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Research Highlights 

 SPE UPLC-Q-Exactive Orbitrap method was developed and validated for analysis 

of 30 PPCPs 

 Rapid ESI polarity switching for analysis of acidic and basic analytes in one run 

 Full scan MS mode allows for post-acquisition non-target screening 

 First target/non-target report of PPCPs in waste/surface water from Egypt 

 

Abstract 

The analytical capability of the UPLC-Q Exactive™ Orbitrap MS was exploited for 

simultaneous determination of 30 acidic and basic PPCPs in a single run, using rapid 

polarity switching of the electrospray ionisation source. Full scan MS mode at resolution 
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of 35000 FWHM, Automatic gain control (AGC) target of 1E6 ions at injection time of 50 

ms provided the optimum parameters for high sensitivity, together with sufficient data 

points per peak (≥15) for improved reproducibility. In addition to chromatographic 

retention times, method selectivity was achieved via applying high resolution accurate 

mass with low mass tolerance filter (<5 ppm) for identification of each target 

compound. Six-point linear calibration curves (R2 > 0.95) were established for all target 

analytes over a concentration range of 1-1500 ng/ml. Good results were obtained for 

method accuracy (% recovery = 76–104%), inter- and intra-day precision (relative 

standard deviation <15%) at 3 concentration levels. Instrumental detection and 

quantification limits ranged from (0.02–1.21 ng/ml) and (0.07–4.05 ng/ml), 

respectively. While optimised MS/MS analysis through parallel reaction monitoring 

(PRM) mode provided slightly higher sensitivity, Full scan MS mode allowed for higher 

mass resolution (selectivity), more data points per peak (reproducibility) and more 

importantly, the potential for post-acquisition screening of non-target compounds. 

Following solid phase extraction (SPE) of target analytes, the method was successfully 

applied to provide first data on PPCPs occurrence in effluent and surface water samples 

(n=10) from Egypt. Moreover, screening for non-target compounds revealed the 

presence of bisphenol A, which was further confirmed via matching with an authentic 

standard. Overall, this study provides first insight into the high analytical capabilities of 

the Q-Exactive™ Orbitrap platform for both targeted/non-targeted analysis of PPCPs in 

environmental matrices.    

 

Keywords: Q Exactive Orbitrap; Pharmaceuticals and personal care products; surface 

water; effluent; Egypt; non-target screening 
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Introduction 

Pharmaceuticals and personal care products (PPCPs) represent a large group of 

chemicals with diverse structures and physicochemical properties. Pharmaceuticals 

include all prescription, over the counter and veterinary drugs used for prophylaxis or 

treatment of human or animal diseases, while personal care products are those applied 

mainly to improve the quality of daily life [1]. Pharmaceuticals are inherently potent, 

biologically-active chemicals, designed to achieve maximum bioavailability and 

prolonged duration of action in target organisms. The unintentional presence of a large 

number of PPCPs in the environment (water, sediment and biota) has received 

increasing scientific interest in the past few years.  This has been mainly attributed to 

the inefficient removal of these chemicals during conventional waste water treatment 

processes [2, 3]. Other sources include the application of contaminated sewage sludge 

for fertilisation of soil and the leaching of agricultural run-off water to ground water 

reservoirs [2]. Currently, very little is known about the behaviour and fate of this large 

group of chemicals once released to the environment. This is of concern owing to the 

continuous input of PPCPs to the environment, together with the reported, persistence, 

bioaccumulative and toxic characters of various members of this group [1, 4, 5]. This is 

compounded by the current lack of knowledge on the impact of various PPCPs in the 

ecosystem on non-target organisms (e.g. fish, zooplankton, algae) [1].   

The current status of PPCPs as emerging contaminants of high concern necessitates the 

development of sensitive, selective and accurate methods for determination of trace 

levels of these chemicals in various environmental compartments. Moreover, the large 

number of PPCPs requires the use of multi-residue, rapid and robust analytical methods 

to provide maximum possible information on the levels and profiles of these chemicals 

in each sample within reasonable time and cost of analysis [6]. To address this, 
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advanced methods using hyphenated liquid (LC) or gas chromatography (GC) and mass 

spectrometry (MS) techniques have been reported for analysis of PPCPs in the past few 

years [7, 8]. Due to their relatively hydrophilic nature, LC-MS is reported as the method 

of choice for multi-residue analysis of pharmaceuticals, endocrine disruptors, and illicit 

drugs, especially for thermally unstable chemicals [9]. Ultra-high pressure liquid 

chromatography (UPLC) displayed superior performance to conventional HPLC due to 

reduced particle size of the stationary phase. This results in enhanced resolution, 

narrower peaks and shorter run times [10]. Reversed phase (C18 or C18-bonded phases) 

has been the most widely used mechanism of LC separation due to its versatility and 

capacity for separation of a broad range of compounds [8]. In terms of sample 

preparation, solid phase extraction (SPE) is the most popular and well-established 

technique for PPCPs in liquid environmental samples. Several SPE adsorbents with 

varying strength cation and/or anion exchange copolymers were reported to provide 

high extraction efficiency with low matrix-related interference for determination of 

different groups of PPCPs [10, 11].   

