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Abstract 

A growing body of evidence indicates regular physical activity benefits older adults’ 

cognitive functioning, particularly when a high level of cognitive control is required. Recent 

research has pointed to improved cerebrovascular function as one mechanism through which 

such benefits might arise. This study built on previous research by investigating in 51 healthy 

older adults aged 60 to 72 years relationships between habitual physical activity, 

cerebrovascular function (indicated by resting cerebral blood flow velocity in the middle 

cerebral artery [n = 42], and its responsiveness to hypercapnia [n = 26] and hypocapnia [n = 

25]), and cognitive control (inhibition and switching). Linear regression analyses showed 

moderate positive associations between physical activity and inhibitory control, but not 

                                                           
 This research was supported by Brain Research New Zealand. The authors thank Andrew 

Webb and Jared Laverty for assisting with computer programming. 



EXERCISE, CEREBROVASCULAR FUNCTION, AND COGNITION 2 
 

cerebrovascular function. There were also no significant relationships between the 

cerebrovascular measures and cognitive control. These results indicate that regular 

engagement in physical activity is associated with superior inhibitory control in older 

adulthood, but cerebrovascular function was not found to explain those relationships. Taken 

together, the current findings reinforce reports of positive links between habitual physical 

activity and cognition in healthy older adults, but also signal that interrelationships with 

cerebrovascular function may be more complex than currently indicated by the literature, 

necessitating further research to elucidate the role cerebrovascular function might play in 

accounting for physical activity-cognition links in healthy older adults.  

 

Keywords: ageing; blood flow; cognition; exercise; transcranial Doppler 

 

A large body of research points to physical activity as a simple lifestyle behaviour that 

might help to promote older adults’ brain health and functioning. For example, cross-

sectional, longitudinal, and intervention evidence shows that habitual physical activity can 

benefit older adults’ cognitive functioning and the underlying neural structures that support 

such functioning (for reviews, see Bherer, Erickson, & Liu-Ambrose, 2013; Carvalho, Rea, 

Parimon, & Cusack, 2014; Guiney & Machado, 2013; Jedrziewski, Lee, & Trojanowski, 

2007; Smith, Potter, McLaren, & Blumenthal, 2013). Some studies also indicate that habitual 

physical activity might have greater benefits for higher-level cognitive functions that decline 

disproportionately with age (Benedict et al., 2013; Bixby et al., 2007; Clark, Parisi, Kuo, & 

Carlson, 2016; Colcombe & Kramer, 2003; Frederiksen et al., 2015). These promising 

findings have led to the identification of several putative mechanisms that may underlie the 

benefits of physical activity for cognition, including improved cerebrovascular functioning 

(for reviews, see Barnes, 2015; Hötting & Röder, 2013; Stillman, Cohen, Lehman, & 

Erickson, 2016). Research indicates that habitual physical activity could benefit 
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cerebrovascular functioning through a range of physiological pathways (Bolduc, Thorin-

Trescases, & Thorin, 2013; Jackson et al., 2016), and superior cerebrovascular functioning is 

in turn likely to benefit cognitive functioning as it supports more efficient delivery of oxygen 

and nutrients to the brain via the regulation of cerebral blood flow (CBF; discussed in 

Leithner & Royl, 2014). Thus, the purpose of the current study was to consider the 

interrelationship between physical activity habits, cerebrovascular functioning, and cognition 

in older adults, in an effort to shed further light on whether cerebrovascular functioning could 

be an important factor underlying physical activity-cognition links in this age group. Note 

that, in this article, ‘habitual physical activity’ refers to the broad concept of engaging in 

physical activity or exercise on a regular basis, which researchers can measure several ways 

but often index with aerobic fitness, self-reported physical activity, or both. 

Evidence that habitual physical activity benefits cerebrovascular functioning comes 

from both animal and human research. In middle-aged animals, aerobic exercise increases 

production of vascular growth factors (Latimer et al., 2011) and promotes angiogenesis, both 

of which support optimal cerebrovascular functioning (reviewed in Barnes, 2015). In healthy 

older adult humans, researchers have found positive associations between indices of habitual 

physical activity (aerobic fitness, self-reported physical activity, or both) and cerebrovascular 

function. Compared to their less fit and inactive counterparts, aerobically fit and highly active 

older adults had higher resting CBF velocity (Ainslie et al., 2008; Bailey et al., 2013; Brown 

et al., 2010) and greater hypercapnic responsiveness (Bailey et al., 2013; Brown et al., 2010). 

Other CBF regulatory mechanisms have also been linked to fitness. For example, older adults 

with higher fitness were better able to maintain cerebral perfusion during a physiological 

challenge designed to lower brain perfusion pressure (via graded lower body negative 

pressure), indicating that a physically active lifestyle may be associated with better cerebral 

autoregulation (Formes, Zhang, Tierney, Schaller, & Shi, 2010). Importantly, these cross-

sectional findings converge with intervention studies showing that engagement in aerobic 
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exercise programmes can increase hypercapnic responsiveness in healthy older adults 

(Murrell et al., 2013) and stroke patients (Ivey, Ryan, Hafer-Macko, & Macko, 2011). 

