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ABSTRACT 

This review addresses issues relating to the survival and axon regeneration of 

both intrinsically photosensitive retinal ganglion cells (ipRGC) and αRGC, and 

possible ensuing patterns of functional recovery after optic nerve crush, all of which 

are broadly relevant to recovery from injury in the central nervous system (CNS) as 

whole.  Although much needs to be clarified about the connectivity, function and 

patterns of myelination of regenerated CNS axons, the results of recent research on 

activity-induced αRGC axon regeneration associated with functional restitution have 

highlighted key focal obstacles to recovery including neurotrophic support, axon 

misguidance, target recognition failure and dysmyelination.  Pan RGC survival/axon 

regeneration requires receptor binding and downstream signalling by a cocktail of 

growth factors, more generally defined in the CNS by the individual trophic 

requirements of neuronal subsets within a given disconnected centre.  Resolution of 

the problem of failed axon guidance and target recognition is complicated by a 

confounding paradox that axon growth inhibitory ligand disinhibition required for axon 

regeneration may mask axon guidance cues that are essential for accurate re-

innervation.  The study of the temporal parameters of remyelination of regenerated 

αRGC axons may become feasible if they establish permanent homologous 

connections, allowing time for new myelin sheaths to fully form.  Unless near 

complete re-innervation of denervated targets is re-instated in the CNS, debilitating 

dysfunctional neurological sequelae may ensue from the resulting imbalance in 

connectivity. 
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1. Introduction 

Since the definitive demonstrations of retinal ganglion cell (RGC) axon 

regeneration after optic nerve (ON) crush (ONC) (Berry et al., 1996; Leon et al., 

2000), an enigma has emerged that, no matter how many RGC survive, axon 

regeneration is consistently restricted to <10% RGC (reviewed by (Berry et al., 2008; 

Berry et al., 2016).  This is despite the application of a multiplicity of disparate 

neuroprotective/axogenic stimuli (reviewed by Harvey et al., 2012), e.g. mammalian 

target of Rapamycin (mTOR) activation after either deletion of both the phosphatase 

and tensin homologue (pten) and the tuberous sclerosis complex 1 (tsc1) genes 

(Park et al., 2010; Park et al., 2008), and by neurotrophic factors (NTF) derived from 

Schwann cells (Ahmed et al., 2006; Berry et al., 1999), macrophages (Yin et al., 

2009; Yin et al., 2003) and retinal glia (Garcia et al., 2002; Lorber et al., 2009).  The 
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NTF implicated include Oncomodulin (Leon et al., 2000; Yin et al., 2009; Yin et al., 

2003) and ciliary neurotrophic factor (CNTF), plus the inflammatory cytokine 

leukaemia inhibitory factor (LIF) (Diekmann et al., 2013; Leibinger et al., 2009; Muller 

et al., 2007; Muller et al., 2009).  A possible explanation for the above conundrum 

came when it was discovered that, after pten deletion (Park et al., 2008), RGC axon 

regeneration was the preserve of αRGC, which are phosphorylated S6+ (pS6+) 

(mTOR stimulated) (Laplante and Sabatini, 2009, 2012), express osteopontin (OP) 

and insulin-like growth factor receptor 1 (IGFR1) and constitute ~6% all RGC in the 

mouse (Duan et al., 2015; reviewed by Cui et al., 2015).  The discovery of the 

dependence for the survival and axon regeneration of selected ipRGC and αRGC on 

specific NTF predicts that different subgroups of RGC and, by inference other 

multiple groups of phenotypically diverse neurones within the CNS, will require 

distinct combinations of NTF for survival, axon regeneration and the comprehensive 

re-innervation of disconnected targets.  Opportunities for unravelling the vagaries of 

functional restitution after CNS injury become available as the physiology and axon 

regeneration potential of αRGC unfolds.  Thus, although the precise connectivity and 

myelination status of regenerated αRGC axons await clarification, enough is known 

about their connectivity to gain insights into the precision of guidance of regenerating 

axons to their original targets, the accuracy of re-innervation and the likely extent of 

the ensuing functional recovery.  Since regenerated axons making functional 

homotopic connections are expected to establish permanent target links, study also 

becomes possible of the time course and characteristics of their remyelination, 

another essential condition for the return of function. 
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2. ipRGC subtypes 

      IpRGC and αRGC are included in a list of ~30 different types of RGC in the 

murine retina, classified by morphology, similarity in gene expression, regularity of 

spacing in the retina and physiological properties (reviewed by Sanes, 2015).  The 

photosensitive pigment of ipRGC is a melanopsin G protein coupled receptor 

(GPCR) (Li et al., 2016; Provencio et al., 1998), expressed over a wide range of 

concentrations by all ipRGC, probably accounting for their variable intrinsic 

photosensitivity and making phenotypic immunohistochemical anti-melanopsin 

antibody identification unreliable (Esquiva et al., 2013; Reifler et al., 2015).  

