA has been the official method for detection of DSP 

toxins in Japan and other countries [77]. The method for lipophilic marine biotoxins (LMB), 

i.e. DSPs, AZPs and NSPs, consists of an extraction with acetone, followed by partition 

with diethyl ether or dichloromethane and water, which is subsequently evaporated and 

suspended in tween 20. For testing, 1 mL of the suspension is injected intraperitoneally to 

three 20-gram male mice. The death of at least 2 of 3 mice in 24 hours is the indication that 

the sample is positive [77]. The protocol has had several modifications concerning solvents 

and number of animals, with the aim of improving the detection capacity and to increase 

animal welfare [78]. However, the MBA for lipophilic toxins has never been properly 
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validated and -as indicated above- the MBA does not consider humane endpoints to avoid 

animal suffering, i.e. the endpoint to declare the test as positive is death [79]. 

Although the MBA for the detection of lipophilic marine biotoxins has been replaced in 

several countries, e.g. Australia, Canada, New Zealand and in the European Union, it is still 

the reference method in some countries [80] and in Europe the use of the MBA is still 

allowed at production areas as surveillance for unknown toxins. In January 2015, the MBA 

has been banned as a reference method for testing final products, mainly because it is 

unethical, not appropriate due to a high variability in results, showing insufficient detection 

aptitude, and limited specificity [81].  

Efforts have been made in replacing the MBA. Alternatives for PSP toxins are being 

investigated extensively [45, 82-85], and although it is important to also consider the 

hydrophilic toxins in the replacement of the mouse bioassay, the work presented in this 

thesis focuses on the alternatives for the detection of LMB. 

3.2 Analytical methods 

Chemical methods focus on the detection and identification of compounds based on their 

chemical properties. The extraction method for detecting either the hydrophilic or 

lipophilic toxins is different. For the detection of PSP toxins, one chemical method has 

been validated, i.e. the AOAC method 2005.06, which is based on the fluorescence of STX 

and its analogues after oxidation and subsequent separation on a HPLC column [45]. 

Another official method is the AOAC Official Method 2011.27, a receptor binding assay 

making use of the PSP toxin receptor in a competitive binding assay with [3H] STX [86]. 

In 2011, the LC-MS/MS method of the EURL on marine biotoxins became the reference 

method for detecting lipophilic marine biotoxins in Europe [87, 88]. Other methods such 

as LC-MS and HPLC, immunoassays and functional assays (e.g. the phosphatase inhibition 

assay) are allowed as alternative or supplementary to the reference method, only if they are 

properly validated [81]. 

Absence of certified standards of each toxin and their analogues, and the incapacity to 

detect presently unknown toxins or analogues are known disadvantages of the LC-MS/MS 

method [89]. Chemical detection is thus not able to detect all toxins or the toxins that are 

presently unknown. This makes use of the LC-MS/MS method for detecting all potential 
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harmful LMB very challenging. Additionally, analytical methods are unable to predict 

toxicity of complex mixtures or detect emerging risks. As a result, many countries hesitate 

to trust solely on analytical methods. Therefore, the MBA it is still used, mainly because it 

facilitates detection of yet unknown toxins and emerging risks. 

 

3.3 Other alternative methods 

 

3.3.1 Biological methods 

 

Biological functional assays are based on the mode of action of a compound to cause 

toxicity. These assays include receptor-based binding assays, enzyme assays and cell-based 

bioassays [90]. The receptor and enzyme assays use the biological target of the toxin as the 

element for toxin detection. Enzyme inhibition assays, i.e. inhibition of phosphatases, have 

been developed for the detection of OA and DTX. These assays allow the quantification 

of a toxin present in a sample, often by colour (absorbance) or fluorescence measurements 

[91]. These methods are fast and have been proven sensitive enough to detect all analogues 

and able to determine the total potency of a sample extract without the need for certified 

standards for each analogue. The main disadvantage is that these bioassays require a second 

identification step in case a sample is suspect/positive, i.e. in order to identify the 

compound causing the effect [92]. Cell-based bioassays can measure a particular cell 

function, e.g. measurement of membrane potential and ion influx, or can be based on the 

measurement of cytotoxicity [92, 93]. The neuro-2a assay is based on mouse neuroblastoma 

cells which are exposed to shellfish extracts for a period of time, usually 24 hours, using the 

reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) as a 

readout of cell viability. This assay has been shown to be suitable for the detection of PSPs, 

NSPs and DSPs [83, 93-95]. 

The reasoning behind replacing animal tests like the MBA by cell-based bioassays, is that 

these bioassays will detect the effect of an unknown compound/analogue too, i.e. an 

analogue of the known toxin (known unknown), or in some cases, a completely new toxin 

(unknown unknown). 
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3.3.2 Immunological methods 

With immunological methods, detection is based on a specific interaction between the toxin 

and an antibody. ELISAs and lateral flow devices (LFDs) are well-known examples of 

immunoassays. The high specificity of the antigen-antibody interaction allows to detect low 

amounts of the toxin in a sample, but cross reactivity with analogues can be an issue for 

quantification. Inaccuracy may be either due to overestimation of toxicity when relatively 

inactive analogues are also strongly bound or to underestimation when active analogues are 

not bound [90]. Optical immunosensors have been developed for detection of DSP toxins, 

PSP toxins and DA as surface plasmon biosensors. Advantages are the low costs and speed. 

However, the main drawback is the lack of antibodies for all the toxins and due to cross-

reactivity, quantification is often not accurate enough [79, 92, 96]. 

Table 3. Summary of alternative methods for the MBA. Adapted from Campbell et al, 
2011 and Stewart and McLeod 2014 [79, 90]. 

Toxins Chemical method Biological method Immunological 
method 

STX s 
and 
TTXs 

− HPLC-FLD pre-
column
oxidation1

− HPLC-FLD post
column
oxidation1

− LC/MS
− Capillary

electrophoresis
− Ion exchange

chromatography
− Quantitative

NMR
spectrometry

− HPLC-MS
− HILIC-MS
− Chemosensors

− Receptor-binding
assay1

− Saxiphilin
competitive binding
assay

− Neuro-2a bioassay
− Membrane potential

in vitro assays
− Membrane

biosensor (frog
bladder membrane)

− Fluorimetric assay
− Insect bioassay

− Lateral flow
immunoassay2

− ELISA2

− Surface Plasmon
Resonance assay
(optical
biosensor)

− SPR coupled to
HILIC

− RIA (obsolete)

DA − HPLC-UVD
− HPLC-MS
− Thin layer

chromatography

− Kainic-acid
receptor-binding
assay

− ELISA
− SPR Biosensor
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OA and 
DTXs 

− LC-MS/MS1 
− HPLC-FLD 
− HPLC-MS 

− Protein phosphatase 
inhibition assay3 

− F-actin cell-based 
fluorimetric 
microplate assay 

− Cell morphology 
 

− ELISA 
− SPR biosensor 
− Quartz crystal 

microbalance 
biosensor 

− Electrochemical 
biosensor 

PTXs − LC-MS/MS1 
− HPLC-

FLD/UVD 
− HPLC-MS 

− F-actin cell-based 
fluorimetric 
microplate assay 

− Cell morphology 
 

− ELISA 
 

AZAs − LC-MS/MS1 
− HPLC-MS 

 

− Cell morphology  

YTXs − LC-MS/MS1 
− HPLC-FLD 
− HPLC-MS 
− Capillary 

electrophoresis 

− E-cadherin 
fragmentation 

− Phosphodiesterase 
enhancement, using 
SPR, resonant 
mirror biosensors 
or microplate assay 

− ELISA 

PbTXs − HPLC-MS − Sodium channel 
receptor binding 
assay 

− Neuro-2a bioassay 
− Fluorimetric assay  

 

− RIA 
− ELISA 

1 AOAC and/or EU official methods 
2 Used for screening in some monitoring programs 
3 Waiting for regulatory acceptance 
HPLC: High performance liquid chromatography, FLD: fluorescence detection, LC: Liquid 
chromatography, MS: Mass spectrometry, HILIC: hydrophilic interaction liquid chromatography, UVD: 
Ultra violet detection, RIA: Radioimmunoassay, ELISA: Enzyme linked immunosorbent assay, SPR: surface 
plasmon resonance 
 
4. Regulations 

 

Different regulations are in place in several countries based on the codex guidelines [97] 

where maximum limits for each group of toxins are established. In general, five groups of 

marine biotoxins are regulated in Europe, i.e. okadaic acid group (OA), which includes the 

dinophysistoxin analogues (DTXs), also known as diarrheic shellfish poisoning (DSPs) 

toxins; azaspiracid group (AZAs), which can also cause diarrhoea; yessotoxin group 

(YTXs); domoic acid group (DA), which causes the amnesic shellfish poisoning (ASP); and 
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saxitoxin group (STXs), also known as paralytic shellfish poisoning (PSPs) toxins (EFSA, 

2009). Current regulation in Europe established maximal levels of these toxins in seafood 

in order to protect human health. For OA and DTX-1, -2 and -3, 160 µg OA equivalents 

per kilo of shellfish meat is allowed, where equivalences are calculated based on toxic 

equivalent factors (TEF). OA and DTX-1 are considered equally toxic and have a TEF of 

1. DTX-2 is considered less potent, with a TEF of 0.6. DTX-3 are acylated derivatives of 

OA, DTX-1 and DTX-2. After hydrolysis, DTX-3 is detected by LC-MS/MS as the parent 

OA compound, DTX-1 or DTX-2, which are expressed as OA equivalents using their 

corresponding TEFs [65]. Although AZA is not included in the DSP group of toxins, it 

causes diarrhoea as well. The regulation allows for azaspiracids AZA-1, -2 and -3, 160 µg 

AZA-1 equivalents per kilo of shellfish meat. The TEFs of AZA-1, AZA-2, and AZA-3 are 

1, 1.9 and 1.4, respectively [98]. YTXs initially were classified within the DSP toxins but 

now there is a separated regulation, which allows 3.75 mg YTX equivalents/kg shellfish 

meat. More than 30 analogues have been isolated, with homo-yessotoxin (hYTX) and 45-

OH-homoYTX (45-OH-hYTX) being the most common, both with TEFs of 0.5 relative 

to YTX. 

 

Table 4. Limits for lipophilic marine biotoxins in countries with regulation in place (source 
[99]) 

Toxin Codex EU USA Australia/
NZ Chile Japan 

OA, DTX, PTX (µg OA eq/kg 
shellfish) 160 160 160 200 nd 160 

AZA (µg AZA eq/kg shellfish) 160 160 160 nr nd 160 

YTX (mg YTX eq/kg shellfish) nr 3.75 nr nr nd nr 
PbTX (µg PbTX2 eq/kg 
shellfish) 800 nr 800 800 nr 800 

nr: not regulated 
nd: non-detectable by bioassay 
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5. General objective 

 

The presence of toxin producing algae or marine biotoxins in shellfish can cause closure of 

extraction areas, often needed in order to prevent human intoxications, but sometimes also 

unnecessary damaging economic activities in many countries around the world [100, 101]. 

The impact of closures of coastal areas is huge, not only in terms of global economy losses, 

but also in terms of local economies and human wellbeing, regarding the use of coastal 

areas for recreation, fishing, shellfish collection and tourism. For instance, small fishing 

communities, mainly in developing countries, often are entirely centred on the extraction 

of shellfish products. The impact of closing areas of extractions for these communities is 

dramatic, affecting their local economy, food security and wellbeing [99, 102]. Improving 

the methods for detection of shellfish toxins contributes to an efficient management of 

extraction areas, avoiding unnecessary or long and permanent closures, and could thus 

improve the economic activity of certain areas, protecting human health and considering 

animal welfare at the same time. 

Regarding the detection of marine biotoxins in shellfish, the MBA has been used for a long 

time. Alternatives have been developed, but the MBA is still used and a general switch to 

an in vitro or chemical method is needed. Replacement of an animal testing method is not 

an easy task, mainly because it is difficult to abandon a trusted method that has been in 

place for a long period. However, this trust in the MBA is not based on clear evidence. It 

has been shown that the MBA is not flawless, and it has failed to detect new toxins. For 

instance, the MBA was not able to detect DA in an incident in Ireland, which resulted in 

human illness [103]. The MBA for DSP toxins is itself a non-validated method, and 

validating new alternatives against the results of the MBA for these toxins seems thus 

inappropriate [103]. However, at least a comparison with the MBA is needed to show that 

the alternative method provided protects consumers at least equally well. 

The aim of this thesis was to develop new in vitro bioassays for the detection of marine 

biotoxins that can be used for high throughput quality control of seafood and replacement 

of the current unethical in vivo bioassays, and to evaluate use of the assay in an integrated 

testing strategy, in which bioassays and an analytical chemical method were combined, as 

an in vitro alternative for the MBA for lipophilic marine toxin testing. 
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6. Thesis outline 

 

Chapter 1 of the thesis (this chapter) presents an introduction to the field of marine 

biotoxins and the methods for their detection. It also presents the aim of the thesis. Since 

a new bioassay is needed in order to replace the MBA, it was investigated if a cell-based 

bioassay could be used for broad screening. The neuro-2a bioassay, a well-known assay for 

detection of PSP toxins, was previously assessed for the detection of lipophilic marine 

toxins by Cañete and Diogène [94]. The assay was not further investigated since a so-called 

“matrix effect” caused false positives. In Chapter 2, the neuro-2a bioassay was investigated 

in combination with improvements in the clean-up procedure for preparing extracts from 

shellfish samples in order to eliminate the false positives due to matrix effects. In chapter 

3 the effects of the lipophilic marine toxins OA, DTX-1 and AZA-1 on the whole-genome 

mRNA expression of undifferentiated intestinal Caco-2 cells was investigated. The gene 

expression data were analysed in order to reveal modes of action and obtain hints on 

potential biomarkers suitable to be used in additional bioassays to be developed. Chapter 

4 presents such newly developed methods using the selected genes for detection or 

identification of the lipophilic marine toxins, based on qRT-PCR and multiplex magnetic 

bead-based assays. The focus was on possible marker genes to detect OA/DTX, 

AZA/YTX and/or PTX. Certified standards as well as blank and contaminated shellfish 

samples were tested. In chapter 5 a selected set of samples tested in the MBA in Chile, 

where the mouse bioassay is still in use, were analysed using a strategy in which the neuro-

2a bioassay as a screening method for the detection of lipophilic toxins was combined with 

LC-MS/MS analysis for confirmation and outcomes where compared with those of the 

MBA. Finally, Chapter 6 presents an overall discussion and future perspectives. 
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Summary 

The neuro-2a bioassay was considered as one of the most promising cell-based in vitro 

bioassays for the broad screening of seafood products for the presence of marine biotoxins. 

The neuro-2a bioassay has been shown to detect a wide array of toxins like paralytic 

shellfish poisoning (PSP) toxins, ciguatoxins, and also lipophilic marine biotoxins (LMBs). 

However, the neuro-2a bioassay is hardly used for routine testing of samples due to matrix 

effects that, for example, lead to false positives when testing for LMBs. As a result, there 

are only limited data on validation and evaluation of its performance on real samples. In 

the present study, the standard extraction procedure for LMBs was adjusted by introducing 

an additional clean-up step with n-hexane. Recovery losses due to this extra step were less 

than 10%. This wash step was a crucial addition in order to eliminate false-positive 

outcomes due to matrix effects. Next, the applicability of this bioassay was assessed by 

testing a broad range of shellfish samples contaminated with various LMBs, including 

diarrhoeic shellfish poisoning (DSP) toxins. For comparison, the samples were also 

analysed by LC-MS/MS. Standards of all regulated LMBs were tested, including analogues 

of some of these toxins. The neuro-2a cells showed good sensitivity towards all compounds. 

Regarding the samples, extracts of 87 samples, both blank and contaminated with various 

toxins, were tested. The neuro-2a bioassay outcomes were in line with those of the LC-

MS/MS analysis and support the applicability of this bioassay for the screening of samples 

for LMBs. However, for use in a daily routine setting, the test might be further improved, 

and several recommendations are made before a full validation is being performed. 
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1. Introduction 

 

Marine biotoxins are naturally occurring compounds mostly produced by certain algae. 

These toxins can affect human health mainly through foodborne intoxications, i.e. 

consumption of contaminated seafood, and occasionally through direct exposure to 

seawater aerosols [1, 2]. Consumption of seafood contaminated with marine biotoxins may 

result in relatively mild symptoms, such as diarrhoea, dizziness, numbness and tingling of 

the mouth and digits, but also paralysis and in severe cases even death [3, 4]. Several major 

types of poisoning are described: amnesic shellfish poisoning (ASP), diarrhoeic shellfish 

poisoning (DSP), neurologic shellfish poisoning (NSP) and paralytic shellfish poisoning 

(PSP) [4]. A fifth syndrome, azaspiracid poisoning (AZP), has been characterised during 

the last 20 years [5]. To avoid intoxications, monitoring is obligatory in many parts of the 

world. Within the EU, limits have been set by the European Commission (Regulation No 

853/2004) for ASP toxin and PSP toxins, as well as several lipophilic marine biotoxins 

(LMBs) [6]. 

Worldwide, the main assay applied is the mouse bioassay (MBA), where mice are 

intraperitoneal (i.p.) injected with a sample extract, using lethality as the critical endpoint 

[7-9]. Besides ethical issues, the MBA gives high rates of false-positive and false-negative 

results [10, 11]. In Europe, the use of the MBA has been banned for LMBs since 2015, but 

not for PSP toxins analysis and not for the control of production areas, aiming at detection 

of possibly unknown LMBs [6]. The reference method for the detection of LMBs is now 

the LC-MS/MS method of the EURL on marine biotoxins [6, 12, 13]. LC-MS/MS based 

methods are fit for purpose, but for many toxins certified standards and reference materials 

are barely or not available. This makes their use for detecting all marine biotoxins very 

difficult, if not impossible. For example, there are at least 24 saxitoxin analogues [14], 13 

okadaic acid-ester derivatives [15], 90 yessotoxin analogues [16], 15 brevetoxin analogues 

[17] and around 30 azaspiracid analogues [18, 19] and in proximity there are only 20-30 

certified reference standards available. Furthermore, analytical methods are by definition 

unable to predict toxicity of complex mixtures or pick up new risks. As a result, many 

countries hesitate to rely solely on analytical methods and keep using the MBA. 
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Because of the drawbacks of the MBA and the analytical chemical methods, EFSA 

emphasised the need for developing animal friendly alternatives [10]. There is thus an 

urgent need for in vitro tests that allow the detection of marine biotoxins that are currently 

known and those which might emerge [20, 21]. Biochemical assays and especially cell-based 

bioassays have the potential to fulfil these requirements [22, 23]. The neuro-2a bioassay, 

using the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

or water-soluble tetrazolium salts (WST) as a viability end-point, is considered to be one of 

the most promising cell-based bioassays for the broad screening of marine neurotoxins [22, 

24]. It is already used to some extent for the detection of ciguatoxins (CTXs), tetrodotoxin 

(TTX) [25] and the lipophilic brevetoxins (PbTxs) [26, 27]. However, although the neuro-

2a bioassay has been tested intensively for PSP toxins, this is mainly with standards and 

very limited with routine samples [28-31]. Thus far, the assay seems not widely applied in 

routine for PSP toxins nor DSP toxins testing and certainly not within the EU. According 

to an extensive collaborative study that involved testing of OA, PTX-2 and AZA-1 in three 

cell lines, i.e. Caco-2, HepG2 and Neuro-2a, matrix effects seems to be an important issue 

that needs to be addressed in case these assays are applied for real samples [32]. Therefore, 

developing a suitable extraction method is critical to allow the routine use of the neuro-2a 

bioassay for shellfish samples [33]. 

The aim of the present study was therefore to evaluate and optimise the neuro-2a bioassay 

for routine testing of shellfish on the presence of LMBs. First, a comparison was made 

between the use of the murine neuroblastoma cells (Neuro-2a) and another previously 

applied cell line, murine neuroblastoma x rat glioma hybrid cells (NG108-15) in order to 

establish the sensitivity of both cell lines in our laboratory. We tested all EU regulated 

lipophilic marine biotoxins for which standards were available, i.e. okadaic acid (OA), 

dinophysistoxin-1 (DTX-1), dinophysistoxin-2 (DTX-2), pectenotoxin-2 (PTX-2), 

azaspiracid-1 (AZA-1), azaspiracid-2 (AZA-2), azaspiracid-3 (AZA-3), yessotoxin (YTX) 

and 1a-homo yessotoxin (hYTX). Subsequent testing of shellfish samples was carried out 

with the neuro-2a cells, as these turned out to be slightly more sensitive. Based on first test 

results with real samples, an improved clean-up procedure was developed by introducing 

an additional n-hexane wash step in order to reduce false positives due to matrix effects. 

Potential recovery losses due to this extra wash step were checked by LC-MS/MS analysis 



Chapter 2 

39 
 

of blank sample extracts spiked just before and after the n-hexane wash step. Next, extracts 

of both blank and contaminated shellfish were tested, and results were compared with LC-

MS/MS outcomes in order to examine whether this bioassay is applicable to real samples 

in a daily routine setting and to identify possible issues for further improvement prior to a 

full validation. This is necessary, as, besides the extensive efforts needed, such a validation 

will be very expensive due to the high costs of the required marine toxin standards. 

 
2. Materials and Methods 

 

2.1 Reagents and standards 

Certified reference materials (CRMs) of OA (13.7 ± 0.6 µg mL-1), DTX-1 (15.1 ± 1.1 µg 

mL-1), DTX-2 (7.8 ± 0.4 µg mL-1), PTX-2 (4.40 ± 0.13 µg mL-1), AZA-1 (1.24 ± 0.07 µg 

mL-1), AZA-2 (1.28 ± 0.05 µg mL-1), AZA-3 (1.04 ± 0.04 µg mL-1), YTX (5.6 ± 0.2 µg mL-

1), and hYTX (5.8 ± 0.3 µg mL-1) were purchased from the National Research Council, 

Institute for Marine Biosciences (NRC CNRC, Halifax, Canada). Stock solutions of these 

toxin standards were prepared in dimethyl sulfoxide (DMSO) after evaporation of the 

original solvent. DMSO, ammonium hydroxide (25%) and n-hexane were obtained from 

Merck (Darmstadt, Germany). Acetonitrile (Ultra LC/MS), methanol (Ultra LC/MS) and 

water (Ultra LC/MS) were purchased from Actu-All (Oss, The Netherlands). 

 

2.2 Samples 

In-house samples, both blank mussel samples from the Netherlands, and contaminated 

samples obtained from various locations and used for previous validation studies of the 

LC-MS/MS method, were tested [34]. In addition, 50 samples (crude methanol extracts) 

from various types of marine gastropods and bivalves, potentially naturally contaminated 

with LMBs, were kindly donated by Dr Carlos García from the Faculty of Medicine, 

Universidad de Chile, Santiago, Chile [35] (Table 3). 

 

2.3 Preparation of extracts 

Prior to extraction of the lipophilic marine biotoxins (i.e. DSP toxins and AZAs), shellfish 

material was homogenised with a T25 Ultra Turrax mixer at 24,000 rpm (IKA® Works 
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Inc., Wilmington, NC, USA). One gram of shellfish homogenate was vortex mixed with 3 

mL methanol for 1 min and centrifuged for 5 min at 2,000 × g. The supernatant was 

transferred to a volumetric flask and the residue was extracted twice more with 3 mL 

methanol. After the third extraction the volume of the collected supernatant was adjusted 

to 10 mL with methanol. For the neuro-2a bioassay additional clean-up steps using n-

hexane and solid phase extraction (SPE) were applied (see 2.4), which were not required 

for the LC-MS/MS analysis. 

2.4 Clean-up by n-hexane wash step followed by SPE 

A 4.8 mL aliquot of the crude methanol shellfish extract was diluted with 1.2 mL Milli-Q 

water and extracted twice with 6 mL n-hexane in order to remove matrix substances that 

led to false-positive test outcomes. The hexane layer was discarded and the aqueous 

methanolic extract was further diluted by adding 10 mL Milli-Q water and the total extract 

of 16 mL was transferred to an SPE StrataTM-X cartridge (200 mg/6 mL; Phenomenex, 

Utrecht, the Netherlands), previously conditioned with 4 mL methanol/water (30:70 v/v). 

Subsequently, the cartridge was washed with 8 mL methanol/water (20:80 v/v) and the 

toxins were eluted with 4.8 mL methanol. The eluate was evaporated to dryness under a 

stream of nitrogen gas and reconstituted in 20 µL DMSO. 

 

2.5 Recovery of the n-hexane wash step 

Blank mussel samples were pooled (10 g) and 1-gram portions were extracted using the 

method described above. Fortification of extracts equivalent to 3, 1 and 1/3 of the 

maximum permitted level (MPL) of OA, DTX-1 and AZA-1 (i.e. 480 µg kg-1, 160µg kg-1 

and about 53µg kg-1) and about 1/4 MPL for YTX (i.e. 1000 µg kg-1) before and after the 

n-hexane clean-up were carried out by adding a corresponding volume of a highly 

concentrated standard in methanol. The recovery was calculated by LC-MS/MS analysis of 

subsamples taken from the fortified extracts. The rest of the sample extracts fortified before 

and after the n-hexane extraction, were purified on SPE (see above) and analysed in the 

neuro-2a bioassay. The exposures were performed in three different experiments and all 

samples within an experiment were tested in triplicate. Due to the high costs and amounts 

needed, YTX experiments were performed twice and samples were tested in triplicate. 
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2.6 Cell culture and exposure 

Murine neuroblastoma neuro-2a cells were purchased from the American Type Culture 

Collection (ATCC; CCL-131) and cultured in 75 cm2 culture flasks containing 15 mL 

RPMI-1640 medium (R0883, Sigma-Aldrich, Zwijndrecht, the Netherlands) supplemented 

with 10% (v/v) Fetal Bovine Serum (FBS, Fisher Emergo, Landsmeer, the Netherlands), 

1% (v/v) of a 100 mM sodium pyruvate solution (Sigma-Aldrich, Zwijndrecht, the 

Netherlands) and 1% (v/v) of a 200 mM L-glutamine solution (Sigma-Aldrich). NG108-15 

cells were also obtained from ATCC (HB-12317) and cultured in 75 cm2 culture flasks 

containing 30 mL Dulbecco’s Modified Eagle’s Medium (DMEM) obtained from Lonza 

(Verviers, Belgium) supplemented with 10% (v/v) FBS and 2% (v/v) of 50× HAT 

supplement (5 mM hypoxanthine, 20 µM aminopterin and 0.8 mM thymidine, Sigma-

Aldrich). Both cell lines were routinely maintained in a humidified incubator at 37 °C under 

5% CO2 and sub-cultured three times per week (dilution 1/5) up to approximately 90% 

confluence. 

The experimental conditions for the assay were adapted from Cañete and Diogène 2008. 

Neuro-2a and NG108-15 cells were seeded separately into 96-well plates with an initial 

density of 25,000 and 14,000 cells/well, respectively. After growing the cells for 24 h, 

exposure to increasing concentrations of pure marine biotoxins or sample extracts was 

performed in quadruplicate in 200 µL medium for 24 h. The method of exposing the cells 

was changed in order to adjust it to our sample extracts and standards that were dissolved 

in DMSO, i.e. exposure media were prepared by using e.g. 3 µL standard or sample extract 

in DMSO (see 2.3 and 2.4) and 1200 µL of culture medium. Dilutions, 5 or 10 times, were 

made in culture medium with 0.25% DMSO to keep the solvent concentration at 0.25%. 

At the end of the exposure time, cell viability was measured using the MTT assay. 