 There is also evidence from ageing and dementia studies that better cerebrovascular 

functioning supports more effective cognitive functioning. Those studies often utilise 

Transcranial Doppler ultrasound, which is a noninvasive and inexpensive technique that has 

high temporal resolution and indexes cerebrovascular function by estimating resting CBF 

velocity and/or changes in CBF velocity in response to changes in arterial CO2 (Keage et al., 

2012; Willie et al., 2011). Higher resting CBF velocity and greater responsiveness to 

increases in CO2 (‘hypercapnic responsiveness’) reflect better functioning (Barnes, 2015; 

Davenport, Hogan, Eskes, Longman, & Poulin, 2012), and both indicators decline with age 

(Bailey et al., 2013; Flück et al., 2014; Lu et al., 2011) and neurological disease (den 

Abeelen, Lagro, van Beek, & Claassen, 2014; Vicenzini et al., 2007). In addition, low CBF 

velocity and hypercapnic responsiveness are associated with increased risk for future 

cognitive decline (Viticchi et al., 2012). Greater responsiveness to decreased arterial CO2 

(‘hypocapnic responsiveness’) could also be considered an indicator of superior 

cerebrovascular functioning, but the balance of research to date indicates that hypocapnic 

responsiveness is not adversely affected by adult ageing (Jaruchart, Suwanwela, Tanaka, & 

Suksom, 2016) or neurological disease (den Abeelen et al., 2014; Hanby, Panerai, Robinson, 

& Haunton, 2017; Vicenzini et al., 2007). 

In sum, research to date indicates three relevant links: (i) habitual physical activity is 

linked to superior cognitive functioning; (ii) habitual physical activity is linked to superior 

cerebrovascular functioning; and (iii) cerebrovascular functioning supports cognition, at least 

as evidenced by ageing and dementia research (for a summary of the theoretical links, see 

dashed arrows in Figure 1). Together, these interrelationships support the hypothesis that 

improved cerebrovascular functioning could be one mechanism through which habitual 

physical activity benefits cognitive functioning. However, only a handful of studies have 
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examined all three links in the same sample with the aim of testing that hypothesis. Two of 

those studies, which were conducted with older adults, reported significant interrelationships 

between aerobic fitness, aspects of cerebrovascular function, and overall cognitive 

functioning (Brown et al., 2010; Gill et al., 2015). Brown et al. (2010) also found that some 

indicators of cerebrovascular function at least partially mediated the relationship between 

fitness and cognition. Alongside their fitness analyses, Gill et al. (2015) assessed 

interrelationships with self-reported past-year and lifetime physical activity, but found no 

significant links with cerebrovascular function. These findings indicate that while some 

indices of cerebrovascular function help explain the positive link between fitness and 

cognition, they might not account for the link between physical activity and cognition. 

However, this conclusion contrasts with a recent young adult study, which found that 

cerebrovascular responsiveness mediated the link between self-reported physical activity and 

cognitive control (Guiney, Lucas, Cotter, & Machado, 2015).  

These apparently contrasting results could be attributed to the inclusion of different 

populations (young versus older adults) or to the use of different measures to represent the 

constructs of interest. To address this issue, we sought to repeat our previous young adult 

study (Guiney et al., 2015) in older adults using the same method and procedures. In line with 

that earlier work, habitual physical activity was indexed as the number of days per week 

engaged in at least 30 min moderate or 15 min vigorous activity. Cognitive functioning was 

indexed with the same battery of computerised cognitive tests, which were designed to assess 

cognitive control (inhibition and switching). We focused on specific cognitive processes 

rather than a global measure of cognitive functioning as evidence indicates that habitual 

physical activity confers the greatest benefits for processes disproportionately affected by age 

(e.g., Benedict et al., 2013). Importantly, the tests used in the current study have been shown 

to be sensitive to healthy ageing (Bierre, Lucas, Guiney, Cotter, & Machado, 2017; Brett & 

Machado, 2017). As in our previous young adult study, cerebrovascular function was indexed 
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by resting CBF velocity and hypercapnic and hypocapnic responsiveness, with all three 

indices measured via transcranial Doppler ultrasound. Based on previous physical activity-

cognition research (e.g., Bixby et al., 2007; Clark et al., 2016), we expected to find positive 

associations between habitual physical activity and performance on tasks that tap cognitive 

control. The main novel question investigated here was whether, as in young adults, indices 

of cerebrovascular function underlie those links. 

 

 

 

Method 

Participants 

Fifty-two community-dwelling older adults were recruited through notices in a 

community newspaper in Dunedin, New Zealand. Participants were included if they: were 

aged at least 60 years; had no history of, and were not taking any medications for, 

psychiatric, neurological, or central nervous system conditions; had no history of 

cerebrovascular disease; were non-smokers; and had normal to corrected-to-normal vision. 

After attending the laboratory session, participants were excluded from analysis if they 

scored below 24 on the Mini-Mental State Examination (MMSE; Folstein, Folstein, & 

McHugh, 1975), indicating possible dementia (n = 1). Table 1 summarises the descriptive 

statistics for the final sample of 51 participants (31 females). 

Procedure  

Summary 

The University of Otago Human Ethics Committee approved this study (reference: 

10/242). All participants provided informed written consent and reported their sex, date of 

birth, and years of education before completing paper-based versions of the MMSE, Beck 

Depression Inventory (BDI-II; Beck, Steer, & Brown, 1996), Pittsburgh Sleep Quality Index 
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(PSQI; Buysse, Reynolds, Monk, Berman, & Kupfer, 1989), and New Zealand Physical 

Activities Questionnaire - Short Form (NZPAQ-SF; McLean & Tobias, 2004), which is the 

New Zealand version of the reliable and widely used International Physical Activities 

Questionnaire (IPAQ-SF; Craig et al., 2003). Height and mass were then measured, followed 

by cognitive and cerebrovascular testing. Cognitive testing always preceded cerebrovascular 

testing since hypercapnia can affect neural activity (Xu et al., 2011), and therefore could 

influence cognitive functioning. The procedure (summarised in Figure 2) lasted between 1.5 

and 2 hours, and participants were reimbursed NZ$20–25.  