However, rapid, sensitive and accurate multi-residue analysis of trace concentrations of 

PPCPs in complex environmental matrices continues to be a fascinating challenge. This 

is mainly driven by the continuous advance in analytical instrumentation leading to 

higher sensitivity, improved selectivity and wider dynamic range. The quadrupole (Q)-

Orbitrap high resolution mass spectrometer (Q-Orbitrap/MS) is a good example of such 

advances. It provides mass resolution up to 280,000 full width at half maximum 

(FWHM), with acquisition speed of 12 Hz. This results in mass accuracy < 1 ppm and a 

linear dynamic range spanning 5 orders of magnitude. An important feature of the Q-

Exactive Plus Orbitrap™ (Thermo Fisher Scientific, Bremen, Germany) is the rapid 

polarity switching between positive and negative ionisation modes in the heated 
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electrospray ionisation (HESI) source within a full cycle in <1 s. Moreover, the 

quadrupole adds another dimension by possible preselection of 10 precursor ions/scan. 

The selected precursor ions then undergo collision-induced fragmentation in parallel 

reaction monitoring mode (PRM) in order to conduct MS/MS analysis [12]. The cutting-

edge technology of the Q-Exactive Orbitrap™ combined with the high separation power 

of UHPLC provides an excellent platform for analysis of complex chemical mixtures like 

PPCPs in environmental samples. To our knowledge, the analytical capability of this 

platform has yet to be fully explored for the purpose of PPCPs analysis. A survey of the 

literature revealed one analytical study using UHPLC-Q-Exactive Orbitrap™ for 

determination of 13 PPCPs in 2 runs for positively (12) and negatively (1) ionised 

compounds, separately [13]. This is similar to previously reported LC-MS/MS studies 

using other instruments, where 2 separate runs are required for multi-component 

analysis. In addition, the targeted MS/MS approach does not allow for retrospective 

screening approaches for identification of potential compounds of interest which were 

not targeted in the original analytical protocol [10, 14].  

Therefore, the current study aims to exploit the full potential of the UHPLC-Q-Exactive 

Orbitrap™ platform for analysis of 30 PPCPs as representatives of different groups 

including: antibiotics, antiseptics, β-blockers, NSAIDs, narcotic analgesics, anti-

hyperglycaemic agents, proton-pump inhibitors and insect-repellents (Table 1). 

Selection was based on priority pollutant lists developed by the European Union (EU) 

under the Water Framework Directive (WFD), as well as the United States 

Environmental Protection Agency (USEPA). Other selection criteria include: frequent 

environmental occurrence, persistence and toxicity to aquatic organisms [1]. The 

method aims to utilise the rapid polarity switching of the HESI source and the 

separation power of the UHPLC to achieve maximum separation in a single run within a 
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reasonably short analysis time. The developed method is validated and applied to 

provide insights into the levels and profiles of PPCPs in 10 effluent and surface water 

samples from Egypt. Furthermore, the advantage of acquiring full-scan high resolution 

MS data via the Orbitrap is explored for possible screening and identification of non-

target compounds in the studied water samples.   

Materials and Methods 

Chemicals and Reagents 

All solvents used in this study were purchased from Fisher Scientific™ (Loughborough, 

UK) and were of UPLC grade. Individual standards of 30 PPCPs (Table 1), in addition to 

isotope-labelled Caffeine-D9, Codeine-D3, Carbamazapine-D10, Estone-D4 and 4-

Chlorophenol-2,3,5,6-D4 used as internal (surrogate) standards were purchased from 

Sigma-Aldrich™ (Irvine, UK) at the highest  possible purity (>99 %). 13C-

tetrabromobisphenol A (13C-TBBPA) and tris (2-chloroethyl) phosphate-D12 (TCEP-

D12) used as recovery (syringe standards) were obtained from Wellington Laboratories 

(Guelph, ON, Canada). All standard stock solutions were prepared and further diluted in 

methanol. Oasis MCX and Oasis HLB cartridges (6 cm3, 150 mg sorbent per cartridge) 

were obtained from Waters™ (Hertfordshire, UK). Ammonium formate (NH4COOH), 

Na2EDTA, ammonium hydroxide (NH4OH, 30 %), ammonium fluoride (NH4F), Acetic 

acid and formic acid (HCOOH) were obtained from Sigma-Aldrich™ (Gillingham, UK). 

Nitrogen gas (oxygen free, 99.998%) was purchased from BOC (Birmingham, UK). Milli-

Q water (Merck Millipore, Burlington, MA) was used for cleaning and sample 

preparation purposes.   
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Sampling 

Water samples (1 L) were collected from the effluent of 5 waste water treatment plants 

(WWTPs) at Assiut governorate, Egypt.  These include 3 major WWTPs in Assiut city (Al 

Helaly, Nazalat- Abdellah and El Walidiyaah), the water treatment plant of Sodfa town, 

in addition to the water treatment plant of Assiut University hospital (Figure SI-1). 

Furthermore, surface water samples were collected from the River Nile and El-

Ebrahmiya canal in Assiut city. These were grab samples collected upstream of the 

WWTP discharge point in deactivated glass bottles and transferred immediately to the 

lab, where they were kept at 4 °C until extraction within 48 hours of collection.    

Sample preparation 

Individual and mixture stock solutions (0.5 g/L) of the targeted PPCPs (Table 1) were 

prepared in methanol and stored in dark amber vials at -20 °C. Working solutions were 

prepared fresh daily by diluting the stock solutions to the required final concentration 

and were stored at 4 °C for a maximum of 24 h. The isotope labelled internal standards 

were prepared and mixed separately at 1 ng/µL in methanol and kept in dark amber 

vials at -20 °C.  

