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Abstract: The Ag4Sn and Ag3Sn intermetallics are successfully synthesized by 

combining electrochemical deposition and dealloying methods. The Ag4Sn and Ag3Sn 

possess a half-wave potential of 0.810 mV and 0.790 mV respectively for the oxygen 

reduction reaction in alkaline media, which are comparable to the commercial Pt/C 

(0.837 mV). In term of the durability, the Ag4Sn retains a half-wave potential of 0.775 

mV after 5000 potential cycles, which is superior to Pt/C of 0.784 mV. The better 

catalytic activity and durability are mainly attributed to the ensemble effect and strong 

chemical bond in the AgSn ordered intermetallic structure. The catalytic activity is hardly 

influenced by methanol or ethanol in alkaline media with alcohol concentrations up to 1.0 

M. Therefore, a membraneless alkaline zinc-air battery and direct alcohol fuel cell can 

operate with Ag4Sn and Ag3Sn intermetallics as the cathode catalysts, which allow the 

anode fuel to freely enter the cathode. A high power density is delivered by the 

membraneless alkaline fuel cells with zinc, methanol or ethanol as anode fuels. The 

excellent alcohol-tolerance is beneficial to the oxygen reduction reaction of alkaline fuel 

cells and makes the AgSn intermetallics a promising candidate to replace Pt-based 

electrocatalysts for oxygen reduction reaction.   

 

Keywords: Oxygen reduction reaction; Intermetallic; Silver; Tin; Membraneless alkaline 

fuel cells 
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1. Introduction 

The alkaline fuel cells have been developed to meet rapidly rising energy demand and 

to resolve environmental issues owing to their fascinating features, including large energy 

density, high energy efficiency, easy storage/transportation, and low/zero emission [1-5]. 

In comparison to the acid fuel cells, they also offer the facile kinetics of electrode 

reaction and avoid the corrosive problems of catalysts, especially using the transition 

metals (e.g. Fe, Co, Ni, Cu) [6]. For the alkaline fuel cells, an anion-exchange membrane 

is necessary to separate the anode and the cathode while providing OH
-
 migration [7]. 

More importantly, this membrane can prevent the crossover of fuel and oxidant between 

the anode and cathode to maximize the power output of the fuel cell [8]. However, the 

state-of-the-art anion-exchange membranes still suffer from the poor ionic conductivity, 

the limited stability, the high rate of alcohol crossover and the lack of industrial 

production [9,10]. On the other hand, the use of the membrane severely restricts the 

device design, limits the electrolyte choice and increases the cell cost. Therefore, a 

membraneless alkaline fuel cell that avoids the above obstacles has recently attracted 

much attention.  

As far as we are aware, the membraneless alkaline fuel cells can be divided into two 

types: laminar flow-based fuel cells and fuel cells with alcohol-tolerant cathode catalysts. 

Laminar flow-based fuel cells are difficult to be scaled up for a single cell due to the 

millimeter-scale size [11]. Even through improving cell designs, stacking or multiplexing 

technology, this type of membraneless fuel cells are not yet satisfactory for the practical 

applications in terms of power and cost [12-14]. Hence, the membraneless alkaline fuel 

cells mainly based on alcohol-tolerant cathode catalysts are of particularly interest, which 
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achieve more flexibility and miniaturizability in cell design, simpler implementation, and 

low cost. Central to the operation of all the membraneless alkaline fuel cells is the 

efficient, alcohol-tolerant oxygen reduction reaction (ORR) catalyst. In spite of the 

prohibitive cost and low reserves [15],
 
in addition to the sluggish kinetics and poor 

durability [16,17],
 
platinum (Pt) is the most popular electrocatalyst for the ORR in 

alkaline fuel cells, but their ORR performances are easily degraded due to the mixed-

potential and catalyst poisoning forming at the cathode. This is because Pt catalyst is also 

catalytically active toward alcohols so that the serious alcohol crossover through the 

membrane leads to the significant decay of the cell performance [18-20].  

Considerable efforts and progresses have been made to develop the alcohol-tolerant Pt-

based ORR catalysts [21-28]. For instance, Guo and co-workers [22]
 
reported a PtBi 

intermetallic nanocatalyst, which offers an excellent methanol tolerance but a lower ORR 

activity than that of the commercial Pt/C catalyst. Jeyakumar group [23]
 
developed the 

Au85Pt15/C catalyst, which showed both excellent methanol tolerance behavior and better 

ORR performance in terms of the mass activity and power density in a single fuel cell as 

compared to that using the commercial Pt/C catalyst. Cho et al. [24] prepared the 

PtPdCo/C ternary electrocatalysts, which exhibited a similar ORR activity and superior 

methanol tolerance as compared to Pt/C. The PtPd nanoflowers [25],
 
PtNi intermetallics 

[26],
 
Pt nanoparticles on CoSe2 nanobelts [27],

 
and Pt nanoparticles encapsulated in 

nitrogen-doped carbon nanocages [28]
 
were found to be insensitive to methanol so that 

they display an improved methanol tolerance performance and can be used for alcohol-

tolerant ORR catalysts.  