Initial measures 

The MMSE was used to screen participants for possible dementia. The BDI-II was 

included as a validated measure of depressive symptoms (Beck et al., 1996) and the PSQI of 

sleep quality (Beaudreau et al., 2012; Spira et al., 2012). BMI was calculated in kg/m
2
, and 

assessed according to the World Health Organization guidelines (World Health Organization, 

2016). Habitual physical activity, derived from the NZPAQ-SF, was calculated as the number 

of days per week participants reported engaging in at least 30 min of moderate-equivalent 

physical activity (30 min moderate activity, including brisk walking, or 15 min vigorous 

activity). To assist recall, the NZPAQ-SF prompts participants to separately report the 

number of days (out of the past 7) and amount of time per day spent engaged in brisk 

walking, moderate intensity and vigorous intensity activity for at least 10 min at a time. 

Showcards with examples of moderate and vigorous activities were used to assist with the 

categorisation of physical activity intensity.   

 Cognitive testing 

Participants sat in a dimly lit room while completing three computer-based reaction time 

(RT) tests of incremental difficulty: Pro, Anti, and then Pro/Anti. A chin rest (Applied 

Science Laboratories, Bedford, MA) maintained a screen viewing distance of 57 cm. All 

stimuli were presented against a black background using MATLAB (The Mathworks, Natick, 
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MA) and the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). At the beginning of each 

trial, a 0.3º white fixation dot appeared in the centre of the screen. Following a variable 

interval of 400, 600, 800, 1,000, or 1,200 ms, a 2º square, which was either red or green, 

appeared 8º to the left or right of the fixation dot (measured centre to centre). Using a 

DirectIN two-button response box (Empirisoft, New York, NY), the task was to press the 

button on the same side as green squares and the opposite side of red squares as quickly as 

possible without compromising accuracy. In the Pro task, only green squares appeared. In the 

Anti task, only red squares appeared. In the Pro/Anti task, the square could be either red or 

green, thus successful performance required participants to switch unpredictably between 

pressing the button on the same or opposite side of the square. Responses were correct if the 

appropriate button was pressed between 100 and 1,500 ms after the square appeared, 

otherwise a 900 Hz error tone sounded for 300 ms. Practice trials (four for Pro; six for Anti 

and Pro/Anti) always preceded the test trials (20 for Pro and Anti; 40 for Pro/Anti). Fixation 

duration, square side, and square colour (Pro/Anti only) were randomly selected at the start of 

each trial, with the constraint that each combination of conditions had to occur an equal 

number of times across the test trials for each task. For Pro/Anti, these global probability 

controls did not adjust for the number of switch trials (a Pro trial preceded by an Anti trial, or 

vice versa) in each participant’s randomly-generated sequence, thus some participants would 

have had more switch trials than others, potentially influencing performance. To address this 

issue, we included the number of switch trials a participant received as a possible covariate 

when considering Pro/Anti performance.  

 Cerebrovascular testing 

All cardiorespiratory equipment was calibrated before data collection in each session. To 

assess cerebrovascular function, transcranial Doppler ultrasound measured blood flow 

velocity through the middle cerebral artery (MCAv; for a review of this technique see Willie 

et al., 2011). To insonate the MCA, the experimenter secured a 2-MHz transcranial Doppler 



EXERCISE, CEREBROVASCULAR FUNCTION, AND COGNITION 9 
 

ultrasound probe (DWL, Compumedics, Singen, Germany) to the right-hand side of the 

participant’s head, just above the zygomatic arch, using a plastic headband. Insonation of the 

MCA was confirmed using established criteria, including the position and orientation of the 

probe, insonation depth, and direction of blood flow in relation to the probe (Lupetin, Davis, 

Beckman, & Dash, 1995; Willie et al., 2011). Following insonation, participants were fitted 

with a leak-free face mask attached to a two-way non-rebreathing valve (Hans Rudolph 7900 

series, Kansas City, MO). A rapidly responding gas analyser (Model CD-3A, AEI 

Technologies, Pittsburgh, PA) sampled the partial pressures of end-tidal CO2 (PETCO2, a 

robust proxy for arterial CO2; McSwain et al., 2010) and O2 (PETO2; mm Hg) from the face 

mask. A heated pneumotachograph (Hans Rudolph 3813 series, Kansas City, MO), which 

measured ventilation, was attached to the outflow of the non-rebreathing valve. All data were 

recorded continuously at 200 Hz by an analogue-to-digital converter (Powerlab/16SP 

ML795, ADInstruments, Dunedin, New Zealand) linked with a computer running 

physiological data analysis software (Chart 7.1; ADInstruments, Dunedin, New Zealand). 

The recording of data for analysis commenced only once the cerebrovascular and respiratory 

measures were stable and displayed the expected pattern and magnitude for each variable (as 

viewed in Chart 7.1).  

 Participants sat quietly while MCAv was measured during normocapnia (i.e., normal 

breathing of room air), hypercapnia, and then hypocapnia (volitional hyperventilation). The 

normocapnic phase lasted 2 min, after which participants breathed a hypercapnic gas mixture 

(5% CO2, 21% O2, and a balance of N2) for 4 min from a Douglas bag attached to the intake 

of the non-rebreathing valve. At the end of the hypercapnia period, participants resumed 

breathing room air for 2 min to allow all respiratory and cerebrovascular measures to return 

to normal levels. Finally, to induce hypocapnia, participants were instructed to breathe faster 

and more deeply, with the goal being to achieve and then maintain for 2 min a reduction in 

PETCO2 of the same magnitude as the increase observed during hypercapnia. To this end, the 
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experimenter periodically provided feedback about breathing rate and depth, based on real-

time PETCO2 measures (see Figure 2). Steady-state values for each phase (normocapnia, 

hypercapnia, hypocapnia) were calculated by averaging across the last minute of each phase. 