 

2.7 Cell viability assay (MTT) 

Briefly, MTT (Sigma-Aldrich) was prepared in PBS at 5 mg mL-1, and mixed with serum-

free medium. Then, the media from the cells was removed and 60 µL of MTT mixed with 

serum-free medium was added to each well (final concentration of MTT in the well is 0.8 

mg mL-1). After 30 min incubation at 37 °C, the medium was removed, and the formed 

formazan crystals were dissolved in 100 µL DMSO. Plates were placed in a plate shaker for 
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10 min at 600 rpm after which the absorbance was measured at 540 nm and corrected for 

background absorption at 650 nm. EC50 values were determined using a nonlinear 

regression model (GraphPad Prism software version 5.04, San Diego, CA, USA). 

 

2.8 Chemical analysis 

Chemical analysis was directly performed on crude methanol extracts. The method applied 

for the determination of lipophilic marine biotoxins (i.e. DSP toxins and AZAs) was 

previously described by Gerssen et al. (2009, 2010). Chromatographic separation was 

achieved using a Waters Acquity I-Class UPLC system (Waters, Milford, MA, USA). The 

system consisted of a binary solvent manager, sample manager and a column manager. The 

column temperature was kept at 60 °C and the temperature of the sample manager was 

kept at 10 °C. A 5 µL injection volume was used. Mobile phase A was water and mobile 

phase B was acetonitrile/water (9:1 v/v), both containing 6.7 mM ammonium hydroxide. 

A flow rate of 0.6 mL min-1 was used. A gradient started at 30% B and after 0.5 min was 

linearly increased to 90% B in 3 min. This composition was kept for 0.5 min and returned 

to 30% B in 0.1 min. An equilibration time of 0.9 min was allowed prior to the next 

injection. The effluent was directly interfaced in the electrospray ionisation (ESI) source of 

the AB Sciex QTrap 6500 mass spectrometer (Ontario, Canada). The mass spectrometer 

was operated in both negative and positive electrospray ionisation by rapid polarity 

switching. For each toxin two transitions were measured. For quantification of the toxins, 

so-called ‘matrix matched’ calibration curves were constructed. These calibration curves 

were constructed by fortifying blank shellfish extracts with different concentrations of 

toxin. The area of the toxin in the unknown sample is then calculated using the linear 

equation of the calibration curve. The concentration is expressed in µg kg-1 shellfish meat. 
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3. Results and Discussion 

 

3.1 Effects of individual lipophilic marine biotoxins 

 

A number of different toxins were tested on both neuro-2a and NG108-15 cells using MTT 

reduction as measure for cell viability. Overall, all lipophilic marine biotoxins and their 

analogues induced a concentration dependent decrease in viability of both neuro-2a and 

NG108-15 cells. Figure 1 shows the effect of the lipophilic marine biotoxins OA, DTX-1, 

DTX-2, AZA-1, AZA-2, AZA3, PTX-2, YTX and hYTX on the cell viability of neuro-2a 

cells. Table 1 shows the calculated EC50 values for both cell lines, being the concentration 

reducing the MTT response by 50% of the maximal observed difference. Although AZAs 

and YTXs caused a decrease in cell viability at relatively low concentrations, MTT response 

was only reduced to about 50% of the initial response, while OA, DTXs, and PTX-2 were 

able to further reduce the MTT activity. Using NG108-15 cells and a similar MTT protocol, 

Cañete and Diogène also observed that AZA-1 induced a maximum reduction to about 

40%. The EC50 values determined for OA, DTX-1, AZA-1 and YTX-1 in the NG108-15 

assay are also in line with those published by Cañete and Diogène [36]. Serandour et al.[37] 

also observed a levelling off for AZA-1, but around 10% and they also observed that AZA-

1 is more potent than OA and PTX-2, but the EC50 value of 6.8 nM was sevenfold higher 

than the one we and Cañete and Diogène obtained. The EC50 values determined for OA, 

DTX-1 and PTX-2 in the neuro-2a bioassay, being respectively 23.4, 5.5 and 76.4 nM, differ 

from those published by Cañete and Diogène [24], being respectively 21.9, 20.6 and 28.3 

nM. Thus, similar EC50 values were obtained for OA, but lower and higher values for DTX-

1 and PTX-2 respectively. Serandour et al. [37] reported values of 41.2 and 35.5 nM for OA 

and PTX-2, respectively, being twofold higher for OA than obtained by us and Cañete and 

Diogène and twofold lower for PTX-2 than observed in the present study. These 

differences are possibly caused by differences in quality of the standards, the applied 

solvents and solvent concentration, or the culturing and exposure conditions of the cells, 

e.g. 48 h compared to 24 h in our study.  

Table 1 also shows the Toxicity Equivalency Factors (TEFs) as derived from the EC50 

values in the neuro-2a bioassay and the TEFs for the OA/DTX and the AZA class of 
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toxins, as published in a joint FAO/WHO technical paper [38], both the ones based on 

experimental data, as well as recommended TEFs. The latter are quite similar to those 

proposed by EFSA, which should be used in routine testing. No full dose-response curves 

were obtained for DTX-2 within the concentration range tested and the EC50 values 

determined for DTX-2 should therefore be considered as less accurate. However, figure 1 

demonstrates that DTX-2 is less toxic than DTX-1 (similar in NG108-15 cells, but curves 

not shown) and these observations are in line with those of the FAO/WHO and EFSA, 

and also with results obtained by Aune et al. (2007) with i.p. treated mice, showing a TEF 

of 0.6 for DTX-2 compared to OA. Still, the toxic potency of OA resembled more that of 

DTX-2 than that of DTX-1, which is in agreement with other in vitro data suggesting that 

DTX-1 is more potent than OA [39-41]. However, eventually both EFSA and FAO/WHO 

assigned a similar TEF to OA as DTX-1 (EFSA 2008, FAO/WHO 2016). 

In the case of AZA-1, AZA-2 and AZA-3 relative potencies of 1, 0.53 and 0.67 were 

observed, which seems to disagree with the TEFs assigned by EFSA (2008) of 1, 1.8 and 

1.4. However, based on more recent data from i.p. treated mice, FAO/WHO assigned 

TEFs of 1.0, 0.7 and 0.5, which are much more in line with our data. Overall, it is clear that 

there is still some uncertainty attached to the currently established and applied TEF values. 

Overall, the present study shows that neuro-2a cells are slightly more sensitive than NG108-

15 cells, respond to all tested LMBs and their analogues, and display toxic potencies which 

are reasonably in line with the TEFs for these marine biotoxins as established by EFSA and 

the FAO/WHO. The assay based on neuro-2a cells was therefore used for testing shellfish 

samples. 
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Figure 1. Effect of several lipophilic marine biotoxins on the viability of neuro-2a cells as 
measured with the MTT assay compared to the average of the solvent control (0.25% 
DMSO): (a) OA: okadaic acid; DTX-1, DTX-2: dinophysistoxin-1,-2; PTX-2: 
pectenotoxin-2; (b) AZA-1, AZA-2, AZA-3: azaspiracid-1,-2,-3; YTX: yessotoxin; hYTX: 
1a homo yessotoxin. Data are expressed as mean ± SD (n = 3). 
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Table 1. Calculated EC50 values for the effect of lipophilic marine biotoxins on the viability 
of murine neuroblastoma neuro-2a cells, and murine neuroblastoma rat glioma hybrid 
NG108-15 cells, the resulting TEF values in the neuro-2a bioassay, and recommended 
TEFs by FAO/WHO and EFSA. 
 

 This study FAO/WHO EFSA 
Toxin Neuro-2a 

EC50 (nM) 
NG105-15 
EC50 (nM) 

Neuro-2a 
TEFd 

Observed 
 

Recommended TEFc 

OA 23.0 22.9 1.0 1.0b 1.0 1.0 

DTX-1 5.5 8.4 4.15 3.1b 1.0 1.0 

DTX-2 34.4 28.9 0.67 0.52b 0.5 0.6 

PTX-2 76.4 nd 0.30 nd nd 1 

AZA-1 1.0 2.6 1.0 1.0a 1.0 1.0 

AZA-2 1.9 4.5 0.53 0.6a 0.7 1.8 

AZA-3 1.6 4.3 0.66 0.45a 0.5 1.4 

YTX 1.6 3.4 1.0 nd nd 1 

hYTX 1.1 2.7 1.56 nd nd 1 

a  TEF based on mice i.p. injected [38] 
b  TEF based on in vitro assays, using mammalian cell lines and measuring cytotoxicity [38] 
c  TEFs recommended by EFSA [42] 
d  Derived by dividing the EC50 of the reference compound (OA, AZA-1 or YTX) by that of the analogue. 
A higher TEF means a higher potency. 
nd     not determined  

 

3.2 Sensitivity of the assay in relation to the maximal allowed levels 

 

The current EU limits for the regulated LMBs and the above determined sensitivities of 

the neuro-2a cells for these toxins were used to calculate the required sample amount and 

the dilution of the prepared sample extract in the cell culture medium. All regulated LMBs 

should be detected at levels below their established limits. As such, the worst-case scenario 

is the limit for the sum of OA, DTXs and PTXs, being 160 µg OA-eq kg-1, as this is the 

lowest maximum permitted level (MPL), whereas these toxins display the highest EC50 

values. Following our extraction protocol (i.e. 0.48 grams shellfish diluted in an equivalent 

of 8 ml medium), and assuming 100% recovery, a sample contaminated with 160 µg OA 

per kg would theoretically result in a medium concentration of 11.9 nM OA (Mw 805). This 

is just high enough to cause an effect in the neuro-2a cells (figure 1; table 1). This also 
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applies for DTX-2 (11.9 nM, Mw 805), whereas a similar level of DTX-1 (11.7 nM, Mw 

819) would cause an almost complete inhibition of the MTT-activity. On the other hand, 

PTX-2 (11.2 nM, Mw 859) would not be detected at this level. Whether the test would work 

in practice for pectenotoxins would depend on the actual combinations of toxins occurring 

in shellfish samples. As PTX-2 is produced by the same algae as DTX and OA, and any 

sample containing PTX-2 above the limit would contain even higher levels of DTX and 

OA [43-46], the relatively high EC50 value for PTX-2 is probably not limiting the suitability 

of the neuro-2a bioassay for selecting contaminated samples. Moreover, in shellfish PTX-

2 is known to be converted into the non-toxic PTX-2 seco acid metabolite [47]. 

It is important to realise that as a consequence of the used sample amount and dilution 

factor required to detect OA, the test will be relatively sensitive for samples contaminated 

with yessotoxins. Since YTXs have a high EU limit of 3750 µg YTX-eq kg-1, this amount 

would theoretically correspond to a well concentration of 196.9nM YTX (Mw 1143) with 

the applied protocol, and thus display clearly reduced MTT-activity in the neuro-2a bioassay 

(table 1: EC50 1.6 nM). Therefore, samples containing YTX-eq levels well below 3750 µg 

kg-1, will also be screened as suspect. For azaspiracids, the limit is 160 µg per kg and this 

level would result in a medium concentration of 11.4 nM AZA-1 (Mw 842), 11.2 nM AZA-

2 (Mw 856) and 11.6 nM AZA-3 (Mw 828). Given the low EC50 values, these toxins should 

easily be detected with the current test protocol. 

 

3.3 Blank samples and the effect of the improved clean-up with n-hexane 

 

An additional clean-up step using n-hexane (see experimental section) was introduced to 

eliminate matrix effects that would otherwise result in a high percentage of false-positive 

outcomes in the neuro-2a bioassay, as was observed before by Ledreux et al. (2012). This 

additional cleaning step was introduced before the SPE clean-up was performed. The 

matrix effect is demonstrated in Figure 2a, showing the results of 10 blank mussel samples 

without the additional n-hexane wash step, both without and with an additional 10-fold 

dilution. All undiluted blank sample extracts caused a marked reduction in the MTT activity 

and were thus falsely screened as suspect. A blank chemical control was included, and this 

extract caused no cytotoxicity. Tenfold diluted sample extracts were not toxic anymore, but 
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as explained above, this results in too low sensitivity of the assay for most toxins. Figure 2b 

shows the results of 20 blank mussel samples when the n-hexane wash step was included. 

Undiluted blank sample extracts did no longer show a strong decrease in MTT activity, 

implying that the n-hexane wash step worked very well in order to remove false positives 

due to matrix effects. The observed cytotoxic effects without the extra n-hexane wash step, 

i.e. matrix effects, are most probably caused by free fatty acids, also known to interfere with 

the outcome of the MBA [48]. 

Based on the data obtained with the new procedure including the n-hexane step and blank 

mussel samples (figures 2b), an ‘arbitrary’ decision limit (ADL) was set at a reduction of the 

MTT activity of 25% or more. Samples with an MTT value above this decision limit are 

classified as negative (safe) and samples resulting in MTT values below this decision limit 

are classified as suspect (potentially unsafe). 

Figure 3 shows the results of blank mussel samples spiked at 1/3, 1 and 3 times the MPLs 

for OA, DTX-1 and AZA-1, i.e. 53, 160 and 480 µg kg-1, and at about 1/4 MPL for YTX, 

i.e. 1000 µg kg-1, using the n-hexane wash and the subsequent SPE clean-up. The spiking 

was performed to an aliquot of the methanol extract, i.e. in order to reduce the required 

amount of the expensive standards. Moreover, the methanol extraction is already known to 

result in high extraction efficiencies for the different LMBs [49]. The results show that all 

spiked samples reduced the MTT-activity to 75% or lower when spiked at or above their 

MPL in case of OA, DTX-1 and AZA-1 and in case of YTX even at 1/4 MPL, implying 

that all toxins could be detected at levels above their MPLs. This includes the above 

described worst case of OA, the toxin with the lowest MPL (160 µg OA-eq kg-1) and 

relatively high EC50 value (23.4 nM, table 1). In addition, LC-MS/MS analyses of samples 

spiked at their MPL for OA, DTX-1, AZA-1 and at 1/4 MPL for YTX just before and 

after the n-hexane clean-up elicited recoveries of 90, 123, 96 and 104%, respectively. This 

shows that no toxins were lost in the n-hexane. Since the comparison is based on extracts 

spiked just before and after hexane extraction, recoveries above 100% point to the 

effectiveness of the n-hexane wash step for removing small matrix effects for LC-MS/MS 

analysis too, i.e. probably removing compounds that otherwise would cause a little bit of 

ion suppression. Although the recovery losses from the use of SPE were not determined 
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in the present study, previous studies demonstrated that losses due to the SPE were lower 

than 15% [50]. 

 

 
Figure 2. Effect of the introduction of an additional n-hexane wash step in the sample 
extraction procedure: (a) undiluted and 10fold diluted sample extracts of blank mussel 
samples prepared without the n-hexane wash step (b) undiluted and fivefold diluted sample 
extracts of blank mussel samples prepared by introducing the n-hexane wash step. ADL is 
the “arbitrary” decision limit, set at 75% cell viability. Data are expressed as mean ± SD (n 
= 3). 
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Figure 3. Mussel samples spiked at 3, 1 and 1/3 times the maximal permitted levels (MPLs) 
of 160 µg kg-1 for OA, DTX-1 and AZA-1, and at about 1/4 MPL for YTX, i.e. 1000 µg 
kg-1, extracted with the procedure including the extra n-hexane wash step and analysed in 
the neuro-2a bioassay. An ‘arbitrary’ decision limit (ADL) of 75% was used. Positive 
control: DTX-1 12nM. Data are expressed as mean ± SD (n = 3). 
 
3.3 Shellfish samples contaminated with lipophilic marine biotoxins 

 

To allow a first evaluation of the performance of the newly developed clean-up method, 

extracts were prepared from eight samples (S1-S8) naturally contaminated with various 

LMBs that were previously used in an inter-laboratory validation study of the LC-MS/MS 

method [34]. These contaminated samples were prepared by blending naturally 

contaminated samples with various toxin profiles with blank samples in order to get a 

variety of materials with different profiles and levels. Figure 4a shows the results as obtained 

in the neuro-2a bioassay. A summary of the bioassay and LC-MS/MS results is given in 

table 2, showing that these validation samples were contaminated with levels of OA/DTXs 

or AZAs above regulatory limits. As all samples elicited a decrease in cell viability below 

that of the ‘arbitrarily’ set decision limit, they were all correctly classified as suspect. Three 

additional blank control samples caused no decreased response. It should be pointed out 

that six of the eight samples contained YTXs, and S2 and S3 at relative high amounts of 

1702 and 1110 µg kg-1 respectively. This would most likely result in a suspected response 

also when present alone. However, samples S4 and S8 do not contain YTXs and were also 

classified correctly as being suspect, due to the presence of OA/DTX alone (S8) or in the 
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presence of AZAs (S4). Based on this, it seems possible that also the response obtained 

with samples S1, S5, S6 and S7 are to a large extent caused by toxins other than YTXs. 

Figure 4b shows the results of eight unblended samples naturally contaminated with LMBs 

that were previously analysed by LC-MS/MS (table 2, lower part). All samples resulted in 

MTT values below the decision limit and were classified as suspect. As shown in table 2, all 

samples contained detectable toxin levels, some well above (samples 3 and 4), or just below 

(samples 1 and 2) the EU-limits (160 µg OA-eq kg-1, 160 µg AZA-eq kg-1 and 3750 µg YTX-

eq kg-1). Samples 6, 7 and 8 contained elevated levels of YTXs, but far below the limit, 

confirming the sensitivity of the assay for this class of toxins. Sample 5, which showed a 

response just below the ADL, only contained low amounts of AZAs, less than 1/5 of the 

regulatory limit. The bioassay classification of these samples was thus in line with the toxin 

levels measured by LC-MS/MS, taking into consideration the sensitivity of the assay for 

YTXs. 

 

   
Figure 4a. Effect on the viability of neuro-2a cells (as measured with the MTT assay) of 
shellfish products (validation samples S1-S8) contaminated with okadaic 
acid/dinophysistoxins, yessotoxins and/or azaspiracids (table 2) and three blank shellfish 
samples (samples 9-11) 
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Figure 4b. Effect on the viability of neuro-2a cells (as measured with the MTT assay) of 
eight mussel samples (1-8) naturally contaminated with detectable levels of one or more 
LMBs (table 2). An ‘arbitrary’ decision limit (ADL) of 75% was used and 0.25% DMSO 
was included as a control in each experiment. Data are expressed as mean ± SD (n = 3). 
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Table 2. LC-MS/MS determined levels of lipophilic marine biotoxins in 16 naturally 
contaminated shellfish samples compared to the outcome of the neuro-2a bioassay. 
Samples (S1-S8) were mixed samples used for validation of LC/MS. 
 

 
Sample 

 
OA, DTXs, PTX-
2 (1) 

 
AZAs (2) 
 

 
YTXs (3) 
 

 
Outcome 
neuro-2a 
bioassay 
 

S1 299 175 255 Suspect 

S2 168  1702 Suspect 

S3 243 280 1110 Suspect 

S4 401 386  Suspect 

S5 757  462 Suspect 

S6 85 310 615 Suspect 

S7 1293 381 351 Suspect 

S8 371   Suspect 

1 151   Suspect 

2 123  481 Suspect 

3 275 2422  Suspect 

4 68 1528  Suspect 

5  32.4  Suspect 

6   770 Suspect 

7   330 Suspect 

8   620 Suspect 

(1) (µg OA-eq kg-1), (2) (µg AZA-1-eq kg-1), (3) (µg YTX-eq kg-1) 
OA: okadaic acid, DTX: dinophysistoxin, AZA: azaspiracid, YTX: yessotoxin, n: negative 
missing values means below limit of detection (<LOD) 
 

Next, 48 sample extracts obtained from Chile, derived from different species of bivalves 

and gastropods, were tested in the neuro-2a bioassay and also analysed by LC-MS/MS for 

lipophilic marine biotoxins (OA, DTXs, PTX-2, AZAs and YTXs). Although many 

samples concerned the hepatopancreas or viscera and as such levels should be divided by 

at least a factor of 3 [51], this was not considered for the evaluation of the assay 

performance. Figure 5 shows the results of these Chilean samples as tested in the neuro-2a 

bioassay. Samples 4, 6, 17, 25, 28, 30, 34 and 45 decreased the cell viability as determined 

with the MTT assay and were screened as suspect in the neuro-2a bioassay. Table 3 shows 
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the LC-MS/MS results, revealing that all suspected samples, except sample 30, presented 

relatively high amounts of YTX-eq. The highest levels were observed in the viscera of a sea 

snail (17, 28, 45), followed by the hepatopancreas of two types of mussels (34, 38). Four of 

these samples (17, 28, 34 and 45) also contained low levels of OA-eq, unlikely to have 

contributed much to the response. None of the 48 samples contained PTXs or AZAs. 

From a qualitative point of view, there is a good correlation between the neuro-2a bioassay 

outcomes and the LC-MS/MS analysis. All 40 samples with no detectable toxins or only 

trace amounts (<10% of the limit) showed a negative result. Of the eight samples that tested 

suspected, seven contained relatively high levels of YTX (477-3472 µg YTX-eq kg-1). 

 
Figure 5. Effect of extracts of 48 seafood products obtained from Chile and both positive 
and blank mussel sample controls, on the viability of neuro-2a cells as measured with the 
MTT assay. Positive sample control: mussels naturally contaminated with YTX. The 
decision limit was ‘arbitrarily’ set at 75% viability (ADL) and 0.25% DMSO was included 
as a control. Data are expressed as mean ± SD (n = 3). 
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Table 3. Effect of Chilean seafood extracts on the viability of neuro-2a cells and levels of 
lipophilic marine neurotoxins measured by LC-MS/MS. 
 

Number Scientific name Tissue 

OA, 

DTXs, 

PTX-2(1) 

YTXs(2) 

Outcome 

neuro-2a 

bioassay 

1 Argobuccinum ranelliforme  foot     n 

2 Chorumytilus chorus mantle     n 

3 Mytilus chilensis adductor muscle   9.9 n 

4 Aulacomya atra hepatopancreas   477.4 suspect 

5 Venus antiqua mantle     n 

6 Aulacomya atra hepatopancreas   660.2 suspect 

7 Venus antiqua hepatopancreas     n 

8 Fissurella sp. foot     n 

9 Venus antiqua hepatopancreas     n 

10 Aulacomya atra hepatopancreas   47 suspect 

11 Concholepas concholepas viscera   191.7 n 

12 Gari solida hepatopancreas     n 

13 Mytilus chilensis hepatopancreas     n 

14 Chorumytilus chorus hepatopancreas   49.9 n 

15 Chorumytilus chorus hepatopancreas     n 

16 Venus antiqua hepatopancreas     n 

17 Argobuccinum ranelliforme  viscera 27.5 4026.9 suspect 

18 Pleuroncodes monodon  whole body   27.4 n 

19 Aulacomya atra hepatopancreas   117.3 n 

20 Concholepas concholepas foot     n 

21 Argobuccinum ranelliforme  foot   5.4 n 

22 Venus antiqua hepatopancreas     n 

23 Concholepas concholepas viscera   701.4 n 

24 Chorumytilus chorus mantle   34.5 n 

25 Chorumytilus chorus hepatopancreas   654.7 suspect 

26 Aulacomya atra mantle   2.1 n 

27 Aulacomya atra gill   3.8 n 

28 Argobuccinum ranelliforme  viscera 5.7 3471.8 suspect 
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29 Argobuccinum ranelliforme  foot   2.7 n 

30 Chorumytilus chorus adductor muscle   185.4 suspect 

31 Venus antiqua hepatopancreas     n 

32 Gari solida hepatopancreas     n 

33 Cancer spp. cheliped     n 

34 Chorumytilus chorus hepatopancreas 5.7 2098.1 suspect 

35 Concholepas concholepas foot     n 

36 Gari solida hepatopancreas     n 

37 Gari solida foot     n 

38 Aulacomya atra hepatopancreas   1787.3 n 

39 Venus antiqua hepatopancreas     n 

40 Chorumytilus chorus foot   35.2 n 

41 Aulacomya atra adductor muscle     n 

42 Venus antiqua hepatopancreas     n 

43 Venus antiqua adductor muscle     n 

44 Venus antiqua foot     n 

45 Argobuccinum ranelliforme  viscera 2 4682.6 suspect 

46 Argobuccinum ranelliforme  foot   23.4 n 

47 Fissurella sp. foot     n 

48 Fissurella sp. hepatopancreas   121.7 n 

(1): µg OA-eq kg-1, (2): µg YTX-eq kg-1 *missing samples are negative in the neuro-2a bioassay and LC-
MS/MS, e.g. just as sample# 1*; n: negative; missing values means below limit of detection (<LOD) 

 

Nevertheless, there are some discrepancies when analysing the data on a semi-quantitative 

level, in particular when focussing on samples 23, 30, 38, and 45. Sample 45 was screened 

suspect based on testing the diluted extract. A similar decrease in activity upon dilution was 

observed for sample 34 and this requires further investigation. Samples 23 and 38 were 

screened as negative, but contained relatively high amounts of YTX-eq, 701 and 1787 µg 

YTX-eq kg-1 respectively. Sample 30 was suspect in the bioassay, but according to the LC-

MS/MS contained YTX only and at a low level (185 µg YTX-eq kg-1). This level would 

result in a medium concentration of 3 nM and thus could be enough to cause an effect in 

the neuro-2a bioassay (Figure 1), but it cannot fully be ruled out that this sample may 

contain yet unknown lipophilic toxins, missed by LC-MS/MS. This might be unknown 
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YTX analogues, but also another type of lipophilic toxin. Brevetoxins (PbTXs) and 

palytoxins (PlTxs) are known to be extracted with methanol as well [25, 52]. However, to 

detect PbTXs, the addition of ouabain and veratridine (o/v) during exposure of the cells is 

needed. These compounds interact with the sodium voltage-gated channels in the cells, 

causing cell death [3, 53]. The addition of o/v in a concentration causing a 20% reduction 

of cell viability is needed to detect PbTXs, which then cause a further decrease of the cell 

viability [54]. PlTx is also able to decrease the MTT activity without the addition of o/v 

(EC50 for PbTX-3, PbTX-9 and PlTx in the neuro-2a bioassay of 8, 8.4 and 0.04 nM 

respectively, data not shown). Although dedicated LC-MS/MS methods for PbTXs and 

PlTx are available, these methods are not routinely applied as there are no certified 

standards and legislation is lacking for these toxins. Overall the bioassay classification of 

these Chilean samples was in line with the lipophilic toxin levels measured by LC-MS/MS. 

However, it should be pointed out that samples contained primarily yessotoxins.  

 

4. Conclusions and Recommendations 

 

Although the neuro-2a bioassay is regarded as suitable for PSP toxins and has occasionally 

been used to analyse samples for the presence of PSP toxins [28-30], its routine application 

for these toxins is still rather limited. And although the test has also been shown to detect 

various classes of LMBs, up till now it is not considered for routine testing of shellfish for 

LMBs. Lack of routine use is due to observed matrix effects, and as a result a lack of studies 

on performance with routine samples and (international) validation studies. The present 

paper is the first describing the performance of the neuro-2a bioassay for routine testing of 

seafood samples on the presence of LMBs using a newly developed clean-up procedure 

including an n-hexane wash step, thereby allowing identification of potential issues to be 

improved and whether the assay is worth the further intensive and expensive efforts needed 

for a full validation. Although the rationale between the toxic effects of LMBs as observed 

in mouse and humans and the cell viability of neuro cells is missing, the study confirms 

previous reports showing that the neuro-2a bioassay allows the detection of the regulated 

LMBs at the required levels. Also, the few commercially available analogues of these LMBs 

could be detected and there is a reasonable correlation between toxic potencies and TEFs 
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established by EFSA and WHO/FAO. Compared to the current analytical and immuno-

based alternatives, the neuro-2a bioassay will most likely be able to detect unknown 

analogues and yet unknown marine biotoxins too. 

 

The newly introduced n-hexane wash step is an important improvement in order to 

eliminate matrix effects causing too many false-positive screening outcomes, which would 

preclude its routine application. These effects were most probably caused by free fatty acids 

known to interfere also with the outcome of the MBA. The new clean-up procedure worked 

well for mussels but was also successful with some cockles and oysters that we tested (latter 

data not shown) and the Chilean samples that included several species (this study). 