Environmental water samples were extracted by solid phase extraction (SPE) using 

Oasis MCX 6 ml cartridges and Waters™ 20-port controlled pressure vacuum manifold 

equipped with 50Hz vacuum pump (Waters, Hertfordshire, UK). The SPE cartridges 

were pre-conditioned with 3 mL of methanol following by 3 mL of Milli-Q water. 250 mL 

of the water sample were spiked with 100 ng of isotopically-labelled internal standards 

mixture and treated with 500 mg Na2EDTA to release the free form of target analytes 

(e.g. Doxycyclin) from potential complexes with Ca2+ and Mg2+ in environmental waters 

[15]. The samples were loaded onto the pre-conditioned cartridges at a flow rate of 5 

mL/min. The cartridges were washed with 3 mL of 0.5 % HCOOH in Milli-Q water (3 
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mL/min). After drying, PPCPs were eluted with 5 mL of methanol following by 5 mL of 5 

% NH4OH in methanol. The combined eluate was dried under a gentle stream of 

nitrogen using a TurboVap II® evaporator (Biotage™, Sweden) and reconstituted in 100 

μL of methanol containing 25 pg/µL of 13C-TBBPA and TCEP-D12 used as recovery 

(syringe) standards for QA/QC purposes. 

Instrument Analysis 

Samples were analysed on a UPLC-Q Exactive Orbitrap-HRMS system (Thermo Fisher 

Scientific™, Bremen, Germany) composed of a Dionex Ultimate 3000 liquid 

chromatograph equipped with a HPG-3400RS dual pump, a TCC-3000 column oven and 

a WPS-3000 auto sampler. The UPLC is coupled to a Q-Exactive Plus Orbitrap mass 

spectrometer equipped with a heated electrospray ionisation (HESI) ion source. 

Chromatographic separation was achieved on an Accucore RP-MS column (100 x 2.1 

mm, 2.6 µm) with 2 mM NH4COOH/2mM NH4F in water (mobile phase A) and 0.5 % 

acetic acid in methanol (mobile phase B). A gradient method at 400 µL/min flow rate 

was applied as follows: start at 2 % B, stay for 1 min; increase to 98 % B over 11 min, 

held for 1 min; then decrease to 2 % B over 0.1 min; maintained constant for a total run 

time of 16 min. Injection volume was 5 μL. The Orbitrap parameters were set as follows: 

alternate switching (-)/(+) ESI full scan mode, sheath gas flow rate 20 AU, discharge 

volage 4.5 kV, capillary temperature 320 °C, resolution 35000 FWHM, AGC target 1E6, 

maximum injection time (IT, the maximum time allowed to obtain the set AGC target) 

50 ms and scan range 125 to 750 m/z. MS/MS analysis using PRM was also attempted. 

The chromatographic and Orbitrap MS parameters were the same as in full scan 

acquisition, except for: AGC target 2E5, maximum IT 100 ms and resolution 17,500 

FWHM). 
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Method Validation and quantification 

Method linearity was investigated via triplicate injections of 6 point calibration curve 

for each of the studied analytes over a concentration range of 1 – 1500 ng/mL, using a 

fixed concentration of 100 ng/mL of the isotope labelled IS. Linearity was evaluated 

through the linearity coefficients (R2) of the obtained calibration curves. 

Other method validation parameters were calculated using Milli-Q water spiked with 

the target PPCPs at 3 concentration levels (10, 250 and 750 ng/mL). 

Accuracy was estimated as the percentage recovery of target analytes and evaluated 

through the percent deviation from the known spiked concentration level.  

Precision was calculated as relative standard deviation (RSD %) for inter- and intra-day 

multiple injections. Nine injections covering 3 concentration levels (3 injections each) 

were used for assessment of precision. Further validation of method precision was 

performed via calculation of the RSD % for triplicate analyses of 3 different samples 

(tapwater spiked with 500 ng/L of all target PPCPs, surface water from the River Nile 

(2G) and effluent sample (1A)). The tapwater was collected in the lab and allowed to 

stand for 30 min for evaporation of Cl2 prior to further processing.   

Limit of detection (LOD) and limit of quantification (LOQ) were estimated using the 

signal to noise (S:N) approach. Instrumental detection limit (IDL) was calculated as the 

lowest concentration that gives a S:N ratio of 3:1, while Instrumental quantification 

limit (IQL) was calculated as the lowest concentration that gives a S:N ratio of 10:1.  

Method quantification limits (MQL) were determined by repeated injection of tapwater 

samples spiked at low concentrations of target compounds.  The concentration that 

produces a S:N ratio of 10 was estimated as the MQL.  
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Quality assurance/quality control (QA/QC)   

None of the target compounds were detected in method blanks (one blank for every 5 

samples; each blank is composed of 250 mL Milli-Q water treated like a sample). 

Therefore, no blank correction of the results was required.  

Recoveries of the isotope-labelled internal standards were calculated against the 

syringe standards in all environmental and QA/QC samples. High percent recoveries 

(>70 %) of all five internal standards were obtained indicating good overall 

performance of the method. 

A calibration standard containing all the target compounds and IS (500 ng/mL) was 

injected before and after each sample batch (Figure 1). For a given peak to be identified 

as a target analyte in a sample; the relative retention time (RRT) of the peak in the 

sample must be within ± 0.1 min of the average value determined for the same analyte 

in the 2 calibration standards ran before and after that sample batch. 