Nonetheless, 5 subtypes of ipRGC (M1-M5) have been recognised in mice and rats 

which possess varied molecular, morphological and physiological characteristics 

(Ecker et al., 2010; Estevez et al., 2012; Reifler et al., 2015; Viney et al., 2007).  

They all occupy the innermost region of the ganglion cell layer (GCL) juxtaposed of 

the inner plexiform layer (IPL) and have extensive dendritic ramifications terminating 

in the ON, OFF and ON/OFF sub-laminae of the IPL (Berson et al., 2002; Warren et 

al., 2003).  M1 are strongly and M2 moderately melanopsin+ ipRGC (Berson et al., 

2010; Ecker et al., 2010; Schmidt et al., 2014; Schmidt et al., 2011) and mainly 

subserve pupillary reflexes and entrainment of the circadian clock through 

connections with the olivary pretectal nucleus (OPN) and suprachiasmatic nucleus 

(SCN) and intergeniculate leaflet (IGL) (Fig. 1A).  The dendrites of the M3 ipRGC 

subtype are bistratified terminating in both the ON and OFF IPL sublaminae, and 

physologically resemble M2 cells (Berson et al., 2010; Schmidt et al., 2011).  M4 and 

M5 exhibit weak intrinsic photocurrents (Ecker et al., 2010), have the largest somata 

and differ in their physiological properties and dendritic stratitfication (Ecker et al., 

2010).  Although M4 ipRGC express very low levels of melanopsin, they are reliably 
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labelled with yellow fluorescent protein (YFP) in Kcng4 transgenic mice (crossed with 

the reporter line Thy-fl-STOP-fl-YFP).  M4 ipRGC principally innervate the dorsal 

lateral geniculate nucleus (dLGN) and superior colliculus (SC) (Fig. 1B) (Ecker et al., 

2010; Estevez et al., 2012; Schmidt et al., 2014).  Similarly, small numbers of most 

ipRGC subtypes also project axons to the ventral lateral geniculate nucleus (vLGN), 

lateral habenular nucleus (LHN), hypothalamic preoptic areas (PA), 

subparaventricular zone (SPZ) and supra optic nucleus (SON), probably regulating 

sleep and the release of pituitary hormones (LVPA); negative masking and 

autonomic neural functions (SPZ); and neurosecretion regulated through the 

hypothalamic-hypophyseal axis (SON) (Cui et al., 2015; Dacey et al., 2005; Ecker et 

al., 2010; Hattar et al., 2006; Morin et al., 2003).  Morphological, immuno-cytological, 

electrophysiological and retrograde axon tracer studies confirm that ipRGC have 

overlapping projections to many other principal RGC axon destinations, most of 

which are contralateral, although those to the SCN are bilateral and often branched.  

This dispersed connectivity suggests that disparate ipRGC collaterals may moderate 

the function of a range of primary ipRGC targets. 

 

3.  Relationship between ipRGC and αRGC 

 In the mouse, M4 ipRGC resemble ON-αRGC in sharing both morphological 

(large somata that co-label with a melanopsin reporter, SMI-32 heavy chain 

neurofilament protein antibody, expansive dendritic fields ramifying in the ON sub-

lamina of the IPL and axon projection to the DLGN and SC) and physiological 

properties (responding to rod/cone signalling, photosensitive to sustained ambient 

light intensity and enhancing contrast sensitivity through melanopsin 
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phototransduction, possibly setting contrast detection thresholds) (Ecker et al., 2010; 

Estevez et al., 2012; Schmidt et al., 2014; Zhao et al., 2014; Duan et al., 2015; Bray 

et al., 2017; Sonoda et al., 2018).  The above findings have fostered the assertion 

that ON-αRGC ‘completely overlap’ and are ‘synonymous’ with M4 ipRGC (Sonoda 

et al., 2016, 2018;Schmidt et al., 2014).  In rats, rabbits and guinea pigs, M4 ipRGC 

also bare morphological resemblance to ON αRGC (Manookin et al., 2008; Zhang et 

al., 2005).  In mice, ON α-RGC have also been called Type or Class 1 RGC (Sexton 

and Van Gelder, 2015), ON, inner α and RGA RGC, among other designations 

(Badea and Nathans, 2004; Coombs et al., 2006; Sun et al., 2002).  At least 4 types 

of murine αRGC exist (ON-transien (t), OFF-t, ON-sustained (s) and OFF-s) (Krieger 

et al., 2017), the sustained bipolar cell synaptic inputs of M4 ipRGC (Estevez et al., 

2012) identifies them as ONs αRGC. 

 In the Kcng4-cre line studied by Duan et al., (2015), all αRGC subtypes were 

YFP+ and all non-αRGC were unlabelled, and the ‘near complete overlap’ in CTB- 

and YFP-labelled regenerating axons after pten deletion showed that regrowing 

axons largely stemmed from αRGC.  Although it remains undiscovered which αRGC 

subtypes regrow their axons, a corollary to the above is that the RGC axon 

regeneration reported in pten deletion studies are all likely to derive from αRGC.  