An ‘arbitrary’ decision limit was set for the routine screening of real samples, which might 

be refined based on further experience and validation studies. In a qualitative way, the 

neuro-2a bioassay outcomes correlated well with the LC-MS/MS analysis. Among the 87 

samples screened for the presence of lipophilic marine biotoxins by the neuro-2a bioassay, 

25 were screened as suspect and 62 as negative, while LC-MS/MS identified 12 positives 

out of the 25 suspected samples (ignoring that some samples were viscera and not whole 

flesh). No false-negative screening results were obtained. Many of the 13 false-positive 

samples turned out to contain elevated levels of toxins, some just below the regulatory 

limits.  

 

However, in particular the relatively high sensitivity of the assay for yessotoxins resulted in 

a number of clearly false-positive results. Whether this is a problem in routine screening 

depends on the actual occurrence of these toxins in a certain production area. In the 

Netherlands for example, samples rarely contain any of the LMBs, and detection of samples 

with even low levels of marine biotoxins would probably be welcomed as an early warning. 

However, this may be different in areas where yessotoxins occur regularly. For such cases, 

a different clean-up procedure could be developed in order to separate the YTXs from the 

other marine toxin classes. Moreover, it should be noticed that the n-hexane step will 

remove esterified forms of okadaic acid and the dinophysis toxins, which are mentioned in 

the legislation under the generic term DTX-3. Thus, for application to real samples in the 

future, a hydrolysis step prior to the n-hexane wash step and SPE clean-up should be 
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incorporated as well (which is already performed prior to LC-MS/MS analysis for the 

determination of DTX-3). Finally, the suitability of the neuro-2a bioassay should be further 

assessed by testing samples that have been tested negative and positive for LMBs in the 

MBA. 

 

In summary, the present data show that the neuro-2a bioassay is worth the intensive and 

expensive efforts needed for a full validation which could result in a cheap and fast 

screening method for testing shellfish for the presence of DSP toxins and AZAs, i.e. 

separating negative samples from those potentially contaminated above MPLs, which are 

then further analysed by LC-MS/MS. Since it can detect unknown analogues, it is the best 

alternative to the MBA, both for LMBs and other marine biotoxins. 
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Summary 

 

 A study with DNA microarrays was performed to investigate the effects of two diarrhoeic 

and one azaspiracid shellfish toxins, okadaic acid (OA), dinophysistoxin-1 (DTX-1) and 

azaspiracid-1 (AZA-1) respectively, on the whole-genome mRNA expression of 

undifferentiated intestinal Caco-2 cells. Previously, the most responding genes were used 

to develop a dedicated array tube test to screen shellfish samples on the presence of these 

toxins. In the present study the whole genome mRNA expression was analysed in order to 

reveal modes of action and obtain hints on potential biomarkers suitable to be used in 

alternative bioassays. Effects on key genes in the most affected pathways and processes 

were confirmed by qRT-PCR. OA and DTX-1 induced almost identical effects on mRNA 

expression, which strongly indicates that OA and DTX-1induce similar toxic effects. 

Biological interpretation of the microarray data indicates that both compounds induce 

hypoxia related pathways/processes, the unfolded protein response (UPR) and 

endoplasmic reticulum (ER) stress. The gene expression profile of AZA-1 is different and 

shows increased mRNA expression of genes involved in cholesterol synthesis and 

glycolysis, suggesting a different mode of action for this toxin. Future studies should reveal 

whether identified pathways provide suitable biomarkers for rapid detection of DSP toxins 

in shellfish. 
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1. Introduction 
 

Marine biotoxins are a large group of compounds produced by various types of organisms 

in the marine environment, i.e. algae, bacteria and coral. These toxins can accumulate in 

filter feeding shellfish and finfish [1, 2]. Human consumption of marine products 

contaminated with these toxins can lead to food poisoning with symptoms varying from 

paralysis, diarrhoea, amnesia to even death [3, 4]. Shellfish poisons that induce diarrhoea 

(DSP toxins) include okadaic acid (OA) and its analogues dinophysis toxins 1 (DTX-1) and 

2 (DTX-2), and their esterified forms (DTX-3). They are produced by dinoflagellates from 

the genders Dinophysis spp. and Prorocentrum spp. [5, 6]. Another important group of marine 

biotoxins concerns azaspiracids (AZAs) causing effects like vomiting, diarrhoea, stomach 

cramps and nausea. These are polyether toxins with two spiro-ring assemblies, a cyclic 

amine and a carboxylic acid [7-9]. AZA-1 and AZA-2 are produced by the dinoflagellate 

Azadinium spinosum. AZA-3 and another 30 analogues are metabolites of AZA-1 or AZA-2 

that are formed within the shellfish [10, 11]. 

Until recently, the mouse bioassay (MBA) was the reference method in the EU for the 

detection of lipophilic marine biotoxins (LMB) like OA, DTXs and AZAs and it is still the 

reference method in some countries outside the EU [12]. Since January 2015, however, the 

mouse bioassay has been replaced in the EU by LC-MS/MS as the reference method for 

routine monitoring of lipophilic shellfish toxins, mainly because the mouse bioassay shows 

high variability in results, has insufficient detection capability and limited specificity [13]. 

Methods such as other LC based methods with appropriate detection, immunoassays and 

functional assays (e.g. the phosphatase inhibition assay) are allowed as alternative or 

supplementary to the LC-MS/MS method, provided that they are properly validated [13]. 

However, the LC-MS/MS method also has some drawbacks, i.e. certified standards of 

many toxins are unavailable or very expensive, and analytical methods are unable to detect 

presently unknown toxins or analogues [14]. For this reason, many EU countries hesitate 

to rely solely on LC-MS/MS analysis and for monitoring of production areas for the 

presence of (unknown) marine biotoxins, the use of the MBA is still allowed in the EU [13]. 

In vitro cell-based assays offer potentially useful alternative approaches, since these bioassays 

detect toxins on the basis of their effect and most likely will detect unknown analogues as 

well [15]. The neuro-2a cell line has been shown to detect various marine biotoxins, using 



Whole genome mRNA transcriptomics analysis 

66 
 

a method based on measuring cell viability, e.g. based on MTT-activity [16]. However, in 

routine monitoring, it is not only interesting to apply a bioassay that would be able to detect 

all relevant biotoxins, but ideally can also discriminate between the various toxin classes. 

Functional assays have e.g. been developed for OA, DTX and their analogues based on 

their inhibition of protein phosphatases (PPs), particularly PP1 and PP2A. This inhibition 

causes permanent phosphorylation of proteins leading to effects on regulation of glycogen 

metabolism, transcription, cell differentiation, cell adhesion, apoptosis and DNA 

replication, as shown in several cell lines [17-19]. The mode of action of AZA-1 is still 

unknown, but this toxin has been reported to induce mRNA expression of genes involved 

in cholesterol and fatty acid synthesis in Jurkat immune cells, indicating that AZA-1 

activates these processes [20]. 

In order to identify other toxin specific biomarkers, the present study aimed to investigate 

the mode of action of two important classes of DSP toxins, being OA and its analogue 

DTX-1, as well as AZA-1. Undifferentiated human intestinal Caco-2 cells, a potentially 

suitable cell-line for toxin detection, were exposed to these three toxins and effects on 

whole genome mRNA expression were investigated by DNA microarray analysis. Caco-2 

cells were initially selected because they represent the target tissue. However, it was decided 

to use undifferentiated cells because they are easier to handle for a bioassay that should be 

applicable in routine, where a test result should be provided within a couple of days and 

where the demand for testing can rapidly increase in case of an incident. Furthermore, 

undifferentiated cells have been shown to be more sensitive to the action of the protein 

phosphatase inhibition exerted by OA and DTX-1 [21]. In a previous work, a set of the 

most responding genes was selected and used to develop a dedicated array tube method to 

detect these toxins in shellfish samples [22]. However, this assay was considered not to be 

ideal in routine testing since it required too much time. In the present study, the whole 

genome mRNA expression dataset was therefore thoroughly analysed in order to reveal 

further insight in the mode of action of these toxins. Affected pathways might be further 

explored to identify both general and specific biomarkers for these groups of toxins. 
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2. Materials and methods 

 

2.1 Chemicals 

OA and AZA-1 were obtained from the National Research Council, Institute of Marine 

Biosciences (NRC CNRC, Halifax, Canada). DTX-1 was kindly donated by Dr. M. Sandvik 

(National Veterinary Institute, Oslo, Norway). For the toxins dissolved in methanol: the 

solvent was evaporated under a nitrogen flow and toxins were dissolved in DMSO. DMSO, 

ethanol and chloroform were obtained from Merck (Darmstadt, Germany). Isopropanol 

was obtained from Biosolve (Valkenswaard, the Netherlands), Trizol from Invitrogen 

(Bleiswijk, the Netherlands), and phosphate buffered saline (PBS) from Oxoid (Hampshire, 

England). 

 

2.2 Cell culture 

The human colonic adenocarcinoma cell-line Caco-2 (ATCC, Manassas, VA) was grown in 

Dulbecco’s Modified Eagle Medium (DMEM) obtained from Lonza (Verviers, Belgium) 

supplemented with 10% (v/v) foetal bovine serum (FBS) from Gibco BRL (Life 

Technologies Ltd., Paisly, Scotland), non-essential amino acids from MP Biomedicals 

(Illkirch, France) and penicillin 0.1% v/v (50 mg mL-1) from Sigma (St. Louis, MO). The 

cells were grown in 75 cm2 flasks at 37 °C and 5% CO2. 

 

2.3 Cytotoxicity assays 

For the MTT assay (Sigma, Zwijndrecht, the Netherlands), 100 µL of Caco-2 cell 

suspension was seeded per well in a 96-well plate (Ref. Number 3595, Corning, NY), using 

8 x 104 cells per mL and incubated for 48 h at 37 °C and 5% CO2, to reach 80-90% 

confluence. Then, cells were exposed to a range of 2.5 to 50 nM of OA, DTX-1 and AZA-

1 for 24 h. DMSO 0.25% (v/v) was included as vehicle control. Thereafter, media were 

aspirated and 60 µL of MTT reagent (final concentration of 0.8 mg mL-1) dissolved in 

medium was added per well. Cells were incubated for 30 min at 37 °C, 5% CO2, media were 

aspirated and 100 µL DMSO was added per well. After shaking thoroughly for 10 min, the 

absorbance was measured at 540 nm and corrected for background absorption at 650 nm. 

Data were expressed as percentage of control, i.e. DMSO, which is considered as 100% cell 
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viability. Three independent experiments were done, and the standard deviation of the 

control in each individual experiment was not higher than 10%.  

For the LDH leakage assay, 100 µL of Caco-2 cell suspension was seeded in a 96-well plate 

(Ref. Number 3595, Corning, NY), using 8 x 104 cells per mL and incubated for 48 h at 37 

°C and 5% CO2, to reach 80-90% confluence. Cells were exposed for 24 h to the same 

concentration range of AZA-1 as was used for the MTT assay. DMSO was used as a vehicle 

control at 0.25% (v/v). After the incubation period, the LDH leakage assay was performed 

according to the manufacturer’s instructions measuring absorbance at 492 nm (Cytotox 

96Ò Non-Radioactive cytotoxicity assay, Promega, Leiden, the Netherlands). 

 

2.4 Exposure for mRNA expression analysis by microarrays  

Caco-2 cells were seeded in 6-well plates (Ref. Number 3516, Corning, NY), using 6 x 104 

cells per mL, 3 mL per well and cultured for 48 h at 37 °C and 5% CO2 to reach 80-90% 

confluence. Four hours before exposure, the medium was refreshed. Then, cells were 

exposed to final concentrations of 25 nM OA, 6.25, 12.5 or 25 nM DTX-1, 6.25 or 25 nM 

AZA-1, or DMSO (0.25% (v/v), vehicle control). Exposures were performed in triplicate 

(3 wells per treatment in the same plate). 

 

2.5 RNA isolation and purification for microarray analysis 

Medium was removed and cells were lysed using TRIzol:chloroform (5:1) followed by 

centrifugation and collection of the aqueous phase containing RNA. The RNA was 

precipitated using isopropyl alcohol and washed with 70% ethanol:water (v/v). The 

obtained pellet was dried and dissolved in RNAse-free water. The RNAs were further 

purified using the RNeasy Mini Kit (Qiagen, Venlo, the Netherlands) following the 

instructions of the manufacturer. The amount and quality of the RNA were evaluated by 

UV spectrophotometry (260 and 280 nm wavelength) on the Nanodrop spectrophotometer 

(Nanodrop technologies). RNA integrity was measured by automated gel electrophoresis 

(Experion, Biorad, Veenendaal, the Netherlands). The quality of the RNA samples obtained 

was 10, being the highest quality. 
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2.6 Microarray hybridizations 

RNA samples were amplified and converted into Cy5-labeled cRNA using the Agilent low 

RNA input fluorescent amplification kit according to the manufacturer's instructions 

(Agilent Technologies, Amstelveen, the Netherlands). Universal human reference RNA 

(Stratagene, La Jolla, CA) was used as common reference and was labelled with fluorescent 

Cy3 dye (Perkin-Elmer/NEN). Equal amounts of Cy5-labeled cRNA and Cy3-labeled 

reference cRNA were mixed. Hybridizations were carried out on the 4 × 44K human whole 

genome Agilent microarray platform following the Agilent two-color microarray-based 

gene expression analysis protocol. Microarray slides were incubated for 16 to 17 h at 65 °C 

in a microarray incubation chamber with continuous rotation. After hybridization, the 

arrays were washed and dried at RT according to the manufacturer's protocol. Arrays were 

scanned using an Agilent microarray scanner (G2565B). In total, 21 arrays were hybridized. 

Due to technical failure, two arrays were excluded from further analysis: one of cells 

exposed to 6.25 nM AZA-1 and one of cells exposed to 25 nM AZA-1, leaving 19 arrays 

for analysis. Feature extraction 9.1 software (Agilent Technologies) was used for 

quantification of spot intensities. Quality check of arrays was carried out with LimmaGUI 

using the statistical package R. GeneMaths XT (Applied Maths, Sint-Martens-Latem, 

Belgium) was used for background correction and normalization [23]. 

 

2.7 Microarray data treatment 

Agilent microarrays (4 × 44K human whole genome) containing 41,108 spots were used. 

After background correction, 29,828 spots representing 20,442 unique gene IDs remained. 

Part of the genes are thus represented by multiple spots. Data were floored to reduce noise 

due to spots with very low spot intensities (not or very lowly expressed genes). For this, all 

spots with an intensity below 300 were annotated an intensity of 300. Subsequently, the 

intensity values were log2 mean centred. First, for each spot log2 ratios vs. the average of all 

arrays was calculated. Thereafter, log2 ratios of treatments vs. the average of the control 

samples (DMSO) were calculated in order to assess treatment effects. 

Hierarchical clustering was performed with the programs Cluster (uncentred correlation; 

average linkage clustering) and Treeview [24]. The heatmap shows a red colour when the 

log2 values are higher than +0.2 and the maximum red colour when it is higher than +1.0. 

The green colour is showed when values are higher than -0.2 and the maximum green 



Whole genome mRNA transcriptomics analysis 

70 
 

colour when the values are higher than -1.0. Black represents ‘no regulation’, i.e. when the 

values are in between -0.2 and +0.2.  

 

2.8 Biological interpretation 

For genes within subclusters of the hierarchical cluster heatmap, pathway analyses were 

performed using Metacore and Consensus Path DB (CPDB) analysis. Metacore is an online 

program for functional and biological interpretation of gene expression data. Metacore uses 

hypergeometric distribution to assess significances for overrepresentation of affected genes 

in signalling and metabolic pathways [25]. CPDB analysis was applied using the web tool 

http://cpdb.molgen.mpg.de which combines and compares the results of multiple pathway 

databases [26]. For both methods, pathways with a p-value <10-5 were considered to be 

affected significantly. 

 

2.9 Gene set enrichment analysis (GSEA) 

GSEA is a statistical analysis tool for biological interpretation of microarray data [27]. For 

the present study we used the visualization tool of GSEA to make heatmaps of pathways 

that were indicated to be affected based on pathway identification.  We used gene sets from 

various sources, including “Reactome” (http://www.reactome.org/), “Gene Ontology 

human symbols” downloaded from Gene Ontology consortium (www.geneontology.org), 

“Entire route ER stress UPR” (self-made) based on the study of Katika et al. [28] and 

“Marine biotoxins” (self-made) based on the study of Twiner et al. [20]. 

 

2.10 Exposures for qPCR confirmation 

Three independent exposures of Caco-2 cells were performed in order to confirm the up 

or downregulation of selected genes that play a role in the pathways that were identified by 

the transcriptome analysis. 600 µL of Caco-2 cell suspension were seeded in 24 well plates 

(Ref. Number 3524, Corning, NY), using 8 x104 cells per mL and incubated for 48 h at 37 

°C and 5% CO2 to reach 80-90% confluence. Cells were exposed to OA (25 nM), DTX-1 

(6.25, 12.5 and 25 nM) and AZA-1 (6.25 and 25 nM) for 24 h. Final concentration of DMSO 

(vehicle control) in the well was 0.25%. Exposures were performed in triplicate. RNA was 

extracted using the QIA shredder and RNeasy Mini Kit (Qiagen, Venlo, the Netherlands) 

following the instructions of the manufacturer. In short, the medium was removed and the 
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cells were lysed with 600 µL of RTL buffer with 1% β-mercaptoethanol. After the 

extraction, RNA quality and amount were evaluated according to the procedure described 

in section 2.5. The quality of the RNA obtained was 10, being the highest quality. cDNA 

was synthetized using 1 µg of RNA per sample and from an RNA pool mix of the 21 

treatments using the Biorad iScript cDNA Synthese Kit with iScript and reverse Transcript 

(Biorad, 170-8891) in the BioRad iCycler. The program used was 5 min at 25 °C, 30 min at 

42 °C, 5 min at 85 °C, and 5 minutes on ice. After the cDNA synthesis, the samples were 

diluted 100 times and the pool was diluted 10, 31.6, 100, 316, 1000 and 3160 times (i.e. 

needed to make a calibration line) and all cDNA samples were stored at -20 °C.  

 

2.11 Real time qRT-PCR 

Selection of genes to be confirmed by PCR was done using the highest 

induction/repression value obtained from the gene expression analysis (i.e. CPDB results), 

which were simplified in table 1 using the highest value of the triplicates or duplicated 

obtained after data analysis (see also section 2.6).  

qRT-PCR was performed with certified QuantiTect primers from Qiagen (Venlo, the 

Netherlands) using 15 µL of final volume containing 8.5 µL SYBR green (BioRad 170-

8880), 2.5 µL of the QuantiTect forward/reverse primer mix, 2 µL RNAse free water and 

2 µL of diluted cDNA. Reactions were performed in a BioRad HSP9645 PCR plate. Water 

and ‘pooled RNA without reverse transcriptase’ were used as negative controls. The plate 

was covered with a micro seal and centrifuged for 1 min. Thermal cycling was performed 

in a CFX96 Real-Time System (BioRad), starting with a denaturation step at 95 °C for 3 

min, followed by 45 cycles at 65 ° C for 35 s for annealing, 10 s at 95 °C for denaturation, 

and 1 min at 65°C for extension. Data were analysed using CFX manager 3.0 (BioRad) with 

the ∆∆Cq approach. Gene TMEM179B was used for normalization as described in 

previous experiments [22]. Statistical significance of the qRT-PCR results was obtained 

from the same program. P values lower than 0.01 are indicated with ** and P values lower 

than 0.05 are indicated with *. Data are expressed as relative normalized expression levels 

vs the control (DMSO) ± SEM. Formulas are available in the CFX manager 3.0 program.  
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3. Results

3.1 Cell viability 

Undifferentiated Caco-2 cells were exposed for 24 h to concentrations of OA, DTX-1 or 

AZA-1 ranging from 2.5 to 50 nM and effects on viability were assessed by the MTT assay. 

Cytotoxicity was defined as a decrease in cell viability of ≥20% relative to the solvent 

control (DMSO). Results are shown in Figure 1. OA did not decrease viability at the 

concentrations tested. For DTX-1, a reduction in the cell viability by over 20% was 

observed at 25 nM and higher concentrations. In contrast, AZA-1 increased the conversion 

of the MTT reagent up to 150% at all concentrations tested. This unexpected effect was 

highly reproducible. As the effect of AZA-1 in the MTT assay was unexpected and very 

specific, the toxicity of AZA-1 was also assessed using the LDH leakage assay. That assay 

demonstrated that none of the AZA-1 concentrations tested resulted in an increased or 

decreased LDH leakage into the medium (data not shown). 

Figure 1. Effects of 24 h exposure to OA, DTX-1 and AZA-1 on viability of Caco-2 cells 
as determined by the MTT assay and expressed as % of the control (DMSO). Data 
presented as mean ± SD of three independent experiments at three different days, all 
exposures per test day being performed in triplicate. Concentrations in log scale. SD is 
expressed as a percentage of the control. SD of the control on individual experiments is 
not higher that 10%.  
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3.2 Microarray and pathway analysis 

For the mRNA expression studies, non-cytotoxic concentrations of OA (25 nM), DTX-1 

(6.25 and 12.5 nM) and AZA-1 (6.25 and 25 nM) were selected. Cells were also exposed to 

25 nM DTX-1, but as this dose caused a slight decrease in MTT-activity, the cognate data 

were not included in further analysis of the results. However, despite the effect on MTT-

activity, the results were very similar to those observed for 12.5 nM DTX-1. Hierarchical 

clustering was first performed on the 2824 genes (represented by 3634 spots) that were 

more than 2-fold (log2 ratio of > |1.0|) up- or downregulated compared to the control 

samples (DMSO) in at least two of the thirteen microarrays analysed. The resulting heatmap 

(Figure 2) shows four main clusters. Cluster 1 contains genes that were up-regulated by OA 

and DTX-1 but differently affected by AZA-1. Clusters 2 and 3 contain genes that were 

up- or downregulated, respectively, by all three toxins. Cluster 4 contains genes that were 

downregulated by OA and DTX-1 but upregulated by AZA-1. The data strongly indicate 

that DTX-1 has a similar mode of action as OA, since almost all genes affected by OA were 

affected in the same direction by DTX-1. This also applies to some extent for AZA-1 

(clusters 2 and 3), but two other groups of genes, indicated as clusters 1 and 4, are affected 

in an opposite direction. All differential changes in gene expression are suggesting to some 

extent a different mode of action among these two classes of toxins. Tables S1 to S4 

(supplementary files) show the most up- and downregulated genes based on the highest 

concentrations of either DTX-1 or AZA-1. However, the focus of this study was on 

potential pathways rather than single genes. 
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Figure 2. Hierarchical clustering of OA, DTX-1 and AZA-1 responsive genes in Caco-2 
cells. Gene selection is based on an average fold change of ≥2 (log2 ratio ≥ |1.0|) in at least 
two of 13 microarrays, leading to a total of 3,634 spots representing 2,824 genes. Green 
indicates downregulation, red upregulation, and black not affected. Pathways significantly 
affected within clusters are indicated at the right. Additional pathways are mentioned in the 
text. A maximal red or green colour indicates 2-fold up- or downregulation or more versus 
the control (DMSO). Each column represents triplicates (OA and DTX-1) or duplicates 
(AZA-1). 
 
Therefore, the four clusters of the heatmap were analysed for genes representative for 

specific pathways or processes affected by the toxins. Cluster 1 contains 241 genes 

(represented by 301 spots) that are upregulated by OA and DTX-1, while part of these 

genes are slightly downregulated by AZA-1 and most not affected by AZA-1. There is a 
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small subset of genes on top of the heatmap that appear to be strongly downregulated by 

AZA-1 but upregulated by OA/DTX-1. This subset is composed of 61 spots, representing 

38 genes. Overall, cluster 1 did not reveal significantly overrepresented pathways using the 

criteria selected for this analysis, and as such did not reveal any potentially relevant effect. 

Only two genes seemed of interest, i.e. ACADSB and MYLIP, both involved in lipid 

metabolism. The question is if the effect could be related to the specific effect of AZA-1 

on cholesterol metabolism (see later).  

Cluster 2 contains 1,330 genes (1,802 spots) that are upregulated by OA and DTX-1 and 

some also by AZA-1. These genes are involved in processes/pathways related with 

“Hypoxia Induced factor” (HIF) (P < 5 x 10-13), “Glycolysis” (P = 5 x 10-8), “FoxO 

signalling” (P = 2 x 10-8), SREBP signalling (P = 5 x 10-7), “Mineral absorption” (P < 3 x 

10-6), and “Activator Protein 1” (AP-1) (P < 7 x 10-5). Some other pathways, like “Oxidative 

stress” (P = 2 x 10-5) and “Protein processing in endoplasmic reticulum” (P < 10-3) were 

also affected but to a lesser extent.  

Cluster 3 contains 1,207 genes (1,400 spots) that are mainly downregulated by OA and 

DTX-1 (almost all by 12.5 nM DTX-1) and a part also by AZA-1. These genes are involved 

in pathways related to “DNA methylation” (P < 3 x 10-12), “Telomere maintenance” (P < 

4 x 10-12), “Cell cycle” (P < 5 x 10-9) and “Detoxification” (P < 2 x 10-5).  

Cluster 4 comprises 92 genes (120 spots), which are mainly downregulated by OA and 

DTX-1 but upregulated by AZA-1. Genes of this cluster are involved in “Cholesterol 

biosynthesis” (P < 6 x 10-18). 

 

3.3 Gene expression confirmation by qPCR 

 

For confirmation of the observed effects and consistency between experiments, the mRNA 

expression of specific genes involved in the affected pathways/processes identified by 

transcriptomics analysis were examined by qRT-PCR analysis of undifferentiated Caco-2 

cells exposed to the toxin standards on three different days. Eight pathways were chosen 

and for each pathway/process two or three genes were selected, based both on the 

induction values as obtained in the microarray analysis and their known importance in the 

identified pathway (Table 1). UPR and ER stress, which are related and therefore combined 

in Table 1 under the pathway/process ER stress, were selected as well, although these 
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pathways seemed less affected. This pathway appears in section 3.2 (see cluster 2) as 

“Protein processing in endoplasmic reticulum”. Although the p value was higher than 10-5, 

we decided to select it since is an important pathway to consider and because the induction 

values of the genes were high enough to do so. As shown in Figure 3, the qRT-PCR 

experiments confirmed the effects on mRNA expression for 18 out of 21 genes, in general 

with similar or higher induction or repression values than in the microarray analysis. Three 

genes involved in the cell cycle, HIST1H1E, HIST1H4C and HIST1H2AC, were selected 

because they were involved in the pathways “DNA methylation”, “Telomere maintenance” 

and “Cell cycle” with low p values. Unfortunately, these genes could not be confirmed by 

qRT-PCR and those pathways were excluded from further analyses. It should be noticed 

that the repression values of these genes on the microarrays were rather low, less than 2-

fold, maybe making it difficult to confirm them by qRT-PCR (Table 1). 
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Table 1. Representative genes of pathways that were selected for qRT-PCR confirmation. 
Numbers represent fold-induction of treatments vs. the control (untreated) obtained by 
gene expression analysis of the microarray data. 
 