Analysis 

All analyses were conducted using STATA/IC 14.1 (STATACorp LP, Texas). 

Physical activity frequency (the number of days per week of ≥ 30 min of moderate-equivalent 

intensity activity) represented habitual physical activity. The four measures of cognitive 

control were based on accuracy-adjusted RTs (‘acc-adj RTs’), calculated by dividing median 

RTs on correct trials by the proportion of correct responses (Chambers, Stokes, & Mattingley, 

2004; Townsend & Ashby, 1983): Anti and Pro/Anti acc-adj RTs, inhibition cost (Anti minus 

Pro acc-adj RT, to remove visuomotor components of the task to help isolate inhibitory 

performance) and switching cost (Pro/Anti minus Anti acc-adj RT to remove visuomotor and 

inhibitory components of the task to help isolate switching performance). Note that errors 

increase the value of acc-adj RTs, which can be interpreted in the same way as RTs (i.e., 

larger values indicate poorer performance). There were three measures of cerebrovascular 

function: MCAv under normocapnic resting conditions (MCAvnormocapnia); change in blood 

flow velocity in response to increased CO2, induced by inspiration of the gas mixture 

(hypercapnic responsiveness); and change in blood flow velocity in response to decreased 

CO2, induced by hyperventilation (hypocapnic responsiveness). As per Murrell et al. (2013) 

and Guiney et al. (2015), hypercapnic and hypocapnic responsiveness were calculated as the 

percentage change in MCAv from MCAvnormocapnia per unit (mm Hg) change in PETCO2 

observed under each condition:  

[(MCAv[condition] – MCAvnormocapnia) / MCAvnormocapnia] * 100 

         PETCO2[condition] – PETCO2normocapnia   
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Pairwise Pearson correlations were computed first to test for associations between 

habitual physical activity, cognitive control, and cerebrovascular function, and to identify 

significant covariates. Age, sex, education, depressive symptoms, sleep quality, and body 

mass index (BMI) were considered potential covariates, given past evidence of 

interrelationships with habitual physical activity and cognitive performance (Lindwall, 

Larsman, & Hagger, 2011; Rock, Roiser, Riedel, & Blackwell, 2014; Sutter, Zollig, 

Allemand, & Martin, 2012). As discussed in the ‘Cognitive testing’ subsection, when 

assessing relationships with Pro/Anti performance the number of switch trials a person 

received was also considered a possible covariate. Significant correlations (p < .05) were then 

subjected to separate linear regression analyses to further examine the interrelationships, after 

adjusting for any identified covariates. Given that cerebrovascular data could not be obtained 

from all participants, t tests (for continuous variables) and chi-squared tests (for categorical 

variables) were used to assess potential differences in participant characteristics, physical 

activity levels, and cognitive performance between those with missing compared to non-

missing cerebrovascular data (see Table S1 in the supplementary materials).  

Calculations in G*Power (Faul, Erdfelder, Buchner, & Lang, 2009) indicated that the 

current study had 80% power to detect moderate-sized correlations (r ≥ .39) between habitual 

physical activity and cognitive performance. This expected effect size is comparable to those 

observed in our previous young adult study that used the same methods and procedures 

(Guiney et al., 2015). Missing cerebrovascular data for some participants meant 80% power 

to detect correlations with resting MCAv of r ≥ .42 and responsiveness of r ≥ .53, indicating 

adequate power if one could expect effect sizes of the magnitude reported in similar 

cerebrovascular studies with older adults (e.g., Bailey et al., 2013; Barnes, Taylor, Kluck, 

Johnson, & Joyner, 2013; Gill et al., 2015).  

Results 

Descriptive statistics 
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Table 1 summarises the descriptive statistics for each measure. BDI-II scores 

indicated that 94% of participants had minimal depressive symptoms (scores 0–13) and 6% 

had mild symptoms (scores 14–19; Beck et al., 1996). PSQI scores indicated that 63% of the 

sample had good sleep quality (score ≤ 5); BMI values indicated that 29% of participants 

were normal weight (18.5–24.99 kg/m
2
), 41% were overweight (25.0–29.99 kg/m

2
), and 29% 

were obese (> 30 kg/m
2
). One participant was excluded from the Pro/Anti analyses as their 

accuracy on that task (43%) was below chance. Nine participants did not contribute any 

cerebrovascular data due to inability to insonate the MCA (n = 8) or participant refusal (n = 

1). A further 16 did not complete the hypercapnia condition due to unavailability of the 

hypercapnic gas mixture (n = 10) or technical problems (n = 6), and one further participant 

declined participation in the hypocapnia condition. Importantly, there were no significant 

differences between those who had missing versus non-missing responsiveness data, except 

that those with missing data tended to be older (see Table S1).  

For the cognitive tasks, t tests confirmed the expected slowing of RTs and reduction 

in accuracy as task difficulty increased. Compared to Pro, Anti performance was slower, t(50) 

= -12.02, d = -1.81, p < .001, and less accurate, t(50) = 3.90, d = 0.75, p < .001; compared to 

Anti, Pro/Anti performance was slower, t(49) = -19.27, d = -2.82, p < .001, and less accurate, 

t(49) = 4.29, d = 0.79, p < .001. Analysis of the randomly generated Pro/Anti task trial 

sequences showed considerable variation in the number of switch trials across participants 

(14 to 28 switches), but since the number of switch trials was not significantly associated 

with Pro/Anti performance (r = .21, p = .152) or switching costs (r = -.01, p = .963), it was 

excluded from further analysis.  