Since relative frequencies have not been defined, at least 25% of αRGC could 

comprise the ON-s αRGC subtype (M4 ipRGC).  Melanopsin over-expression 

promotes RGC axon regeneration through the mTOR pathway, similar to that seen 

after pten deletion (Li et al., 2016), suggesting that the axons of M4 ipRGC (ON-s 

αRGC) are included in the population of αRGC regenerating their axons.  Alpha 

RGC axon projections terminate in the DLGN and SC and thus connections to other 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
8 

 

 

 

centres made by regenerating αRGC axons result from path finding and target 

recognition errors. 

 

4. Survival of axotomoised ipRGC 

 Some 80% RGC die by 14d after ONC (Berkelaar et al., 1994), probably 

through caspase-2 (Casp2) mediated apoptosis (Ahmed et al., 2011; Vigneswara 

and Ahmed, 2016; Vigneswara et al., 2014).  Numbers continue to fall after 14d but a 

residual population, comprising M1 and αRGC preferentially but not exclusively 

survive (Duan et al., 2015; Perez de Sevilla Muller et al., 2014).  Their viability may 

be attributed to: (i), the preservation of endogenous mTOR signalling (Li et al., 

2008), possibly through persistent expression of the sphingosine 1-phosphate 

receptor (S1PR) (Joly and Pernet, 2016); (ii) mTOR-activating NTF, delivered 

through either retinal collaterals (Joo et al., 2013; Schmidt et al., 2013; Semo et al., 

2014) or secreted by retinal glia (Chidlow et al., 2008; Fischer et al., 2008; Leibinger 

et al., 2012); (iii), the neurotrophic effects of melanopsin photo-transduction (Cui et 

al., 2015); (iv), resistance to the toxic effects of increased titres of extracellular 

glutamate (DeParis et al., 2012; Hartwick et al., 2008; Li et al., 1999) caused by 

impaired reactive retinal astrocyte uptake (Uhlmann et al., 2002; Wong et al., 2003); 

and (v), OP-/IGF1-/BDNF-induced mTORC1 regulation of both autophagia and 

caspase expression (Chen et al., 2013; Dunlop and Tee, 2014; Heras-Sandoval et 

al., 2014).  Bray et al. (2017) found that 80% αRGC ultimately die by 6w after ONC 

and treatment with CNTF, possibly because they are disconnected from target-

derived NTF or that, in the absence of myelination, are deprived of oligodendrocyte 

trophic support (see later).  The observation that OP+IGF1 and OP+BDNF treatment 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
9 

 

 

 

supports αRGC survival (Duan et al., 2015) predicts that other novel NTF treatments 

are required to promote pan-RGC axon regeneration.  However, although the 

preservation of axotomised RGC viability is a prerequisite for axon regeneration, the 

two conditions are not causally linked, as illustrated by the observations that: (i), the 

viability of most RGC is protected by siCasp2 treatment, but <10% of surviving RGC 

regenerate their axons (Ahmed et al., 2011; Vigneswara et al., 2012); and (ii), M1 

and αRGC survive axotomy but only the latter regenerate their axons (Duan et al., 

2015).  In general, the viability of all axotomised CNS axons is critically dependent 

on the preservation of collaterals proximal to the site of transection which sustain the 

retrograde transport of target-derived neuroprotective NTF (reviewed by (Nielson et 

al., 2011).  Most RGC axons lack collaterals in the ON, but other axotomised CNS 

neurons (e.g. CST neurons –(Nielson et al., 2010) with conserved proximal 

collaterals may not require intervention of an anti-apoptotic treatment. 

 

5. Regeneration of ipRGC and αRGC 

Although M1 and αRGC preferentially survive axotomy in mice, unequivocal 

axon regeneration is largely restricted to 2.5% of surviving RGC with >90% of these 

derived from αRGC (Duan et al., 2015).  Alpha-RGC are OP-rich (Duan et al., 2015) 

and, while IGF1 and its receptor are expressed in most RGC and Müller cells (Bu et 

al., 2013; Tagami et al., 2009), there is selective maintenance of expression in 

αRGC after ONC.  In the normal mouse ON, αRGC axons run a linear parallel 

course, some possess short branches with bulbous endings (Fig. 2) but, in the 

absence of treatment after ONC, some grow spontaneously within the proximal ON 
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segment where they spiral, loop and branch, but few traverse the crush site and 

penetrate the distal ON segment, and none reach the chiasm (Bray et al., 2017). 