However, such Pt-based ORR electrocatalysts still show relatively low methanol 
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tolerance due to the limited suppression of alcohol oxidation reaction (AOR).  To address 

this issue, recent research has been focused on Ag-based alcohol-tolerant catalysts, which 

have a much lower cost than Pt-based catalysts. As compared with Pt-based catalysts, the 

Ag-based catalysts possess a similar ORR mechanism and kinetics but a higher tolerance 

to alcohol [29-31]. Currently, Ag and Ag-based alloys exhibit good alcohol-tolerant 

capability while maintain high ORR activity. For instance, Zeng and Ni et al. [32,33] 

reported the Ag nanowires exhibited a good activity and alcohol-tolerant stability for the 

ORR in alkaline media. Lu et al. [34]
 
reported that Ag4Sn intermetallic nanoparticles 

displayed better ORR performance and excellent tolerance to methanol, but no durability 

test was investigated. In our previous work, we have found that the Ag3Sn nano-

intermetallic can be used as a good bifunctional electrocatalyst for ORR and borohydride 

oxidation reaction (BOR) [35]. Taylor et al. [31]
 
synthesized a silver palladium core-shell 

catalyst on multiwall carbon nanotubes by galvanic displacement of Pd on Ag 

nanoparticles, the Ag@Pd catalysts showed a high ORR activity and alcohol-tolerant 

capability in the presence of methanol and ethanol. In the presence of methanol, the 

current density on Ag@Pd decreased by 0.18 mA/cm
2
, compared to Pt/C (0.97 mA/cm

2
) 

and Pd/C (1.09 mA/cm
2
). Unfortunately, the state-of-the-art Ag-based alcohol-tolerant 

catalysts demonstrate a lower ORR activity and inferior long-term stability in comparison 

to Pt-based catalysts.  

In this work, we develop the novel AgSn intermetallic catalysts with different 

compositions and morphologies, synthesized via combining electrochemical deposition 

and dealloying methods. The precursor alloys with various surface morphology and 

elemental compositions are prepared by tuning the deposition current, afterwards, the 
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pure phase Ag4Sn and Ag3Sn intermetallic catalysts are obtained by dealloying in diluted 

HClO4.  The Ag4Sn and Ag3Sn catalysts possess a half-wave potential of 0.810 mV and 

0.790 mV for the ORR activity, which is comparable to the commercial Pt/C catalyst. 

The Ag4Sn exhibits superior stability with only 35 mV shift in E1/2 after 5000 potential 

cycles. More importantly, this AgSn intermetallic with relatively high ORR activity is 

insensitive to alcohol crossover into the cathode and performs well at high alcohol 

concentration, which makes it promising to exclude the alkaline anion-exchange 

membrane from the cell. Building on the promising selective ORR activity in the 

presence of the alcohol, three membraneless alkaline fuel cells are demonstrated with 

zinc, methanol, and ethanol as anode fuels. 

2. Experimental 

2.1. Preparation of samples 

2.1.1 Electrodeposition of precursor alloy 

The AgxSn100-x alloy was synthesized using a three-electrode system containing a 

glassy carbon working electrode, platinum sheet counter electrode and saturated calomel 

electrode (SCE) reference electrode. The electroplating solution was composed of 2.0 M 

H2SO4, 0.2 M SC(NH2)2, 0.025 M SnSO4, and 0.01 M Ag2SO4. Electrodeposition was 

carried out galvanostatically with mild agitation until the quantity of electricity 

approached to 0.3 mC cm
-2

. The Ag75Sn25 and Ag50Sn50 precursor alloys were deposited 

at a current density of 10.2 and 25.5 mA cm
-2

, respectively, whose atomic ratios of Ag/Sn 

were measured by the energy-dispersive X-ray spectrometer of scanning electron 

microscopy. The as-synthesized alloys were washed with DI water, and then dried in 

nitrogen at room temperature. 
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2.1.2 Dealloying of precursor alloy 

To remove Sn and adjust the Ag/Sn ratio, the electrochemical dealloying was 

conducted within a potential range of -0.45 V to 0 V in a N2-purged 0.1 M HClO4 

solution at a scan rate of 50 mV s
-1 

for several cycles.  

2.2. Physical characterization 

The morphology, structure, and composition of the samples were characterized by a 

field-emission scanning electron microscopy (FESEM, FEI NovaSEM 450) with an 

energy-dispersive X-ray spectrometer (EDX) detector, and high-resolution transmission 

electron microscopy (HRTEM, FEI Tecnai F30), X-ray diffraction (XRD) (PANalytical 

X
’
Pert Pro MPD, Cu Kα radiation of 1.5406 Å), and X-ray photoelectron spectroscopy 

(XPS) (ESCALAB 250). 

2.3. Electrochemical characterization 

Electrochemical investigations were carried out at room temperature using CHI 660C 

electrochemical workstation (Chenhua, China). The working electrode was prepared by 

electrodepositing the catalyst on the glassy carbon rotating disk electrode (GC-RDE, 5 

mm in diameter). Pt wire and Hg/HgO electrode were used as the counter and reference 

electrodes, respectively. All potentials in this paper were reported relative to the 

reversible hydrogen electrode (RHE) unless indicated. The ORR activities of the catalysts 

were examined in 0.1 M KOH solution saturated with oxygen. Linear scanning 

voltammetry (LSV) curves at different rotation rates were performed with a scan rate of 

10 mV s
-1

. The alcohol tolerances (methanol and ethanol) were examined by adding 

alcohols at different concentrations (ranging from 1 mM to 1 M) to the alkaline 

electrolyte saturated with oxygen. The ORR response in the presence of alcohols was 
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obtained at a scan rate of 10 mV s
-1 

and at a rotation speed of 1600 rpm. For comparison, 

the commercial Pt/C (Johnson Matthey, 20 wt. %) was also tested. The electrochemical 

surface area (ECSA) of Ag-based materials was measured using Pb-stripping 

voltammetry. Pb-stripping voltammetry was conducted by holding the potential at 0.20 V 

and then sweeping to 0.7 V at 10 mV s
-1 

in N2-saturated 0.1 M KOH + 125 µM Pb(NO3)2 

solution. ECSAs were calculated by integrating the charge associated with Pb 

underpotential deposition (UPD) on the catalysts and using a conversion factor of 280 uC 

cm
-2

. For the commercial Pt/C catalyst, cyclic voltammetry (CV) was performed within 

the potential range of +0.07 V to +1.12 V at a scan rate of 50 mV s
-1 

in 0.1 M KOH with 

N2 saturation. ECSAs were established by integrating the hydrogen desorption peak and 

using a conversion factor of 210 µC cm
-2

. 