Physical activity and cognitive control  

The initial correlation analyses indicated that habitual physical activity was 

moderately associated with better Anti performance and smaller inhibition costs (r = -.38 and 

p = .006 in both cases), but there were no relationships evident with Pro/Anti performance (p 
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= .183) or switching costs (p = .665). Worse sleep quality was, as expected, associated with 

poorer inhibitory control (Anti performance, r = .28, p = .044; inhibition costs, r = .28, p = 

.050), but PSQI scores were not considered potential confounders as they were not related to 

physical activity (p = .934). No other covariates were identified (but note that alternative 

analysis approaches using grouped physical activity levels and/or forced entry of all 

covariates produced the same pattern of results). In follow-up regression analyses, habitual 

physical activity explained 15% of the variance in Anti performance and 14% in inhibition 

costs (see Figure 1). The residuals for both regressions were not normally distributed, but 

subsequent analyses with normalised (via square root transformations) data produced similar 

results, albeit with a slightly weaker relationship between physical activity and inhibition 

costs (p = .012). 

 

 

Other relationships  

Contrary to expectations, habitual physical activity was not significantly related to 

any of the cerebrovascular measures (MCAv, p = .916; hypercapnic responsiveness, p = .614; 

hypocapnic responsiveness, p = .988), and there were no significant relationships between the 

cerebrovascular measures and cognitive performance (all ps > .1; see Table S2). Alternative 

analyses with grouped independent variables and/or forced entry of all covariates again 

produced the same pattern of results. 

Discussion 

The current study investigated in healthy older adults the relationships between 

habitual physical activity, cerebrovascular function, and cognitive control, with the aim of 

shedding light on whether cerebrovascular function plays a role in explaining physical 

activity-cognition links in that age group. The basic pattern of cognitive performance aligned 

with past older adult studies that used the same tasks (Bierre et al., 2017; Brett & Machado, 
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2017), and although there were some missing cerebrovascular data, the values for 

MCAvnormocapnia, hypercapnic responsiveness, and hypocapnic responsiveness were similar to 

those observed in comparable studies (Ainslie et al., 2008; Lucas et al., 2012; Murrell et al., 

2013). Importantly, the only difference between participants with missing versus non-missing 

cerebrovascular data was that they tended to be older, which is consistent with the fact that 

the temporal window narrows with age, making insonation of the MCA more difficult 

(discussed in Willie et al., 2011). The main regression results showed that the more days per 

week older adults performed at least 30 minutes of moderate-equivalent intensity physical 

activity, the more effective their inhibitory control. However, there were no significant links 

observed between habitual physical activity and cerebrovascular function, or between 

cerebrovascular and cognitive functioning. These findings show the expected modest positive 

links between habitual physical activity and aspects of higher-order cognitive functioning in 

older adulthood, but in contrast to previous findings in young adults (Guiney et al., 2015), 

those benefits were not reliably explained by better cerebrovascular function. The following 

sections discuss each of the investigated links separately before integrating the findings and 

making recommendations for future research. 

Physical activity and cognitive control 

 The current study assessed two aspects of cognitive control: inhibition and switching. 

Consistent with previous research in older adults (for a review, see Guiney & Machado, 

2013), more frequent physical activity was associated with superior inhibitory control. In 

contrast, the association between physical activity and switching costs was very weak (r = 

.06) and not significant, indicating little or no meaningful link between the two – a finding 

that aligns with Fanning et al. (2016), but not others (Dupuy et al., 2015; Johnson et al., 

2016). However, those latter studies did not isolate the specific effect of switching from other 

components of the task, leaving open the possibility that the benefits reflected functions other 

than switching ability. Importantly, our finding that physical activity was associated with 
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benefits for inhibitory control but not switching aligns with our previous work in young 

adults (Cameron, Lucas, & Machado, 2015; Guiney et al., 2015).  

The physical activity-cognition links reported here are important as they indicate that 

more frequent physical activity may help support more effective performance on everyday 

tasks that require inhibiting a prepotent response and instead performing a goal-directed 

action (e.g., exercising self-control, ignoring distractors; Diamond, 2013). Although the 

cross-sectional design of the current study means that neither causation nor the direction of 

the effects can be inferred, the observation of a positive link between physical activity and 

cognition aligns with intervention studies showing that exercise engagement improves older 

adults’ cognitive performance (e.g., Colcombe et al., 2006; Fanning et al., 2016). Regarding 

the direction of the effect, longitudinal evidence shows that better cognitive functioning leads 

people to be more physically active (Belsky et al., 2015), but also that relationships between 

habitual physical activity and cognition are bidirectional (Daly, McMinn, & Allan, 2014).  

Physical activity and cerebrovascular function 

Only very weak nonsignificant associations between physical activity and 

cerebrovascular function were observed in the current study (r < .1 for all measures). These 

findings align with Gill et al. (2015), who reported no significant links with self-reported 

current and lifetime physical activity, but they appear to be inconsistent with other work in 

older adults (Ainslie et al., 2008; Bailey et al., 2013; Tarumi et al., 2015). Note though that 

those studies tested groups of participants at either end of the physical activity scale (e.g., 

endurance athletes versus sedentary individuals in Ainslie et al., 2008), and it may be that 

significant differences in cerebrovascular function emerge only when comparing highly 

active older adults to their sedentary counterparts due to threshold effects or the higher 

statistical power associated with more homogeneous groups. Moreover, as indicated by a 

recent study in young adults, it may be that evidence of superior cerebrovascular function in 
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more moderately-active individuals emerges only when the cerebrovascular system is 

challenged (e.g., during aerobic exercise; Brugniaux, Marley, Hodson, New, & Bailey, 2014).  