When αRGC axons regenerate after unilateral and bilateral ONC in response 

to mTOR activation, they do grow through the lesion site from the proximal into the 

distal ON segment where they also exhibit aberrant behaviour by branching and 

making multiple U-turns; some grow proximally returning through the lesion towards 

the ipsilateral eye (Luo et al., 2013; Yungher et al., 2015 - reviewed by Pernet and 

Schwab, 2014).  Those growing centrally, reach the chiasm where they take all exit 

options, entering the contralateral uninjured ON, ipsilateral and contralateral optic 

tracts and hypothalamus, but re-innervation of the dLGN and SC was not reported by 

Luo et al. (2013) and Yungher et al. (2015) and the density of projections is 

consistently and uncharacteristically greater in the ipsilateral than contralateral optic 

tract (Fig. 3A).  More optimistic results have been reported using a synergistic 

treatment of pten deletion combined with Zymosan and cyclic adenosine 

monophosphate (cAMP) (de Lima et al., 2012a; de Lima et al., 2012b; Kurimoto et 

al., 2010) - reviewed by (Benowitz et al., 2017), when regenerating RGC axons re-

innervate the contralateral dLGN and SC, but many ectopic connections are also 

made with the SCN, OPN, vLGN, medial terminal nucleus (mTN) and ipsilateral 

dLGN (Fig. 3B).  CNTF potentiates the effects of pten suppression when αRGC 

axons grow aberrantly in the ON segments proximal and distal to an ONC (Bray et 

al., 2017; Yungher et al., 2015), although up to ~23% may originate from a non-

αRGC origin (Fig. 4).  The observation that the misguidance of RGC axon 

regeneration induced by CNTF (see later) is as extensive as that of αRGC after 

mTOR stimulation (Luo et al., 2013; Pernet et al., 2012), implies that regenerating 

CNS axons lack guidance (Diekmann et al., 2013; Luo et al., 2013) and thus, in the 
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absence of therapies which prevent/correct either deviant axon growth or failures in 

target recognition, path finding failure is a major obstacle to achieving functional 

restitution after CNS injury.  The development of treatments to correct pathfinding 

errors will need to address the paradox that axon misdirection is, in part, a 

consequence of scar-/myelin-derived axon growth inhibitory ligand (AGIL) 

neutralisation (Ahmed et al., 2006; Berry et al., 2016; Sandvig et al., 2004), required 

to achieve disinhibited CNS axon regeneration (Berry et al., 2008). 

After NTF treatment, CNS axons regenerate without supplementation with an 

AGIL neutralising therapy, probably because NTF have an inherent 

disinhibition/axogenic double action.  Axon growth is promoted along with induction 

of either regulated intramembranous proteolysis (RIP) of the p75NTR signalling moiety 

of the trimeric Nogo receptor complex (Ahmed et al., 2009; Ahmed et al., 2006) or 

the moderation of RhoA and/or GSK3β activity (Dent and Gertler, 2003; Nakayama 

et al., 2015; Zhou and Snider, 2005) – reviewed by (Berry et al., 2016).  Although the 

ensuing blockade of both AGIL receptor binding and intracellular signalling are 

prerequisites for axon regeneration, many AGIL are also repulsive path finding cues 

(Bolsover et al., 2008; Giger et al., 2010) and thus their neutralisation inevitably 

leads to guidance errors. 

The failure of regenerating axons to home into their original targets may also 

be attributable to: (i), a partial or complete obliteration in the mature CNS of former 

guidance cues that define connectivity trajectories during development (reviewed by 

(Koeberle and Bahr, 2004); (ii), an inability to read ontogenetic axon growth cone 

repulsive/attraction path finding signals that persist in the adult; and (iii), non-

recognition of original post-synaptic contact sites within targets.  Notwithstanding all 
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of the above, the capacity of the CNS to remodel aberrant connectivity by synapse 

elimination and dendritic plasticity may constitute a natural mechanism for correcting 

erroneous projections (Hong and Chen, 2011). 

 

6. Axon regeneration of RGC of unknown phenotype 

In untreated animals after ONC, very small numbers of RGC axons of 

unknown phenotype spontaneously regenerate their axons within the proximal ON 

segment, a few traverse the ON lesion, but their growth is transitory and limited in 

distance within the distal ON segment (Berry et al., 1996; Bray et al., 2017; Campbell 

et al., 1999; Park et al., 2010; Park et al., 2008).  As mentioned above, after pten 

deletion and OP+IGF1/OP+BDNF treatment, ~6% of RGC axons regenerate in the 

ON, primarily derived from αRGC.  Thus, the NTF requirements of the remaining 

~94% RGC may be deduced by screening for axogenic factors (other than 

OP+IGF1/OP+BDNF combinations).  Another approach has been to deliver 

transcription factors (TF), implicated in axon growth de novo during development, to 

axotomised adult RGC.  Sox11 is one such TF which has a screening advantage of 

inducing αRGC death.  Over expression of Sox11 in non-αRGC promotes axon 

regeneration 4mm into the distal ON segment, although the Sox11 sensitive non-

αRGC phenotype has not been identified (Norsworthy et al., 2017).  Surprisingly and 

perhaps paradoxically, pten deletion potentiates Sox11-induced RGC axon growth 

(Fig. 5).  However, potential drawbacks of Sox11 therapy are that, although axogenic 

programmes are re-activated, synaptogenesis is suppressed and lethal neurotoxicity 

may extend beyond αRGC to other neurons (Norsworthy et al., 2017), suggesting 

that a more universal application within the CNS may precipitate wide spread 
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neuronal loss, synaptic dysfunction and disturbed target recognition.  There has 

been an esculating research effort aimed at promoting CNS axon regeneration using 

axogenic TF therapies and future progress in this endeavour is likely to achieve 

significant progress (Palmisano and Di Giovanni, 2018; Tedeschi, 2011; Venkatesh 

and Blackmore, 2017).  However, such treatments have so far achieved only modest 

axon regeneration possibly because, unlike NTF, NF may may not induse RIP of the 

p75NTR co-receptor resulting in suboptimal disinhibition of axon growth in the 

presence of myelin-derived AGIL.  

