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Dynamic mode couplings of railway composite track slabs  
 

Sakdirat Kaewunruen1 and Stephen Kimindiri Kimani  
 

 

 

Abstract: Steel-concrete composite railway track slabs are a financial-viable alternative for 

the modular construction of railway slab tracks and for the replacement of resilient timber 

transoms on railway bridges. The design and experiment had been carried out to investigate 

the technical feasibility. In this study, the extended outcomes based on dynamic eigenvalue 

analyses of precast steel-concrete composite slab panel for track support structure are 

presented. Using ABAQUS finite element package, the natural frequencies of the railway 

composite slabs can be investigated. Dynamic eigenmodes are then extracted using Lancsoz 

method. Modal crossover phenomena can be clearly observed when changing the design 

mass of track slabs. This paper highlights the unprecedented dynamic mode coupling effects 

on the composite track slabs over a railway bridge in which the insight can improve practical 

noise and vibration control technologies through composite material design resulting in 

quieter railway track slabs.  

 

Keywords: railway infrastructure, modular track slabs, resilient precast composites, dynamic 

design. 

 

ICE Keywords: railway systems, rail track design, railway tracks, infrastructure planning,  

 

 

1. Introduction 

Railway track components are principally designed to interact in order to transfer the 

imposed dynamic loads from the wheels of the railway vehicle to the foundation or support 

structure of the track as well as to secure safe passage of trains (Remennikov and 

Kaewunruen, 2008; 2014; Remennikov et al., 2012). These dynamic loads include both 

vertical loads influenced by the unsprung mass of the vehicles and lateral loads mobilized by 

centrifugal action of cornering or the momentum of breaking vehicles (Griffin et al., 2014; 

2015). There are two dominant trackforms including ballasted and ballastless tracks. Bonnett 

(2005) defined ‘ballasted tracks’ as incorporating an intermediate layer known as the 

‘trackbed’ comprising ballast and sub-ballast (or called ‘capping layer’ in Australia) to 

effectively distribute the vehicle loads to the compacted soil layer called ‘sub-grade’ 

                                                           
1
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(Indraratna et al., 2011). If the intermediate load distribution layer is replaced by a structure 

directly sit on the sub-grade or the superstructure of a bridge or tunnel, it is known as a non-

ballasted track system. Based on the current design approach, the design life span of 

structural concrete components is around 50 years (Mirza et al., 2016; Standard Australia, 

2003). Modern railway tracks have adopted track slab systems to enable low-maintenance 

regime. For example, there has been an attempt to convert such transom bridges into direct-

fixation track slab bridge. Common uses of track slabs can also be observed in tunnelling 

systems (e.g. Crossrail in the UK) and in highspeed rail track systems (e.g. Shinkansen in 

Japan). The design methodology and procedure for track slabs generally yields heavy 

concrete slabs with a thickness of over 220mm. As a result, the vertical levels (or heights) of 

adjacent systems such as fastening systems, rails, overhead wires, platforms and existing 

bridge girders must comply with such track slabs (Kaewunruen and Remennikov, 2008; 

2010; Kaewunruen, 2014a,b; Li et al., 2012; 2014). Technical feasibility evaluations using 

numerical and experimental studies of composite track slabs have been carried out under 

static and dynamic loading conditions (Mirza et al., 2016; British Standards Institution, 1994; 

1995). However, the dynamic behaviour of composite composite track slabs has not been 

thoroughly carried out. The understanding into dynamic behaviours is imperative to predict 

pre-mature failure modes under dynamic loading condition. The insight can also help track 

engineers to prioritise the area of inspection for structural track components. In addition, it 

can help track and acoustic engineers to formulate vibration control techniques that can 

effectively suppress either structural- or ground-bourne vibration along railway corridor. 

Without appropriate acoustic and vibration controls, track problems can incur (Kaewunruen 

and Remennikov, 2016).  As a result, this paper highlights the extended study into the 

unparalleled dynamic behaviour of composite composite track slabs using ABAQUS. The 

natural frequencies and dynamic eigenmodes of the railway composite slabs are then 

investigated. It is important to note that the scope of this study is limited to railway viaduct 

since a railway viaduct more often emits nuisance noise radiation (structural bourne noise). 

On-ground railway track will form a future study. The outcome of this study will help asset 

designers and maintainers to establish an improved noise and vibration mitigation 

methodology for safer and quieter railway bridge systems. 