Pathway/process Gene symbol Expression (1) Included in 

heatmap 
(Figs. 4-5) 

OA DTX-1 AZA-1 

AP-1 EGR1 4.0 3.5 1.6 No  
FOS 4.9 9.2 2.6 No  
JUN 1.5 2.0 1.2 No 

Cell Adhesion MMP1 2.5 5.3 2.3 No  
CD44 2.5 4.3 3.0 No 

Cell cycle HIST1H1E 0.4 0.3 0.6 No 
HIST1H4C 0.4 0.3 0.9 No 
HIST1H2AC 0.5 0.4 0.5 No 

Cholesterol biosynthesis HMGCR 0.8 0.5 1.7 Yes  
LDLR 1.7 1.7 3.2 Yes 

ER stress BCL2L11 1.6 3.5 0.9 No  
ERN1 1.4 2.3 0.8 Yes  
MAP2K3 2.1 2.1 0.8 No 

Glucose metabolism HK2 3.2 4.3 3.0 Yes  
SLC2A1 2.5 3.0 4.6 No 

Glutathione GSTA1 0.8 0.4 0.3 Yes2  
GSTA2 0.8 0.5 0.3 Yes2 

Hypoxia induced factors EGLN3 2.5 6.1 1.4 Yes  
EGLN1 1.6 1.7 1.9 Yes 

Mineral absorption MT1G 1.9 2.8 5.3 Yes2  
MT1H 1.9 2.6 6.1 Yes2 

(1) fold-induction values (numerical ratios). Values higher than 1 represent upregulation, values lower than 
1 represent downregulation. Values represent the highest value of any treatment (see materials and 
methods).  
(2) Involved in “detoxification” (see figure 2) 
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Figure 3. Validation of the microarray results by qRT-PCR for genes involved in key 
pathways/processes affected by OA, DTX-1 and/or AZA-1. Graphs show the qRT-PCR 
results of 18 genes from three independent exposures of Caco-2 cells; within each exposure 
each toxin concentration was tested in triplicate. Values are shown as a log2 relative 
normalized expression (∆∆Cq). Values above 20 indicate upregulation, values below 20 
indicate downregulation. * = P ≤ 0.05, ** = P ≤ 0.01.  
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3.4 Effects on pathways or processes 

 

To obtain more insight in the genes that are affected within the different pathways, separate 

heatmaps per pathway were made. For this, we applied the heatmap tool of GSEA that 

visualizes also relatively small differences in mRNA expression [27]. The various heatmaps 

include all genes that are related to the process, for example enzymes, transporters and 

regulatory genes. Only the most dominant and relevant findings of the GSEA tool are 

presented and discussed. 

Using this tool, the differences of induction values among pathways were more clear, e.g. 

for pathways/processes in cluster 2 of Fig. 2. It was shown that genes involved in “Cellular 

response to hypoxia” (Figure 4A) were mainly induced by OA/DTX-1, and much less by 

AZA-1. Genes most affected by OA/DTX-1 were EPAS1 (HIF2α), CREBBP, EGLN3, 

UBE2D1 and UBE2D3, whereas VEGFA and EGLN1 were affected by all toxins. Glucose 

metabolism (Figure 4B) appeared to be affected by both groups of compounds, however, 

the gene expression patterns seem to some extent different. Both groups induce HK2 

(hexokinase) and fructose-bisphosphate aldolase (ALDOC), but the gene expression of 

phosphofructokinase (PFKP), a key enzyme in glycolysis, seems more upregulated by AZA-

1, as are some genes at the end of the glycolysis, i.e. phosphoglycerate kinase (PKK1), 

phosphoglucomutase 1 (PGM1), and enolase (ENO1 and ENO2), some of which (PGM1, 

ENO2) seem actually downregulated at 12.5 nM DTX-1. At the higher concentration of 

DTX-1, also downregulation of some genes involved in the citric acid cycle (MDH1 and 2, 

OGDHL, DHTKD1) was observed. Another difference was the upregulation of 2,3-

bisphosphoglycerate mutase (BPGM) by DTX-1 and OA, but down-regulation by AZA-1. 

Genes involved in ER stress related processes like “Unfolded or misfolded protein binding” 

(Figure 4C) and “ER associated apoptosis” (Figure 4D) are clearly induced by OA and 

DTX-1, while only few of these genes were affected by AZA-1. In agreement with the 

findings in Figure 2 (sub cluster 4), genes involved in cholesterol biosynthesis were induced 

by AZA-1 but not by OA or DTX-1 (Figure 5A). Another set of genes involved in 

cholesterol synthesis (e.g. HSD17B7, DHCR24) were downregulated by OA and DTX-1, 

but not clearly affected by AZA-1. Genes involved in glutathione conjugation, mainly 

glutathione-S-transferases of the A family (GSTAs), were downregulated at both 

concentrations of AZA-1 (Figure 5B) and, to a lesser extent, by 12.5 nM DTX-1. 
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Metallothionein genes were strongly upregulated by AZA-1 and much less by OA/DTX-1 

(Figure 5C). 

 
Figure 4. Effects on expression of genes of key pathways affected by OA, DTX-1 and 
AZA-1. A: “Cellular response to hypoxia”, B: “Glycolysis/Glucose metabolism”, C: 
“Unfolded or misfolded protein response”, D: “Endoplasmic reticulum associated 
apoptosis”. The heatmaps contain log2 ratios of treatment vs. the average of the control 
samples. For each gene, the sample with the highest expression obtains a maximal red 
colour and the sample with the lowest expression obtains a maximal blue colour. 



Chapter 3 

81 
 

 
Figure 5. Effects on expression of genes of key pathways affected mainly by AZA-1. A: 
“Cholesterol biosynthesis”, B: “Glutathione transferase activity”, C: “Metallothionein”. 
 

4. Discussion 

 

The present study aimed to acquire more insight into the modes of action of the marine 

toxins OA, DTX-1 and AZA-1 through in-depth analysis of microarray data generated for 

the purpose of biomarker identification. The focus was on pathways rather than specific 

genes, that were previously selected for another approach based on the use of a selective 

gene set for detection of these toxins using a tube array [22]. Although the primary mode 

of action of OA and DTX-1 is well-known, being inhibition of protein phosphatases (PPs), 

particularly PP1 and PP2A [29, 30], and to some extent PP5 [31, 32], it is still of interest to 

investigate the potential downstream effects of this inhibition and identify other potential 

effects. The bioinformatics analysis was started by making a heatmap including all samples 

based on a selection of 2,824 genes, that were at least 2-fold up or downregulated in at least 

two of the thirteen microarrays (nontoxic concentrations only and arrays that passed the 

quality check) (Figure 2). The concentrations selected for our analyses were based on 

determination of cell viability but also the regulatory limits used in the EU, since the 

eventual aim is the development of a bioassay for the detection of DSPs in shellfish. A 

maximum level of 160 µg OA equivalents per kilogram shellfish meat is allowed for OA 
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and DTX-1. The same limit is applied for AZA equivalents. In our routine protocol of 

shellfish extraction, a level of 160 µg kg-1 shellfish meat would result in a concentration of 

12 nM in the well, so similar to those used in this study.  

Exposure to 25 nM OA and 6.25 nM DTX-1 resulted in almost identical gene expression 

patterns, confirming that these two analogues induce the same effects. In addition, the 

transcriptomic analysis indicates that at least in vitro, DTX-1 is approximately 4-fold more 

potent than OA. It is important to consider that according to the current regulations, OA 

and DTX-1 are regarded as equally toxic, i.e. both have a toxic equivalency factor (TEF) of 

1 [33]. However, a higher toxic potency of DTX-1, compared to OA, has also been reported 

by others. Ferron et al. found that undifferentiated Caco-2 cells were 2-fold more sensitive 

for DTX-1 than OA on the basis of the neutral red uptake assay and five-fold more 

sensitive on the basis of proportions of Ki-67 positive cells, i.e. a marker for proliferating 

cells [21]. A higher sensitivity to DTX-1 than OA has also been reported for other cell 

types, including Neuro-2a, NG108-15, MCF7 [34] and HT29-MTX cells [21]. Data on 

absorption, distribution, metabolism and excretion are still needed to extrapolate these in 

vitro findings to in vivo, although the current TEF values are based on the induction of death 

after intraperitoneal injection in mice [35, 36] and thus exclude certain toxicokinetic 

parameters as well. 

The induction of hypoxia by OA and DTX-1 is indicated by the increased expression of 

target genes involved in hypoxia, as shown in figures 3G and 4A. These genes are 

particularly induced as an adaptive response of the cell to decreased oxygen levels by 

activating adaptive pathways including induction or stabilization of the transcription factors 

HIF-1 (which consists of the oxygen-regulated subunit HIF-1α and the constitutively 

expressed subunit HIF-1ß) and HIF-2 [37]. Increased expression of HIF genes is in line 

with the known inhibition of protein phosphatases, as it has been proposed that the 

inhibition of PP2A by okadaic acid activates the Akt/mTOR pathway, leading to increased 

HIF-1 protein levels and increased expression of the HIF-1 target gene VEGF which is 

known to play a role in angiogenesis [38]. HIF-1 target genes are involved in multiple 

processes including erythropoiesis, angiogenesis, extracellular matrix proteins and enzymes, 

glucose transport and glycolysis [39]. In the present study in particular the upregulation of 

EPAS1 (or hypoxia-inducible factor-2alpha (HIF-2α)) was observed for OA and DTX-1, 

but less by AZA-1. The difference in gene expression was even more clear for CREPBP 
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(cAMP response element-binding protein binding protein), a cofactor required for the 

action of HIF on gene expression, and UBED1 and UBED3 involved in the degradation 

of HIFs. Also EGLN genes, encoding prolyl-hydroxylases, are involved in the inactivation 

of HIF and increased expression of these EGLN genes is known to be a negative feedback 

mechanism against HIF response [40]. Under normoxic conditions, these enzymes catalyse 

the hydroxylation of HIF, promoting its degradation. In hypoxic conditions, HIF 

hydroxylation is reduced, allowing the formation of the HIF complex, which translocate to 

the nucleus, binds to a hypoxia responsive element and upregulates hypoxia responsive 

genes [41]. As shown in the heatmap of figure 4A, EGLN1 and EGLN3 were upregulated 

by OA/DTX-1 and effects on these genes were confirmed by qRT-PCR. This seems in line 

with the negative feedback mechanism against the observed HIF response. It should 

however be noted that EGLN1 was also upregulated by AZA-1 and according to qRT-

PCR also EGLN3. However, also the upregulation of 2,3-bisphosphoglycerate mutase 

(BPGM) by DTX-1 and OA (down-regulated by AZA-1), an enzyme converting the 

glycolysis intermediate 1,3-bisphosphoglycerate into 2,3-bisphosphoglycerate, seems 

related to hypoxia and has been proposed as a biomarker [42]. Levels of 2,3-

bisphosphoglycerate are increased under hypoxic conditions, in particular in erythrocytes, 

its role in other cells being less clear. A further examination revealed that some of the genes 

most upregulated by OA/DTX-1, like CDKN1C (cyclin-dependent kinase inhibitor 1C) 

and RGS16 (regulator of G-protein signalling 16), previously used as specific marker genes 

for OA/DTX-1 [22], and also CXCR4 (C-X-C chemokine receptor type 4), play a role in 

hypoxia [43-45] (Table S1, supplementary files). Overall, these observations suggest that a 

hypoxia-like response is induced by OA/DTX-1, but not or much less by AZA-1. 

Additional pathways, including ER stress, UPR activation and ER associated apoptosis 

were induced by OA and DTX-1, but not or much less by AZA-1, as clearly indicated by 

the heatmaps shown in Figure 4C and 4D. ER stress and the UPR are known to be triggered 

in response to several stimuli, e.g. environmental stress, exposure to certain xenobiotics or 

deprivation of nutrients, with the purpose to restore cell homeostasis [46, 47]. When the 

response is inadequate to recover the normal cell functions, the cell turns to apoptosis [47]. 

This might be one of the mechanisms involved in OA induced apoptosis as published 

previously for other cell types, e.g. leucocytes, the liver cell-lines HepG2 and HL7702 and 

the neuronal cell line SHSY5Y [18, 48]. The combination of induction of hypoxia, the UPR, 
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ER stress, and apoptosis is not uncommon. Accumulation of unfolded or misfolded 

proteins in the ER is known to induce UPR, which aims to restore ER homeostasis. This 

includes a temporary inhibition of protein synthesis. However, when the stress signal is 

severe and/or prolonged, the ER stress triggers cell death pathways including apoptosis 

[37, 49]. Induction of UPR by OA has also been reported to occur in primary cultures of 

rat cortical neurons [50]. 

AP-1 (Activating protein-1) is a transcription factor constituted by fos and jun proteins and 

involves the control of a variety of inducible genes containing AP-1 sites or a TPA response 

element [51]. It is regulated by a broad range of stimuli, including cytokines, stress, growth 

factors, among others [52]. Our data indicate that OA and DTX-1, but also AZA-1, induce 

the AP-1 response, which was confirmed by the increased gene expression of EGR1, FOS 

and JUN as assessed by qRT-PCR (Figure 3A). A downstream effect of AP-1 activation is 

the induction of genes involved in the extracellular matrix that is associated with 

remodelling of tissue [53, 54]. As shown in Figure 3B, the matrix related genes MMP1 and 

CD44 are upregulated by all toxins reaching a 16-fold induction both by 12.5 nM of DTX-

1 and 6.25 and 25 nM AZA-1. The upregulation of MMPs has been reported previously 

for OA [55, 56], but not for AZA-1. AP-1 is reported to increase the glucose production 

by exerting an accumulation of the glucocorticoid receptor (GR) in the nucleus that in turn 

activates gluconeogenesis [32, 57]. Genes involved in glucose metabolism were actually 

induced by OA, DTX-1 and AZA-1 (Figure 3E), the increased expression of two of these 

genes being confirmed by qPCR. HK2 (hexokinase 2) encodes an enzyme involved in the 

first step of the glucose metabolism pathway [58]. SLC2A1 is a major glucose transporter, 

located in the cell membrane, and facilitates the entrance of glucose in the cell [59]. 

Moreover, SLC2A1 has been reported to be induced by HIF [60, 61]. Interestingly, AZA-

1 appeared to have an even greater effect on the increased expression of these two genes, 

as well as on genes encoding for several other enzymes of the glycolysis. This may indicate 

an increased activity of the glycolysis, a phenomenon called the Warburg effect. This 

actually might also underlay the increased MTT-activity (Figure 1), that indicates increased 

NADH levels in the cell [62], generated during increased glycolysis and not metabolized in 

the mitochondria. Combined, this may indicate that AZA-1 has an effect on the coupling 

between the glycolysis and the Krebs cycle, potentially due to inhibition of a key enzyme, 

like pyruvate dehydrogenase, converting pyruvate into acetyl-CoA. This should be further 
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investigated, e.g. by measuring intermediates in the metabolism of glucose or the 

production of lactate. 

The gene expression analysis also demonstrates that AZA-1 specifically and highly induces 

the expression of genes involved in cholesterol biosynthesis (Figure 5A). This includes 3-

hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a rate-limiting enzyme in the 

cholesterol biosynthesis pathway. In addition, AZA-1 clearly increases the expression of 

the gene encoding the low density lipoprotein receptor (LDLR) that is involved in the 

uptake of cholesterol by the cells and is stimulated by low cholesterol levels in the cell. The 

mRNA expression of LDLR was also increased by OA and DTX-1, but to a lesser extent 

(Table 1). These observations are in line with earlier findings of Twiner et al. [20] in Jurkat 

cells, showing that AZA-1 decreases the levels of cellular cholesterol. The induction of 

genes involved in cholesterol biosynthesis and uptake likely aims to counteract this 

reduction in cholesterol levels. Cholesterol biosynthesis genes have also been reported to 

be upregulated in Caco-2 cells upon exposure to alpha-chaconine, a well-known potato 

glycoalkaloid [63]. The toxicity symptoms of this latter compound are mainly 

gastrointestinal, including vomiting, diarrhea and abdominal pain, which appear very similar 

to the symptoms elicited by AZAs. It was proposed that the disturbance of the balance in 

cholesterol due to complexation with alpha-chaconine may be the cause of the upregulation 

of cholesterol biosynthesis genes. The exact mechanism how cholesterol levels are impaired 

by AZAs remains to be elucidated, but it is tempting that there may be a relation with the 

effects on glycolysis and that a reduced synthesis of acetyl-CoA plays a role.  

As shown in Figures 3F and 5B, all 3 toxins caused a reduction in the expression of 

glutathione S-transferases (GSTs), a group of detoxification enzymes, involved among 

others in detoxification of xenobiotics. They are also involved in the biosynthesis of 

steroids, prostaglandins and leukotrienes, and in the detoxification of products of lipid 

peroxidation and oxidative stress [64, 65]. In addition, GSTs are involved in cell cycle 

progression [66]. This effect has been observed after the knock-out of GSTA genes in 

Caco-2 cells [67]. Thus, we might speculate that the effect on GSTA genes may be related 

with cell cycle and impairment of the cell differentiation, in response to the exposure to 

toxins. 

Exposure to AZA-1 resulted in a rather specific upregulation of various metallothionein 

genes, not clearly observed with OA and DTX-1 (Figures 3H and 5C). These genes can be 
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upregulated as part of an inflammatory response [68], but also in response to metals as part 

of the detoxification process, and during oxidative stress and hypoxia [68, 69]. At this stage 

it is unclear how AZA-1 affects these genes. 

Performing bioinformatics analysis with relatively low cut-off values, as used in this work 

(i.e. from 2-fold up- or downregulated onwards), allowed us to identify pathways potentially 

affected by three lipophilic marine biotoxins belonging to two major classes. Some of the 

relevant genes in certain pathways were highly upregulated and may be suitable as 

biomarkers by themselves, as described previously [22]. qRT-PCR-analysis of a number of 

genes in independent repeats showed that the gene expression was highly reproducible. A 

more general picture on the mode of action may be helpful to develop more functional 

tests that are based on specific effects, like those observed on cholesterol synthesis or 

glycolysis. It would be interesting to explore the mechanisms behind the effect of AZA-1 

on cholesterol biosynthesis, glycolysis and/or the increase of the MTT activity, and the 

potential increase in metallothionein expression. For DTX/OA, effects on hypoxia and 

UPR seem more selective but it might be more difficult to find specific biomarkers other 

than gene expression or the inhibition of phosphatases. More general, it is important to 

understand the mechanisms behind the toxic effects of these compounds, both for risk 

assessment and for treatment of people affected by them. Some of the observed effects on 

gene expression may give a hint on the underlying mechanism of the cause of e.g. diarrhea, 

but this requires more work. The potential similarity between AZA and glycoalkaloids on 

cholesterol synthesis might also be an interesting lead to follow-up. Other models and 

approaches may be needed, where the use of a more physiological model could be relevant, 

e.g. the use of differentiated Caco-2 cells co-cultured with mucus cells, or an organ-on-a-

chip approach. Some effects may require validation by in vivo studies.  

In conclusion, the bioinformatics analysis on the transcriptomics data of Caco-2 cells 

yielded additional information about the potential modes of action of OA, DTX-1 and 

AZA-1. Based on the very high similarity in response of mRNA expression, OA and DTX-

1 exert identical effects, like those on hypoxia related pathways/processes, the unfolded 

protein response (UPR) and endoplasmic reticulum (ER) stress. AZA-1 mainly increased 

mRNA expression of genes involved in cholesterol synthesis and possibly glycolysis. 

Follow-up studies may reveal suitable biomarkers for developing specific in vitro bioassays 

but also give more insight in the mode of action of these toxins. 
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Summary 

The mouse bioassay for the detection of marine biotoxins in shellfish products is 40 years 

old and still in use. A full ban or total replacement of this in vivo test has been postponed 

because of the fear that current chemical-based detection methods could miss a new 

emerging toxin. In order to fully replace the mouse bioassay, more efforts are needed on 

the search for functional assays with specific endpoints. A previous study on gene 

expression elicited by diarrhoeic shellfish poisoning toxins in Caco-2 cells allowed us to 

determine three ‘DSP toxins profiles’, i.e. OA/DTX, AZA-YTX and PTX profiles. In the 

present study twelve marker genes were selected that envision these three profiles. qRT-

PCR is relatively cheap and easy, and although its multiplex capacity is limited to five genes, 

this turned out to be sufficient to show the three expected profiles. The use of the multiplex 

magnetic bead-based assay turned out to be even a slightly better alternative, allowing the 

use of all twelve selected marker genes and two reference genes, and resulting in clear 

profiles with for some genes even higher induction factors as obtained by qRT-PCR. When 

analysing blank and contaminated shellfish samples with this multiplex magnetic bead-

based assay, the contaminated samples could easily be distinguished from the blank 

samples, showing the expected profiles. This work is one step further on the final 

replacement of the mouse bioassay, e.g. by combining the neuro-2a bioassay for broad 

screening and detection (nonspecific cytotoxicity) with analytical chemical analyses for the 

confirmation of known toxins and the multiplex magnetic bead-based assay (specific 

mRNAs) for confirmation of unknown toxins. 
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1. Introduction  

 

Marine biotoxins are toxins produced by phytoplankton and/or bacteria, that can 

accumulate in several types of marine animals, e.g. shellfish, crabs and fish [1]. Bivalve 

molluscs feed through filtration and concentrate these toxins in their bodies and digestive 

glands [2, 3]. Mussels for example filtrate 7.5 litres of seawater per hour, leading to the 

accumulation and concentration of pollutants and toxins [4]. When humans consume 

seafood with toxins in amounts that exceed the established safety levels, it may lead to 

intoxication. Marine biotoxins can cause clinical features that vary from diarrhoea and 

amnesia to paralysis and even death. Five groups of marine biotoxins are regulated within 

the European Union, i.e. okadaic acid group (OA), which includes the dinophysistoxin 

analogues (DTXs), this group is also known as the diarrheic shellfish poisoning (DSP) 

toxins; azaspiracid group (AZAs), which can also cause diarrhoea; yessotoxin group 

(YTXs); domoic acid group (DA), also known as amnesic shellfish poisoning (ASP); and 

saxitoxin group (STX), also known as paralytic shellfish poisoning (PSP) toxins [5]. Within 

these groups, several different types and analogues can be found. It is described that 

worldwide algae toxins are responsible for approximately 60,000 human intoxications 

annually [6]. 

In order to prevent intoxications, several countries have legislation regarding permitted 

levels of the different marine biotoxins in shellfish that need to be checked by monitoring 

programs. These monitoring programs to detect marine biotoxins make use of different 

methods [3]. The method of surveillance most used worldwide is the mouse bioassay 

(MBA), where an extract of shellfish is injected intraperitoneal into a number of mice and 

death is the endpoint to determine whether the sample is safe to consume or not [7, 8]. 

Besides ethical issues regarding the use of laboratory animals, the MBA gives high rates of 

false-positive and false-negative outcomes [5, 9]. In Europe, the use of the MBA is banned 

since 2015, but not for PSP toxins analysis and not for the control of production areas, 

aiming at detection of possibly unknown toxins [10]. The EU reference method for the 

detection of lipohilic shellfish toxins (mainly DSP toxins and AZAs) is the LC-MS/MS 

method of the European Reference Laboratory (EU-RL) on marine biotoxins [10, 11]. 

However, the use of the MBA has been kept over time and is not fully replaced by analytical 

chemical methods. This is mainly due to a lack of standards for the known toxins, and 



Profiling DSP toxins using qRT-PCR & multiplex magnetic bead-based assays. 

94 

because toxin patterns might change, which generates a concern about new toxins 

appearing that would be missed by such chemical analysis and not by the MBA [12, 13]. 

Nowadays, when possible, toxicity testing should comply with the so called 3R principle, 

i.e. to refine, reduce and replace experiments with animals [9, 14, 15]. Some cell-based assays

have been tested in order to obtain information about the mode of action or biological

activity of the marine biotoxins, and to replace the MBA [12, 16, 17]. The neuro-2a bioassay

is considered as one of the most promising cell-based bioassays for the broad screening of

marine biotoxins, i.e. DSP toxins, neurotoxic shellfish poisoning (NSP) toxins, and PSP

toxins [18-21]. The readout in this neuro-2a bioassay is reduction of MTT (as measurement

of cell viability) and suspect screened samples should be confirmed by additional LC-

MS/MS analysis [22]. However, in case a suspect screened sample is not confirmed by

analytical chemical methods, it might contain a known unknown or yet unknown toxin. In

these cases, an additional cell-based bioassay confirming the presence of a toxin and that is

also able to determine the type of toxin present would be very helpful, e.g. a bioassay based

on gene expression [2]. To do so, previously a whole genome mRNA expression analysis

was performed with the human intestinal Caco-2 cell line exposed to OA, DTX-1 and

AZA-1 using DNA microarrays. Patterns obtained for toxins or other bioactives are

specific and commonly used to characterise new compounds, i.e. compare the profile of

the compound with those available in data banks (read across). Exposure to the regulated

toxins, i.e. OA, DTX-1, AZA-1, PTX-2 and YTX, yielded specific gene expression patterns.

From the information provided by these microarray analyses, insights on mode of action

were described for OA, DTX-1 and AZA-1 [17]. In summary, OA and DTX-1 induced

almost identical mRNA expression patterns, in agreement with the fact that both molecules

are analogues that belong to the same toxin group and cause similar effects. For instance,

OA and DTX-1 increased expression of genes involved in the hypoxia induced factor

pathway/process (HIF), in line with the inhibition of phosphatases and a subsequent

activation of the Akt/mTOR pathway, which is involved in the activation of the HIF. OA

and DTX-1 also affected pathways like unfolded protein response (UPR) and endoplasmic

reticulum (ER) stress. The mRNA expression pattern from AZA-1 was different, where an

increase of genes involved in cholesterol biosynthesis and glycolysis pathways was

observed, suggesting a different mode of action [17]. Since full genome microarray analysis

is not suitable for rapid screening, alternative platforms to detect gene expression levels of
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highly up or down-regulated genes as markers for detection and identification were 

evaluated. A first approach involved a so-called tube array with a limited number of selected 

marker genes. Although promising, the test was rather expensive, labour intensive and long 

(it took about 3 days). Moreover, the sensitivity of several of the 17 selected genes on this 

dedicated array was limited [16]. 

The present study describes two new approaches for detecting marker mRNAs in exposed 

Caco-2 cells, i.e. the development of a multiplex qRT-PCR and a multiplex magnetic bead-

based assay. The newly developed multiplex qRT-PCR was performed successfully with 

five markers (using the maximum number of six fluorescent markers resulted in 

interference). The newly developed multiplex magnetic bead-based assay was able to 

correctly quantify the expression levels of twelve selected marker genes. The present study 

shows that detection of marker mRNAs in exposed Caco-2 cells could be a promising tool 

to confirm the presence of yet unknown toxins in mussel samples screened suspect in the 

neuro-2a bioassay which cannot be confirmed by LC-MS/MS. We thus propose a strategy 

where the neuro-2a bioassay is used as a screening method, LC-MS/MS for confirmation 

of suspects, and a second cell-based bioassay to confirm the presence of a toxin and detect 

a toxin profile related to gene expression when suspects from the neuro-2a cannot be 

confirmed by LC-MS/MS. This work will contribute to the search for new endpoints to 

detect known and yet unknown marine biotoxins, will help in the identification of unknown 

toxins, and does so without the need for animal testing. 

 

2. Material and methods 

 

2.1 Reagents and standards 

Certified reference materials (CRMs) of OA (13.7 ± 0.6 µg mL-1), DTX-1 (15.1 ± 1.1 µg 

mL-1), DTX-2 (7.8 ± 0.4 µg mL-1), PTX-2 (4.40 ± 0.13 µg mL-1), AZA-1 (1.24 ± 0.07 µg 

mL-1), AZA-2 (1.28 ± 0.05 µg mL-1), AZA-3 (1.04 ± 0.04 µg mL-1), YTX (5.6 ± 0.2 µg mL-

1), and hYTX (5.8 ± 0.3 µg mL-1) were purchased from the National Research Council, 

Institute for Marine Biosciences (NRC CNRC, Halifax, Canada). Pinnatoxin E (PnTX-E) 

was obtained from Cawthron Institute, New Zealand. Stock solutions of these toxin 

standards were prepared in dimethyl sulfoxide (DMSO) after evaporation of the original 
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solvent. DMSO and n-hexane were obtained from Merck (Darmstadt, Germany). Methanol 

(Ultra LC/MS) was purchased from Actu-All (Oss, The Netherlands). 