Results and Discussion 

Method Optimisation 

Solid phase extraction was documented by several authors as the method of choice for 

PPCPs in wastewater samples using various sorbent beds [8]. In the current study, we 

tested two of the most widely reported sorbent beds for extraction of various PPCPs, 

namely: Oasis MCX and Oasis HLB. A paired t-test for comparison of means revealed no 

significant differences between the recoveries of target analytes in spiked tap water 

samples (500 ng/L of all target PPCPs, n=3) from both solid phases (Figure SI-2). 

However, it was generally observed that a higher chromatographic baseline and more 

spectral interference occurred in real effluent samples extracted with HLB cartridges 

compared to MCX (Figure 2). This is in agreement with the results of Petrie et al. [6] and 

can be attributed to the non-selective nature of the hydrophilic-lipophilic balanced, 
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reversed-phase HLB sorbent bed, which can cause significant matrix-related 

interferences when using ESI mode [16]. Therefore, Oasis MCX, which is built upon the 

HLB copolymer with mixed mode cation-exchange and reversed phase interactions, was 

applied for extraction of all our samples.   

Although baseline chromatographic separation of all analytes was not targeted due to 

subsequent MS analysis (Figure 1), the method was optimised towards achieving a 

better peak shape and higher intensity in subsequent ESI ionisation. Therefore, a simple 

mobile phase gradient based on H2O and methanol was chosen due to the observed 

overall reduction of ESI signal intensity when using acetonitrile compared to methanol. 

This may be attributed to the reduced charge status of ionised species in the 

electrospray droplets by the neutral vapour of acetonitrile in the atmospheric region of 

the source [17]. Acetic acid buffer had a substantial effect on enhancing the peak shape 

and signal intensity of basic analytes (Figure SI-3) via promoting their protonation in 

ESI positive mode [18]. Moreover, the use of NH4F as a mobile phase additive resulted in 

significant enhancement of signal intensity for the steroid hormones 17α-

ethinylestradiol and β-estradiol by 360 % and 480 %, respectively. Petrie et al. reported 

more than 400 % increase in the signal intensity for the steroid hormones E1 and E2 

upon using NH4F as a mobile phase additive for LC-ESI(-ve)-MS/MS analysis [6]. 

Similarly, Carmona et al. reported NH4F to improve the peak shape and signal intensity 

compared to ammonium formate for LC-ESI(-ve)-MS/MS analysis of various PPCPs 

including indomethacin, ibuprofen, diclofenac and gemfibrozil [19]. This may be 

explained by the strong electronegativity of the [F]ˉ anion, which enhances 

deprotonation of the acidic analytes in ESI negative mode [19]. In the current study, 

NH4F was used mainly due to significant enhancement of the signals for steroid 
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hormones, while its influence on other acidic analytes (e.g. ibuprofen, diclofenac and 

gemfibrozil) was less evident (Figure SI-4). 

Several mass spectrometric parameters were optimised to maximise method sensitivity 

and achieve the highest signal/noise (S/N) ratio for the studied compounds. While the 

Q-Exactive Orbitrap™ enables very high mass resolution (up to 280,000 FWHM), the 

scan (dwell) time increases with increasing mass resolution. Long dwell time per scan 

cycle results in broad chromatographic peaks due to few data points acquired per each 

peak as it elutes from the column. This ultimately leads to reduced overall sensitivity 

and quantitative reproducibility of the analytical method. Therefore, a minimum of 8-10 

data points across an LC peak is required to define its shape and enable reproducible 

quantitation based on area under the peak, while an optimum of 15-20 points are 

required to expose subtle peak-shape features [20]. Another unique feature of the 

Orbitrap MS is the automatic gain control (AGC), which defines the maximum number of 

ions (from 2 × 104 - 4 × 106) to be injected into the mass analyser within a specified 

injection time (IT). To optimise for these multiple parameters, we adopted a systemic 

approach for each target analyte by studying the concomitant impact of mass resolution 

(up to 280,000 FWHM) and AGC (up to 4 x 106) on the peak area of the studied 

compound (Figure 3) with defined IT of 50 milliseconds and a minimum of 15 data 

points per peak. Despite few non-significant variations for a few compounds, results 

revealed the optimum MS parameters for the overall method as: resolution = 35000 

FWHM, AGC target = 1 x 106 ions and IT = 50 ms.  

Method selectivity and minimisation of potential interferences from co-extracted 

molecules in real samples were achieved via monitoring the molecular ion peak for each 

of the target compounds using its specified accurate mass (Table 1) with the following 
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filters applied: maximum mass tolerance of 5 ppm, retention time window of 20 

seconds and relative retention time (to the designated labelled IS) window of 5 seconds. 

The extracted ion chromatograms (EIC) according to these filters showed well-defined 

correctly identified and appropriately integrated peaks in the studied real samples. 