Many NTF regimens have the potential to promote axonal regeneration of 

RGC of unknown phenotype (Harvey et al., 2012), but few researchers have 

excluded the downstream mediation of mTOR in their experiments.  CNTF and c-

myc potentiate αRGC axon regeneration (Belin et al., 2015; Bray et al., 2017; 

Yungher et al., 2015), while the former and possibly the latter may also stimulate 

non-αRGC axogenesis.  In vitro, CNTF-stimulated RGC neurite extension is little 

affected by Rapamycin treatment (Leibinger et al., 2012), although growth is blocked 

using a PI3K inhibitor, indicating that CNTF-stimulation of some RGC neurite/axon 

growth is mTOR independent, mediated through a JAK/STAT/Akt route, possibly by 

the inactivation of GSK3β (Leibinger et al., 2017).  The RGC axogenic properties of 

CNTF (Fischer et al., 2008; Fischer and Leibinger, 2012; Hellstrom and Harvey, 

2011; Hellstrom et al., 2011; Leaver et al., 2006; Pernet et al., 2013) may be 

regulated by S1PR1, since co-suppression of this bioactive sphingolipid receptor 

during CNTF treatment promotes greater regeneration over longer distances than 

CNTF alone (Joly et al., 2017; Joly and Pernet, 2016). 
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Multiple Schwann cell-derived NTF (discussed by (Berry et al., 1996; Villegas-

Perez et al., 1988) stimulate peripheral nerve regeneration and the growth of axons 

of up to 9.5% RGC into sciatic nerve grafts (SNG) sutured to the ON (Harvey et al., 

2012; Robinson and Madison, 2000; Thanos et al., 1993; Vidal-Sanz et al., 1987; 

Villegas-Perez et al., 1988).  Possibly in response to Schwann cell-derived BDNF (Yi 

et al., 2016), there is enhanced survival of axotomised M1 melanopsin+ ipRGC after 

ON/SNG, compared to ONC alone, but αRGC axons do not grow into SNG 

(Robinson and Madison, 2004).  Peripheral sensory axons can regenerate after 

Rapamycin treatment, possibly through either the PI3K/Akt/GSK3β pathway (Christie 

et al., 2010; Gobrecht et al., 2014; Huang et al., 2017; Saijilafu et al., 2013) and/or 

an alternative PI3K/GSK3β route independent of Akt phosphorylation (Zhang et al., 

2014).  Following intravitreal (ivit) implantation of SNG, Schwann cell NTF 

supplemented by macrophage-derived NTF (Lorber et al., 2008), also promote RGC 

axon growth into the distal ON segment and through the chiasm after ONC (Berry et 

al., 1996; Berry et al., 1999).  This ivit SNG-induced RGC axon regenertion also 

exhibits gross errors of misguidance, but it is not known if the regenerating axons 

derive from αRGC exclusively or include mTOR-independent non-αRGC axons.  

Only a small number of RGC axons enter SNG anastomosed to the cut end of the 

ON (Dezawa and Adachi-Usami, 2000; Harvey et al., 2009; Watanabe and Fukuda, 

2002) implying that novel NTF, predicted to preserve the viability and stimulate axon 

regeneration of non-αRGC, are unlikely to be Schwann cell-derived. 

Krüppel-like factors (KLF) regulate axon growth during development.  KLF9 is 

a neurite growth suppressor, the increased expression of which in neonatal RGC is 

correlated with a progressive loss of axon growth potential (Moore et al., 2009).  

ShRNA knockdown of KLF9 mRNA in axotomised adult RGC promotes RGC 
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survival and axon regeneration through the distal ON segment and chiasm into the 

optic tracts (Apara et al., 2017).  Although it is not known which RGC phenotypes are 

responsive to KLF9 mRNA knockdown, the effect may be mTOR insensitive and 

thus provide a novel means of stimulating the regeneration of non-αRGC. 