2.4. The membraneless alkaline fuel cell performance testing 

The membraneless alkaline zinc-air battery and direct alcohol fuel cell (DAFC) are 

assembled as a home designed cell configuration. The membraneless alkaline Zn-air 

battery was built with a zinc plate, the air electrode and 6 M KOH electrolyte. The 

membraneless alkaline DAFCs with 0.785 cm
2
 active area were fabricated with Pt/C (1.5 

mg cm
-2

) anode and AgSn intermetallics cathode (0.3 mg cm
-2

). The space between two 

electrodes was filled with an aqueous electrolyte with 2 M KOH and 5 M alcohol. The 

performance was tested on a battery testing station (Neware Company, Shenzhen).  Each 

current applied was allowed to stabilize for 5 min.  

3. Results and discussion 

3.1. Catalytic activity of AgSn intermetallic catalysts towards the ORR 

The catalytic activity of the Ag4Sn and Ag3Sn towards the ORR was studied by LSV, and 
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benchmarked against the commercial Pt/C catalyst. Fig. 1a displays ORR polarization 

curves of AgSn intermetallics and Pt/C reference catalysts obtained in O2-saturated 0.1 M 

KOH solution at a rotation rate of 1600 rpm. The Pt/C exhibited a half-wave potential 

(E1/2) of 0.837 V and a diffusion-limiting current of 5.286 mA cm
-2

. The Ag4Sn 

intermetallic showed an E1/2 value of 0.810 V and the diffusion-limiting current of 5.29 

mA cm
-2

, indicating the ORR activity of Ag4Sn is comparable to that of Pt/C. The Ag3Sn 

showed negative shift in E1/2 of 20 mV relative to Ag4Sn. The E1/2 for the PtRu/C was 

0.73 V, suggesting the poor activity for ORR. 

The ORR activity of these different catalysts was further compared in terms of the 

mass-transport corrected Tafel plots in Fig. 1b. The Tafel slope increased in the following 

order: Ag4Sn (63.53 mV decade
-1

) < Ag3Sn (67.28 mV decade
-1

) < Pt/C (70.58 mV 

decade
-1

). The lower Tafel slopes than Pt/C catalyst suggest that Ag4Sn and Ag3Sn 

exhibit remarkable catalytic activity in alkaline media. Since specific activity relies on 

the active site area, the electrochemical active surface areas (ECSAs) of the catalysts 

were measured. As shown in Fig. 1c, on the basis of Pb stripping, the ECSAs of Ag4Sn 

and Ag3Sn were calculated to be 0.967 and 0.725 m
2
 g

-1
, respectively. The ECSA of Pt/C 

was 56 m
2
 g

-1
 by integrating the charge related to the hydrogen desorption (Fig. S1). Fig. 

1d shows the specific activities of Pt/C, Ag4Sn, and Ag3Sn at 0.85V, whose specific 

activities are 0.268, 0.193, and 0.155 mA cm
-2

, respectively, indicating that the Ag4Sn 

catalyst approaches to the 72% activity of Pt/C at a cost of 2%.  

To gain further insight into O2 reduction kinetics, the LSV curves were recorded on 

these catalysts at different rotating speeds (Fig. S2). A higher rotating speed results in a 

larger diffusion-limiting current, due to more O2 delivery to the electrode surface. To 
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Fig. 1. (a) ORR polarization curves for the Ag4Sn, Ag3Sn, commercial Pt/C and PtRu/C catalysts 

recorded in O2-saturated 0.1 M KOH solution at a rotation rate of 1600 rpm and a scan rate of 10 

mV s
-1

. (b) Mass-corrected Tafel plots of the Ag4Sn, Ag3Sn and commercial Pt/C catalysts. (c) 

Cyclic voltamograms of the Ag4Sn and Ag3Sn catalysts in N2-purged 0.1 M KOH + 125 µM 

Pb(NO3)2 at a scan rate of 10 mV s
-1

. (d) The specific activities at 0.85 V and the electron transfer 

numbers (n) for the Ag4Sn, Ag3Sn and commercial Pt/C catalysts.  

 

calculate the electron transfer number for the ORR, the Levich plot derived from the 

Koutecky-Levich equation (K-L) [36] is shown in Fig. S2e.  

jlim= 0.62nFAD
2/3

ν
-1/6

C0ω
1/2

                       (1) 

where jlim is the limiting current density, n is the number of electrons transferred, F is 

the Faraday constant (96485 C mol-1), A is electrode area (0.196 cm
2
), D is the diffusion 

coefficient of oxygen in 0.1 M KOH (1.9×10
-5

 cm
2
 s

-1
), ν is the kinematic viscosity (0.01 

cm
2
 s

-1
), C0 is the oxygen concentration (1.2×10

-3 
mol L

-1
) and ω is the electrode rotation 

speed (rad s
-1

). The corresponding K-L plots at 0.3 V show good linearity, demonstrating 

first-order reaction kinetics with regard to dissolved O2. In addition, based on the slopes 
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of the K-L plots, the numbers of electron involved (n) for Ag4Sn, Ag3Sn, and Pt/C were 

established to be 3.9, 3.8, and 4.0, which implies that the Ag4Sn catalysts can 

electrochemically reduce O2 via a four-electron pathway, similar to the selectivity of Pt/C 

catalyst in oxygen reduction process. 