Method Validation 

Calibration curves showed good linearity of the method over a wide concentration 

range (1-1500 ng/mL) for all the studied PPCPs with a mass error <5 ppm at 35000 

FWHM. The linearity coefficient (R2) exceeded 0.99 for all target PPCPs except for 6 

analytes where it ranged from 0.95 – 0.98 (Table 2). Average percent recoveries of all 

analytes ranged from spiked Milli-Q water samples ranged between 76-104 % at 3 

concentration levels (Table 2) with no statistically significant difference between the 

recoveries of each analyte at the different concentration levels (Table SI-2), indicating 

good accuracy of the method. Potential matrix effects were investigated via triplicate 

analysis of spiked tap water (500 ng/L of all target PPCPs) with recoveries ranging from 

78 – 106 % (Table SI-3). Furthermore, an effluent sample (1A) and a surface water 

sample (2G) (Figure SI-1) were spiked with 500 ng/L of oxazepam (ionizes in ESI 

positive mode) and 17α-ethinylestradiol (ESI negative), which were not detected in 

these 2 water samples. Good recoveries of 103 ± 8 % and 78 ± 11 % were obtained for 

oxazepam and 17α-ethinylestradiol, respectively. However, the difference between the 

average recovery of oxazepam from real water samples (103 ± 8 %) and that from 

spiked tap water (92 ± 8 %) may indicate potential matrix-related effects, which have 

been previously reported with ESI ionisation [15]. Evaluation of matrix suppression of 

the ESI signal for target analytes was performed using the matrix-matched calibration 

method described by Kasprzyk-Hordern et al. (2008)[21]. Results revealed higher 

matrix suppression of the studied PPCPs in effluent (7 – 49%) compared to surface 
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water (5 – 44%) (Table SI6).     Full evaluation of the extent of matrix effects and their 

influence on the accuracy of determination of various PPCPs in environmental waters is 

difficult due to existing levels of PPCPs in real water samples as a result of their 

ubiquitous status in the aquatic environment [1]. Therefore, inter-laboratory studies 

and development of certified reference materials for PPCPs in environmental water 

samples is highly recommended. 

Investigation of the method inter- and intra-day repeatability at 3 concentration levels 

revealed RSD values <15 % for all the studied compounds (Table 2). In addition, 

triplicate analysis of spiked tapwater, effluent (1A) and surface water (2G) samples also 

showed RSD values <15 % indicating good precision of the developed method (Table SI-

4). 

Method sensitivity is demonstrated by the limits of detection and quantification (Table 

2). Our method quantification limits ranged from 2 - 84 ng/L in tapwater, which is in-

line with previously reported UPLC-MS/MS methods for analysis of PPCPs in 

environmental water [10]. Combined with the inherent advantages of rapid ESI-polarity 

switching, high mass resolution (35000 FWHM) and low mass tolerance (< 5 ppm) of 

the Orbitrap, this makes the developed method suitable for determination of trace level 

PPCPs in environmental water samples (e.g. surface water).   

Full Scan vs MS/MS analysis using the Q-Exactive Orbitrap™ 

The Q-Exactive Orbitrap™ used in this study is equipped with a quadrupole filter that 

allows preselection of 10 precursor ions to undergo collision induced dissociation (CID), 

prior to high resolution mass scanning of the produced fragments in the Orbitrap 

analyser (i.e. MS/MS analysis). It is generally perceived that MS/MS analysis provides 

higher sensitivity than MS methods by minimising baseline interferences resulting in 

higher S/N ratios [22]. However, this is largely accepted when comparing the results of 
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tandem MS/MS analysis to single, low mass resolution MS but has not been fully 

evaluated for the high resolution Orbitrap MS applied in the current study.  Therefore, 

we considered MS/MS analysis of our target PPCPs to exploit the full potential of the 

instrument. Since only 10 precursor ions can be selected, the acquisition method was 

divided into several time windows to monitor our 30 analytes and 5 istotope-labelled 

internal standards. This challenges the method capacity for analysis of a large number 

of compounds due to limited number of precursor ions in each time window. 

Furthermore, it is generally recommended to allow a tolerance margin of ±0.5 min for 

analyte retention times in each time window to account for slight changes in retention 

times due to sample matrix effects and column aging [13]. However, this was not 

possible in our method due to the large number of compounds eluting at close retention 

times between 7.97 to 11.54 min (Table 1) resulting in “narrow” time windows (±0.3 

min), which reduces the overall robustness of the method. As reported previously [13], 

the use of the quadrupole increases the time of the scan cycle, which requires 

decreasing the orbitrap mass resolution to 17500 FWHM and the AGC target to 2x10-5 to 

obtain sufficient number of data points (>10) across each peak.  

The precursor ions, major fragment ions, optimised collision energy and estimated IQLs 

for all target PPCPs, obtained from injection of standard solutions are provided in Table 

SI-5. However, it is evident that there is no substantial improvement of sensitivity in the 

MS/MS mode compared to the full scan mode to mitigate for the reduced method 

robustness, AGC target and mass resolution associated with the MS/MS mode in this 

instrument. This may be attributed to the high resolution (35000 FWHM) and low mass 

tolerance (<5 ppm) enabled by the Orbitrap in full scan mode, which reduces potential 

co-eluted interferences resulting in a low baseline and high S/N ratio. 
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The rapid, high resolution full scan MS analysis enabled by the Orbitrap provides 

another major advantage, as it enables post-acquisition independent data analysis. This 

allows screening for non-target compounds in the studied samples, which is beneficial 

to PPCPs monitoring in environmental samples due to the great diversity of this 

contaminant class. To illustrate, post-acquisition screening of our effluent and surface 

water samples revealed the potential presence of bisphenol A, which is a common 

environmental contaminant that was not targeted in our method. The identity of 

bisphenol A was then confirmed via comparison of its accurate mass, retention time and 

molecular ion cluster to an authentic chemical standard. Further confirmation of 

bisphenol A identity was achieved via sample fortification with the authentic standard 

resulting in boosting the area of the designated chromatographic peak (Figure 4). 