 

7. ON scarring and axon regeneration  

Immediately after CNS injury, damaged tissue is removed by inflammatory 

cells which also secrete scar-inducing cytokines (Berry et al., 1999).  CNS scars 

obstruct and the AGIL they secrete inhibit the regeneration of axons and the re-

innervation of targets (Berry et al., 1999; Logan and Berry, 2002; Stichel and Muller, 

1994, 1995).  Paradoxically however, blocking scar formation promotes little axon 

regeneration (Fischer et al., 2004; GrandPre et al., 2002; Simonen et al., 2003; 

Zheng et al., 2003), unless supplemented with NTF treatment (reviewed by (Berry et 

al., 2008).  Nevertheless, in all CNS axon-regenerating paradigms, no scar tissue is 

deposited and regenerating axons cross sites of injury unimpeded.  Moreover, 

dissolution of chronic scar tissue is also induced by late regenerating axons implying 

that old scars are not an impediment to reconnection with denervated targets even in 

long standing cases of CNS injury.  For example, in bax knockout mice, AAV-CNTF 

treatment at 56d after ONC (when a mature scar is well established) promotes RGC 

axons regeneration of bax-neuroprotected RGC and the dissolution of the mature 

scar.  Thereafter, RGC axons continue growing into the distal ON segment for at 

least 3,000µm; some enter the chiasm where they penetrate the hypothalamus and 

both optic tracts, but others become misdirected into the contralateral ON (Yungher 

et al., 2017).  Similarly, no scar tissue is seen to have developed in the figures 
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illustrated by Belin et al. (2015), when ON regeneration is induced in adult mouse 

RGC by the axogenic transcriptional factor c-myc up to 6d after ONC, when an 

incipient scar should be present (Belin et al., 2015).  Acute scar formation may be 

arrested and chronic scar tissue dispersed by regenerating axons regulating both the 

release of fibrolytic factors from reactive glia including metalloproteinases (MMP) 

and plasminogens, and the blockade of tissue inhibitors of MMP (TIMPs) (Ahmed et 

al., 2005).  The ensuing inhibition of meningeal fibroblast migration into the wound 

also has the potential to reduce acute scarring initiated by interactions between 

EphB2 bearing fibroblast and ephrin-B2+ reactive astrocytes (Bundesen et al., 2003).  

MMP/plasmin may also neutralize the scar-derived AGIL semaphorins/ephrins 

thereby supplementing the disinhibited axon regeneration attributable to NTF-

induced RIP of p75NTR after NOGO binding of myelin-derived AGIL.  Thus, it seems 

likely that prospective poly-therapies designed to promote functional CNS axon 

regeneration may not require the inclusion of anti-inflammatory and scar-

blocking/dissolution treatments in both acute and chronic lesions, unless scarring is 

exceptionally dense as in lesions of the spinal cord where anti-inflammatory Maresin 

1 (Francos-Quijorna et al., 2017) and anti-scarring Decorin regimens (Ahmed et al., 

2014; Esmaeili et al., 2014) may be useful. 

 

 

8. Return of function after α-RGC axon regeneration  

The connections of α-RGC (Dacey et al., 2005; Ecker et al., 2010) and M4 

ipRGC (ON-s αRGC) (Estevez et al., 2012) with the dLGN and SC (Zhao et al., 

2014) indicate roles in high contrast sensitivity (Schmidt et al., 2014), visual 

perception and visually guided behaviour (Ecker et al., 2010; Zhao et al., 2014).  
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Restitution of these functions is contingent on re-establishment of the original 

synaptology in the dLGN and SC through accurate path finding and target 

recognition of long distance RGC regenerating axons and probably explains the 

partial return of depth perception and the optomotor (optokinetic) reflexes after pten 

deletion combined with Zymosan+cAMP treatment (de Lima et al., 2012a).  But may 

be difficult to reconcile with the observations that circadian entrainment and pupillary 

reflexes, all subserved by M1 ipRGC, which do not regenerate their axons in 

response to mTOR stimulation and exclusively innervate the SCN/IGL and the OPN, 

respectively (Ecker et al., 2010; Hattar et al., 2006; Hattar et al., 2002).  

Nonetheless, deletion of pten combined with Zymosan+cAMP treatment after ONC 

(de Lima et al., 2012a) could promote RGC axon regeneration in non-αRGC (see 

above) either through the release of Oncomodulin from activated macrophages 

(Leon et al., 2000; Yin et al., 2009; Yin et al., 2003) and/or CNTF/LIF from retinal glia 

(Fischer and Leibinger, 2012).  Similarly, after either AAV shPTEN+cntf+cAMP 

treatment (Yungher et al., 2015) or pten+socs3 co-deletion (Sun et al., 2011, Li et al., 

2015), most RGC axons enter the SCN and form active synapses, presumed to be 

formed by regenerated misdirected α-RGC and not homotopic M1 ipRGC axons 

which do not regenerate (Duan et al., 2015), unless the JAK/STAT pathway 

stimulates axogenesis of M1 ipRGC. 

More recent research shows that visual stimulation (Goldberg, 2012) and 

Melanopsin over-expression (Li et al., 2016) can promote target specific axon 

regeneration of αRGC and probably some non-αRGC, associated with functional 

restoration of visual behaviours (Goldberg, 2012; Li et al., 2016; Lim et al., 2016).  