3.2. Comparison of precursor alloy and dealloying derived catalysts  

3.2.1. ORR activity 

These high performance AgSn intermetallic catalysts were made from the AgxSn100-x 

(e.g. Ag75Sn25 and Ag50Sn50) precursor alloy by selectively dealloying the less noble 

metal Sn. According to the electrochemical dealloying method shown in Fig. S3, the 

potential cycles between -0.45 V and +0 V were applied in order to remove Sn. Fig. 2(a,b) 

show that Sn was dissolved into the solution in the positive scan, as evidenced by the Sn 

oxidation peak between -0.2 V and 0 V, and Sn was re-deposited on the nanoparticles 

during the inverse scan, as indicated by the cathodic peak around at -0.22 V. With the 

cycling, the Sn redox peaks declined step by step in Fig. 2(a,b), however, the Pb-stripping 

peak current increased after 4 cycles for Ag75Sn25 and 15 cycles for Ag50Sn50 (insets of 

Fig. 2(c,d)), indicating that the specific surface of the precursor alloy is increased by the 

electrochemical dealloying, and the precursor alloy became Ag-rich when Sn atoms can 

be purposely dissolved. The ORR activity of dealloyed Ag75Sn25 and Ag50Sn50 alloys 

were monitored by the rotating disk electrode method, as observed in Fig. 2(c,d). The E1/2 

for Ag75Sn25 alloy had an initial value of 0.797 V in O2-saturated 0.1 M KOH solution at 

1600 rpm, positively shifted about 13 mV after dealloying for 4 cycles, but decreased 

after 8 cycles. Similarly, the E1/2 value of the dealloyed Ag50Sn50 alloy positively shifted 

for the most 27 mV after 15 cycles. The reason for the activity enhancement is 

../../../../../Program%20Files/Youdao/Dict/7.2.0.0703/resultui/dict/
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Fig. 2. (a, b) Cyclic voltamograms of Ag75Sn25 and Ag50Sn50 precursor alloy during the 

electrochemical dealloying in N2-saturated 0.1 M HClO4 at a scan rate of 50 mV s
-1

. (c, d) ORR 

activity changed during dealloying of Ag75Sn25 and Ag50Sn50 precursor alloy as measured by 

polarization curves in O2-saturated 0.1 M KOH at a rotation rate of 1600 rpm and a scan rate of 

10 mV s
-1

. Insets: ECSA before and after dealloying as measured by the Pb-stripping 

voltammograms. 

 

assumingly contributed to the dealloying derived AgSn intermetallic catalyst, whose 

formation was further investigated as following.  

3.2.2. Morphology and structure  

As shown in Fig. 3(a,b), the morphology and Sn contents of precursor alloys can be 

easily tuned by simply varying the deposition current. When the deposition current 

density was 10.2 mA cm
-2

, the as-prepared Ag75Sn25 precursor alloy consisted of plate-

like and little grainy structures and the molar ratio of Ag to Sn was determined to be 

75:25 by SEM-EDX (Fig. S4). The as-prepared Ag50Sn50 precursor alloy nanoparticles 

with near-spherical shape were obtained at high current density of 25.5 mA cm
-2

. After  
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dealloying for 4 and 15 cycles, Ag4Sn and Ag3Sn intermetallics were made from the  

Ag75Sn25 and Ag50Sn50 precursor alloy, respectively. As shown in Fig. 3(c,d), the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a, c) SEM images of Ag75Sn25 precursor alloy and dealloying derived Ag4Sn catalysts. (b, 

d) SEM images of Ag50Sn50 precursor alloy and dealloying derived Ag3Sn catalysts. (e) XRD 

patterns of Ag75Sn25 precursor alloy and dealloying derived Ag4Sn catalysts. (f) XRD patterns of 

Ag50Sn50 precursor alloy and dealloying derived Ag3Sn catalysts. The vertical lines represent the 

peak positions of the β-Sn (JCPDS No. 04-0673, black line), Ag4Sn (JCPDS No. 29-1151, red 

line) and Ag3Sn (JCPDS No. 04-0800, blue line) reflections, respectively. 

Ag75Sn25  

Ag3Sn Ag4Sn 

Ag50Sn50 
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presence of fish-like dendrites is observed in Ag4Sn intermetallic and finer dispersed 

nanoparticles are evident for Ag3Sn intermetallic. The dendrites or finer nanoparticles can 

help rapidly transfer charges and expose more catalytic active sites, further improving the 

ORR activity as observed in Fig. 2(c,d). The Ag75Sn25 precursor alloy was also dealloyed 

for 8 cycles, there is little change of the morphology and the Sn content decays to 18.86 

(Fig. S5). The crystalline structure of the precursor alloy and dealloying derived AgSn 

intermetallic catalysts was confirmed using XRD, as shown in the diffraction patterns of 

Fig. 3(e,f), the tetragonal Ag4Sn (# 29-1151) and β-Sn (# 04-0673) phases were formed 

for Ag75Sn25 precursor alloy, whose final product after dealloying for 4 cycles exhibited 

the same diffraction peaks to Ag4Sn intermetallic. The Ag50Sn50 precursor alloy deposited 

at a high current density was a mixture of orthorhombic Ag3Sn phase (# 04-0800) and β-

Sn phase, the characteristic peaks of dealloyed product belonged to Ag3Sn intermetallic. 