Investigation of our method blanks revealed the detection of Bisphenol A in 3 out 8 

blanks with peak areas less than 5% of those detected in the real water samples. While 

this does not allow for accurate quantification of bisphenol A in our samples, it 

demonstrates the potential for combined target/non-target approaches for PPCPs 

analysis using the high resolution, full scan mode of the Orbitrap. 

Method Application 

The developed method was applied for simultaneous determination of 30 target PPCPs 

in 5 effluent and 5 surface water samples collected from Assiut Governorate, Egypt. 

Apart from the anti-malarial compounds mefloquine HCl and DEET, all target PPCPs 

were successfully, detected and quantified in at least one of the studied samples (Table 

3). The method showed good robustness with real samples, with none of the 

compounds shifting outside its specified retention time window. The applied high 

resolution and low mass tolerance resulted in low chromatographic baselines and well-

defined peaks, which is advantageous for accurate integration of peak areas by the 
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Xcalibur™ software. To our knowledge, this is the first report of PPCPs in environmental 

water samples from Egypt. Apart from the anti-malarial drugs Mefloquine and DEET, all 

target PPCPs were detected and quantified with high mass accuracy (<5 ppm) at high 

mass resolution (35000 FWHM) in one or more of the studied water samples. Our 

results show high levels of acetaminophen (144-16000 ng/L), ibuprofen (26-6700 

ng/L) and glyburide (253-4150 ng/L), which were detected in all samples. This is 

generally consistent with concentrations of these compounds reported in effluent and 

surface water samples from South Africa [23] and Nigeria [24]. However, it should be 

noted that PPCPs levels in water are largely dependent on the usage patterns and 

prescription frequencies in the studied area and may vary significantly between 

different countries or geographical areas [1]. Therefore, the absence of anti-malarial 

drugs in the studied water samples may be attributed to the very low incidence of 

malaria in Egypt compared to west and south African countries [25].  

Conclusion 

A sensitive, rapid and robust UPLC-Q-Exactive™ Orbitrap high resolution MS method 

was developed and validated for mutli-residue analysis of 30 PPCPs. The method 

applies rapid polarity switching in the heated ESI source for simultaneous analysis of 

positive and negative ionised compounds in one chromatographic run of 16 min. The 

method’s high resolution (35000 FWHM) and low mass tolerance (<5 ppm) minimises 

potential interference from co-eluted compounds and provides a low chromatographic 

base-line, leading to high S/N ratios in extracted ion chromatograms of the target 

compounds. This resulted in high sensitivity of the full scan MS method comparable to 

the performance of MS/MS analysis. Moreover, full scan MS analysis provides the added 

advantage of post-acquisition screening for non-target compounds. The method was 

applied successfully to provide the first data on levels of target PPCPs in effluent and 
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surface water samples from Assiut, Egypt. Post-acquisition screening for non-target 

compounds revealed the presence of bisphenol A, which was further confirmed via 

matching with an authentic standard. Overall, this work demonstrates the high 

analytical capabilities of the Q-Exactive™ Orbitrap and provides the first insight into the 

potential of this platform for both targeted/non-targeted analysis of PPCPs in 

environmental matrices.   
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Figures 

Figure 1: Reconstructed UPLC-Q-Exactive™ Orbitrap/MS chromatogram of target PPCPs and IS (500 ng/mL in methanol).  
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Figure 2: Total ion chromatogram of effluent sample 1A following SPE on (a) OASIS HLB crtridge (higher baseline) and (b) Oasis MCX 

(lower baseline). Inset shows the extracted ion chromatogram for Diazepam at m/z = 285.07928 (representative example ) with a 

higher baseline in the Oasis HLB sample. 
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Figure 3: Representative example showing the impact of mass resolution (FWHM), Automatic gain control target (ions) on the peak are 

of Nicotine (750 ng/mL) and the number of data points per selected peak. 
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Figure 4: Post-acquisition identification of non-targeted Bisphenol A in the studied water samples through its accurate mass, isotope 

cluster and confirmation by fortification with Bisphenol A standard.  
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Tables 

 

Table 1: List of target PPCPs and their chemical formula, accurate mass, ESI mode, retention time (tR), as well as the internal (surrogate) 

standards used for quantification.   

Name Therapeutic 

group 

Chemical 

formula 

Ionisation  Mass 

(Da) 

tR 

(min) 

Internal  

standard 

Metformin Anti-diabetic C4H11N5 +ve 130.10884 0.64 Codeine-D3  

(tR= 4.63 min) 

Nicotine Stimulant C10H14N2 +ve 163.12318 3.43 Codeine-D3 

Acetaminophen Analgesic C8H9NO2 +ve 152.07143 3.46 Codeine-D3 

Amoxicillin Antibiotic C16H19N3O5S +ve 366.09687 3.53 Codeine-D3 

Gabapentin Anti-convulsant C9H17NO2 +ve 172.13417 3.65 Codeine-D3 

Codeine Narcotic 

analgesic 

C18H21NO3 +ve 300.16089 4.69 Codeine-D3 

Caffeine Stimulant C8H10N4O2 +ve 195.08862 5.17 Caffeine-D9 

(tR= 5.13 min)  