2.2 Cell culture 

The human colonic adenocarcinoma cell-line Caco-2 (ATCC, Manassas, VA) was grown in 

Dulbecco’s Modified Eagle Medium (DMEM) obtained from Lonza (Verviers, Belgium) 

supplemented with 10% (v/v) foetal bovine serum (FBS) from Gibco BRL (Fisher Emergo, 

Landsmeer, the Netherlands), non-essential amino acids (NEAA) from MP Biomedicals, 

(Illkirch, France) and penicillin 0.1% v/v (50 mg ml-1) from Sigma (Zwijndrecht, the 

Netherlands). The cells were grown in 75 cm2 flasks at 37 °C and 5% CO2. 

2.3 Samples 

In-house samples, both blank mussel samples from the Netherlands, and contaminated 

samples obtained from various locations in the EU and used for previous validation studies 

of the LC-MS/MS method [23] were tested. 

2.4 Preparation of extracts 

Prior to extraction of the blank samples and the ones containing lipophilic marine 

biotoxins, shellfish material was homogenized with a T25 Ultra Turrax mixer at 24,000 rpm 

(IKA® Works Inc., Wilmington, NC, USA). One gram of shellfish homogenate was vortex 

mixed with 3 mL methanol for 1 min and centrifuged for 5 min at 2,000 × g. The 

supernatant was transferred to a volumetric flask and the residue was extracted twice more 

with 3 mL methanol. After the third extraction the volume of the collected supernatant was 

adjusted to 10 mL with methanol. For exposure of Caco-2 cells, additional clean-up steps 

using n-hexane and solid phase extraction (SPE) were applied. 

2.5 Clean-up by n-hexane wash step followed by SPE 

A 4.8 mL aliquot of the crude methanol shellfish extract was diluted with 1.2 mL Milli-Q 

water and extracted twice with 6 mL n-hexane in order to remove matrix substances that 

led to false-positive test outcomes [22]. The hexane layer was discarded and the aqueous 

methanolic extract was further diluted by adding 10 mL Milli-Q water and the total extract 
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of 16 mL was transferred to an SPE StrataTM-X cartridge (200 mg/6 mL; Phenomenex, 

Utrecht, the Netherlands), previously conditioned with 4 mL methanol/water (30:70 v/v). 

Subsequently, the cartridge was washed with 8 mL methanol/water (20:80 v/v) and the 

toxins were eluted with 4.8 mL methanol. The eluate was evaporated to dryness under a 

stream of nitrogen gas and reconstituted in 20 µL DMSO. 

 

2.6 Exposure, RNA isolation and cDNA synthesis for multiplex qRT-PCR analysis 

Caco-2 cells were exposed to the standards and sample extracts. For this, 600 µL of Caco-

2 cell suspension were seeded in 24 well plates (Ref. Number 3524, Corning, NY), using 8 

x104 cells per mL and incubated for 48 h at 37 °C and 5% CO2 to reach 80-90% confluence. 

DMSO 0.25% (v/v) was included as vehicle control. Exposures were performed in 

triplicate. Cells were exposed to the standards and samples for 24 h, medium was removed, 

cells were washed with PBS and lysed with 600 µL of RTL buffer with 1% β-

mercaptoethanol. RNA was extracted using the QIA shredder and RNeasy Mini Kit 

(Qiagen, Venlo, the Netherlands) followed by a DNAse treatment with RNAse free DNAse 

(Qiagen, Venlo, the Netherlands), both by following the instructions of the manufacturer. 

After the extraction, the amount and quality of the RNA were evaluated by UV 

spectrophotometry (260 and 280 nm wavelength) on the Nanodrop spectrophotometer 

(Nanodrop technologies). cDNA was synthetized using 1 µg of RNA per sample and from 

an ‘RNA pool mix’ of all treatments with and without reverse transcriptase using the Biorad 

iScript cDNA Synthesis Kit with iScript and reverse Transcript (Biorad, 170-8891) in the 

BioRad iCycler (Biorad, Veenendaal, the Netherlands). The program used was 5 min at 25 

°C, 30 min at 42 °C, 5 min at 85 °C, after which the samples were put on ice for 5 min. 

After the cDNA synthesis, the samples were diluted 10 and 100 times and the pool was 

diluted 10, 31.6, 100, 316, 1000 and 3160 times and used to make a calibration line. The 

samples were stored at -20 °C. 

 

2.7 Singleplex qRT-PCR method 

Singleplex qRT-PCR was performed for the selected marker genes with certified 

QuantiTect primers from Qiagen (Venlo, the Netherlands) using 15 µL of final volume 

containing: 8.5 µL SYBR green (BioRad 170-8880), 2.5 µL of the QuantiTect 

forward/reverse primer mix, 2 µL RNAse free water and 2 µL of 100x diluted cDNA. 
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Reactions were performed in a BioRad HSP9645 PCR plate. Water and ‘RNA pool mix 

without reverse transcriptase’ were used as negative controls. The plate was covered with a 

micro seal and centrifuged for 1 min. Thermal cycling was performed in a CFX96 Real-

Time System (Biorad), starting with a denaturation step at 95 °C for 3 min, followed by 45 

cycles at 65 °C with 35 s for annealing, 10 s at 95 °C for denaturation, and 1 min at 65 °C 

for extension. Data were analysed using BioRad software. Expression ratios of the genes 

were calculated for exposures versus DMSO control. 

2.8 Multiplex qRT-PCR method 

Multiplex qRT- qPCR was performed with primers as shown in table 1, from Qiagen 

(Venlo, the Netherlands) and Biolegio (Nijmegen, the Netherlands). All the probes were 

provided by Biolegio. The sequences are confidential. The reactions were performed using 

25 µL final volume containing 12.5 µL 2x Quantifast multiplex PCR master mix (Qiagen, 

Venlo, the Netherlands, cat number 204752), 1.25 µL of each primer probe mix, 3.75 or 

6.25 µL RNAse free water and 2µL of 10x diluted cDNA. Reactions were performed in a 

BioRad HSP9645 PCR plate. Water and ‘RNA pool mix without reverse transcriptase’ were 

used as negative controls. The plate was covered with a micro seal and centrifuged for 1 

min. Thermal cycling was performed in a CFX96 Real-Time System (Biorad), starting with 

an initial denaturation step at 95 °C for 5 min, followed by 44 cycles at 60 °C with 45 s for 

annealing, 45 s at 95 °C for denaturation, and 45 s at 60 °C for extension. 

Data were analysed using BioRad software CFX manager v.3.0. Plate set up and standard 

curve were selected, and the results are shown as log2 values. Relative quantities (∆Cq), 

which express the quantity of the gene under a certain treatment (toxin) vs the quantity 

under control treatment (vehicle) are plotted and expressed as log2 values versus the 

control. The expression of the reference gene TMEM179B was not affected by any 

treatment and left out in the newly developed multiplex qRT-PCR method. 
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Table 1. Primers, probes and dyes selected for the development of a multiplex qRT-PCR. 

Gene name Primers Specification Cat number Probe dye 

NPPB Qiagen Hs_NPPB_1_SG QT00031934 6FAM 

RGS16 Biolegio na na Texas Red 

DDIT4 Qiagen Hs_DDIT4_1_SG QT00238588 HEX 

CXCR4 Qiagen Hs_CXCR4_2_SG QT02311841 Quasar 705 

TGFB2 Biolegio na na Cy5 

2.9 Multiplex magnetic bead-based assay 

Caco-2 cells were seeded in a 96 well plate (Ref. Number 3595, Corning, NY) using 100 µL 

of a suspension containing 8 x 104 cells per mL and incubated for 48 h at 37 °C and 5% 

CO2, to reach 80-90% confluence. Then, cells were exposed to samples and standards for 

24 h. DMSO 0.25% (v/v) was included as vehicle control. After 24 h exposure of Caco-2 

cells in the 96 well format (every exposure performed in triplicate, e.g. 3 wells per 

treatment), mild lysis of cells was achieved according to the manufacturer instructions 

(QuantiGene 2.0 plex assay user manual, Affymetrix, the Netherlands). Briefly, the lysis 

mixture was diluted in nuclease-free water and 100 µL were added per well. Plates were 

incubated for 18-22 hours at 54 °C ± 1 °C, at 600 rpm in a VorTemp™ 56 Shaking 

Incubator (Thermo Fischer, the Netherlands), previously validated with a QuantiGene 

Incubator Temperature Validation Kit (Isogen, the Netherlands). The assay procedure 

consists of several hybridization, incubation and washing steps, using a plate magnet to 

capture the beads (Affymetrix, the Netherlands). After the final binding step, 130 µL of 

washing buffer (provided in the kit) was added to the wells and plates were read in a 

xPonent® 3D machine (Luminex corp). The protocol was defined using manufacturer 

instructions, i.e. sample size 100 µL, DD gate 5.000 – 25.000, timeout 45 seconds and bead 

event 100. The total time needed from cell lysis to read out is about 30 h. Data analysis was 

performed as follows: MFI (median fluorescence intensity) values were provided from the 

xPonent® 3D machine in a .cvs file and were analysed using excel for calculating the average 

signal (avg MFI) for each gene (exposures were performed in triplicate). Then, the value 

obtained from each gene was divided by the value for the normalisation gene. Here we used 

the CUL1 gene (avg MFI gene of interest/avg MFI CUL1). Finally, for each test gene, we 
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calculated the fold change by dividing the normalised value for the treated samples by the 

normalised value for the untreated sample, i.e. DMSO ((avg gene/avgcul1)/avg DMSO). 

Values were plotted in prism graphpad. 

3. Results

Table 2 shows the twelve marker genes and three reference genes which were selected from 

the whole genome array studies, where undifferentiated Caco-2 cells were exposed to OA, 

DTX-1 and AZA-1 [17] and to YTX and PTX-2 (unpublished data). Genes were selected 

based on their response to the different toxins, e.g., NPPB is specifically down-regulated 

by PTX-2 and to some extent by DTX-1, while RGS16 is specifically up-regulated by DTX-

1 and to some extent by OA. TMEM179B, CUL1 and SH3BP2 were not affected and used 

as reference genes. Moreover, besides OA, DTXs, AZAs, YTXs and PTXs, other 

(nonregulated) marine biotoxins like the cyclic imines (CIs) might end up in the lipophilic 

extracts, however these toxins do not lead to clear effects on gene expression, even when 

tested at higher concentrations. Figure S1 is an example of the CIs PnTX-E and SPX and 

shows that these toxins do not result in clear effects on gene expression in exposed Caco-

2 cells. 

3.1 Development of a multiplex qRT-PCR detection method 

First, singleplex qRT-PCRs were performed in order to confirm the results from the whole 

genome array studies. For that, Caco-2 cells were exposed to 3 and 9 nM of all the toxins, 

including the analogues, except for YTX, for which 12.5 and 37.5 nM were used. These 

concentrations were used for all following experiments, as these concentrations result from 

a newly developed clean-up procedure for lipophilic marine biotoxins (LMB) from mussels 

in combination with the regulatory limits (160 µg kg-1 shellfish for OA, DTXs, PTX-2 and 

AZAs, and 3,750 µg kg-1 shellfish for YTXs). Assuming 100% toxin recoveries [22], the 

regulatory limits of OA, DTXs, AZAs and PTX-2 will result in a final concentration of 

about 12 nM in the well, while the regulatory limit of YTX would result in a final well 

concentration of about 200 nM. Figure 1 shows the relative expression level of each target 

gene for each toxin concentration. Showing that each toxin except OA can be detected at 
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a concentration relevant for enforcement purposes, i.e. a lower concentration (using a newly 

developed clean-up procedure) than resulting from its regulatory limit. 

Table 2. Selected genes and representation of their expression as determined in the whole 
genome array studies [17]. Up or down-regulated compared to a vehicle control: red arrows 
up represent genes that are up-regulated with log2 values higher than 0.7 and green arrows 
down are genes down-regulated with log2 values lower than -0.7. The (*) represents up-
regulation higher than a log2 value of 2.0 or down-regulation of a log2 value lower than -
1.5. The (-) represents log2 values between -0.4 and 0.4, which are considered as no 
significant effects on gene expression. ND: not determined. 

 
Gene  

 
AZA-1 

6.25 nM 
OA 

25nM 

Toxin analogue 
DTX-1 
12.5 nM  

YTX 
12.8 nM 

PTX-2 
11.4 nM 

NPPB     ↓*    ↓* 
RGS16  ↑   ↑*   
DDIT4   ↑* ↑ ↑ ↑ ↓ 
CXCR4    ↑*   ↑*   
TGFB2 ↓ ↓ ↓   
MAFB    ↑*    ↑*   
TNS4 ↑  ↑   
C11orf96    ↑*   ↑* ND ND 
CEACAM1 ↑ ↑ ↑   ↑*  
OSR2 ↓  ↑   
MT1H   ↑* ↑ ↑   
MT1G   ↑*  ↑ ↑  
TMEM179B      
CUL1      
SH3BP2      
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Figure 1. Singleplex qRT-PCR results of the five selected marker genes NPPB, RGS16, 
DDIT4, CXCR4 and TGFB2. Values are shown as log2 relative quantity (RQ) of the gene 
of interest. 
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In general, genes in the singleplex qRT-PCR responded as expected from the whole 

genome array study (table 2). The responses observed for AZA-1 at only 3 nM are already 

clear and as expected, i.e. up-regulation of DDIT4 and down-regulation of TGFB2 and no 

effects on NPPB, RGS16 and CXCR4. As expected, all five genes responded to DTX-1 

and even did so in a dose related way when looking at the responses obtained with 3 and 9 

nM. Unfortunately, there were no clear responses to OA at 3 and 9 nM. However, this was 

more or less anticipated, as 25 nM was used in the whole genome array study because at 

lower concentrations no effects of OA on gene expression could be observed (data not 

shown). In spite of this, it was worthwhile to test 3 and 9 nM OA using singleplex qRT-

PCR to investigate if singleplex qRT-PCR would be sensitive enough to detect OA at 

concentrations relevant for enforcement purposes. It should also be emphasised that this 

singleplex qRT-PCR is mainly developed to confirm suspect screened samples in the neuro-

2a bioassay. For further experimentation, the concentrations of OA were increased to 25 

and 100 nM. PTX-2 is easily detected with the marker gene NPPB, that is specifically down-

regulated by this toxin at low concentrations. As expected, YTX could be detected by the 

up-regulation of DDIT4. It was remarkable that the YTX singleplex qRT-PCR profile is 

similar to that of AZAs, and also showed a down-regulation of TGFB2, which was not 

expected from the gene expression analysis. Another interesting finding is that this TGFB2 

gene is downregulated by all toxins, except for OA at the (low) concentrations tested. The 

reference gene TMEM179B did not show any relevant expression (data not shown). It was 

decided to skip the TMEM179B as a reference gene as it turned out that when we designed 

the multiplex qRT-PCR, the use of the maximum amount of six fluorescent markers 

resulted in interference. 

As the singleplex qRT-PCR results showed that the five selected marker genes responded 

as expected and in a sensitive way, a multiplex qRT-PCR was developed using primers, 

probes and dyes as shown in table 1. Figure 2 shows that this newly developed multiplex 

qRT-PCR was able to detect all toxins, and all except OA, at concentrations that are relevant 

for enforcement purposes. It was anticipated that toxin analogues would result in similar 

expression profiles and that this multiplex qRT-PCR would thus be suited for detecting 

analogues as well. Therefore, also AZA-2, AZA-3, DTX-2 and hYTX were tested. Figure 

2 shows that exposure to AZA-2 and AZA-3 indeed resulted in similar profiles as AZA-1 

and at similar concentrations. Also, the profiles of OA, DTX-1 and DTX-2 are identical as 
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are the profiles of YTX and hYTX. A table with a comparison of the expected and obtained 

results is included in supplementary materials (S2). 

 

Figure 2. Multiplex qRT-PCR profiles. Profile A) AZAs and YTXs; profile B) OA/DTXs 
and profile C) PTX-2. Values are shown as log2 relative quantity (RQ) of the gene of 
interest. 

In order to further evaluate the performance of the newly developed multiplex qRT-PCR, 

ten blank mussel samples and a mussel sample contaminated with AZAs (1,083 µg AZA-

eq kg-1), all according to the EURL LC-MS/MS method, were tested. Figure 3 shows that 

the extracts of the blank mussel samples did not affect the expression of any of the selected 

marker genes, while mussel contaminated with AZAs resulted in a “perfect” AZA/YTX-

profile. Standards of OA and PTX-2 were used as positive controls and also resulted in the 

expected profiles. 
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Figure 3. Multiplex qRT-PCR profiles obtained from 10 blank shellfish extracts, OA and 
PTX-2 standards and an extract prepared from a mussel sample indicated as ‘AZA m’ that 
is naturally contaminated with AZAs (1083 µg AZA-1-eq kg-1). Bars represent log2 values 
of the relative expression levels (RQ) of the genes. 

To further increase the capacity to detect and identify the toxins by multiplex qRT-PCR, 

especially for the discrimination between the presence of AZAs or YTXs, a second 

multiplex qRT-PCR could be developed. However, in order to have one single test method 

to detect more than 5 marker genes, it was decided to analyse mRNA expression on another 

format: a multiplex magnetic bead-based assay. 

 

3.2. Development of a Multiplex magnetic bead-based assay for 14 genes 

 

The multiplex magnetic bead-based assay enables the examination of up to 100 genes, and 

it is based on the direct detection of the mRNA present in the sample, making it less labour 

intensive, i.e. no need for RNA purification, reverse transcription or amplification. Besides 

the five genes selected for multiplex PCR, more genes were selected from the whole 

genome array experiments, i.e. seven marker genes and two more reference genes (table 2). 

The multiplex magnetic bead-based assay uses magnetic beads coupled with DNA probes. 

These specific probes hybridise with a cognate mRNA present in the sample. The 

fluorescent signal associated with each specific bead is read on a Luminex® flow cytometer, 

where the equipment detects the specific bead, representing the gene, and the fluorescent 

signal attached to that bead, indicating the amount of cognate mRNA in the sample. Median 
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fluorescence intensities (MFIs) are measured and used to calculate relative gene expression 

levels. 

The same toxins and toxin analogues as described above for the multiplex qRT-PCR 

method (5-plex) were tested in this multiplex magnetic bead-based 14-plex assay, i.e. OA, 

DTX-1, DTX-2, AZA-1, AZA-2, AZA-3, YTX, hYTX and PTX-2. Pinnatoxin (PnTX-E) 

was used as a negative control, since PnTX-E hardly affects the gene expression levels in 

Caco-2 (Fig. S1). Figure 4 shows the results for all the analogues and the twelve marker 

genes selected for this method (see also table S3). These data also revealed three clear 

profiles, i.e. OA/DTXs profile, AZAs/YTXs profile and a PTX-2 profile. As expected, 

PnTX-E did not elicit any specific responses at the gene expression level. When looking at 

more data in more detail, figure S3 in supplemental materials, it also becomes clear that in 

the concentration ranges tested, i.e. AZAs 3-9 nM; DTXs and PTX-2 3-27 nM; OA 3-100 

nM and YTXs 12.5-37.5 nM, the OA/DTX profile shows clear dose-response effects. It 

also shows that on this test format it is also not possible to detect gene expression at low 

concentrations of OA, i.e. 3-9 nM. OA starts to affect gene expression at 25 nM and 

resulting in a clear profile at 100 nM, similar to the profile obtained with DTX-1 at 9 nM, 

indicating that OA is about four times more potent than DTX-1 and in line with the relative 

potencies as observed in the neuro-2a bioassay [17, 22]. Thus, also on the bead-based 

format it is not possible to detect OA at concentrations relevant for enforcement purposes. 

The DTX-2 response is lower than that of DTX-1, this is expected, as DTX-2 is less potent 

than DTX-1 [22, 24, 25]. Anyway, at a relevant level for enforcement purposes, 27 nM, the 

DTX-2 profile is identical to that of DTX-1 at 9 nM. Just as the DTXs, the AZAs, YTXs 

and PTX-2 can be detected at relevant concentrations for enforcement purposes. 

Unfortunately, the profiles for AZAs and YTXs are still identical. The TNS4, OSR2 and 

MT1H genes were especially added to distinguish the AZAs from the YTXs (table 2), but 

just like TGFB2 in the multiplex qRT-PCR, the YTXs cause the same effect on these three 

genes as the AZAs do. In order to rule out that YTX or AZA toxin standard were switched, 

the YTX, AZA-1 and DTX-1 stock solutions in DMSO were checked by LC-MS/MS 

analysis. Figure S5 in supplementary materials shows the obtained mass chromatograms, 

demonstrating that YTX and AZA were not switched, and that these standards are of the 

quality as expected for certified reference standards. 
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Figure 4. Profiles per toxin obtained from the multiplex magnetic bead-based assay. Caco-
2 cells were exposed to OA, DTX-1, DTX-2, AZA-1, AZA-2, AZA-3, YTX, hYTX, PTX-
2 and PnTX-E. Bars represent log2 of fold-induction values of each of the 12 marker genes. 
Positive values represent up-regulation, negative values represent down-regulation. Spotted 
lines indicate ‘noise’, which is defined by expression levels between 1.5 and -1.5 (log2 
values). 

 

3.3. Testing blanks and positive shellfish samples with the multiplex magnetic bead-based assay 

 

Figure 5 shows the outcomes of the newly developed multiplex magnetic bead-based assay 

when testing extracts prepared from ten blank mussel samples, the same ‘AZA mussel 

sample’ used previously for the multiplex qRT-PCR, and a mussel sample contaminated 

with YTXs (330 µg YTX-eq kg-1), as well as an OA and PTX-2 standard. The results 

demonstrate that blank samples (indicated in grey) do not lead to a substantial effect on the 

gene expression of the selected markers, i.e. all induction values are between 1.5 and -1.5 
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log2 values, which are considered as ‘noise’. When another set of 20 blanks samples was 

tested, the outcomes were the same, i.e. no marker genes with induction factors above log2 

values (see supplementary materials S6). The positive controls, i.e. OA 100 nM and PTX-2 

9 nM, showed the expected and same profiles as described above in the multiplex qRT-

PCR results (Fig. 3). As expected from testing pure standards (Fig. 4), the AZA and YTX 

contaminated mussel samples resulted in the expected AZA/YTX profile of the selected 

marker genes. 

 
Figure 5. Multiplex magnetic bead-based assay. Caco-2 cells were exposed to 10 blank 
mussel samples (grey bars), OA (red bar) and PTX-2 (blue bar) standards and naturally 
contaminated mussels with AZA (green bar) and with YTX (orange bar). Spotted lines 
indicate ‘noise’, which is defined by expression levels between -1.5 and 1.5 (log2 values). 
 
In addition, five shellfish samples with different concentrations and/or mix of lipophilic 

marine biotoxins that were used in previous validation studies [23], were tested. The toxin 

levels in these five samples are indicated in table 3. Figure 6 shows the outcomes of the 

newly developed multiplex magnetic bead-based assay when testing these five contaminated 

samples and a blank mussel sample. Again, the blank mussel sample did not lead to a 

substantial effect on the gene expression of the selected markers, while the five 

contaminated samples did. The interpretation of the profiles obtained with these 

contaminated samples becomes a bit complicated, as the samples contain mixtures of the 

toxins. However, it is possible to differentiate an AZA/YTX profile and an OA/DTX 

profile from the samples. According to the profile, samples V2 and V3 are more likely to 

be contaminated with OA/DTX toxins, while samples V5, V6 and V8 show a more 

AZA/YTX toxin-like profile. The latter is correct, but V2 and V3 do not only contain 

DTXs, but respectively also YTXs and AZAs. It is interesting to mention that sample V5 
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results in a correct AZA/YTX profile but is only contaminated with a low amount of 

AZAs, i.e. 32.4 µg AZA-1 eq kg-1, and assuming 100% recovery, would result into an 

equivalent of 2 nM AZA-1 in the well. As the sample was positive in the neuro-2a bioassay 

too [22] and resulting in a clear profile now, it might be possible that this sample contains 

an unknown AZA or YTX analogue too. 

 

Table 3. LC-MS/MS results from the 5 validation samples depicted in figure 6 [23]. 

Sample OA, DTXs, PTX-2 

(1) 

AZAs 

(2) 

YTXs 

(3) 

Outcome 

    
neuro-2a bioassay Magnetic bead-

based assay 

V1 123 
 

481 Suspect OA/DTX 

V2 275 2422 
 

Suspect OA/DTX 

V3 
 

32.4 
 

Suspect AZA/YTX 

V4 
  

770 Suspect AZA/YTX 

V5 
  

620 Suspect AZA/YTX 

(1) µg OA-eq kg-1 
(2) µg AZA-1 eq kg-1 
(3) µg YTX-eq kg-1 

 

 
Figure 6. Multiplex magnetic bead-based assay. Caco-2 cells were exposed to five 
contaminated and one blank mussel samples. Spotted lines indicate ‘noise’, which is defined 
by expression levels between log2 values 1.5 and -1.5. 
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4. Discussion 

Worldwide, the mouse bioassay has been the main method to detect shellfish poisons in 

samples for human consumption and still complete surveillance programs that rely on the 

use of this animal test in many countries. Chemical analytical methods have been developed 

and proven suitable for the detection of known toxins, but countries with relative high 

occurrences of shellfish toxins in their coastal waters are still afraid to rely solely on such 

analytical chemical methods. One concern is the lack of standards for the known toxins. 

Another serious concern is that new appear that would be missed by such chemical analysis. 

In that regard, cell-based bioassays are an additional promising alternative. Especially the 

neuro-2a bioassay has been shown to be very useful for the broad detection of marine 

biotoxins, i.e. DSPs, NSPs and PSPs [21, 26, 27]. When using the neuro-2a bioassay for the 

broad detection of DSPs, samples screened negative are safe to consume and suspect 

screened samples can be confirmed by analytical chemical methods. It has been 

demonstrated that this is a fruitful approach [22]. However, in case a suspect screened 

sample cannot be confirmed by chemical analysis, indicating the presence of an unknown 

toxin, additional analysis is needed. In order to be successful, a second bioassay that is able 

to confirm the presence of such “DSP-like toxins” and also to identify the kind of DSP 

toxin present, would be very helpful. When this second bioassay also indicates the presence 

of a toxin, a bioassay-directed approach can be followed to identify this unknown active 

[28]. Figure 7 is a schematic view of the proposed strategy. 
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Figure 7. Proposed strategy for the broad screening of shellfish for the presence of LMB, 
i.e. using the neuro-2a bioassay for broad screening/detection (nonspecific cytotoxicity), 
analytical chemical analyses (LC-MS/MS) for the confirmation of known toxins, and the 
multiplex magnetic bead-based assay (specific mRNAs) or qRT-PCR for the confirmation 
of unknown toxins in case suspect neuro-2a outcomes cannot be explained by LC-MS/MS 
analysis. When the presence of an unknown active is confirmed by the second bioassay, a 
bioassay directed fractionation approach can be used to identify the new toxin. 
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In the present study, specific effects of the LMB on the gene expression in Caco-2 cells 

were used to develop a method that is able to distinguish these toxins. Previous gene 

expression studies envisioned three toxin profiles: i) OA/DTXs, ii) AZAs (and YTXs to 

some degree), and iii) PTX-2. Marker genes were selected, and two multiplex assays were 

developed, i.e. a multiplex qRT-PCR (5-plex) method and a multiplex magnetic bead-based 

assay (14-plex). 