Having said that, the absence of any notable habitual physical activity-cerebrovascular 

function links also contrasts with previous research in older adults that found positive linear 

relationships between aerobic fitness and measures of resting CBF velocity (Bailey et al., 

2013; Gill et al., 2015) or cerebrovascular responsiveness (Bailey et al., 2013; Barnes et al., 

2013; Gauthier et al., 2015). One explanation for these apparent discrepancies arises from the 

notion that aerobic fitness and physical activity represent only partially overlapping 

constructs that may influence cerebrovascular function through different pathways. Both 

measures generally reflect physical activity engagement, but aerobic fitness is also influenced 

by other factors. For example, genetic factors can account for up to 50% of the variation in 

fitness (Bouchard et al., 1998), and there is wide inter-individual variation in the degree to 

which fitness responds to changes in physical activity (Bouchard & Rankinen, 2001). Thus, it 

is possible that the fitness-cerebrovascular links observed in previous research were driven by 

genetic or other individual-level factors, rather than activity engagement per se. Alternatively, 

it may be that objective indicators of habitual physical activity (of which aerobic fitness is 

one) produce more valid results than self-reported data (Tucker, Welk, & Beyler, 2011), 

particularly in older adults whose recall abilities may have declined with age (Khan, Martin-

Montanez, Navarro-Lobato, & Muly, 2014). While the observation of significant physical 

activity-cognition relationships in this study bolsters confidence in the self-report measure 

used, it is nevertheless possible that reporting inaccuracies introduced sufficient error to mask 

physical activity-cerebrovascular links. Future research could improve on the current design 

by including objective measures of habitual physical activity (e.g., via accelerometers). 

A further possible explanation for the notably weak links between physical activity 

and cerebrovascular function stems from the inability of transcranial Doppler to take into 

account changes in vessel diameter (discussed in Giller, 2003). With small changes in 
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diameter, changes in velocity approximate those in flow. However, as the change in diameter 

increases, changes in velocity begin to underestimate those in flow, with the discrepancy 

between the two measures becoming disproportionately greater (discussed in Hoiland & 

Ainslie, 2016). One might therefore hypothesise that we did not see relationships between 

physical activity and cerebrovascular responsiveness (as measured by changes in MCAv) 

because CO2-induced changes in MCA diameter were greater in more active participants 

(possibly due to reduced arterial stiffness), which led to underestimation of responsiveness 

relative to less active participants. If so, these differential changes in vessel diameter could 

have masked physical activity-related differences in responsiveness when measured solely by 

MCAv.  

However, this account seems less plausible in the context of several points. First, 

other studies that used the same transcranial Doppler techniques observed significant habitual 

physical activity-cerebrovascular relationships in the expected direction (e.g., Bailey et al., 

2013; Barnes et al., 2013). Second, while transcranial Doppler has been shown to 

underestimate cerebrovascular responsiveness in young adults (Coverdale, Gati, Opalevych, 

Perrotta, & Shoemaker, 2014), recent work in older adults showed that estimates of 

responsiveness were similar when measured with and without adjustments for observed 

changes in vessel diameter (Coverdale, Badrov, & Shoemaker, 2017). Finally, despite some 

contention in the field regarding whether or not vessel diameter remains constant during tests 

of cerebrovascular responsiveness (Brothers & Zhang, 2016; Hoiland & Ainslie, 2016), there 

is broad agreement that in the context of relatively small changes in arterial CO2 (as in the 

current study), transcranial Doppler provides valid estimates of cerebrovascular function 

(Ainslie & Hoiland, 2014). Nevertheless, further work is needed to better understand the 

impact of the limitations of transcranial Doppler. Specifically, research is needed to compare 

it with techniques that directly measure flow (e.g., Duplex Doppler or MRI arterial spin 

labelling) or index haemoglobin content in the microvasculature (e.g., near-infrared 
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spectroscopy or MRI-BOLD). Such multi-modal approaches will advance our understanding 

of how physical activity influences cerebrovascular health and the corresponding effect on 

brain function. 

Cerebrovascular function and cognitive control  

Expected links between cerebrovascular functioning and cognitive control were not 

statistically significant. These findings appear to contrast with previous research in healthy 

older adult populations (e.g., Brown et al., 2010; Davenport et al., 2012; Gill et al., 2015), but 

note that those findings related to global rather than domain-specific cognitive performance. 

Previous work that did assess links between cerebrovascular functioning and domain-specific 

performance has yielded inconsistent effects (Brown et al., 2010; Gauthier et al., 2015). For 

example, Brown et al. (2010) found links with some higher-order cognitive domains but not 

others, whereas Gauthier et al. (2015) reported no significant links. Gauthier et al. (2015) 

suggested that the absence of a cerebrovascular-cognition link in their study could in part be 

due to the recruitment of a sample of healthier-than-average older adults (as a result of strict 

exclusion criteria), and thus there may not have been sufficient variation in the measures for 

an observable effect to emerge. While the current sample is also likely to contain relatively 

healthy individuals, issues of restricted range do not appear to account for the lack of 

cerebrovascular-cognition links (see Table 1). An alternative account could be the limited 

sample size for the cerebrovascular measures, as some of the correlations between 

responsiveness and cognitive control were of a small to moderate-size (r = -.28 to -31; see 

Table S2) and may have emerged as significant had a larger sample size been available. In 

addition, some of the limitations associated with transcranial Doppler discussed in the 

previous section (e.g., larger changes in vessel size as a result of less arterial stiffening in 

those with better cognitive functioning) might also help to explain the absence of 

cerebrovascular-cognition links in the current study.  