Trimethoprim Anti-bacterial C14H18N4O3 +ve 291.14540 5.40 Codeine-D3 

Sulfamethoxazole Anti-bacterial C10H11N3O3S +ve 254.05949 5.50 Caffeine-D9 

Tramadol Narcotic 

analgesic 

C16H25NO2 +ve 264.19584 6.20 Codeine-D3 

Metoprolol Beta-blocker C15H25NO3 +ve 268.19076 6.33 Codeine-D3 

Doxycycline Antibiotic C22H24N2O8 +ve 445.14963 7.47 Codeine-D3 

Propranolol Beta-blocker C16H21NO2 +ve 260.16433 7.97 Codeine-D3 

Carbamazepine Anti-convulsant C15H12N2O +ve 237.10333 8.49 Carbamazepine-D10 

(tR= 8.49 min) 

Hydrocortisone Steroid C21H30O5 +ve 363.21686 8.67 Carbamazepine-D10 

Naproxen NSAID C14H14O3 -ve 229.08824 9.05 4 Chlorophenol-D4  

(tR= 8.05 min) 

DEET insect repellant C12H17NO +ve 192.13931 9.07 Carbamazepine-D10 

Erythromycin Antibiotic C37H67NO13 +ve 734.47192 9.14 Carbamazepine-D10 
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Oxazepam Sedative,  

hypnotic 

C15H11ClN2O2 +ve 287.05860 9.17 Carbamazepine-D10 

Valsartan Anti-hypertensive C24H29N5O3 -ve 434.22117 9.56 4 Chlorophenol-D4  

Mefloquine Anti-malarial C17H16F6N2O +ve 379.12231 9.78 Carbamazepine-D10 

17α-ethynylestradiol Steroid C20H24O2 -ve 295.17047 9.87 Estone-D4 

(tR= 9.91 min) 

β-estradiol Steroid C18H24O2 -ve 271.16998 9.88 Estone-D4 

Diazepam Sedative,  

hypnotic 

C16H13ClN2O +ve 285.07928 9.89 Carbamazepine-D10 

Diclofenac Na NSAID C14H10Cl2NNaO2 -ve 294.01031 10.06 4 Chlorophenol-D4 

Glyburide Anti-diabetic C23H28ClN3O5S -ve 492.13818 10.34 4 Chlorophenol-D4 

Ibuprofen NSAID C13H18O2 -ve 205.12297 10.61 4 Chlorophenol-D4 

Meclofenamic acid NSAID C14H11Cl2NO2 -ve 294.01031 10.78 4 Chlorophenol-D4 

Clotrimazole Anti-fungal C22H17ClN2 +ve 345.11676 11.28 Carbamazepine D10 

Gemfibrozil Anti-

hyperlipidemic 

C15H22O3 -ve 249.15001 11.54 4 Chlorophenol-D4 
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Table 2: Summary of method validation parameters. 

Name R2* 
Accuracy# (% 

Recovery ±SD) 

Precision (RSD %)$ 
IDL 

(ng/ml) 

IQL 

(ng/ml) 

MQL† 

(ng/L) Intra-

day** 

Inter-

day** 

Tap 

water& 

Effluent 

(1A)‡ 

Surface 

water (2G)‡ 

Metformin 0.9972 93.2 ± 6.1 4.7 6.6 6.8 9.3 10.9 0.10 0.33 9.5 

Nicotine 0.999 92.2 ± 5.8 4.1 6.4 5.6 11.6 6.9 0.50 1.67 13.3 

Acetaminophen 0.9938 96.4 ± 4.5 3.3 4.7 2.1 5.1 5.9 0.10 0.33 2.8 

Amoxicillin 0.9924 88.6 ± 3.1 2.1 3.5 3.8 12.2 7.4 1.10 3.67 22.4 

Gabapentin 0.9951 90.4 ± 5.8 7.7 6.4 9.5 <MQL 9.9 0.28 0.93 5.2 

Codeine 0.9984 92.0 ± 3.1 2.7 3.4 6.0 <MQL 9.7 0.23 0.77 5.0 

Caffeine 0.9951 101.4 ± 4.9 4.1 4.8 8.2 5.4 8.3 0.80 2.80 7.2 

Trimethoprim 0.9975 96.3 ± 4.1 3.6 4.3 1.5 11.2 7.6 0.04 0.12 2.4 

Sulfamethoxazole 0.9957 92.8 ± 3.0 2.4 3.2 4.9 13.4 3.3 0.06 0.20 3.4 

Tramadol 0.9958 91.8 ± 4.0 3.5 4.3 4.2 10.8 9.9 0.17 0.56 4.6 

Metoprolol 0.9992 93.1 ± 3.3 2.0 3.5 4.8 <MQL <MQL 0.02 0.07 2.7 

Propranolol 0.9957 95.6 ± 5.8 6.7 6.5 8.0 15.1 11.9 0.04 0.14 4.7 

Doxycycline 0.9979 85.7 ± 4.1 4.6 4.8 4.0 <MQL <MQL 0.24 0.79 22.9 

Carbamazepine 0.9749 88.2 ± 3.2 3.9 3.6 5.2 16.3 13.8 0.02 0.07 2.5 

Hydrocortisone 0.9856 83.5 ± 4.8 5.1 5.8 6.2 12.6 7.5 0.34 1.13 37.8 

Naproxen 0.9629 90.2 ± 4.7 3.4 5.2 5.4 <MQL <MQL 0.09 0.30 4.7 

DEET 0.9524 94.1 ± 4.4 4.5 4.9 3.6 <MQL <MQL 0.11 0.37 5.7 

Erythromycin 0.9920 83.5 ± 3.7 3.2 4.5 5.1 8.5 <MQL 0.25 0.84 22.0 

Oxazepam 0.9923 94.7 ± 5.3 6.3 5.6 3.4 <MQL <MQL 0.15 0.49 6.3 

Valsartan 0.9951 92.5 ± 7.3 9.1 9.9 4.5 10.3 8.2 0.32 1.05 8.6 

Mefloquine 0.9937 86.7 ± 4.5 6.3 5.2 6.0 <MQL 12.1 0.30 0.99 24.7 

17α-ethynylestradiol 0.9952 78.9 ± 5.0 5.3 6.4 6.3 <MQL <MQL 1.21 4.05 83.8 

β-estradiol 0.9951 76.9 ± 5.2 4.6 7.6 4.9 <MQL <MQL 1.16 3.87 81.0 
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Diazepam 0.9739 94.9 ± 6.8 4.7 7.2 6.3 <MQL <MQL 0.13 0.43 4.7 