Further examination under TEM show that Ag4Sn intermetallic certainly had dendrites 

composed of nanoparticles (Fig. 4a). On the surface of Ag4Sn intermetallic (Fig. 4b), the 

distances between two neighboring crystal lattice fringes were 0.256 and 0.237 nm, 

which corresponded to the interplanar spacing of Ag4Sn (100) and (002) planes. Ag4Sn 

catalyst displays the typical polycrystalline structure with diffraction rings of (002), (101), 

(102), (110) and (200) facets that belong to the tetragonal phase, as shown from the 

selected-area electron diffraction (SAED) pattern in Fig. S6a. Ag3Sn (Fig. 4c) shows 

near-spherical particles with an average size of about 30 nm, the surface shows clear 

lattice fringes (0.238 and 0.260 nm) in Fig. 4d, which were assigned to the (002) and (110)  

planes of the orthorhombic Ag3Sn phase. The SAED pattern in Fig. S6b shows five 

intense diffraction rings indexed to (110), (111), (112), (113) and (200) planes. 
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Fig. 4. (a, c) Bright field TEM images of the Ag4Sn and Ag3Sn catalysts. (b, d) HRTEM images 

of the Ag4Sn and Ag3Sn catalysts. The insets are the Fast Fourier Transform (FFT) patterns 

corresponding to the marked squares. 

 

3.3. Selectivity of AgSn intermetallic catalysts toward the ORR 

To study the effect of alcohol crossover on the cathodic oxygen reduction, the alcohol 

tolerance of the dealloying derived AgSn intermetallic catalysts was evaluated by adding 

four alcohol concentrations (3 mM, 30 mM, 300 mM, 1 M) to the electrolyte. The LSV 

and CV curves in the presence of alcohols are obtained (Fig. 5 and Fig. S7). It is known 

to all that negative current values account for the ORR, while positive currents account 

for the alcohol oxidation reaction. As observed, the half-wave potentials for the Ag4Sn 

(a) 

(c) 

(b) 

(d) 
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and Ag3Sn have almost no degradation and little loss of the current density in the 

presence of methanol or ethanol (Fig. 5(a,c) and Fig. S7(a,b)). Particularly, the ORR 

properties are little affected even at a high concentration of methanol up to 1.0 M. 

Moreover, the Ag4Sn shows superior tolerance to ethanol and worse tolerance to 

methanol with respect to the Ag3Sn. While, the ORR activity for the commercial Pt/C 

catalyst is significantly reduced in the present of alcohols even at a rather low 

concentration of 30 mM. The result is mainly caused by the competition between AOR 

and ORR on the Pt surface, resulting in the decline of the ORR current.  

Furthermore, Fig. 5(e,f) compares CV curves of Ag4Sn, Pt/C and PtRu/C catalysts in 

N2-saturated 0.1 M KOH solution with and without the presence of 1.0 M alcohol. In 

alkaline media, the curves of the commercial Pt/C and PtRu/C catalysts do not exhibit 

alcohol oxidation features. After adding alcohol, there is an obvious alcohol oxidation 

peak in positive scan direction. Moreover, the comparison in current densities indicated 

that the PtRu/C showed higher catalytic activity for the AOR than that of the Pt/C. 

Nevertheless, the oxidation current is not observed in the CV curves of Ag4Sn and Ag3Sn. 

Further, the peaks related to oxide formation and reduction is depressed, especially with 

ethanol, which indicates that the alcohol is adsorbed on the surfaces without oxidation. 

Thus, the Ag4Sn and Ag3Sn catalysts demonstrate superior alcohol tolerance, which 

makes them proper for the DAFCs. As observed in Fig. 5(g,h), there is a little change in 

the ORR current on Ag4Sn after the addition of methanol or ethanol into the electrolyte 

solution, suggesting that alcohol does not affect original ORR catalytic activity of Ag4Sn. 

While, once adding methanol or ethanol, the cathodic current measured on the 

commercial Pt/C and PtRu/C catalysts can shift to an anodic current, which confirms the 
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Fig. 5. (a-d) Effect of methanol or ethanol concentrations on the ORR for Ag4Sn and Pt/C 

electrocatalysts in O2-saturated 0.1 M KOH. Rotating rate: 1600 rpm; Sweep rate: 10 mV s
-1

. (e, f) 

CV curves for Ag4Sn, Pt/C, and PtRu/C catalysts in N2-saturated 0.1 M KOH at a sweep rate of 

50 mV s
-1

 in the presence of 1.0 M methanol or ethanol. The dot lines show the CVs for Ag4Sn, 

Pt/C, and PtRu/C catalysts in N2-saturated 0.1 M KOH. (g, h) Chronoamperometric responses of 

Ag4Sn, Pt/C, and PtRu/C catalysts with alcohols added in O2-saturated 0.1 M KOH. The dot lines 

show the chronoamperometric curves in alkaline solution without alcohols throughout the test. 
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AOR may compete with ORR in the presence of alcohols. 