The multiplex qRT-PCR method, using five markers only, was able to determine the 

presence of each of all regulated LMB, including their analogues and thus potentially also 

unknowns, in extracts prepared from mussel samples. The obtained profiles enabled the 

discrimination between the presence of OA/DTXs, AZAs and PTX-2, but unfortunately 

the toxin profiles were not specific enough to discriminate between the presence of AZAs 

and YTXs. As OA and DTX belong to the same group, have a similar mode of action, and 

only differ in their potency, it is not possible to distinguish them with these kind of effect 

based bioassays [17, 29]. A multiplex magnetic bead-based assay, i.e. using specific probes 

that hybridise with the selected marker mRNAs and which are attached to the magnetic 

beads, allowed us to multiplex 14 genes in one reaction and resulted in more clear and 

complete toxin profiles, showing similar or higher induction factors as obtained by qRT-

PCR. Unfortunately, the profiles did still not allow a discrimination between AZAs and 

YTXs, or a more sensitive detection of OA. The TNS4, OSR2 and MT1H genes were 

especially added to the multiplex magnetic bead-based assay to distinguish the AZAs from 

the YTXs (table 2), but just like TGFB2 in the multiplex qRT-PCR, the YTXs cause the 

same effect on these three genes as the AZAs do. The selection of those genes was done 

on gene expression analysis performed on a different platform, microarrays. Probably, this 

YTX array did not work as accurate as the ones used for OA, DTX-1, AZA-1 and PTX-2, 

as the standards were checked by LC-MS/MS and were pure and not switched. Anyway, 

both methods are able to confirm the presence of LMB and also to (partly) identify the 

kind of toxin present. 

Besides the LMB tested, also the neurotoxic brevetoxins will be present in the prepared 

extracts (lipophilic), while PSP toxins and ASP toxin (hydrophilic) will not end up in these 

lipophilic sample extracts. Effects on gene expression by brevetoxins and transcriptomics 

data are scarce [30, 31]. However, the brevetoxins were not included in the present study, 

as the neuro-2a bioassay is already able to discriminate between the presence of DSP toxins, 
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AZAs and YTXs, and the neurotoxic brevetoxins, i.e. DSP toxins can be detected without 

the addition of ouabain and veratridine, while the brevetoxins can only be detected by the 

neuro-2a bioassay by adding low concentrations of ouabain and veratridine [32, 33]. In 

addition, it is shown that the nonregulated CIs like PnTX-E and SPX, that can also end up 

in the prepared lipophilic extracts, do not elicit clear effects on gene expression in Caco-2 

cells (Fig. S1). 

In a previous study, it was shown that the use of an additional n-hexane washing-step 

improved the clean-up of the LMB by eliminating false-positives in the neuro-2a bioassay 

due to matrix effects [22]. The present study shows that this clean-up also results in extracts 

that can be used to expose the Caco-2 cells, as blank samples did not affect the gene 

expression patterns, while contaminated samples resulted in the expected profiles. The use 

of the multiplex magnetic bead-based assay allowed us to multiplex 14 genes in one 

reaction. The results show that the method performs well and is less labour intensive than 

the multiplex qRT-PCR method, but the costs are higher. However, both multiplex 

methods work, and laboratories involved in monitoring can make their own choice, as the 

Caco-2 cells are easily available. 

Although more testing and validation are required, an approach where the neuro-2a 

bioassay is used for the broad screening of LMB and LC-MS/MS analysis is used to confirm 

and identify the toxins present in the suspect screened samples, supplemented with a 

multiplex assay based on the expression of marker genes in Caco-2 cells in case suspect 

screened neuro-2a samples cannot be confirmed by LC-MS/MS analysis (Fig. 7), is very 

promising for ultimately replacing the rather cruel assay with mice. 
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5. Supplementary material chapter 4 

 

Figure S1. Hierarchical clustering of responsive genes in Caco-2 cells from Illumina 
microarrays using the programs Cluster (uncentered correlation, average linkage clustering) 
and Treeview [34]. (A) Exposure to PnTX-E. Gene selection is based on an average fold 
change of ≥2 (log2 ratio ≥|1.0|) in at least 3 of 15* microarrays. Red indicates upregulation, 
green indicates downregulation and black not affected. A maximal red or green colour 
indicates 2 times up or down regulation versus the control. *6 Microarrays of the non-
related compound palytoxin (PlTX) were deleted from the figure, as this compound is 
already cytotoxic at low concentrations (pM range) resulting in strong upregulation of 
cognate genes. (B) Exposure to SPX. Gene selection is based on an average fold change of 
≥1.4 (log2 ratio ≥|0.5|) in at least 2 of 9 microarrays. A maximal red or green colour 
indicates 1.4 times up or down regulation. 
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Table S2. Expected vs obtained results qPCR with analogues (expected results are the same 
included in table 1). Red arrows represent genes that are upregulated with log2 values higher 
than 0.7; green arrows are genes downregulated with log2 values lower than -0.7. (*) 
Represent up regulation higher than log2 value 2.0 or down regulation lower than -1.5. (-) 
Represent log2 values between -0.4 and 0.4, which is considered as no effect. 

 

Table S3. Expected vs obtained results multiplex magnetic bead-based assay (expected are 
the same in table 1). Red arrows represent genes that are upregulated with log2 values 
higher than 0.7; green arrows are genes downregulated with log2 values lower than -0.7. 
(*) Represent up regulation higher than log2 value 2.0 or down regulation lower than -1.5. 
(-) Represent log2 values between -0.4 and 0.4, which is considered as no effect. 

 

Expected results Toxin analogue
Gene AZA-1 OA DTX-1 YTX PTX-2
NPPB - -   ↓* -   ↓*
RGS16 - ↑   ↑* - -
DDIT4   ↑* ↑ ↑ ↑ ↓
CXCR4 -   ↑*   ↑* - -
TGFB2 ↓ ↓ ↓ - -
TMEM179B - - - - -

Obtained results Toxin analogue
PCR AZA-1 AZA-2 AZA-3 OA DTX-1 DTX-2 YTX hYTX PTX-2
NPPB - - - - - - - -   ↓*
RGS16 - - -   ↑*   ↑* - - - -
DDIT4   ↑*   ↑*   ↑* - - - -   ↑*  ↓
CXCR4   ↑*   ↑*   ↑*   ↑*   ↑* -   ↑*   ↑*
TGFB2   ↓*   ↓*   ↓*   ↓*   ↓* -   ↓*   ↓*   ↓*
TMEM179B - - - - - - - - -

Expected results Toxin analogue
Gene AZA-1 OA DTX-1 YTX PTX-2
NPPB - -   ↓* -   ↓*
RGS16 - ↑   ↑* - -
DDIT4   ↑* ↑ ↑ ↑ ↓
CXCR4 -   ↑*   ↑* - -
TGFB2 ↓ ↓ ↓ - -
MAFB -   ↑*    ↑* - -
TNS4 ↑ - ↑ - -
C11orf96 -   ↑*   ↑* ND ND
CEACAM1 ↑ ↑ ↑   ↑* -
OSR2 ↓ - ↑ - -
MT1H   ↑* ↑ ↑ - -
MT1G   ↑* - ↑ ↑ -
TMEM179B - - - - -
CUL1 - - - - -
SH3BP2 - - - - -
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Figure S4. Multiplex magnetic bead-based assay. Caco-2 cells were exposed to OA, DTX-
1, DTX-2, AZA-1, AZA-2, AZA-3, YTX, hYTX, PTX-2 and PnTX-E. Bars represent 
log2 of fold-induction values of each of the 12 genes. Positive values represent 
upregulation, negative values represent downregulation. 

Obtained results  Toxin analogue
Gene AZA-1 AZA-2 AZA-3 OA DTX-1 DTX-2 YTX hYTX PTX-2 PnTX-1
NPPB - - - - - - - -   ↓* -
RGS16 - - -   ↑*   ↑* - - - - -
DDIT4 -   ↑* - - - - - - -
CXCR4 - - - -   ↑* - - - - -
TGFB2   ↓* -   ↓* -   ↓* -   ↓*   ↓* - -
MAFB - - - -   ↑* - - - - -
TNS4   ↑*   ↑*   ↑* -   ↑* -   ↑*   ↑* - -
C11orf96 - - - -   ↑* - - -
CEACAM1   ↑*   ↑*   ↑* -   ↑* -   ↑*   ↑* - -
OSR2   ↓*   ↓*   ↓* - - -   ↓*   ↓* - -
MT1H -   ↑* - - - - - - - -
MT1G   ↑*   ↑*   ↑* - - -   ↑*   ↑* - -
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Figure S5. Chromatograms obtained by LC-MS/MS analysis (Gerssen et al., 2010b) of the 
individual YTX, AZA-1 and DTX-1 standards in DMSO. 

 

Figure S6. 20 Additional blank samples tested in the multiplex magnetic bead-based assay. 
Bars represent log2 of fold-induction values of each of the 14 genes. Positive values 
represent upregulation, negative values represent downregulation. 
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Summary 

Marine biotoxins in fish and shellfish can cause several symptoms in consumers, such as 

diarrhoea, amnesia or even death by paralysis. Monitoring programs are in place for testing 

shellfish on a regular basis. In some countries testing is performed using the so-called 

mouse bioassay, an assay that faces ethical concerns not only because of animal distress, 

but also because it lacks specificity and results in high amounts of false positives. In Europe, 

for lipophilic marine biotoxins (LMBs), a chemical analytical method using LC-MS/MS was 

developed as an alternative and is now the reference method. However, safety is often 

questioned when relying solely on such a method and, as a result, the mouse bioassay is still 

used. In this study the use of a cell-based assay for screening, i.e. the neuro-2a assay, in 

combination with the official LC-MS/MS method was investigated as a new alternative 

strategy for the detection and quantification of LMBs, including the diarrheic shellfish 

poisons (DSPs). To this end samples that had been tested previously with the mouse 

bioassay were analysed in the neuro-2a bioassay and the LC-MS/MS method. The neuro-

2a bioassay was able to detect all LMBs at the regulatory levels and all samples that tested 

positive in the mouse bioassay were also suspect in the neuro-2a bioassay. In most cases 

these samples contained toxin levels (yessotoxins) that explain the outcome of the bioassay 

but did not exceed the established maximum permitted levels. 
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1. Introduction 

To ensure food safety, it is most safe to test for the presence of toxins in the food items. 

The mouse bioassay (MBA) has been the main method to detect shellfish poisons in 

samples for human consumption and still complete surveillance programs heavily rely on 

this animal test in many countries around the world [1-3]. Chemical methods have been 

developed as alternatives and proven suitable for the detection of known toxins, but many 

countries are still afraid to rely solely on such analytical chemical methods, especially those 

with relatively high occurrence of shellfish toxins in their coastal waters. Not only due to 

the lack of standards for the known toxins, but also because toxin patterns might change, 

there is a concern about new toxins appearing that would be missed by such chemical 

analysis [4]. The neuro-2a bioassay is a promising alternative for the broad detection of 

marine biotoxins, i.e. lipophilic marine biotoxins (LMBs) including diarrheic shellfish 

poisons (DSPs) and neurotoxic shellfish poisons (NSPs) and hydrophilic marine biotoxins 

including paralytic shellfish poisons (PSPs) [5-8]. When using the neuro-2a bioassay for the 

broad detection of LMBs, samples screened negative are safe to consume and suspect 

screened samples can be confirmed for the EU regulated LMBs by analytical chemical 

methods, e.g. the EURL LC-MS/MS method [9]. It has been demonstrated that the neuro-

2a assay is suitable for the screening of LMBs in mussels, following the successful 

introduction of an n-hexane washing step that was needed to eliminate matrix effects in the 

bioassay without loss of LMBs (recoveries between 80-110%). In this way matrix effects 

leading to false positive screening outcomes were eliminated [5]. In the present study 

samples previously tested in the MBA were analysed with the neuro-2a assay and LC-

MS/MS analysis. In addition to the EU regulated LMBs, the applied method will also 

extract the neurotoxic brevetoxins (PbTXs), whose occurrence has been reported mainly 

in the United States, Mexico and New Zealand [10-14]. These NSPs can also be detected 

by the neuro-2a bioassay, however only in the presence of low concentrations of ouabain 

and veratridine (o/v) [6, 15]. Therefore, all sample extracts in the present study were tested 

in the neuro-2a bioassay with the addition of o/v, after demonstrating that the addition of 

low concentrations of o/v did not affect the detection of the LMBs. The present study is 

the first in which outcomes of samples obtained with the MBA, are compared to those 

obtained with the neuro-2a bioassay and LC-MS/MS analysis. 
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2. Materials and Methods 

2.1. Reagents and standards 

Certified reference materials (CRMs) of OA (13.7 ± 0.6 µg/mL), DTX-1 (15.1 ± 1.1 

µg/mL), AZA-1 (1.24 ± 0.07 µg/mL), YTX (5.6 ± 0.2 µg/mL) were purchased from the 

National Research Council, Institute for Marine Biosciences (NRC CNRC) (Halifax, 

Canada). PbTX-1, -2, -3, -9 were purchased from Latoxan (Valence, France). Stock 

solutions of these toxin standards were prepared in dimethyl sulfoxide (DMSO) after 

evaporation of the original solvent. DMSO, ammonium hydroxide, and n-hexane were 

obtained from Merck (Darmstadt, Germany). Acetonitrile (Ultra LC-MS), methanol (Ultra 

LC-MS) and water (Ultra LC-MS) were purchased from Actu-All (Oss, The Netherlands). 

2.2. Samples 

Mussel samples (mytilus edulis) collected within the routine monitoring programme in the 

Netherlands in 2016 and analysed by the EURL LC-MS/MS method, were stored at -20 °C 

and used for comparison with the neuro-2a bioassay. Samples from different types of 

marine bivalves and previously tested on the presence of LMBs using the mouse bioassay, 

were kindly provided by Dr Leonardo Guzmán from the IFOP Instituto de Fomento 

Pesquero (Fisheries Development Institute), Chile (35 samples in total: 19 positive and 16 

negative samples). In-house blank mussel samples, according to LC-MS/MS analysis, from 

the Netherlands were used as controls and for fortification. 

 

2.3. Sample extraction 

Prior to the extraction of the lipophilic marine biotoxins, shellfish material was 

homogenized with a T25 Ultra Turrax mixer at 24,000 rpm (IKA® Works Inc., Wilmington, 

NC, USA). One gram of shellfish homogenate was vortex-mixed with 3 mL methanol for 

one min and centrifuged for 5 min at 2000 × g. The supernatant was transferred to a 

volumetric flask and the residue was extracted twice more with 3 mL methanol. After the 

third extraction the volume of the collected supernatants was adjusted to 10 mL with 

methanol. 
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2.4. Further sample clean-up by washing with n-hexane followed by SPE 

A 4.8 mL aliquot of the crude methanolic shellfish extract was diluted with 1.2 mL Milli-Q 

water and extracted twice with 6 mL n-hexane in order to remove matrix substances that 

would otherwise lead to false-positive test outcomes [5]. The hexane layer was discarded 

and the aqueous methanolic extract was further diluted with Milli-Q water to a final volume 

of 10 mL, and transferred to an SPE StrataTM-X cartridge (200 mg/6 mL; Phenomenex, 

Utrecht, the Netherlands) previously conditioned with 4 mL methanol/water (30:70 v/v). 

Subsequently, the cartridge was washed with 8 mL methanol/water (20:80 v/v) and the 

toxins were eluted with 4.8 mL methanol. The eluate was evaporated to dryness under a 

stream of nitrogen gas and reconstituted in 20 µL DMSO. 

 

2.5. Fortification of samples 

Blank mussel samples were pooled (10 g) and 1-gram portions were extracted using the 

method described above. Fortification was performed at the level of the crude methanol 

extract, i.e. before the n-hexane clean-up, and at levels corresponding to 3, 1 and 1/3 times 

the maximum permitted level (MPL) in shellfish for OA, DTX-1 and AZA-1 (i.e. at 480, 

160 and 53.3 µg kg-1), except for YTX. Due to the high MPL of YTX (3.75 mg kg-1), the 

high costs of the YTX CRM, and the relative high sensitivity of the neuro-2a bioassay for 

YTX, the extracts of blank mussel samples were fortified with 3, 1 and 0.3 mg kg-1 YTX 

(all well below the established MPL for YTX). 

 

2.6. Neuro 2a bioassay 

Neuroblastoma neuro-2a cells were purchased from the American Type Culture Collection 

(ATCC; CCL-131) and cultured in 75 cm2 culture flasks containing 15 mL RPMI-1640 

medium (R0883, Sigma-Aldrich, Zwijndrecht, the Netherlands) supplemented with 10% 

(v/v) foetal bovine serum (FBS, Fisher Emergo, Landsmeer, the Netherlands), 1% (v/v) 

of a 100 mM sodium pyruvate solution (Sigma-Aldrich, Zwijndrecht, the Netherlands) and 

1% (v/v) of a 200 mM L-glutamine solution (Sigma-Aldrich, Zwijndrecht, the 

Netherlands). The cell-line was routinely maintained in a humidified incubator at 37 °C 

under 5% CO2 and sub-cultured three times per week (dilution 1/5) up to approximately 

90% confluence. For exposure, neuro-2a cells were seeded into 96-well plates with an initial 

density of 25,000 cells per well using RPMI-1640 medium supplemented with 10% FBS. 
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After growing the cells for 24 h, medium was aspirated and exposure to pure marine 

biotoxins or sample extracts was performed in triplicate in 200 µL (end volume) medium 

for 24 h. Ouabain and veratridine were dissolved in medium supplemented with 5% FBS 

and 50 µL of each were added per well, first ouabain then veratridine, to reach final 

concentrations of 0.13 mM and 0.013 mM respectively (decreasing the MTT activity by 

about 20%). Finally, the test compound or sample extract was dissolved in medium 

supplemented with 5% FBS and 100 µL were added to the corresponding well. The final 

DMSO concentration in the medium was kept at 0.25% (v/v). PbTX-3 was used as a 

positive control. At the end of the exposure time, MTT activity was measured as described 

previously [5]. In short, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (Sigma-Aldrich, Zwijndrecht) was prepared in PBS at 5 mg mL-1 and mixed with 

serum free medium. Then, the exposure medium was removed and 60 µL of MTT mixed 

with serum free medium were added to each well (final concentration of MTT in the well 

was 0.8 mg mL-1). After 30 min incubation at 37 °C and 5% CO2, medium was removed, 

and the formed formazan crystals were dissolved in 100 µL DMSO. Plates were placed in 

a plate shaker for 10 min at 600 rpm after which the absorbance was measured at 540 nm 

and corrected for background absorption at 650 nm. 

 

2.7. LC-MS/MS analysis 

Chemical analysis was directly performed on the crude methanol extracts. The EURL 

method applied for the determination of lipophilic marine biotoxins (i.e. DSPs, AZAs and 

YTXs) was previously described by Gerssen et al. [16]. Briefly, chromatographic separation 

was achieved using a Waters Acquity I-Class UPLC system (Waters, Milford, MA, USA). 

The system consisted of a binary solvent manager, sample manager and a column manager. 

A Waters Acquity BEH C18 1.7 µm, 2.1 x 100 mm column was used. The column 

temperature was kept at 60 °C and the temperature of the sample manager was kept at 10 

°C. A 5 µL injection volume was used. Mobile phase A was water and mobile phase B was 

acetonitrile/water (90:10 v/v), both containing 6.7 mM ammonium hydroxide. A flow rate 

of 0.6 mL min-1 was used. The gradient started at 30% B for 0.5 min and was then linearly 

increased to 90% B in 3 min. This composition was kept for 0.5 min and returned to 30% 

B in 0.1 min. An equilibration time of 0.9 min was allowed prior to the next injection. The 

effluent was directly interfaced in the electrospray ionisation (ESI) source of the AB Sciex 
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QTrap 6500 mass spectrometer (Ontario, Canada) which was operated in both negative 

and positive electrospray ionisation by rapid polarity switching. Two transitions were 

measured for each toxin. Regarding the detection of the PbTXs, a separate extraction was 

performed. One gram of shellfish homogenate was mixed head-over-head for 15 min with 

3 mL methanol/water (80:20 v/v). The supernatant was transferred to a volumetric flask 

and the residue was extracted twice more with methanol/water (80:20 v/v) using a 

multipulse vortex for one min. After the third extraction, the volume of the supernatants 

was adjusted to 10 mL with the same solvent and mixed. The extract was filtered through 

a 0.2 µm membrane filter and an aliquot was transferred to a 1.5 mL vial for LC-MS/MS 

analysis. Chromatographic separation was achieved using the same system and column as 

used for the DSPs, AZAs and YTXs. The column temperature was kept at 40 °C and the 

temperature of the sample manager was kept at 10 °C. A 10 µL injection volume was used. 

Mobile phase A was water and mobile phase B was acetonitrile/water (90:10 v/v), both 

containing 47 mM formic acid and 3 mM ammonium formate. A flow rate of 0.4 mL min-

1 was used. The gradient started at 40% B for 0.1 min and was then linearly increased to 

100% B in 6 min. This composition was kept for 2 min and returned to 40% B in 0.1 min. 

An equilibration time of 0.9 min was allowed prior to the next injection. The effluent was 

directly interfaced in the ESI source of a Waters Xevo TQ-S mass spectrometer which was 

operated in positive ESI. For quantification, so-called “matrix matched” calibration curves 

were constructed by fortifying blank shellfish material with different known concentrations 

of toxin. The area of the toxin in the unknown sample is then calculated using the linear 

equation of the calibration curve. The concentration is expressed in µg kg-1 shellfish. 
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3. Results 

3.1. Neuro-2a bioassay with mussel samples 

The lipophilic sample extracts can in principle contain the DSPs, AZAs, YTXs and PbTXs. 

In order to detect the PbTXs in the assay, the neuro-2a bioassay is used with the addition 

of ouabain and veratridine (o/v) at concentrations that cause about 20% reduction in MTT 

activity, i.e. 0.13 mM and 0.013 mM respectively. Fortification of blank mussel sample 

extracts was performed at levels equivalent to 3, 1 and 1/3 times the MPL for OA, DTX-

1 and AZA-1 (i.e. at 480, 160 and 53.3 µg kg-1), except for YTX as the MPL is 3.75 mg kg-

1, and costs for YTXs are rather high and because the neuro-2a bioassay is relatively 

sensitive for these toxins. The blank mussel sample extracts were therefore fortified with 3, 

1 and 0.3 mg kg-1 YTX, which should theoretically still lead to a maximal inhibition (about 

50% reduction of MTT activity) for all levels and at both dilutions, thus even for the sample 

spiked at 0.3 mg kg-1 YTX and 5 times diluted (Bodero et al., 2018). Figures 1 and 2 show 

the results of the neuro-2a assay where the standards and undiluted and 5 times diluted 

fortified mussel sample extracts were tested in the absence (fig.1) and presence of o/v (fig. 

2). A DMSO solvent control was set at 100% and a previously arbitrary decision limit was 

set at 75% [5]. Samples that result in MTT activity percentages above 75% are classified as 

negative and those that result in percentages below 75% are classified as suspect (positive 

in the bioassay). The data show that the screening results of OA and DTX-1, both standards 

and fortified samples, are hardly influenced by the addition of o/v. Standards of AZA-1 

and YTX are not affected and undiluted samples fortified with AZA-1 and YTX even give 

slightly better screening outcomes when adding o/v. This is mainly due to the fact that 

without o/v, the undiluted fortified AZA-1 and YTX sample extracts show almost no 

effect, i.e. responses for undiluted AZA-1 sample extracts around 75% (fig. 1C) and close 

to 100% for the undiluted YTX sample extracts (fig. 1D), meaning that both AZA-1 and 

YTX are not detected when testing the undiluted sample extracts without o/v, while the 

corresponding 5 times diluted fortified sample extracts result in a clear detection of both 

AZA-1 and YTX, a phenomenon observed before (for YTX) and for which we have no 

explanation [5]. However, the highest spiked amount of YTX (3 mg kg-1) is still well below 

the MPL (3.75 mg kg-1) and in real practice samples contaminated with YTXs are easily 

picked-up with the neuro-2a bioassay (Bodero et al., 2018). Altogether, the addition of o/v 
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allows the use of undiluted sample extracts, enabling the detection of OA, DTX, AZA and 

YTX at the level of their MPLs (fig. 2) and will also allow the detection of PbTXs. 

 

Figure 1. Effect on the MTT activity of neuro-2a cells of standards (control) and undiluted 
and 5 times diluted fortified mussel sample extracts. A) OA; B) DTX-1; C) AZA-1 and D) 
YTX. A DMSO solvent control was set at 100% and a previously arbitrary decision limit 
was set at 75% (Bodero et al., 2018). Data are expressed as mean ± SD (n=3). 
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Figure 2. Effect on the MTT activity of neuro-2a cells with the addition of ouabain and 
veratridine to obtain 20% decrease in MTT activity, of standards and undiluted and 5 times 
diluted fortified mussel sample extracts. A) OA; B) DTX-1; C) AZA-1 and D) YTX. A 
DMSO solvent control was set at 100% and a previously arbitrary decision limit was set at 
75% (Bodero et al., 2018). Data are expressed as mean ± SD (n=3). 

Mussel samples collected in the Netherlands in 2016 for a routine monitoring programme 

that were analysed by LC-MS/MS for DSPs, AZAs and YTXs were stored at -20 °C. A 

total of 110 samples were taken (10 samples of each of the months from January to 

November), extracted and tested in the neuro-2a bioassay with the addition of o/v. Figure 

3 shows the results of the 20 samples from June and July as tested in the neuro-2a assay 

with o/v. A chemical blank in DMSO solvent was used as a negative control and set at 

100% and a 30 nM PbTX-3 standard was used as a positive control. The data show that 

none of the samples resulted in a response below 75% viability. All 20 samples were thus 

classified as negative. The positive control, i.e. 30 nM PbTX-3, clearly decreased the MTT 

activity of the neuro-2a cells, indicating that the o/v treatment worked adequately. 

Outcomes of chemical blanks are always identical to that of DMSO controls (data not 

shown). The data for the other 90 mussel samples are shown in figure S1 in supplementary 

materials. Only 2 of the 110 mussel samples resulted in an MTT activity below 75%, while 
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none of the 110 samples tested contained substantial amounts of DSPs, AZAs and YTXs 

according to the LC-MS/MS analysis (all far below the MPLs, data not shown). The 

screening with the neuro-2a assay thus resulted in 1.8% of false positives, although it cannot 

fully be ruled out that these two samples contained a low amount of PbTXs or unknown 

DSPs, AZAs or YTXs. As no positives were found by LC-MS/MS analysis, this set of 

Dutch mussel samples is not suited to test for the rate of false negative screening outcomes 

with the neuro-2a bioassay. 

 

Figure 3. Effect of 20 mussel samples from the Netherlands on the MTT activity of neuro-
2a cells in the presence of ouabain and veratridine to obtain 20% decrease in MTT activity. 
The chemical blanc (Chem) in DMSO was set at 100%. PbTX-3 at 30 nM was used as a 
positive control. Data are expressed as mean ± SD. 

3.2. Neuro-2a bioassay with naturally contaminated samples tested previously in the MBA 

In order to establish a false negative rate and compare the performance of the in vitro neuro-

2a bioassay with the in vivo mouse bioassay, 35 samples provided by an institute in Chile 

(Instituto de Fomento Pesquero) that had tested these samples in the MBA, were extracted 

and tested in the neuro-2a bioassay with and without o/v and analysed by LC-MS/MS. 

Figure 4 shows the screening outcomes of these 35 samples as obtained in the neuro-2a 

bioassay with the addition of o/v, together with a PbTX-3 control to check the correct 

response of the neuro-2a bioassay (positive control) and a DMSO solvent control (negative 

control). Figure S2 in supplementary material shows the data of these samples as obtained 

in the neuro-2a bioassay without the addition of o/v, i.e. the “old” method that does not 

allow the detection of PbTXs. Table 1 summarises the MBA, neuro-2a, and LC-MS/MS 
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results. The details on species and origin of the samples are given in table S3 in 

supplementary materials). 

 

Figure 4. Effect on the MTT activity of neuro-2a cells with the addition of o/v of 35 
samples tested before in Chile in the mouse bioassay. The spotted line represents the 
arbitrarily set decision limit (75% MTT activity). A DMSO solvent with o/v was used as a 
negative control and set at 100%. Data are expressed as mean ± SD. 
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Table 1. Summary of 35 samples obtained from Chile. Lipophilic extracts were prepared 
and tested in the MBA in Chile and both in the neuro-2a bioassay and by LC-MS/MS 
analysis at RIKILT. 