Diclofenac Sodium 0.9944 89.4 ± 3.9 4.9 4.3 4.7 8.9 6.9 0.15 0.50 9.8 

Glyburide 0.9951 88.3 ± 4.5 4.2 5.1 6.2 3.5 3.6 0.30 0.99 12.9 

Ibuprofen 0.9949 90.9 ± 3.3 3.5 3.7 8.7 11.3 <MQL 0.12 0.41 8.9 

Meclofenamic acid 0.9994 86.1 ± 4.7 3.9 5.5 8.8 6.3 6.8 0.17 0.57 10.3 

Clotrimazole 0.9619 101.8 ± 4.0 3.7 3.9 6.9 13.5 8.9 0.36 1.19 16.3 

Gemfibrozil 0.9906 92.3 ± 6.6 7.4 7.2 8.7 <MQL 9.6 0.31 1.05 14.5 

* Linearity co-efficient over a range of 1-1500 ng/ml.  
# Recovery % of triplicate measurements at 3 spiked concentration levels (10, 250 and 750 ng/ml) in Milli-Q water. Details at each level are provided in the SI 

section. 
$ Relative standard deviation (RSD%) of triplicate measurements.  
** RSD% of triplicate measurements at 3 spiked concentration levels (10, 250 and 750 ng/ml) in Milli-Q water. Details at each level are provided in the SI section. 

& RSD% of triplicate analysis of tapwater samples spiked with 500 ng/L of all target PPCPs. 
‡ RSD% of triplicate analysis of un-spiked samples.  

† MQL determined in spiked tapwater. 
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Table 3: Concentrations (ng/L) of target PPCPs in the studied effluent and surface water samples. 

Name 
Effluent samples Surface water samples 

1A 1B 1C 1D 1E 2F 2G 2H 2I 2J 

Nicotine 365 736 567 835 419 116 90 269 378 98 

Metformin 219 589 5613 1109 168 32 63 23 21 36 

Acetaminophen 1509 978 15947 3042 1582 954 144 207 392 776 

Codein 63 <MQL 466 29 <MQL <MQL 18 14 21 15 

Amoxicilin <MQL 129 2038 <MQL 29 <MQL 24 <MQL <MQL 28 

Gabapentin <MQL 40 279 <MQL <MQL <MQL 8 <MQL 12 <MQL 

Trimethoprim 1060 271 2738 459 650 230 116 210 224 175 

Caffeine 84 1739 855 121 70 12 41 15 7 54 

Tramadol 353 508 1103 192 282 41 93 56 32 58 

Metoprolol 34 218 1089 67 57 17 8 5 9 12 

Sulfamethoxazole <MQL <MQL 19 <MQl <MQL <MQL <MQL <MQL <MQL <MQL 

Propranolol 8 19 187 62 <MQL <MQL 6 <MQL 7 <MQL 

Erythomycin 52 <MQL 275 106 <MQL <MQL <MQL <MQL 33 61 

Carbamazepine 63 151 342 <MQL <MQL <MQL 6 <MQL 8 1 

Hydrocortizone 43 83 128 77 46 36 43 64 42 40 

Mefloquine <MQL <MQL <MQL <MQL <MQL <MQL <MQL <MQL <MQL <MQL 

DEET <MQL <MQL <MQL <MQL <MQL <MQL <MQL <MQL <MQL <MQL 

Oxazepam <MQL <MQL 39 <MQL 10 <MQL <MQL <MQL <MQL <MQL 

Doxycycline <MQL <MQL 29 <MQL <MQL <MQL <MQL <MQL <MQL <MQL 

Clotrimazole 31 <MQL 231 <MQL 43 <MQL 23 <MQL 18 <MQL 

Naproxen <MQL 29 89 <MQL 13 <MQL 6 <MQL <MQL 8 

Diazepam <MQL 17 58 <MQL <MQL <MQL <MQL <MQL 9 <MQL 

β-estradiol <MQL <MQL 165 <MQL <MQL <MQL <MQL <MQL <MQL <MQL 

17α-ethynylestradiol <MQL <MQL 219 <MQL 104 <MQL <MQL <MQL <MQL <MQL 
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Valsartan 107 258 594 318 290 63 55 104 59 36 

Glyburide 2120 798 4162 550 1438 333 628 393 365 253 

Diclofenac Sodium 269 79 3614 172 201 35 <MQL 77 44 <MQL 

Ibuprofen 1497 1661 6702 812 1092 51 26 91 62 34 

Meclofenamic acid 17 <MQL 52 <MQL <MQL <MQL 12 <MQL <MQL <MQL 

Gemfibrozil <MQL <MQL 105 44 <MQL <MQL 17 <MQL 16 21 
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