Light stimulation mediates accurate guided αRGC axon regeneration through Ca++-

induced mTORC1 expression regulated by light-induced melanopsin coupling with G 
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protein/11 (Gp/11) (Li et al., 2016).  Neural stimulation (Plazas et al., 2013) and the 

ensuing differential levels GPCR activity control turning behaviour of growth cones in 

the developing neuropil by inducing the expression of both repulsion and attraction to 

chemokines (Palczewski and Orban, 2013; Xiang et al., 2002) and similar activity 

may explain the accurate axon guidance observed by regenerating adult adult αRGC 

recorded by Lim et al., (2015).  The effects of visual stimulation on αRGC axon 

regeneration is critically dependent on the integrity of retinal circuitary after ONC 

which can be protected by Insulin administration before RGC begin to die 

(Agostinone et al., 2018).  Such treatment restores dendritic arbour morphology and 

synaptic connectivity and rescues retinal responses to light stimulation by activating 

mTOR in RGC.  Thus, light stimulation combined with Insulin treatment may provide 

an optimal therapy for ipRGC and possibly non-ipRGC axon regeneration and target 

re-innervation. 

Nonetheless, if the incidence of aberrant connections/synaptology by 

regenerating αRGC axons is representative of regenerating CNS axons over all, 

abnormal function may ensue unless pruning of mismatched contacts or the death of 

parent misconnected neurons occurs.  Alternatively, the normal pattern of profuse 

ipRGC collateral innervation may favour both the observed unrestrained connectivity 

with multiple targets by regenerating αRGC and the subsequent observed wide 

ranging scope of the ensuing functional recovery. 

 

9. Remyelination of regenerated αRGC axons  

Another mandatory provision for recovery of function is that 

regenerated axons become myelinated to ensure that normal axonal conduction 
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velocities are re-established in the new trajectories.  However, study of remyelination 

of regenerated axons has been hampered by the rapidity of axon degeneration after 

failed target re-innervation.  Bei et al. (2016) found that, after either pten/socs3 co-

deletion or op/igf1/cntf co-over-expression, the SC is re-innervated and functional 

synapses formed, but head turning in response to a rotating grating is not executed.  

Poor recovery of visual tracking was attributed to dysmyelination of regenerated 

axons and the resultant disturbed action potential propagation which, when corrected 

by treatment with voltage-gated potassium channel blockers, partially restored 

function.  Loss of nodes of Ranvier and initial axon ion clustering occurs within 1 

week of ONC in surviviving proximal RGC axon segments but, after pten deletion 

and cAMP+Zymosan administration, functioning initial segment and nodal excitable 

domains are re-established which in regenerating axons first appear proximally with 

later remyelination and nodal reassembly progressing distally through the ON crush 

site but such recovery does not extend to the chiasm, even by 3 months after ONC 

(Marin et al., 2016).  De Lima et al. (2012a, b) also described the myelination of 

presumptive αRGC regenerated axons in the distal ON segment but, in support of 

the conclusions of Bei et al. (2016), sheaths were very variable in thickness and 

lamellae number not positively correlated with axon diameter, indicating that 

conduction velocities are impaired.  The myelination status of mature ipRGC axons 

is poorly defined, although there is electrophysiological and anatomical evidence that 

some M1 axons innervating the SCN are both hypo- and un-myelinated (Do and 

Yau, 2010).  Remyelination of regenerated CNS axons is contingent on: (i), the 

extent of oligodendrocyte death after axotomy; (ii), the availability of essential growth 

factors (secreted by activated astrocytes, microglia and macrophages) which both 

regulate the proliferation of oligodendrocyte precursor cells (OPC) and their 
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differentiation into myelinating oligodendrocytes (Alizadeh et al., 2015; Lloyd and 

Miron, 2016); (iii), Schwann cell invasion, their interaction with OPC and ultimate 

axon myelination (Berry et al., 2016; Blakemore, 1975; Jasmin and Ohara, 2002); 

and (iv), activity-driven modulation of re-myelination (reviewed by (Almeida and 

Lyons, 2017).  Despite concerted research efforts (reviewed by (Alizadeh et al., 

2015), no effective therapy has been formulated for promoting re-myelination of 

either demyelinated or regenerated CNS axons.  However, homologous αRGC axon 

connections made within the dLGN and SC may become stable for long enough to 

allow remyelination to run to completion and provide the first descriptions of the 

natural history of remyelination of regenerated CNS axons. 

 

10. Future directions and conclusions  

αRGC axons regenerate and some, notably after light stimulation, make 

homologous functional connections in the dLGN and SC.  Disinhibited axon 

regeneration is largely an exclusive reponse of αRGC to axotomy driven by 

OP+IGF1/OP+BDNF stimulation of mTOR implying that the trophic requirements of 

the remaining RGC may be derived by screening novel NTF/TF either in the 

presence of Rapamycin or by eliminating αRGC.  M1 and 3243αRGC spontaneously 

survive axotomy but all other RGC will require neuroprotection to remain viable after 