3.4. Durability of the Ag4Sn intermetallic catalyst 

In addition to the ORR activity and selectivity, the durability is also a significant 

determinant for the commercialization of fuel cells. To evaluate the stability of the 

dealloying derived Ag4Sn intermetallic catalyst, the accelerated durability test (ADT) was  

employed by continuously potential cycling between 0.6 and 1.1 V in O2-saturated 0.1 M 

KOH solution at a scan rate of 50 mV s
-1

. The peak current for Ag4Sn was slightly 

decreased after 5000 potential cycles, as displayed in the inset of Fig. 6a. Pt/C exhibited a 

dramatical decay in the current for the peaks associated with the hydrogen 

adsorption/desorption under the same condition (the inset of Fig. 6c). Upon integration 

the charges, the ECSA on Ag4Sn was decreased by only 24.8%, while 38.1% loss of 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a, c) ECSA loss of the Ag4Sn and Pt/C electrocatalysts with the number of cycles. Insets 

indicate the Pb-stripping voltammograms of Ag4Sn electrocatalyst and CVs for Pt/C catalyst 

before and after 5000 cycles. (b, d) ORR polarization curves of the Ag4Sn electrocatalyst and 

Pt/C catalyst after different number of cycles. 



19 

 

surface area on Pt/C was observed. Moreover, ORR polarization curves were also 

measured during the durability test. After 2000 cycles, the half-wave potential E1/2 for 

Ag4Sn decreased by 12 mV (Fig. 6b), while there is a 35-mV degradation in the  

corresponding E1/2 for Pt/C (Fig. 6d). Even prolonging cycles to 5000, the E1/2 in the 

Ag4Sn exhibited a negative shift of 35 mV while in Pt/C it is almost 53 mV. As compared  

in Figure 6, Ag4Sn catalyst shows loss of 50.89% in specific activity at +0.85 V after 

5000 cycles, while Pt/C catalyst shows 64.93% specific activity loss under the same 

condition. The ADT results indicate that Ag4Sn intermetallic catalyst has extraordinarily 

superior stability to the Pt/C commercial catalyst. The dendritic and chemical ordered 

structure of Ag4Sn intermetallic may be beneficial to the durability enhancement. 

3.5. Origin of the superior catalytic activity of AgSn intermetallic catalysts 

The enhanced activity towards ORR may be relevant to the surface species of catalysts 

[34], so the surface composition and electronic structure of the AgSn precursor alloys and 

dealloying derived intermetallic catalysts were analyzed by XPS (Fig. 7). The surface 

atomic ratios of Ag/Sn/O in different catalysts are compared in Table S1. As observed, 

the Ag:Sn:O atomic ratio on the surface of Ag75Sn25 is 55.13:18.47:26.40. Further 

increasing the deposition current to 25.5 mA cm
-2

, the amount of Sn and O on the surface 

increased. After dealloying, the content of Sn and O in Ag4Sn and Ag3Sn decreased. As 

shown in Fig. 7a, the Ag 3d peaks in different catalysts were split into Ag 3d3/2 and Ag 

3d5/2 peaks, which can be ascribed to metallic Ag (0). The XPS peaks of Sn consisted of 

Sn 3d3/2 peak and Sn 3d5/2 peak, both of which were divided into metallic Sn and oxidized 

Sn peaks (Fig. 7b). The metallic Sn peaks centered at 484.8 and 493.2 eV. The calculated 

Sn (0) percentage in Ag75Sn25, Ag4Sn, Ag50Sn50, and Ag3Sn were 38.01, 42.71, 38.36, 

../../../../../Program%20Files/Youdao/Dict/7.2.0.0703/resultui/dict/
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53.87, respectively (Table S2), suggesting that Sn atoms oxide partially on the surface of 

the catalysts. The XPS spectra of O 1s revealed the contribution from both 

adsorbed oxygen (at 531.3 eV) and O
2-

 at the intrinsic sites (at 530.1 eV) (Fig. 7c).  

Adzic et al. [37] reported that the difference in ORR activity in alkaline media is 

associated with the d-band center of the metal. In other words, metals with low d-band 

centers (e. g. Ag, Au) tend to possess low ORR activity because of the weak adsorption 

strength of oxygen. Metals with high d-band centers (e. g. Ir, Pd) also have poor ORR 

activity, owing to the difficult desorption of the oxygenated intermediates, even when the 

O-O bonds split easily. Nørskov et al. [38] reported that the relative position of the d-

band center can be used as a simple descriptor for ORR activity. To investigate the 

catalytic mechanism of ORR on Ag4Sn and Ag3Sn catalysts, the valence band spectrum 

(VBS) of the AgSn precursor alloys and dealloying derived intermetallic catalysts was 

also measured, as shown in Fig. 7d, the d-band centers of Ag75Sn25, Ag4Sn, Ag50Sn50, and 

Ag3Sn were at -5.42, -5.37, -5.51, and -5.40 eV, respectively. Moreover, -Sn phase in 

Ag75Sn25 and Ag50Sn50 precursor alloy lead to the downshift of the d-band center of the 

nanoparticles. It is unexpected that the d-band centers of Ag4Sn and Ag3Sn catalysts are 

more far away from the Fermi level relative to pure Ag with the d-band center at -5.34 eV. 

This is distinctly different from that on Ag-based alloys, where the rise in d-band center 

results in stronger adsorption to oxygen, thereby improving ORR activity [39]. 