 

2. Finite Element Modelling 

The composite track slabs have been designed, validated and evaluated using numerical and 

experimental studies in the past (Griffin et al., 2014, 2015; Kaewunruen et al., 2015, 2016; 
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Mirza et al., 2016). The structural design was in accordance with AS5100 (Standards 

Australia, 2004). Based on the serviceability limit state, the slab should not resonate with 

load frequency spectra. This could be confirmed by the numerical modelling. In this study, 

solid, three-dimensional, eight node elements incorporating linear approximation of 

displacements, reduced integration and hourglass control (C3D8R) have been adopted in this 

extended study to model all of the parts with the exception of the steel reinforcing. The 

C3D8R element type has been found to be sufficient for linear and nonlinear models, and is 

capable of incorporating contact properties, handling large deformations and accommodating 

plasticity. The use of C3D8R elements increases the rate of convergence of the solutions 

(Mirza et al., 2010; 2011). C3D8R elements were similarly adopted by Lam and El-Lobody 

(2001) for modelling the general concrete and steel beams for push tests, however 15 and 20 

node elements were adopted for the concrete around the shear studs and the shear studs 

respectively. Eight node elements have been determined to provide sufficient accuracy for the 

models within this study as shown in Figure 1. The composite track slab is hinged by full-

scale bridge girders (I-beam) and modelled using surface contacts as a continuous support 

(Kimani and Kaewunruen, 2017).  The full-scale fastening system has been modelled using 

collogn-egg design (Kaewunruen and Kimani, 2017). However, the influences of elastomeric 

pads are outside the scope of this paper. The experimental validation details are presented in 

Mirza et al. (2016). Material properties are tabulated in Table 1. 

 

3. Natural Frequencies 

The eigenfrequencies and corresponding eigenmodes extracted by the Lanczos eigensolver 

from the free vibration analysis have been identified and associated with distinctive natural 

mode shapes that could be excited by train loading conditions. These natural frequencies of 

the composite slab panel and their associated mode shapes are tabulated in Table 2. Figure 2 

displays these corresponding mode shapes. The operational loading condition under normal 

train passages suggests that the lower range of frequency between 0 and 25 Hz can be 

induced by low speed train operations (such as trams, light rails, construction machines, etc.). 

In addition, the frequency range from 25 and 35 Hz can be induced by faster trains (e.g. 

suburban rails, intercity trains, etc.); and higher range from 35 to 50 Hz can be associated 

with the loading condition from high speed trains. As a result, the information in Table 2 and 

Figure 2 indicates practical dynamic loading ranges that the composite slab can respond to. In 

addition, it can be observed that torsional modes have become a significant behaviour of the 

slab since the aspect ratio of the slab (width over depth) can result in additional torque and 
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torsional failure mode. Especially when there is an irregularity on either wheel or rail, the 

dynamic train-track interaction can induce torsion (or track twist) and cause torsional 

vibrations and damage on the track support slabs (Malveiro et al., 2014; 2018a; 2018b; 

Montenegro et al., 2015; 2016).  It is thus important to note such the dynamic mode coupling 

when any vibration control techniques are designed (Chopa, 2017; Kaewunruen et al., 2018). 

 

 

4. Modal Crossovers 

In most practical cases, the design of track slab is restrained by physical supporting 

infrastructure. Constraint on the dead load (weight) of the slabs is often imposed as a concern 

of rail engineers and practitioners. Often, the material design has been modified to adopt 

other type of cement-based composites such as foamed concrete, light-weight concrete, fibre-

reinforced foamed concrete, recycled aggregate concrete, etc. The use of these materials can 

indeed changes the dynamic phenomena of the composite track slabs as illustrated in Figure 

3. It is found that modal crossover can be observed in two dominant frequency ranges: firstly, 

between 20 and 24 Hz; and secondly, between 45 and 55 Hz. These phenomena imply that 

the composite slab can change the modes of vibration and the noise and vibration control 

strategies may not be effective when modal crossovers occur. Especially at higher frequency, 

torsional mode can incur in coupling with transverse bending modes, resulting in premature 

asset failures (e.g. fastening system loosening, broken bolts and fixture, etc.). This insight is 

thus vital for rail track engineers in order to design and control the behaviours of track slabs 

and develop predictive maintenance strategies (Lam et al., 2015; Li and Conte, 2016). 

 

5. Concluding Remarks 

Global demand of a trackform alternative for railway construction and maintenance is 

significant, especially for steel-concrete composite track slabs. This paper presents 

unmatched dynamic phenomena of the composite track slabs within railway built 

environment. The use of composites in railway construction and maintenance require 

comprehensive considerations and systems thinking approach. This paper has demonstrates 

practical design issues and dynamic requirements associated with the design of the 

composites that can enable quieter railway track slabs. It is crucial to understand the modal 

crossovers in order to establish effective noise and vibration control methodology. 
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Table 1: Precast steel-concrete composite slab panel materials properties  
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Material Properties 

Concrete 

28 days cube strength, f’c: 50N/mm
2
 

Short-term modulus of elasticity: 34652N/mm
2
 

Poison ratio: 0.2 

Mass: 2400Kg/m
3
 

Profiled steel sheeting 

(High Tensile Steel 

Bondek II profile 

manufactured by BHP 

Building Products) 