ONC.  Action potential propogation also drives remyelination which becomes a 

feasible subject of study in those regenerated αRGC axons that make permanent 

stable homotopic connections.  It is likely that centres elsewhere in the CNS will also 

benefit from neuroprotection and neurostimulation together with cocktails of NTF/TF, 

possibly supplemented with factors like Insulin, GCPR and/or KLF to kick-start axon 
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regeneration.  The axons of light-stimulated αRGC also connect with multiple nuclei 

innervated by other ipRGC.  The extent to which the latter are homotopic M4 ipRGC 

collateral trajectories or aberrant ectopic connections remains uncertain.  If vagaries 

in recovery, similar to those occurring after αRGC axon regeneration, also apply to 

brain and spinal cord injuries, misguidance and dysmyelination will need correction 

to achieve functional restitution.  Also highlighted is the assertion that to achieve 

return of function in the traumatised CNS additional strategies including axon growth 

disinhibition and anti-scarring therapies may be unnecessary. 
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Figure Legends 

Figure 1. Diagrammatic representation of the normal principal ipsilateral and 

contralateral connections of M1 and M2ipRGC (A) and contralateral projections of 

αRGC (B) (the connections of other ipRGC axons are less well documented – see 

text); ipRGC have minor projections to multiple other ipRGC targets not illustrated 

and further study will clarify the extent to which innervation of these targets is by 

direct or collateral projections.   M1 and M2 axons fail to regenerate, whereas αRGC 

regenerate their axons (Duan et al., 2015) after ONC and accurate target 

reconnection would be expected to re-establish the connections illustrated (see text 

and Fig. 3) (ON, optic nerve; OC, optic chiasm; OT, optic tract; SQB, superior 

quadrigeminal brachium; SCN, suprachiasmatic nucleus; DLGB, dorsal lateral 

geniculate body; IGL, intergeniculate leaflet; VLGN, ventral lateral geniculate 

nucleus; OPN, olivary pretactal nucleus; SC, superior colliculus; dashed 

line=midline). 

 

Figure 2. Immunolabelling-enabled 3D imaging of whole solvent cleared adult 

mouse ON after labelling RGC with Thy1-H-YFP.  A, YFP+ αRGC axons (white) in a 

maximum intensity projection image (MIPI) of a full thickness ON (optic chiasm to the 

right).  B, Traces superimposed on MIPI (scale bar in A and B=500µm).  C, Example 

traces of single YFP+ αRGC axons (each colour (assigned arbitrarily).  D, E, High 

magnification view of boxed area in A.  F, G, Example of a short branch with terminal 

expansion of an uninjured axon (scale bar=10µm).  Note the orderly and parallel 

course of all axons (illustrated).  (Modified Fig. 3 from Bray et al., 2017, re-used 

under the Creative Commons Attribution 4.0 Interntaional (CC BY 4.0) licence). 
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Figure 3. Some of the aberrant connectivity exhibited by regenerating presumptive 

αRGC axons demonstrated using cholera toxin B axon tracing and GAP43 

immunostaining after combinatorial treatments which include pten deletion as 

reported by Luo et al., 2013 and Yungher et al., 2015 (A) and by Kurimoto et al., 

2010 and de Lima et al., 2012a (B).  Since other axogenic factors (e.g. CNTF, 

Oncomodulin, cAMP, etc.) were included in the combinatorial treatments, it is 

possible that some non-αRGC axons may be included in the projections illustrated.  

In (A), thickness of lines indicates that projections are predominantly ipsilateral 

(arrows with ‘?’, signify projections innervating undefined target neurons; 

HT=hypothalamic targets, including medial preoptic area and lateral hypothalamus – 

a small number of axons also invade the fornix and amygdala – not shown).  In (B), 

abnormal connections with the SCN, VLGN, OPN and SC are illustrated (see Fig. 1B 

for normal ipRGC axon connections, abbreviations and definition of format). 

 

Figure 4.  Immunolabelling-enabled 3D maximum intensity projections of YFP+ 

(white) αRGC axons in 4 adult ON 6w after ONC and NTF treatment (optic chiasm to 

the right; each colour represents a single axon; scale bar=100µm).  Note the 

tortuous growth of most regenerating axons in the ON segments both proximal and 

distal to the lesion (red *) compared to the trajectories of axons in the uninjured ON 

(Fig. 2) - no regenerating axons reached the brain in this study– see text.  (Modified 

Fig. 6 from Bray et al., 2017, reused under the Creative Commons Attribution 4.0 

Interntaional (CC BY 4.0) licence). 

 

Figure 5.  Combinecd effect of Sox11 and pten deletion (∆Pten) at 6-7w on mouse 

non-αRGC axons (labelled with cholera toxin B).  Compared to ∆Pten controls, 
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axons invaded the optic tracts after traversing the optic chiasm (OC) in ∆Pten/Sox11-

treated mice (scale bar = 100µm; ON lesion=*). (Modified Fig. 4 from Norseworthy et 

al., 2017, with permission). 
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Highlights 

• Less than 10% of retinal ganglion cell (RGC) axons regenerate despite the 
multiplicity of axogenic stimuli. 

• Five subtypes of intrinsically photosensitive RGC (ipRGC; M1-M5) are present in 
the murine retina 

• Only M1 spontaneously survive optic nerve axotomy 
• Only αRGC regenerate their axons and are mammalian target of Rapamycin 

(mTOR)-dependent  