The Ag4Sn catalyst had a lower d-band center but better ORR activity compared to 

pure Ag, which makes it difficult to rationalize the enhanced activity simply by the d-

band shifting. The surface species of Ag4Sn catalyst are composed of Ag, Sn, and SnOx, 

as confirmed by XPS analysis. Sn is known to have stronger oxygen binding than Ag, 

../../../../../Program%20Files/Youdao/Dict/7.2.0.0703/resultui/dict/
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which is the rate-determined step of the ORR process. Nevertheless, the enhanced 

absorption of oxygen is at the expense of forming strongly bound OH
-
, which inhibits the 

release of OH
-
. Moreover, the experimental VBS results have inffered that OH

-
 binds 

more weakly to Ag4Sn than to Ag. Due to the weak interaction between OH
-
 and the 

Ag4Sn catalyst, the surfaces of the catalyst have lower coverage of OH
-
, which promotes 

the final step of ORR process. Therefore, it is most likely that the ensemble effect exists 

to make use of the capability of Sn for initial O2 binding and the capability of Ag for fast 

removal of the oxygenated intermediates. In addition, fish-like dendrites have larger 

accessible surface area and more exposed catalytic active sites, which are good for 

boosting the ORR activity. 

Working on ensemble effect, the Ag4Sn catalyst consists of two different metals 

catalyzing the distinct steps in the ORR process. As displayed in Fig. 7e, O2 is 

chemisorbed onto Sn and Sn oxide sites in the form of (O2
•-
)ads, the (O2

•-
)ads then spill 

over onto the Ag sites and subsequently is reduced on Ag sites. The hydroxyl species 

(OH
-
) could easily leave the surface, which could then generate free active sites for 

further reduction. In this way, the full four-electron process can be achieved by 

combining the fast kinetics of Sn for the first one-electron reduction (eq 2) with reduction 

of (O2
•‐

)ads on Ag (eq3-6) and the rapid disproportionation (2HO2
-  

→ 2OH
-
 + O2). So the 

ORR pathway on the Ag4Sn catalyst proceeds via a five-step surface-mediated 

mechanism [40-42]:  

O2 + e
-
 → (O2

•‐
)ads                     (2) 

(O2
•‐

)ads + H2O → (HO2
•
)ads + OH

- 
                    (3) 

(HO2
•
)ads + e

-
 → HO2

-
                    (4)                          

javascript:;
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Oads + H2O + e
-
 → OHads + OH

-
                 (5) 

OHads + e
-
 →OH

-
                    (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a-c) The high-resolution XPS spectra of the Ag 3d, Sn 3d, and O 1s for AgSn precursor 

alloy and dealloying derived catalysts. (d) Valence band spectrum (VBS) for AgSn precursor 

alloy and dealloying derived catalysts. The red vertical bars represent the d-band center positions. 
This shows that the d-band centers of the Ag4Sn and Ag3Sn catalysts shift away from the Fermi 

level compared to pure Ag. (e) Schematic diagram of the catalytic mechanism of the Ag4Sn and 

Ag3Sn catalysts where oxygen adsorbs on the Sn as (O2
•-
)ads and (O2

•-
)ads is subsequently reduced 

to OH
-
 on the Ag.  

 

3.6. Performance of the membraneless alkaline fuel cell 

A schematic for the membraneless alkaline Zn-air battery and DAFC is illustrated in 

(e) 
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Fig. 8a. The performance of the membraneless alkaline fuel cell is mainly limited by the 

dissolved oxygen [43], so we designed the air electrode for utilizing oxygen in the air. 

The membraneless alkaline Zn-air battery was first studied, in which a zinc plate was 

used as the anode fuel and AgSn intermetallics as the cathode catalysts. The discharge 

polarization curves and power density curves are presented in Fig. 8b. For comparison, 

the Pt/C-based battery had an open-circuit voltage (OCV) of 1.50 V and a power density 

of 94.09 mW cm
-2

 at a discharge current density of 100 mA cm
-2

. The OCVs for Ag4Sn 

and Ag3Sn were measured to be 1.41 V and 1.36 V, respectively. At a high discharge 

current density, the maximum power densities for Ag4Sn and Ag3Sn were calculated as 

80.12 and 77.44 mW cm
-2

. Clearly, the Ag4Sn displayed superior discharge performance. 

The galvanostatic charge-discharge behavior of rechargeable Zn-air batteries were 

investigated in Fig. 8c and Fig. S8a, in which AgSn intermetallics demonstrated very 

stable charge-discharge cyclic performance compared to commercial Pt/C. 

In the membraneless alkaline DAFC, an aqueous solution consists of alcohol as the 

anode fuel and KOH as the supporting electrolyte. Commercial Pt/C and PtRu/C were 

employed as anode catalysts, and AgSn intermetallics were employed as cathode 

catalysts.  The AgSn intermetallics at the cathode efficiently catalyze O2 reduction 

without oxidizing the alcohol. Unlike AgSn intermetallics, the Pt/C at the anode catalyzes 

both AOR and ORR. LSV curves shown in Fig. 5 reveal that at a high alcohol 

concentration (more than 300 mM), alcohol oxidation dominates the current response at 

the Pt/C relative to the ORR, thus, the crossover of O2 is not a significant problem in this 

prototype when the O2 concentration in the air is far lower than the concentration of the 

alcohol (as high as 5 M). As manifested by Fig. 5(e,f) and Fig. S2, PtRu/C displayed 
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superior catalytic activity towards the AOR but poor ORR activity than that of the Pt/C, 

which renders it a good candidate as a selective catalyst for AOR at anode of DAFC. 

Furthermore, the supporting electrolyte KOH sustains the migration of OH
-
. Therefore, it 

seems to be feasible to omit the anion-exchange membrane used in the traditional 

alkaline DAFCs.  