Sample Specie MBA Neuro 2a 
with o/v 

Neuro2a 
without o/v 

LC-MS/MS (µg kg-1) 
 

    OA eq AZA-1 eq YTX eq 
M1 Mussel positive + + 

  
898 

M2 Mussel positive + + 
  

869 
M3 Mussel ND + + 

  
704 

M4 Mussel positive + + 
  

1060 
M5 Mussel positive + + 

  
569 

M6 Clam positive + + 
  

 
M7 Clam ND + + 

  
 

M8 Clam positive + + 
  

 
M9 Mussel positive + + 

  
1459 

M10 Mussel  positive + +  
 

2531 
M11 Clam ND + + 

 
  

M12 Mussel positive + + 
  

1648 
M13 Mussel positive + +  

 
1271 

M14 Mussel positive + + 22 
 

1546 
M15 Mussel positive + +  

 
1254 

M16 Clam ND + - 
   

M17 Clam  positive + + 
 

  
M18 Clam ND - - 

 
  

M19 Mussel positive + + 33 
 

1953 
M20 Mussel positive + + 21 

 
1432 

M21 Mussel positive + + 20 
 

1518 
M22 Mussel positive + + 

  
1141 

M23 Clam ND - + 
   

M24 Mussel positive + + 
  

1067 
M25 Mussel positive + + 

  
1648 

M26 Mussel ND - + 
  

272 
M27 Mussel ND - - 

   

M28 Clam ND - - 
   

M29 Mussel ND - - 
  

 
M30 Clam ND - - 

 
15  

M31 Mussel ND - - 
  

 
M32 Clam ND - - 

 
9  

M33 Mussel ND - - 
  

 
M34 Mussel ND - - 

  
 

M35 Mussel ND - - 
   

ND = not detected (thus negative in the MBA). Empty spots in the LC-MS/MS columns = values lower 
than the limit of quantification (LOQ): OA eq < 10 µg kg-1, AZA-1 eq <5 µg kg-1, YTX eq <50 µg kg-1. 
Brevetoxins were not detected, LOQs in shellfish are PbTX-1 150µg kg-1, PbTx-2 89µg kg-1, PbTx-3 46µg 
kg-1 and PbTx-9 32µg kg-1. 
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In general, the screening results as obtained in the neuro-2a bioassay correlate well with 

those obtained in the MBA. All the samples that are positive in the in vivo MBA (19 of the 

35 samples tested) are also positive in the in vitro neuro-2a bioassay with o/v. The rate of 

false negatives in the neuro-2a bioassay with o/v is thus 0% when compared to the MBA. 

Of the 16 samples that were negative in the MBA, 12 were also negative in the neuro-2a 

bioassay with o/v and 4 were positive, i.e. elicited inhibition of the MTT activity below the 

arbitrarily set decision limit of 75%. Of these 4 samples, M3, M7, M11 and M16, only 

sample M3 turned out to contain a significant amount of a toxin (YTX eq), i.e. enough to 

cause an effect in the neuro-2a bioassay. M16 resulted in a response just below 75% and 

was negative when tested without the addition of o/v. M7 and M11 might contain an 

unknown toxin not detected by the MBA or the LC-MS/MS, but most likely these two 

samples are true false positive screening outcomes in the neuro-2a, which results in a false 

positive rate of 12.5%. As the neuro-2a bioassay is intended to be used as a screening 

method, false negatives should not occur, and the number of false positives should not be 

too high, the current outcome with these Chilean samples, i.e. no false negatives (0%) and 

12.5% of false positives, is a reasonably good result. 

From a point of view of the effect side, LC-MS/MS analysis results in many false negatives, 

as none of the positive screened samples in either the MBA or neuro-2a bioassay contained 

lipophilic toxins in amounts exceeding the established MPLs. From a chemical point of 

view, both the MBA and neuro-2a bioassay result in many false positives, especially M6, 

M8 and M17, as these three samples contained no toxins according to the LC-MS/MS 

analysis and were positive in both the MBA and neuro-2a assay. It is worthwhile to mention 

that all the samples that are positive in any of the bioassays and contain levels <LOQ in 

the LC-MS/MS, are clams (Venus antiqua) (see table S3 in supplementary materials). And 

although there are negative clams too, it is possible that this matrix leads to false positives 

in both the MBA and neuro-2a bioassay or causes suppression in the LC-MS/MS (not 

validated for this matrix). The latter is not likely as the LOQs of the LMBs are very low (a 

few % or lower of the MPLs). 
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4. Discussion 

The mouse bioassay (MBA) for the detection of marine biotoxins is in use for 40 years but 

has never been properly validated for LMBs [17, 18]. The need to develop alternative 

methods to replace the MBA has been reviewed extensively [19-21], but no real replacement 

has occurred yet. Chemical methods, particularly LC-MS/MS analysis, seem suited and for 

DSPs, AZAs and YTXs it is the reference method in the EU [22]. However, due to the 

poor availability of standards, the lack of standards for all analogues, the high costs, and the 

concern about new toxins appearing that would be missed by targeted chemical analysis, 

many countries hesitate to fully switch to chemical methods [2, 23]. A combination of cell-

based bioassays and chemical analysis might offer the opportunity to face the drawbacks. 

An approach consisting of a first effect-based screening that allows the detection of known 

and unknowns and a confirmation with chemical methods is then logical. The neuro-2a 

bioassay is regarded as the most promising assay for the broad detection of DSPs, AZAs 

and YTXs [24], since it is able to detect all these toxins and is relatively rapid and easy to 

perform. It is important to consider that the neuro-2a bioassay will be used as a qualitative 

screening method, i.e. that the outcome of a sample is either negative or suspect, based on 

a certain cut-off. Negative samples are safe and suspect samples need confirmation, e.g. by 

the EU LC-MS/MS reference method [5, 22]. It has already been demonstrated that this is 

a fruitful approach, due to the successful introduction of an n-hexane washing step that 

was needed to remove matrix effects observed in the neuro-2a bioassay. It was shown that 

no DSPs, AZAs and YTXs were lost due to the extra n-hexane washing step (recoveries 

between 80-110%), while the matrix effect leading to false positive screening outcomes was 

excluded [5]. It should be noticed that fatty acid analogues of OA and DTX are probably 

lost with this n-hexane washing step. It was also shown in that study that the outcomes of 

the neuro-2a screening and EU LC-MS/MS analysis for DSPs, AZAs and YTXs in seafood 

correlated well. However, the correlation of the neuro-2a bioassay with the MBA has never 

been investigated. The present study is the first where a set of shellfish samples was tested 

with both the MBA and the neuro-2a bioassay, and in addition LC-MS/MS analysis. Prior 

to this, the neuro-2a method was further developed in order to also detect the brevetoxins, 

which can also be present in lipophilic sample extracts [10], achieved by addition of ouabain 

and veratridine (o/v) [24, 25]. In the present study it was shown that the addition of o/v 
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did not interfere with the detection of DSPs, AZAs and YTXs. It even slightly improved 

the detection of AZAs, but the mechanism is unclear. 

To study the effect of real samples, lipophilic sample extracts of Dutch mussel samples 

were tested in the neuro-2a bioassay with o/v, showing that 108 out of 110 samples 

responded as predicted by EU LC-MS/MS analysis for DSPs, AZAs and YTXs, i.e. 108 

negatives and only two false positives (1.8%). It cannot be fully ruled out that these two 

samples contained low levels of other toxins, like PbTXs, as these toxins are not included 

in the EU LC-MS/MS analysis. As samples with LMBs are rather scarce in the Netherlands 

and the MBA is no longer in use, further testing was performed with samples obtained 

from Chile that were already tested in the MBA (positives and negatives). Moreover, these 

Chilean samples were not only tested by LC-MS/MS for DSPs, AZAs and YTXs (EU 

reference method), but also by an additional LC-MS/MS analysis for PbTXs. 

The 19 Chilean samples that tested positive in the MBA were also positive in the in vitro 

neuro-2a bioassay with o/v. The rate of false negatives in the neuro-2a bioassay with o/v 

is thus 0% when compared to the MBA. None of the samples that were positive in the 

MBA and neuro-2a screening, contained toxin levels above the established MPLs. Strictly 

seen, i.e. enforcement purposes, using only the MBA would have led to 54% of false 

positives (19 out of 35), while the combination of the neuro-2a bioassay with o/v and LC-

MS/MS analysis did probably not result in false positives. Of the 23 samples that were 

screened as suspect in the neuro-2a bioassay with o/v, 17 contained toxin levels below the 

established MPLs, but although below the MPLs, they contained YTX eq levels that would 

explain the bioassay outcome. The other 6 samples could then be regarded as false positives 

of the neuro-2a screening, not being confirmed by LC-MS/MS analysis. However, the latter 

is not sure, as from these 6 samples, 3 were tested as positive in the mouse MBA too. It 

should be noticed that these 6 samples are clams, and it cannot be excluded that this matrix 

in some cases leads to false positives in the MBA and neuro-2a bioassay. Of the 16 samples 

that were negative in the MBA, 12 were also negative in the neuro-2a bioassay with o/v 

and 4 were positive. One of these 4 (M3) turned out to contain a significant amount of 

YTX eq, i.e. enough to cause an effect in the neuro-2a bioassay with o/v and another one 

(M16) resulted in a response just below 75% when tested with o/v and was negative when 

tested without o/v. The remaining 2 may thus be considered as true false positives, which 
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results in a false positive rate of 12.5%. It was ruled out that these two samples (clams), or 

even one of the other 33 samples, contained PbTXs, as the screening outcome of the 22 

samples screened suspect in the neuro-2a bioassay with o/v was also suspect when tested 

in the neuro-2a bioassay without o/v (except for M16). This was confirmed by additional 

LC-MS/MS analysis, revealing no detectable levels of PbTX-2, PbTX-3 and PbTX-9 or any 

of its shellfish metabolites in any of these 35 samples. 

The correlation between the MBA and neuro-2a bioassay on the one hand and the LC-

MS/MS on the other hand is close to perfect when looking at mussels only. Of the 24 

Chilean mussel samples tested, all 17 that were positive in the MBA or neuro-2a bioassay 

with o/v, contained high levels of YTX eq (all > 569 µg kg-1) according to LC-MS/MS 

analysis, while the 7 mussels that were negative contained no detectable levels of toxins 

according to LC-MS/MS analysis (except for M26, that contained a low level of YTX eq, 

i.e. 272 µg kg-1). However, in real practice and even when looking at mussels only, using the 

MBA only, would have led to 67% of false positives, while the combination of the neuro-

2a bioassay and LC-MS/MS analysis would not have led to an unnecessary closure of areas 

or withdrawal of mussels from the market. 

The outcomes are very promising, but there is still remaining work to do, like proper 

validation of different matrices following international guidelines [26] with each toxin 

spiked at its MPL to 20 blank samples and further optimization of the extraction procedure, 

as the present data indicate that clams (Venus antiqua) lead more easily to false positives in 

the MBA and neuro-2a bioassay than mussels (Mytilus edulis, Mytilus chilensis, Aulacomya ater). 

In addition, parallel studies with collaboration between countries that use the MBA are 

needed, e.g. by testing certified reference samples. 

To reduce the number of false positives in the MBA and also reduce the number of false 

suspects in the neuro-2a bioassay, two separate extracts should be prepared, i.e. one extract 

containing the OAs, DTXs, AZAs, PTX and PbTXs and a second extract containing the 

YTXs. The first extract should be tested undiluted, while the second extract, containing the 

YTXs, should be diluted before testing it in the MBA or neuro-2a bioassay, as both assays 

are relatively sensitive to YTX, while the MPL of YTXs is much higher compared to the 

other toxins. In case a suspect screened sample cannot be confirmed by chemical analysis, 
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indicating the presence of an unknown toxin, additional analyses are needed. Previously, it 

was shown that a second bioassay, i.e. gene expression in Caco-2 cells using a magnetic 

bead-based multiplex assay, is able to confirm the presence of such “DSP-like” toxins and 

based on the obtained expression profile, is also able to indicate the kind of LMB present. 

Three profiles could be envisioned, i.e. an OA/DTX profile, an AZA/YTX profile and a 

PTX profile (Bodero et al., in press), while samples contaminated with PbTXs can 

envisioned by testing them in the neuro2a-bioassay with and without o/v. 

Overall, one can say that the neuro-2a bioassay with o/v can be used to test for the presence 

of lipophilic marine biotoxins and shows a good correlation with the MBA and LC-MS/MS 

analysis. All samples that tested positive in the MBA were also positive in the in vitro neuro-

2a bioassay with o/v and most could be explained by the amounts of toxins as measured 

by LC-MS/MS. When only looking at the Chilean mussel samples, 23 out of the 24 samples 

resulted in the same screening outcome when tested with the MBA or neuro-2a bioassay. 

Only sample M3 was negative in the MBA and positive in the neuro-2a bioassay, probably 

because M3 contains a significant amount of a YTX eq, i.e. enough to cause an effect in 

the neuro-2a bioassay, although it is noted that samples with similar YTX levels did test 

positive in the MBA. However, combining the neuro-2a bioassay with o/v and LC-MS/MS 

analysis provides an alternative testing strategy to replace the mouse bioassay for detecting 

and identifying lipophilic marine biotoxins in mussels. 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

139 
 

Supplementary material chapter 5 

 

 



Replacing mouse bioassay by combining neuro-2a bioassay and LC-MS/MS analysis 

 

140 
 

 

Figure S1. Effect on the viability of neuro-2a cells with the addition of ouabain and 
veratridine to obtain 20% decrease in MTT reduction, of 90 mussel samples from the 
Netherlands. A) mussel samples from January, February and April; B) mussel samples 
from March and May; C) mussel samples from August and September and D) mussel 
samples from October and November. A chemical blanc (Chem) in DMSO was set at 
100% and a previously arbitrary decision limit was set at 75% (Bodero et al., 2018). Data 
are expressed as mean ± SD. 
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Figure S2. Effect on the viability of neuro-2a cells without the addition of o/v of 35 samples 
tested previously in Chile in the mouse bioassay (19 positive and 16 negative samples). The 
spotted line represents the arbitrary set decision limit (75% cell viability). A DMSO solvent 
with o/v was used as a negative control and set at 100%. Data are expressed as mean ± 
SD. 

Table S3. Details from the samples from Chile (origin, type of shellfish). Data provided by 
IFOP, Chile. 

 

 

N° sample sector Coordinates Shellfish scientific name sampling month Date
1 Isla Ovalada -44°03’44’’ -73°43’48’’ Chilean mussel Aulacomya ater February 2015 7-2-15
2 Isla Ovalada -44°03’44’’ -73°43’48’’ mussel Mytilus chilensis February 2015 7-2-15
3 Repollal - Canal Puquitin -43°50’36’’ -73°48’51’’ Chilean mussel Aulacomya ater February 2015 13-2-15
4 Isla García -44°15’11’’ -73°44’40’’ Chilean mussel Aulacomya ater February 2015 7-2-15
5 Isla Julia - Grupo Peligroso -43°54’05’’ -73°42’05’’ Chilean mussel Aulacomya ater February 2015 7-2-15
6 Isla Filomena -44°29’41’’ -73°34’36’’ Clam Venus antiqua February 2015 12-2-15
7 Isla Francisco -44°29’58’’ -73°41’08’’ Clam Venus antiqua February 2015 12-2-15
8 Isla Valverde -44°17’41’’ -73°53’25’’ Clam Venus antiqua February 2015 13-2-15
9 Isla Teresa -44°50’46’’ -73°51’04’’ Chilean mussel Aulacomya ater February 2015 10-2-15
10 Isla Toto -44°15’07’’ -73°12’33’’ Chilean mussel Aulacomya ater February 2015 16-2-15
11 Puerto Barrientos -43°56’23’’ -73°58’24’’ Clam Venus antiqua February 2015 13-2-15
12 Seno Gala -44°13’02’’ -73°10’26’’ Chilean mussel Aulacomya ater February 2015 15-2-15
13 Faro Marta - Canal Puyuhuapi -44°49’30’’ -72°58’10’’ Chilean mussel Aulacomya ater February 2015 18-2-15
14 Punta Calqueman -44°39’41’’ -73°26’44’’ Chilean mussel Aulacomya ater March 2015 23-3-15
15 Isla Toto -44°15’07’’ -73°12’33’’ Chilean mussel Aulacomya ater March 2015 29-3-15
16 Isla Virginia - Bahía Low -43°47’10’’ -73°52’39’’ Clam Venus antiqua March 2015 26-3-15
17 Isla Valverde -44°17’41’’ -73°53’25’’ Clam Venus antiqua March 2015 25-3-15
18 Isla Ipun -44°38’09’’ -74°42’47’’ Clam Venus antiqua March 2015 22-3-15
19 Isla San Andres -44°55’57’’ -73°19’28’’ Chilean mussel Aulacomya ater March 2015 31-3-15
20 Canal Ninualac -44°59’48’’ -73°55’31’’ Chilean mussel Aulacomya ater March 2015 20-3-15
21 Puerto Amparo -44°55’00’’ -73°16’54’’ Chilean mussel Aulacomya ater March 2015 31-3-15
22 Isla Concoto -44°12’11’’ -73°50’03’’ Chilean mussel Aulacomya ater March 2015 25-3-15
23 Isla Stokes -44°41’24’’ -74°35’40’’ Clam Venus antiqua March 2015 21-3-15
24 Puerto Lampazo -44°56’16’’ -73°44’39’’ Chilean mussel Aulacomya ater March 2015 20-3-15
25 Isla Silachilú -44°58’48’’ -73°40’24’’ Chilean mussel Aulacomya ater March 2015 20-3-15
26 Santo Domingo -43°58’12’’ -73°06’51’’ Mussel Mytilus chilensis March 2015 27-3-15
27 Añihue -43°52’14’’ -73°02’21’’ Chilean mussel Aulacomya ater March 2015 27-3-15
28 Añihue -43°52’14’’ -73°02’21’’ Clam Venus antiqua March 2015 27-3-15
29 Isla Scout -47°53’29’’ -74°40’20’’ Chilean mussel Aulacomya ater April 2015 17-4-15
30 Isla Scout -47°53’29’’ -74°40’20’’ Clam Venus antiqua April 2015 17-4-15
31 Isla Orlebar -47°54’16’’ -74°36’06’’ Chilean mussel Aulacomya ater April 2015 17-4-15
32 Isla Orlebar -47°54’16’’ -74°36’06’’ Clam Venus antiqua April 2015 17-4-15
33 Isla Zealous -47°52’41’’ -74°36’40’’ Chilean mussel Aulacomya ater April 2015 17-4-15
34 Punta Baker -47°53’11’’ -74°28’04’’ Chilean mussel Aulacomya ater April 2015 16-4-15
35 Isla Zealous -47°52’41’’ -74°36’40’’ Mussel Mytilus chilensis April 2015 17-4-15
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6.1 Main findings 

The aim of this thesis was to develop new in vitro bioassays for the detection of marine 

biotoxins that can be used for high throughput quality control of seafood and replacement 

of the current unethical in vivo bioassays. Through this work and the promising outcomes 

an integrated testing strategy, in which bioassays and analytical chemical methods were 

combined as an in vitro alternative for the mouse bioassay (MBA) for lipophilic marine 

biotoxin (LMB) testing, was developed and evaluated. 

The main difficulties for switching from the MBA to chemical methods and/or in vitro 

bioassays is the detection of unknown toxins and so-called ‘matrix effects’ respectively [1-

4]. In this work we started with the neuro-2a bioassay, an assay shown to be sensitive for 

all the regulated lipophilic marine biotoxins and able to detect their yet unknown toxin 

analogues as well and introduced an improvement in the clean-up procedure for preparing 

extracts from shellfish samples to be tested in the neuro-2a assay. False positives due to 

matrix effects were eliminated by a double clean-up wash step with n-hexane during the 

sample extraction (chapter 2, fig 2a and 2b). Although the clean-up using n-hexane was 

used before in chemical methods [5, 6], it was never introduced before for testing shellfish 

using the neuro-2a bioassay. Chapter 2 shows that this improved clean-up procedure works 

well and resulted in neuro-2a outcomes that are in line with the outcomes as obtained with 

the EURL LC-MS/MS method analysis, supporting the applicability of this bioassay for 

the screening of samples for the presence of lipophilic marine toxins. While the neuro-2a 

bioassay is suited for screening, additional assays with specific endpoints are needed for 

confirmation of suspect screened samples in case LC-MS/MS analysis fails to do so. 

Therefore, chapter 3 presents a study with DNA microarrays to investigate the effects of 

OA, DTX-1 and AZA-1 on the whole-genome mRNA expression of undifferentiated 

intestinal Caco-2 cells. These gene expression data were analysed for two goals: 1) in order 

to reveal the modes of action of these LMBs and 2) to select potential marker genes for 

sensitive detection in additional bioassays to be developed (chapter 4). The gene expression 

data showed that OA and DTX-1 induce identical expression profiles but DTX-1 did so at 

about 4 times lower concentrations than OA, indicating that OA and DTX-1 have a similar 

mode of action and that DTX-1 is, in vitro, about 4 times more potent than OA. This is in 

agreement with what is known and OA and DTX-1 are therefore in the same toxin class 
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and together regulated at a level of 160 µg OA equivalents per kg shellfish. However, their 

currently established TEFs are the same, and thus deviate from the difference in potency 

detected in the in vitro gene expression. The gene expression profile of AZA-1 was different, 

suggesting a different mode of action for this toxin, which is in line with the expectations 

as the AZA toxins are a specific toxin class regulated at a level of 160 µg AZA-1 equivalents 

per kg shellfish and in line with previous findings where e.g. cholesterol biosynthesis genes 

were highly upregulated in other cell lines as well [7]. In chapter 4 a few of the most highly 

up- and down-regulated genes were selected to design and develop additional detection 

methods, i.e. a multiplex qRT-PCR and a multiplex magnetic bead-based assay. Genes 

selected from an additional gene expression study on YTX and PTX-2 were included. In 

total, twelve marker genes were selected to envision three profiles, i.e. an OA/DTX, 

AZA/YTX and PTX profile. The multiplex magnetic bead-based assay allowed the use of 

all twelve selected marker genes and turned out to be a slightly better alternative but is a 

more expensive format compared to the multiplex qRT-PCR. In this chapter it is shown 

that blank and contaminated shellfish sample extracts analysed by the multiplex magnetic 

bead-based assay resulted in profiles not only allowing to distinguish blank samples from 

contaminated samples, but also indicating the toxin type present in the contaminated 

samples. Chapter 5 presented the use of the neuro-2a bioassay as a screening method for 

detection of lipophilic toxins, which in combination with LC-MS/MS confirmation is 

offered as a new alternative strategy for the detection and quantification of lipophilic 

shellfish toxins. A selected set of samples tested in the MBA in Chile, where this animal 

test is still in use, was analysed using the new proposed strategy. All samples that were 

positive in the MBA were also classified as ‘suspect’ in the neuro-2a screening. In most 

cases these samples contained yessotoxin levels, as determined by LC-MS/MS analysis, that 

can explain the outcome of both the MBA and the neuro-2a bioassay, but did not exceed 

the established maximum permitted level, i.e. 3,75 mg YTX-1 equivalents per kg shellfish, 

clearly indicating that the use of the MBA alone resulted in unnecessary closures of 

extraction areas or withdrawal of seafood from the market, and that the combination of the 

neuro-2a bioassay and LC-MS/MS analysis are a promising alternative for the MBA. A 

proper validation of this combination would result in an animal free alternative for decision 

making in food safety, without a risk for not detecting yet unknown analogues of the LMBs 

and with less false positives as obtained with the MBA alone. However, the road is long 
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and besides validation, additional developments and further improvements are still needed, 

e.g. inclusion of a de-conjugation step in order to detect OA-esters. These issues are 

addressed below. 

6.2 Limitations of the method and improvements needed 

The current extraction, clean-up and neuro-2a screening procedure is most likely not 

sensitive enough to detect OA and DTX-2 at their regulated level, i.e. 160 µg OA 

equivalents per kg shellfish. In principle, if a sample is contaminated with this maximum 

permitted level (MPL), it will result in a concentration of around 12 nM in the well, which 

is theoretically just enough to cause an effect on the cells, based on results as presented in 

chapter 2, where the dose-response curves using certified standards of OA and DTX-2 

were assessed and resulted in EC50 values of 23 and 29 nM for OA and DTX-2 respectively. 

Thus, when starting a full validation experiment with 20 samples spiked at the MPL of these 

toxins, most likely a few false negatives will be obtained. One simple improvement would 

be to concentrate the sample extract, e.g. by a factor 2. However, preliminary results in our 

lab showed that this is not that easy, as 2 times concentrated blank sample extracts showed 

matrix effects and resulted in false positives. In chapter 2, fig 4b the effect in the neuro-2a 

of eight naturally contaminated samples with detectable levels of one or more LMBs was 

shown. Among this set of 8 samples, one sample was contaminated with OA only and at a 

level of 151 µg kg-1. This sample was classified as ‘suspect’ in the neuro-2a assay, resulting 

in an MTT activity of 55%, where the arbitrary decision limit for declaring a sample as 

suspect is set at 75% MTT activity. In addition, when a blank sample was fortified at the 

MPL with OA, extracted (without further concentrating) and tested in the presence of 

ouabain and veratridine (O/V) (chapter 5, fig 2), the sample was also correctly classified as 

suspect, i.e. 55% MTT activity. Although two samples are not representative enough to 

draw definitive conclusions, it indicates that the current protocol might already work 

adequate enough. Still it is important to search for improvements, before starting a labour 

intensive and costly validation process. Recently, additional washing steps with n-hexane 

were shown to allow a further concentration of the sample extracts without leading to 

matrix effects. 
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On the other hand, due to the relative high sensitivity of the neuro-2a bioassay for the 

YTXs with regard to the MPL of this toxin group, i.e. 3750 µg YTX-1 equivalents kg-1, the 

presence of relative low levels of YTXs will already result in a suspect screening outcome 

(EC50 of 1.6 nM for YTX-1 (chapter 2)). In the Netherlands this will not be problematic, 

and sensitive detection of YTXs would rather be regarded as an early warning for a possible 

new risk or changing conditions (e.g. global warming [8]), as these toxins are normally not 

detected in Dutch shellfish. But in countries with a high occurrence of YTXs in their coastal 

waters and shellfish, the neuro-2a screening would result in many suspects. For these 

countries an extraction protocol should be developed in order to obtain two fractions from 

each sample, one containing the YTXs and one containing the other LMBs. Although 

chemically possible [3, 9], this is not as easily done, as preliminary experiments in our 

laboratory indicate that it requires another SPE column and the addition of acid, the latter 

leading to cytotoxic effects in the neuro-2a bioassay, also when neutralising the pH, as the 

sample extracts become too salty. However, compared with the MBA alone, the proposed 

strategy allows the detection of YTXs at levels lower than their MPL (3.75 mg kg-1) with 

the neuro-2a bioassay and the measurement of the actual toxin levels in the second step by 

LC-MS/MS confirmation. Therefore, closure of areas or withdrawal of seafood from the 

market will only happen when LC-MS/MS analysis confirms the presence of YTXs levels 

above the MPL and does so without the need to use animals. 

DTX-3 toxins are shellfish produced metabolites of OA, DTX-1 and DTX-2, i.e. esterified 

with various fatty acids [10]. DTX-3 has been reported in some areas, being even the most 

frequent form of OA and DTXs found in shellfish [5, 11]. In the official EURL LC-MS/MS 

method [12] these toxins are detected after an alkaline hydrolysis step of the fatty acids, 

performed in the crude methanol extract [13]. The lack of available naturally contaminated 

samples and DTX-3 standards have been the major drawbacks to assess this matter in the 

present thesis. However, pilot experiments in our lab indicated that the hydrolysis step 

would not affect the neuro-2a cells, as the pH could be neutralised afterwards with low 

amounts of HCl. Still this is an important step and should be included in the procedure that 

eventually will be validated. 