Yield stress: 550N/mm
2
 

Thickness: 1.0mm 

Modulus of Elasticity: 200000N/mm
2
 

Poison ratio: 0.3 

Tensile and shear steel 

reinforcement (D500N 

grade) 

Yield stress: 500N/mm
2
 

Modulus of Elasticity: 200000N/mm
2
 

Poison ratio: 0.3 

Shear studs 

Yield stress: 420N/mm
2
 

Modulus of Elasticity: 200000N/mm
2
 

Poison ratio: 0.3 

Supporting steel girders 

Yield stress: 300N/mm
2
 

Modulus of Elasticity: 200000N/mm
2
 

Poison ratio: 0.3 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Natural frequencies and associated modes of the slab panel 
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Mode of vibration 

Natural 

frequency 

(Hz) 

Modal mass participation factor 

X RX  Y RY Z RZ 

1
st
 mode - transverse 

bending 
2.5981 -3.66E-03 -4.72E+02 -2.92E-01 5.93E+00 2.19E-05 1.41E+00 

2
nd

 mode- transverse 

bending 
4.1649 -1.52E-06 1.25E+03 8.80E-05 -2.05E+00 1.13E+00 -4.39E-04 

3
rd

 mode-transverse 

bending 
6.8800 5.09E-02 2.77E+03 1.71E+00 -8.23E+01 6.24E-04 -1.92E+01 

4
th

 mode-torsion 9.7121 -1.35E+00 3.95E+01 2.44E-02 2.19E+03 -1.39E-06 4.94E+02 

5
th

 mode-transverse 

bending 
12.3709 -1.78E-05 1.26E+03 -4.31E-05 2.78E+01 1.66E-01 1.06E-03 

6
th

 mode –transverse 

bending 
20.8487 2.61E-03 -1.93E+02 -1.19E-01 -4.23E+00 9.70E-07 -2.60E-02 

7
th

 mode-torsion 21.1339 1.21E-04 1.89E+01 -3.59E-05 3.09E+02 -9.94E-04 6.11E-03 

8
th

 mode transverse 

bending 
27.1507 7.13E-06 6.71E+02 7.81E-04 -1.87E+00 1.18E-03 -7.58E-03 

9
th

 mode- torsion 32.3012 4.68E-01 6.40E+01 3.93E-02 -7.58E+02 -5.61E-04 1.14E+02 

10
th

 mode-

transverse bending 
37.1369 -5.42E-05 2.01E+01 -6.61E-04 -5.79E+00 -4.85E-02 -2.99E-03 

11
th

 mode- bi-

directional bending 
38.8362 -2.68E-03 7.00E+01 4.35E-02 3.87E+00 3.01E-04 7.59E-01 

12
th

 mode-torsion 42.3631 -3.08E-04 -1.35E+01 2.86E-05 3.79E+02 2.33E-03 -7.31E-02 

13
th

 mode-

transverse bending 
46.0272 -6.96E-03 -5.24E+02 -3.23E-01 1.13E+01 2.11E-04 8.12E-01 

14
th

 mode-torsion 46.7509 -1.52E-01 -2.46E+01 -1.52E-02 2.45E+02 -2.34E-05 -9.59E+01 

15
th

 mode-torsion 51.2766 1.16E-02 1.27E+02 8.15E-02 -1.71E+01 -7.05E-04 1.12E+01 
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a) full model of the track slab over bridge girders 

 
b) boundary condition and interfaces 

Figure 1: Model, contacts and interactions of composite track slab panel 
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a) 1
st
 mode – transverse bending, natural frequency 2.5981Hz 

 
b) 2

nd
 mode – transverse bending, natural frequency 4.1649Hz 

 
c) 3

rd
 mode – transverse bending, natural frequency 6.8800Hz 

 
d) 4

th
 mode – torsion, natural frequency 9.7121Hz 
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e) 5

th
 mode – transverse bending, natural frequency 12.3709Hz 

 
f) 6

th
 mode – transverse bending, natural frequency 20.8487Hz 

 
g) 7

th
 mode – torsion, natural frequency 21.1339Hz 

 
h) 8

th
 mode – transverse bending, natural frequency 27.1507Hz 
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i) 9

th
 mode – torsion, natural frequency 30.3012Hz 

 
j) 10

th
 mode – transverse bending, natural frequency 37.1369Hz 

 
k) 11

th
 mode – bi-directional bending, natural frequency 38.8362Hz 

 
l) 12

th
 mode – torsion, natural frequency 42.3631Hz 
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m) 13

th
 mode – transverse bending, natural frequency 46.0272Hz 

 
m) 14

th
 mode – torsion, natural frequency 46.7509Hz 

 
n) 15

th
 mode – torsion, natural frequency 51.2766Hz  

 

Figure 2 Corresponding modeshapes 
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Figure 3 Modal crossover phenomena due to changes in mass 
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