As shown in Fig. S8(b,c), with either Pt/C or PtRu/C as the anode catalyst, if the 

membraneless alkaline DMFC was measured with commercial Pt/C cathode catalyst, 

undesirable AOR at the cathode could occur, thereby poisoning Pt catalyst and 

decreasing the OCV to 0.1 V.  In contrast, the membraneless alkaline DMFCs operating 

with Ag4Sn and Ag3Sn cathode catalysts maintained the stable OCVs of above 0.49 V for 

1 h. More importantly, the membraneless alkaline DMFC using the PtRu/C at the anode 

displayed higher OCV than the same membraneless fuel cell using the Pt/C at the anode. 

The polarization curves and power density plots of the membraneless alkaline DMFCs 

and DEFCs are presented in Fig. 8(d-g). It is noteworthy to mention that the 

membraneless alkaline DMFCs and DEFCs using either Ag4Sn or Ag3Sn as cathode 

catalyst and Pt/C as anode catalyst delivered OCVs of about 0.7 V. The membraneless 

alkaline DMFC with Ag3Sn cathode catalyst had a maximum power density of 3.0 mW 

cm
-2

; however, for the Ag4Sn cathode catalyst, the value was 2.26 mW cm
-2

. Ag4Sn-

based alkaline DEFC displayed a peak power density of 1.38 mW cm
-2

, while Ag3Sn-

based DEFC only achieved a peak power density of 1.27 mW cm
-2

. In case of PtRu/C 

catalysts, the performance of the membraneless alkaline DMFC and DEFC is improved 

significantly. The DMFCs with Ag4Sn and Ag3Sn cathode catalysts had the maximum 

power density of 4.46 mW cm
−2

 and 5.59 mW cm
−2

, respectively. However, the  
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Fig. 8. (a) Schematic for the membraneless alkaline Zn-air battery and DAFC composed of a 

single chamber with the fuel electrode and the air electrode in KOH electrolyte. The fuel at the 

anode in Zn-air battery and DAFC is zinc and alcohol, DAFC requires the use of Pt/C (denoted 

with the dotted box) to catalyze alcohol oxidation. (b) The discharge polarization curves and 

power density curves for the membraneless alkaline Zn-air batteries. (c) Galvanostatic charge-

discharge cycling curves of rechargeable Zn-air batteries at a current density of 5 mA cm
-2

 for 

125 cycles with 2 h charge-2 h discharge period. (d-g) The polarization curves and power density 

plots of the membraneless alkaline DAFCs using Pt/C (or PtRu/C) as the anode catalyst and 

AgSn intermetallics as cathode catalysts. (h) Digital photograph of a LED lamp powered by two 

membraneless alkaline DMFCs with Ag3Sn cathode catalyst connected in series.  
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maximum power density of the DEFCs was 2.24 and 2.12 mW cm
-2

 for Ag4Sn and 

Ag3Sn, respectively. It clearly indicates that the performance trends are consistent with 

the higher AOR activity and better tolerance to alcohol in Fig. 5 and Fig. S7. Two 

membraneless alkaline DMFC were connected in series and used to light a LED lamp, as 

shown in Fig. 8h, suggesting the potential practical utilization of the membraneless 

alkaline DMFC. 

In a recent study, Yang et al. [44] have reported an OCV of 0.38 V and a maximum 

power of 15 μW employing the Au@Ag2S@Pt nanocomposites at the anode and the Pt-

Ru nanoparticles at the cathode in the membraneless DMFC. The membrane-free DMFC 

built up with the CuO/N-rGO cathode and Pt/C anode gave an OCV of 0.5 V and a peak 

power density of 0.61 mW cm
-2

 [45]. Osaka et al. [46] proposed a micro DMFC of an air-

breathing, membraneless, and monolithic design using a Pt-Ru alloy for the anode and a 

Pd-Co alloy for the cathode. The maximum power was 1.4 µW, and the OCV was 0.50 V.  

It is clear that the present membraneless alkaline DMFCs with the AgSn intermetallics 

cathode and the PtRu/C anode demonstrate a higher OCV and maximum power density 

than the state-of-the-art works. Although the performance of the prototype cell is lower 

than the membrane based DMFC, we believe that developing a good oxygen tolerant 

anode catalyst, modifying cell designs and optimizing the operating conditions (the 

concentration of the fuel, flow rate of anolytes, operating temperature) will result in 

further improvements in the performance.  

4. Conclusions  

In summary, we have shown rapid synthesis of ordered Ag4Sn and Ag3Sn 

intermetallics with different nanostructures. Based on XRD, SEM and TEM results, it is 
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found that the intermetallic and β-Sn phases were initially formed, followed by the 

dissolution of Sn due to the potential cycling, and then the pure intermetallic phase was 

obtained. Electrocatalytic tests demonstrate that the Ag4Sn intermetallic shows better 

activity towards ORR in terms of E1/2, Tafel slope, ECSA, and SA in comparison with 

Ag3Sn. Additionally, the Ag4Sn presents superior tolerance to ethanol and worse 

tolerance to methanol with respect to the Ag3Sn. Compared to Pt/C, the Ag4Sn also 

shows improved durability after 5000 potential cycles. The increase in catalytic activity is 

mainly ascribed to the ensemble effect and strong chemical bond in the ordered 

intermetallic structure. Using AgSn intermetallics as the cathode catalysts, the 

membraneless alkaline zinc-air battery and DAFC is able to deliver a high power density. 

This work would be further extended to the future design and construction of bimetallic 

alloy with high performance and excellent tolerance to alcohol for the alkaline fuel cells.  
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