Cerebrovascular function as an explanatory mechanism  
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The current results indicate that cerebrovascular functioning did not measurably 

account for the physical activity-cognition relationships, as evidenced by the very weak 

relationships with physical activity. It could therefore be inferred that improved 

cerebrovascular function is not a key mechanism through which habitual physical activity 

benefits older adults’ cognition, but there are alternative explanations for the current results 

that do not necessarily preclude cerebrovascular function as a potential mediator. For 

example, if the emergence of a significant interrelationship depends on the particular 

measures used, differences between this study and previous research with older adults could 

be attributed to the use of distinct measures to represent the constructs of interest. Indeed, 

even within studies, different indices of cerebrovascular function have revealed different 

patterns of effects (e.g., Brown et al., 2010; Gill et al., 2015; Tarumi et al., 2015).  

However, other work in young adults that used the same method and procedures as 

the current study did show significant mediating effects of cerebrovascular responsiveness 

(Guiney et al., 2015), indicating that factors other than the particular measures used might 

account for the absence of such an effect in the current study. One possibility is that 

cerebrovascular functioning is just one of many mediators of physical activity-cognition 

relationships, and mediators not measured here were more important in terms of accounting 

for the observed physical activity-cognition links in the current sample. For example, 

research has revealed a wide range of potential mechanisms through which habitual physical 

activity could bring about cognitive benefits in older adults, including changes at molecular 

(e.g., increased production of neurotrophic factors), structural (e.g., increased neural 

connectivity and cortical volume), and psychological (e.g., improved mood; reviewed in 

Stillman et al., 2016) levels, as well as the interaction of those changes with genetic factors 

(Leckie, Weinstein, Hodzic, & Erickson, 2012). A second possibility is that some of the 

limitations associated with the current study made it harder to detect relationships with 

cerebrovascular functioning. For example, the sample sizes for the cerebrovascular 
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responsiveness measures were relatively small, but note that the relevant correlations were 

weak and thus low power does not appear to entirely explain the current findings. 

Nevertheless, it is important to acknowledge that the small sample sizes produced relatively 

wide confidence intervals, and the true effect sizes could be larger than indicated. Moreover, 

the current study did not account for the use of cardiovascular medications, or individual 

differences in blood pressure, diet, stress, or inflammatory markers, and it is possible that 

those factors influenced the cerebrovascular measures in such a way that links with the other 

variables were masked. Future research should seek to specifically investigate these effects to 

better understand their relationship to physical activity, cerebrovascular functioning, and 

cognition. 

 

Conclusion  

The main strength of this study is its examination of habitual physical activity, 

cerebrovascular function, and cognitive control in the same sample of healthy older adults. 

The results build on previous findings showing benefits of regular physical activity for 

higher-order cognitive functioning in older adulthood, but contrary to expectations, there 

were only weak, nonsignificant links between physical activity and cerebrovascular 

functioning. These findings could indicate that improved cerebrovascular functioning is not 

one of the mechanisms through which habitual physical activity brings about improvements 

in higher-order cognitive functioning in healthy older adults, but given supportive evidence 

from past studies and the fact that the use of different measures across studies has revealed 

different patterns of results, a more likely conclusion is that the interrelationships are more 

complex than indicated by the existing literature. More research will be needed to provide a 

clearer picture of the role cerebrovascular functioning might play in explaining the benefits of 

habitual physical activity for cognition in older adulthood. To this end, future research should 
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utilise longitudinal and intervention study designs and include objective measures of habitual 

physical activity as well as robust measures of cerebrovascular function. 
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Fig 1. Relationships between physical activity, cerebrovascular function, and cognitive 

performance. Dashed arrows indicate the theoretical links between the three general 

constructs investigated. Solid arrows indicate the specific links found in the current study: 

more frequent physical activity was associated with better inhibitory control. Note that all 

cognitive control measures reflect accuracy-adjusted RTs (median RT/proportion correct). 

MCAv = velocity of blood flow through the middle cerebral artery under normocapnic 

conditions. 

Fig 2. Summary of the experimental procedure.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  

Physical activity 

Cerebrovascular function 

Cognitive control 

Anti Pro/Anti Inhibition 
cost 

MCAv  
Hypercapnic 

response 

Hypocapnic 
response 

Switching 
cost 

Frequency 

B = -18.36 [-31.07, -5.65] 
R2 = .15, p = .006 

B = -16.41 [-27.90, -4.91] 
R2 = .14, p = .006 



                   F
ig

u
re 2

.  

D
e

m
e

n
tia

 s
c
re

e
n

in
g

 
•

M
in

i-M
e

n
ta

l S
ta

te
 

E
x
a

m
in

a
tio

n
 

 C
o

v
a

ria
te

s
 

•
A

g
e

 
•

S
e

x 
•

E
d

u
c
a

tio
n

 
•

B
e

c
k
 D

e
p

re
s
s
io

n
 

In
v
e

n
to

ry
 II 

•
P

itts
b

u
rg

h
 S

le
e
p

 Q
u

a
lity

 
In

d
e

x 
•

B
o

d
y
 m

a
s
s
 in

d
e
x 

 
 

P
h

y
s

ic
a

l a
c
tiv

ity
 

•
N

e
w

 Z
e
a
la

n
d
 P

h
y
s
ic

a
l 

A
c
tiv

itie
s
 Q

u
e
s
tio

n
n

a
ire

 
- S

h
o
rt F

o
rm

 