In chapter 5, a selected set of 35 samples tested previously in the MBA in Chile, where this 

animal test is still in use, was assessed with the neuro-2a bioassay and the EURL LC-
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MS/MS method. All samples that were positive in the MBA were also suspect in the neuro-

2a assay. Almost all suspect screened samples turned out to contain toxin amounts that 

explain the screening outcome and all the levels were well below the established MPLs. For 

enforcement purposes, the MBA alone would have resulted in 54% of false positives, while 

the combination of the neuro-2a bioassay with LC-MS/MS analysis did not result in such 

false positives. Most of the samples that were negative in the MBA, were also negative in 

the neuro-2a screening and none contained toxins levels above the established MPLs. 

Together showing that the combination of the neuro-2a bioassay for screening and LC-

MS/MS analysis for confirmation, is a good strategy to replace the MBA and protect 

consumers. 

It should be noticed however that from an analytical point of view, 5 samples could be 

regarded as falsely screened suspect in the neuro-2a bioassay, i.e. no toxins were detected 

by LC-MS/MS analysis. From these 5 samples, 3 also tested positive in the MBA and 2 

tested negative. In cases like this, the second bioassay proposed in the strategy can be put 

in practice in order to investigate if these samples might contain unknown toxins. A pilot 

experiment was therefore performed in which 4 of these samples were tested in the 

multiplex magnetic bead-based assay. All 4 showing a clear AZA/YTX profile (data not 

shown). This result might indicate that in a worst-case scenario these 4 neuro-2a suspect 

samples are true positives, 2 were missed by the MBA and all 4 missed by LC-MS/MS 

analysis. However, these samples were clams and some clams that were negative in the 

MBA and neuro-2a bioassay also resulted in a AZA/YTX profile. Most likely some clams 

lead to false positives in the MBA, neuro-2a bioassay, and the multiplex magnetic bead-

based assay. When looking at mussels only, the mouse MBA resulted in 67% false positives 

(16 out of 24), while the combination of the neuro-2a bioassay with LC-MS/MS analysis 

did not result in false positives. Of the 18 mussel samples that were screened as suspect in 

the neuro-2a bioassay, all contained toxins levels (YTX eq) that explain the bioassay 

outcome, and of the other 6 that were negative, none contained detectable toxin levels 

when analysed by LC-MS/MS. This strongly indicates that for the mussels, the combination 

of the neuro-2a bioassay with LC-MS/MS is superior to the MBA, and that animal free 

testing is possible. Moreover, blank mussels are also blank in the multiplex magnetic bead-

based assay (chapter 4). So, the whole strategy works well especially for mussel. 



Chapter 6 

151 
 

It could be argued that too many samples tested suspected in the neuro-2a bioassay and 

required follow-up testing, but then it is of importance to realise that the 35 samples from 

Chile were selected by a targeted approach and are not representative for all shellfish 

samples. These samples were selected because they were already known to test positive in 

the MBA, in order to test naturally contaminated samples that lead to positive outcomes in 

the MBA with the new testing strategy, i.e. the neuro-2a bioassay combined with LC-

MS/MS analysis for confirmation of suspect screened samples. In addition, the multiplex 

magnetic bead-based assay is used in case LC-MS/MS cannot explain the neuro-2a 

outcome. In the Dutch situation, the neuro-2a bioassay and LC-MS/MS were tested in 

parallel in 2017 on 110 mussel samples that were taken over the year. All samples were 

negative by LC-MS/MS and 108 also tested negative in the neuro-2a bioassay. As the 

response of the 2 suspect screened samples was close to the decision limit, follow-up was 

not considered necessary (data not shown). However, the outcomes with the clams 

demonstrated that further improvements and validation of all bioassays eliminating possible 

shellfish species specific matrix effects, are needed as it is known that different species 

contain different types of fatty acids that can lead to matrix effects [14, 15]. 

It should also be noticed that there are differences between the methods in the solvents 

used for sample extraction. While the extraction protocol for the MBA prescribes the use 

of acetone/diethyl ether [16, 17], the extraction for the neuro-2a assay is performed with 

methanol 100% v/v. For LC-MS/MS methanol 100% v/v is also used for the DSPs and 

methanol/water 80% v/v for PbTXs. Thus, it cannot be fully ruled out that these variations 

could contribute to the observed differences. However, this is not very likely, as for 

methanol it is known that all the DSP toxins are well extracted (validated) [18], while 

methanol/water is mainly used for the metabolites of the PbTXs [19], and these were not 

detected in the samples tested. 

6.3 Future challenges 

This thesis focused on presenting an in vitro alternative for the MBA for diarrhoeic marine 

biotoxins testing. However, other points of attention have been identified during this work. 

As a consequence, the work was broadened to the detection of all LMBs, e.g. including the 

PbTXs, and the development of new bioassays for the analysis of samples shown suspect 
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in the neuro-2a bioassay that could not be confirmed as being positive by LC-MS/MS 

analysis. To this end gene expression studies were used to select biomarkers for detection, 

but also to address the modes of action of the toxins and their toxicological equivalent 

factors, which are briefly discussed below. 

Toxicological equivalent factors (TEFs) are ratios between the toxicity of a toxin congener 

with respect to a reference compound in order to calculate the relative potency. TEFs have 

been developed in order to convert data from chemical analysis into levels of toxin potency 

that can be used to establish if a sample is safe or not. The most early and best example of 

the use of TEFs are the dioxins and PCBs [20]. Regarding marine biotoxins, TEFs are 

mainly established in the MBA based on effects in mice that are intraperitoneally (i.p.) 

injected with the toxins [21, 22]. As humans are mainly exposed to marine toxins by food 

or aerosols, the way of administration has been a topic for discussion and the relevance of 

the MBA for human risk assessment is reviewed extensively [21, 23, 24]. Our findings 

indicated that in vitro, OA is less potent than DTX-1, which has also been reported by others 

[25]. As absorption, metabolism and distribution are not considered in our model and for 

a large part also not in the mouse as these are i.p. injected, further research where these 

toxins are tested in additional in vitro models is needed, e.g. a human digestion model, and 

models that characterise human liver metabolism and intestinal uptake. Probably these 

models will eventually explain the observed differences between oral versus i.p. injection 

toxicities and explain why several marine biotoxins are so potent in in vitro tests or the MBA, 

but not known to cause human intoxications. Possible interaction and/or conversion of 

the toxins with the gut microbiota should be considered as well [26]. Moreover, other 

factors should be addressed, for instance the pre-consumption treatment of shellfish 

products, as the bio-accessibility or stability can vary depending on the treatment, e.g. 

cooking or steaming [27, 28]. 

In chapter 3, a whole genome gene expression analysis with intestinal human Caco-2 cells 

using arrays was performed to assess effects of OA, DTX-1 and AZA-1 on gene expression, 

both with the aim to envision pathways affected and to select markers for detection. Later, 

Caco-2 cells were also exposed to YTX and PTX-2, in order to select markers for detection. 

Chapter 3 discusses the pathways affected and possible modes of action and chapter 4 the 

development of a multiplex qRT-PCR method and a multiplex magnetic bead-based assay. 
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Although these newly developed methods were shown to work adequate and were used 

successfully on blank and contaminated mussel samples, the results were surprising as it 

turned out that YTX and AZA-1 elicited similar expression profiles for which we have no 

logical explanation. It is therefore recommended to repeat the gene expression analysis 

using the same experimental settings for exposure and analysis of the data. Moreover, it 

would be interesting to further explore the mode of action of YTX, as YTX is considered 

‘not toxic’, i.e. is not causing diarrhoea when administered orally [29]. Orally, YTX showed 

myocardiocyte alterations in mice  [30]. In addition, studies on YTX in vitro showed that it 

can cause various cytotoxic effects depending on the cell line studied, triggering for instance 

apoptosis and pathways indicating DNA damage and cell cycle impairment [31, 32], and 

ER stress among other effects [33]. It has even be suggested to investigate YTX as a new 

therapeutic tool against tumour proliferation [31]. 

As discussed in chapter 3, AZA-1 showed clear indication of upregulation of genes related 

with cholesterol biosynthesis, which is in line with earlier findings [7]. Our results also 

indicate that this toxin might affect pathways related to hypoxia and glycolysis. One could 

speculate that an inhibition of the pyruvate dehydrogenase complex (PHC) [34] causes 

effects on these pathways, as is indicated by the increase of the lactate enzymes observed 

in our results. This mode of action could be confirmed through measurement of lactate in 

the media of cells exposed to AZA-1, but also through the measurement of pyruvate and 

NADH [35]. The increase of NADH could be also a reason of the increased MTT activity 

[36, 37] which was also observed in our Caco-2 cells exposed to AZA, even at lower 

concentrations (chapter 3, figure 1). Moreover, it is noticed that both AZA-1 and YTX do 

not reduce the MTT-activity as much as the other LMBs (chapter 2). This is in line with the 

observations above for AZA-1 and the gene expression data that also indicates that AZA-

1 and YTX likely share a similar mode of action. 

6.4 Future perspectives 

The newly proposed strategy provides an alternative for the MBA to detect and identify 

both lipophilic and hydrophilic marine biotoxins, protecting human health and considering 

animal welfare at the same time. The fully proposed integrated strategy is shown in figure 

1. 
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The strategy consists of 3 phases. Phase 1 is a broad screening using the neuro-2a bioassay, 

with and/or without the addition of ouabain and veratridine (o/v). For the detection of 

domoic acid (DA), which is not detected by the neuro-2a bioassay [38], the addition of a 

dipstick in the phase 1 is suggested. Phase 2 is the confirmation and quantification of neuro-

2a suspect screened samples using official analytical methods. Phase 3 is only needed in 

case analytical methods fail to confirm suspect neuro-2a outcomes and consists on an 

effect-directed identification of unknown toxins in cases that a second in vitro cell-based 

bioassay, i.e. gene expression in Caco-2 cells for LMBs or a multi electrode array (MEA) 

assay for detection of hydrophilic toxins [38, 39] indicates the presence of a marine biotoxin 

as well. In cases where the second bioassay does not confirm the presence of a marine 

biotoxin, the neuro-2a suspect outcome is considered as a false positive screening result. 

Phase 1: broad screening 

Marine toxins can be separated in two main groups, i.e. hydrophilic and lipophilic marine 

biotoxins. Extraction methods based on these characteristics already lead to some degree 

of specificity. These characteristics are already well-known and used in the first step of the 

strategy and the protocol on how to perform the screening with the neuro-2a bioassay. For 

hydrophilic toxins, which are mainly PSP toxins (STX and analogues) and TTXs, the 

protocol for the neuro-2a bioassay includes the use of high concentrations of ouabain and 

veratridine (o/v), i.e. 0.3 mM and 0.03 mM respectively, in order to decrease MTT-activity 

to about 20%. Ouabain is a NA+/K+ ATPase pump blocker, interfering with the normal 

efflux of Na+ from and influx of K+ into the cell. Veratridine is a voltage-gated sodium 

channel (VGSC) opener [40]. The use of this o/v combination causes a hyperosmotic state 

of the neuro-2a cells that eventually will lead to cell death as measured by a clear decrease 

of the MTT-activity [2]. In “simple” words, the principle of the neuro-2a bioassay to detect 

the PSPs and TTXs, which are VGSC blockers, is as follows: the addition of o/v ‘kills’ the 

cells and the presence of STXs or TTXs in the samples will ‘rescue/prevent’ the cells from 

dying, i.e. restoring the ion balance by closing the channels previously opened by o/v. In 

other words: STXs and TTXs are VGSC blockers that counteract the effect of the VGSC 

opener veratridine. This effect has been widely studied and reviewed [41-43]. Previous 

results showed that the hydrophilic marine biotoxins TTX and STX can be detected in the 

neuro-2a assay with addition of o/v, in levels below their regulatory limits [38, 44, 45].  
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Figure 1. Strategy for the detection of all regulated marine biotoxins. 
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The EC50 obtained for STX was 9 nM, with a limit of detection (LOD) of 1nM [38]. 

Considering the extraction and concentration protocol used, this EC50 value would be 

equivalent to around 40 µg STX kg-1 shellfish meat (SM), being significantly lower than the 

regulatory limit for STXs, i.e. 800 µg STXeq kg-1 SM. For TTX, the EC50 obtained was 18 

nM [38], which theoretically would allow detection of about 100 µg TTX eq kg-1 SM. EFSA 

concluded that an amount lower than 44 µg TTX per kg SM is not expected to lead to 

adverse health effects in humans, assuming an average consumption of 400 g SM [46]. 

There is no official international or EU regulatory limit for TTX. So far, fish species from 

Tetraodontidae, Molidae, Diodontidae or Canthigasteridae (puffer, porcupine and toby fish) are 

not allowed to be placed on the EU market [47]. But in the Netherlands the safe level of 

44 µg TTX eq kg-1 SM proposed by EFSA is now being used. At the RIKILT laboratory, 

the protocol of extraction of hydrophilic marine biotoxins was adjusted, allowing the 

detection of 20 µg TTX eq kg-1 SM [44]. 

These results indicate that the neuro-2a bioassay is suited for a first broad screening for 

hydrophilic marine biotoxins. However, domoic acid (DA), the toxin responsible for 

amnesic shellfish poisoning, is not detected by the neuro-2a bioassay, because neuro-2a 

cells lack the NMDA receptor [48]. However, use of a commercially available ‘dipstick’ 

lateral flow device  for DA allows a simple and sensitive detection of this toxin in SM [49]. 

This dipstick is included in the first step to screen the sample extracts containing the 

hydrophilic marine biotoxins (figure 1). 

Regarding the extraction of the lipophilic marine biotoxins (LMBs) methanol is used for 

DSP toxins, AZAs and YTXs and methanol/water 80/20 (v/v) is used for extraction of 

PbTXs. As discussed in chapter 5, methanol will also work well for the PbTXs, and water 

was only added to improve the recovery of some PbTX metabolites. Methanol extracts with 

the LMBs can be tested in the neuro-2a bioassay with the addition of low concentrations 

of o/v, i.e. 0.13 mM and 0.013 mM respectively, in order to decrease the MTT-activity to 

about 80%. The principle behind the addition of o/v in low concentrations also for testing 

of the lipophilic LMBs is the same hyperosmotic state as described above for the 

hydrophilic LMBs, only in this case lower concentrations of o/v are used and a further 

decrease of the MTT activity instead of an increase is recorded. The neuro-2a allows the 

detection of all the regulated LMBs with a low concentration of o/v needed to detect the 



Chapter 6 

157 
 

PbTXs. Cells will be unstable because veratridine will open the VGSC and ouabain will 

keep the Na+/K+ ATPase pump blocked, while the presence of PbTXs will then 

continuously open the sodium channels and lead to cell death, as measured by a further 

decrease of the MTT activity. The other LMBs are able to decrease the MTT activity even 

without a low concentration of o/v. When a sample is considered suspect using the 

protocol for the detection of the LMBs and there are reasons to believe that this is due to 

the presence of PbTXs, e.g. samples coming from a geographical region where K. brevis is 

endemic, the neuro-2a bioassay screening should also be performed without the addition 

of O/V. When PbTXs are responsible for the reduced MTT activity in the presence of o/v, 

the test will be negative in the absence of o/v. However, in a first validation effort, it would 

be better to run both protocols in parallel. 

Phase 2: confirmation and quantification 

If a sample is not compliant, i.e. it is suspect in the neuro-2a bioassay or positive in the DA 

dipstick, the sample extract should be measured with the corresponding official EU method 

(figure 1). These European official methods are the EURL LC-MS/MS for lipophilic toxins 

[12], HPLC-UV for DA, and HPLC-FLD for PSP toxins [50, 51]. PbTXs are not regulated 

in Europe, but there is an LC-MS/MS method available, although is not official yet [52]. In 

case the presence of the LMB in the suspect screened sample is confirmed by the analytical 

methods and the toxins levels are quantified, decisions and necessary actions can be taken 

by the responsible (food safety) authorities. These actions can include closure of extraction 

and production areas or withdrawal of products from the market. The permitted LMB 

limits on which these risk management actions are based are defined in the European 

regulation or for none European countries follow e.g. the FAO guidelines (see table 4, 

chapter 1).  

Phase 3: effect directed identification 

When the lipophilic extract of a sample is considered suspect in the neuro-2a bioassay but 

the presence of LMBs cannot be confirmed by the EURL LC-MS/MS analytical method, 

the bioassay based on the expression of selected markers in exposed Caco-2 cells can be 

used to confirm the presence of an unknown LMB. Three different profiles can be 

envisioned, i.e. an OA/DTX, AZA/YTX and PTX profile (chapter 4). For PbTXs, the 
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neuro-2a bioassay can be repeated, but without the addition of low concentrations of O/V, 

when negative it now indicates the presence of an unknown PbTX. If the hydrophilic 

extract is suspect in the neuro-2a bioassay or positive on the DA LFD, but is not confirmed 

by HPLC-FLD or HPLC-UV, the multi electrode array (MEA) developed by Nicolas et al. 

is an option to confirm the presence of an unknown PSP [38]. Limitations of the MEA 

assay are the relatively high costs and that it is not a fully animal-free assay, as it uses primary 

rat cortical neurons. However, its use in efforts of identifying new emerging toxins, for 

instance in an outbreak, should be considered. When these “second” bioassays are negative, 

the suspect neuro-2a bioassay screening outcome is considered as a false positive. When 

the second bioassay indicates the presence of a yet unknown toxin, a fractionated effect-

directed approach can be used to identify the responsible toxin, i.e. an approach that has 

been used successfully for the identification of unknown steroids [53]. However, this can 

take enormous efforts and time generally not available when decision makers already have 

to anticipate on such outcomes, preferably without using the MBA. 

6.5 Enforcement purposes 

The work presented in this thesis aims to replace the MBA for screening shellfish samples 

on the presence of LMBs. For completeness, table 2 gives an overview of the regulatory 

limits and the EC50 limits for detection in the neuro-2a bioassay and the corresponding 

limits of detection (LOD) in the neuro-2a assay derived from these EC50 values for all 

regulated marine biotoxins. Table 2 shows that the neuro-2a derived LODs are close to the 

current regulations, even lower than the LODs for some while somewhat higher for others. 

Regarding the LMBs, especially for OA, DTX-2 and PTX-2 the LODs of the neuro-2a 

bioassay are still higher than the required regulatory limits. As discussed above, these toxins 

are a point of attention regarding validation, including testing standards, fortified and 

naturally contaminated samples and improvements have already been achieved, e.g. 

lowering the LODs in the neuro-2a bioassay by using more concentrated sample extracts 

[54]. Similar is valid for TTXs, where the LOD in the neuro-2a bioassay is lowered to 20 

µg TTX kg-1. 
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Table 2. Neuro-2a derived limit of detections 

Toxin Current limit (#) EC50 LOD Neuro-2a (3) 

OA 

DTX-1 

DTX-2 

PTX 

160 µg OA eq kg-1 

 

23 nM(1) 310 µg kg-1 

5.5 nM(1) 74 µg kg-1 

34.4 nM(1) 462 µg kg-1 

76.4 nM(1) 1090 µg kg-1 

AZA-1 

AZA-2 

AZA-3 

160 µg AZA-1 eq kg-1 

 

1.0 nM(1) 14 µg kg-1 

1.9 nM(1) 27 µg kg-1 

1.6 nM(1) 22 µg kg-1 

YTX 

hYTX 

3.75 mg YTX eq kg-1 

 

1.6 nM(1) 30 µg kg-1 

1.1 nM(1) 22 µg kg-1 

STX 800 µg STX eq kg-1 8.2 nM (2) 40 µg kg-1 

TTX 44 µg TTXeq kg-1 (4) 18 nM (2) 96 µg kg-1 

PbTX-3 

PbTX-9 

800 µg PbTX eq kg-1 (5) 

 

8 nM(2) 120 µg kg-1 

8.4 nM(2) 127 µg kg-1 

CTX 0.01 µg P-CTX eq kg-1 (6) 0.9 pM(2) 0.16 µg kg-1 

DA 20 mg DA kg-1 ND ND 
(1) Chapter 2; (2) Nicolas et al, 2014; (3) estimated based on EC50 values and expressed in µg kg-1; (4) EFSA 
proposed limit; (5) CODEX; (6) US limit, related with pacific ciguatoxin (P-CTX), Limit C-CTX is 0.1 µg C-
CTX eq kg-1 and it was not assessed by (2); (#) EU limits unless expressed otherwise. All expressed per kg 
of shellfish meat. ND: not determined, neuro-2a assay is not able to detect DA. 
 
 
Overall, one can say that the strategy presented here as an alternative for the MBA is 

promising. As discussed, it needs to be further improved and then properly and fully 

validated. This work contributed to the 3R principle of reducing, replacing and refining 

animal experiments, ultimately proposing a real option to fully replace the unethical and 

unspecific MBA, that is also known to produce false positives and false negatives. 

Improving the alternative detection methods will also affect local economies and quality of 

life of small fisher communities. Less false positives will lead to less unnecessary closures 

of extraction and production areas. Moreover, in an ideal situation where no false positives 

are found, i.e. only true positives, governments have to be careful regarding shellfish 

extraction management, maybe establishing extraction quotas, to assure that the harvest is 
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being done in a sustainable way, respecting the natural cycles of reproduction of shellfish 

species. 

As a final conclusion it can be stated that the results obtained and collected not only on 

lipophilic toxins but also on the hydrophilic toxins demonstrate that the proposed strategy 

will lead to a future where a complete animal free alterative testing strategy can replace the 

MBA. 
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Summary 

Marine biotoxins in fish and shellfish can cause a number of adverse health effects in 

consumers, such as diarrhoea, amnesia, and death by paralysis. Worldwide, there are 

monitoring programs for testing shellfish on a regular basis. In some countries, testing is 

performed by using the so-called mouse bioassay (MBA), an assay raising both ethical and 

practical concerns because of animal distress and shortcomings in respect to specificity. 

The MBA may result in both false negatives and false positives. A false negative does not 

protect the consumers as anticipated and the high amounts of false positives encountered 

when applying the MBA lead to unnecessary closures of extraction areas, damaging local 

economies. A full ban of the MBA or its total replacement by analytical chemical methods 

has failed because these detection methods are unable to detect all toxin analogues and 

newly emerging toxins and will thus result in false negatives by definition. To fully replace 

the MBA, there is a clear need for new functional animal-free in vitro assays with specific 

endpoints that are able to detect both the known and yet unknown marine biotoxins. 

In Europe a method based on LC-MS/MS has been developed as an alternative for the 

MBA and is now the reference method for lipophilic marine biotoxins (LMBs) and used in 

the routine monitoring. However, as outlined above safety is not fully guaranteed when 

relying only on such a method and, as a result, the MBA is still used for surveillance 

purposes. The aim of the work presented in this thesis was to develop a new strategy to 

fully replace the MBA for detecting LMBs without the risk of missing a contaminated 

sample that can lead to an intoxication. This was achieved by combining effect-based 

bioassays and a mass spectrometry analysis, including the official EU-RL method. 

Chapter 1 addresses the safety issues of the marine biotoxins produced by algae, corals and 

bacteria and summarises the current legislations and recommendations and the methods of 

detection. In Chapter 2, the neuro-2a bioassay, a cell-based in vitro bioassay that was 

previously shown to be sensitive for several hydrophilic and lipophilic marine biotoxins, 

was studied for its ability to screen seafood products for the presence of lipophilic marine 

biotoxins. All (regulated) LMBs and their analogues were tested, and the neuro-2a bioassay 

outcomes showed that all these LMBs could be detected at low concentrations. Next, blank 

and contaminated sample extracts were prepared and tested, showing that matrix effects 
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led to false positive screening outcomes. Therefore, the standard extraction procedure for 

LMBs with methanol was modified by introducing a clean-up step with n-hexane before 

further extraction on the SPE-column. First, the possible recovery losses due to this extra 

n-hexane wash step were assessed, showing that the n-hexane did not lead to recovery 

losses of the LMBs and that the matrix effect was successfully removed. Finally, the 

applicability of the neuro-2a bioassay was assessed by testing a broad range of shellfish 

samples contaminated with various LMBs, including diarrhoeic shellfish poisoning (DSP) 

toxins. The samples were also analysed by LC-MS/MS. Overall, the neuro-2a bioassay 

showed screening outcomes that were well in line with the toxin levels as determined by 

the EU-RL LC-MS/MS reference method. 

In chapter 3, a study with DNA microarrays was performed to explore the effects of two 

diarrhoeic and one azaspiracid shellfish toxin, okadaic acid (OA), dinophysistoxin-1 (DTX-

1) and azaspiracid-1 (AZA-1) respectively, on the whole genome mRNA expression of 

undifferentiated intestinal Caco-2 cells. In this chapter the whole genome mRNA 

expression was analysed in order to reveal the possible modes of action of these toxins and 

to select genes that can be used as potential markers in new additional bioassays for the 

detection and identification of these LMBs. It was observed that OA and DTX-1 induced 

almost identical effects on mRNA expression, which strongly indicates that OA and DTX-

1 induce similar toxic effects. Biological interpretation of the microarray data showed that 

both compounds induced endoplasmic reticulum (ER) stress, hypoxia, and unfolded 

protein response (UPR). The gene expression profile of AZA-1 resulted in a different 

expression profile and showed increased mRNA expression of genes involved in 

cholesterol synthesis and glycolysis, suggesting a different mode of action for this toxin. 

In chapter 4, twelve marker genes were selected from the previous study and five were used 

to develop a multiplex qRT-PCR method. This multiplex qRT-PCR method is able to 

detect three toxin profiles, i.e. a OA/DTX, AZA/YTX and PTX profile. The multiplex 

capacity of this qRT-PCR is limited to five genes. The use of a multiplex magnetic bead-

based assay was explored, allowing the use of all twelve selected marker genes and two 

reference genes. This 14-plex also resulted in clear profiles with sometimes higher induction 

factors as obtained by the 5-plex qRT-PCR method. As a result, contaminated samples 

could easily be distinguished from the blank samples, showing the expected profiles. These 
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multiplex assays can thus detect these LMBs in shellfish samples and the obtained profile 

indicates the toxin-type present. However, compared with the neuro-2a bioassay, this assay 

has been shown adequate so far for only a limited number of LMBs (not all LMBs have 

been tested), and it is more laborious, time consuming and expensive. It should be used in 

cases were suspect screening outcomes from the neuro-2a bioassay cannot be explained by 

the toxin levels as measured with the EU-RL LC-MS/MS reference method. 

In chapter 5, the neuro-2a bioassay as an initial screening assay was combined with the EU-

RL LC-MS/MS method for confirmation and it was investigated whether this combination 

is able to replace the MBA for the detection and quantification of LMBs. Samples that were 

tested previously in the MBA (in Chile) were used. It turned out that all samples that tested 

positive in the MBA were also suspect in the neuro-2a bioassay and most of these samples 

were confirmed to be positive for the presence of LMBs by LC-MS/MS analysis. The 

results confirm that the combination of the neuro-2a bioassay for screening and the EU-

RL LC-MS/MS method for confirmation, is a promising alternative for the unethical MBA. 

The data even strongly indicated that the MBA alone probably led to false positives and the 

unnecessary closure of extraction areas or withdrawal of products from the market, a 

problem not encountered when using the neuro-2a assay in combination with LC-MS/MS. 

In chapter 6, a fully integrated testing strategy was presented for replacing the MBA, 

enabling the detection of the hydrophilic marine biotoxins. The steps and methods are 

discussed, and some points of attention and further developments required are addressed. 

Taking all together it is concluded that the proposed strategy contributes to a future with a 

complete animal free alterative testing strategy replacing the MBA. 



 

Annex 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 

Curriculum Vitae 

List of Publications 

Overview completed activities 

 

 



Annex 

170 

Words from the author (Acknowledgements) 
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accent. Seven years later, they would be my paranymphs in my PhD defence. Wait. PhD? I 
am too old for a PhD, no way I will do one! I said to my friend Andres. Wrong again.  

My idea was to get a master thesis related with veterinary residues (because yes, I am a vet), 
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