In
itia

l m
e

a
s

u
re

s
 

C
o

g
n

itiv
e

 te
s

tin
g

 
C

e
re

b
ro

v
a

s
c

u
la

r te
s

tin
g

 

  

 

•
G

re
e

n
 s

q
u
a

re
s
  

•
4

 p
ra

c
tic

e
 tria

ls 
•

2
0

 te
s
t tria

ls 
•

C
o

rre
c
t re

s
p

o
n

s
e

: 
B

u
tto

n
 o

n
 s

a
m

e
 

s
id

e
 a

s
 s

q
u
a

re
 

•
R

e
d

 s
q

u
a

re
s 

•
6

 p
ra

c
tic

e
 tria

ls 
•

2
0

 te
s
t tria

ls 
•

C
o

rre
c
t re

s
p

o
n

s
e

: 
B

u
tto

n
 o

n
 

o
p

p
o
s
ite

 s
id

e
 to

 
s
q

u
a

re
 

•
G

re
e

n
 o

r re
d

 
s
q

u
a

re
s 

•
6

 p
ra

c
tic

e
 tria

ls 
•

4
0

 te
s
t tria

ls 
•

C
o

rre
c
t re

s
p

o
n

s
e

: 
B

u
tto

n
 o

n
 s

a
m

e
 

s
id

e
 if g

re
e

n
; 

o
p

p
o
s
ite

 if re
d

 

N
o

te
. A

ll tria
ls

 b
e
g

a
n
 w

ith
 a

 v
a

ria
b

le
 fix

a
tio

n
 

p
e
rio

d
 (4

0
0
 to

 1
2
0

0
 m

s
) b

e
fo

re
 th

e
 s

q
u

a
re

 
a

p
p

e
a

re
d

 o
n
 th

e
 le

ft o
r rig

h
t, a

t ra
n
d

o
m

. 

E
q

u
ip

m
e

n
t fitte

d
 

•
D

o
p
p

le
r u

ltra
s
o
u

n
d
 p

ro
b
e

  
•

R
e

s
p
ira

to
ry

 e
q

u
ip

m
e

n
t 

N
o

rm
o

c
a
p

n
ia

 

•
P

a
rtic

ip
a
n

t b
re

a
th

e
d

 
ro

o
m

 a
ir H

y
p

e
rc

a
p
n

ia
 

•
P

a
rtic

ip
a
n

t b
re

a
th

e
d

 
5

%
 C

O
2  g

a
s
 m

ix
tu

re
 

R
e

c
o
v
e

ry
 

•
P

a
rtic

ip
a
n

t b
re

a
th

e
d

 
ro

o
m

 a
ir 

H
y
p

o
c
a

p
n

ia
 

•
P

a
rtic

ip
a
n

t in
c
re

a
s
e

d
 

b
re

a
th

in
g

 ra
te

 a
n
d

 d
e

p
th

 to
 

in
v
e

rs
e

ly
 m

a
tc

h
 th

e
 in

c
re

a
s
e
 

in
 e

n
d
-tid

a
l C

O
2  d

u
rin

g
 

h
y
p

e
rc

a
p
n

ia
 

A
tta

c
h
e

d
 

D
o

u
g

la
s
 B

a
g

 

R
e

m
o

v
e

d
 

D
o

u
g

la
s
 B

a
g

 

2 min 

2 min 

4 min 

2 min 



 

Table 1 Descriptive statistics for each measure  

 n M (SD) Range 

Covariates    

Age (years) 51 66.8 (3.7) 60–72 

Education (years) 51 13.6 (2.8) 8–18 

Beck Depression Inventory-II score 51 4.9 (4.3) 0–16 

Pittsburgh Sleep Quality Index score 51 4.9 (2.6) 1–11 

Body mass index (kg/m
2
) 51 27.9 (4.2) 18.8–38.8 

Physical activity     

Frequency (days/week ≥ 30 min) 51 3.7 (2.5) 0–7 

Cognitive measures     

RTs (ms)    

Pro 51 375 (48) 287–485 

Anti  51 525 (107) 343–854 

Pro/Anti  50 814 (96) 650–1083 

Inhibition cost  51 150 (89) -5–439 

Switching cost  50 288 (106) -30–497 

Accuracy (% correct)    

Pro 51 98.7 (3.0) 85–100 

Anti 51 95.3 (5.7) 80–100 

Pro/Anti  50 88.6 (10.4) 58-100 

Accuracy-adjusted RTs    

Pro 51 380 (47) 296–485 

Anti  51 552 (117) 381–903 

Pro/Anti  50 937 (188) 666–1511 

Inhibition cost  51 173 (106) -5–487 

Switching cost  50 383 (186) 17–977 

Cerebrovascular function    

MCAvnormocapnia (cm/s) 42 49.5 (12.4) 19.8–86.8 

Hypercapnic responsiveness (%/mmHg) 26 3.2 (1.4) 0.6–6.6 

Hypocapnic responsiveness (%/mmHg) 25 2.6 (0.9) 1.1–4.8 

    
Note. MCAv = velocity of blood flow through the middle cerebral artery. Accuracy-adjusted 

RTs = median RT/proportion correct. 



EXERCISE, CEREBROVASCULAR FUNCTION, AND COGNITION 2 
 

Highlights 

 Regular physical activity in older adults was linked to superior inhibitory control 

 Cerebrovascular functioning was explored as a putative mechanism 

 Cerebrovascular functioning did not explain the exercise-cognition relationship 

 The mediating role of cerebrovascular functioning may change with age 

 More research is needed to understand the role of cerebrovascular functioning 

 

 




