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Abstract 

The formation of an aqueous droplet in an organic continuous phase was studied 

experimentally inside a flow-focusing microchannel (190 μm x 195 μm: depth x width) in the 

presence of surfactants. A low viscosity silicone oil (0.0046 Pa s) was used as the continuous 

phase and a mixture of 48% w/w water and 52% w/w glycerol was the dispersed phase. Two 

ionic surfactants, C12TAB (50 mM) and C16TAB (5 mM) were added in the aqueous phase, at 

concentrations above the CMC values. Four regimes of drop formation were identified, 

namely squeezing, dripping, jetting and threading, whose boundaries changed when the 

surfactants were present. The drop formation process and the velocity profiles in both phases 

in the squeezing and dripping regimes were studied in more detail using a two-colour Particle 

Image Velocimetry technique. For all solutions studied, three distinct drop formation stages 

were identified, expansion, necking and pinch-off. The surfactant-laden solutions produced 

smaller drops. Considering the dynamic interfacial tension, rather than the equilibrium one, it 

was possible to explain differences in the drop formation between the two surfactant systems 

in the expansion stage. The forces acting on the forming drops were estimated and showed 

that the drag force overcomes the interfacial tension force at the transition between the 

expansion and necking stages. During this transition, the curvature of the neck changes while 
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its thinning rate was increased. The transition from the necking to the pinch-off stage was 

signified by a flow reversal at the bottom part of the drop. 

1. Introduction  

Recently emerged microfluidic approaches promise to deliver reliable production and 

manipulation of droplets with controlled size, which is very significant for applications such 

as reactions, separations, emulsifications and inkjet printing (Liu and Zhang, 2011; Seemann 

et al., 2012). The small characteristic dimensions of the microchannels result in portable 

devices, while the laminar flows and the high surface-to-volume ratios enhance the 

importance of surface and interfacial forces and make possible the control of the flow 

patterns formed. The geometry of the microfluidic channel can significantly affect droplet 

formation. Several inlet configurations have been proposed to enable uniform droplet size at 

high frequency, such as flow-focusing, T- or Y- junction and co-flowing inlets (Anna, 2016). 

Flow-focusing devices have been found to produce monodisperse droplets, but have been 

much less investigated compared to T-junction configurations (Chiarello et al., 2017; 

Christopher et al., 2008; Garstecki et al., 2006). In flow-focusing geometries, the resulting 

drop size depends on the dispersed to continuous phase flowrate ratio and the Capillary 

number, Ca (Fu et al., 2009) while the droplet formation process has been described by 

several empirical correlations (Cubaud and Mason, 2008; Fu et al., 2016). From studies in a 

wide range of channel geometries and sizes, fluid viscosities and interfacial tensions, four 

regimes of droplet formation have been identified, i.e. squeezing, dripping, jetting and 

threading (Cubaud and Mason, 2008; Kovalchuk et al., 2018; Lee et al., 2009). At low 

viscosity ratios, μd/μc < 0.1, intermediate flow rate ratios Qd/Qc < 1/40 and intermediate 

surfactant concentrations the tip streaming regime has also been observed in flow focusing 

devices, where surfactants are swept to the tip of the drop and locally reduce the interfacial 

tension and result in the breakage of small droplets (Anna, 2016). 
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Garstecki et al. (2006) studied the drop (bubble) breakup process at low Ca numbers 

(squeezing flow regime) in a confined T-junction geometry and reported that the drop length 

is proportional to the dispersed to continuous phase flow rate ratio. They observed that as the 

dispersed phase plug penetrates into the main channel, it blocks the continuous phase flow. 

This blockage leads to an increasing pressure inside the continuous phase and eventually to 

the squeezing of the dispersed phase. They described the droplet formation in the squeezing 

regime by considering three main forces: the interfacial tension force resisting the break-up, 

the shear stress acting on the forming droplet by the continuous phase and the squeezing 

pressure across the droplet. Christopher et al. (2008) and Glawdel et al. (2012b) used a 

similar force balance to estimate the magnitude of the shear and the pressure forces and 

predicted the filling volume, neck curvature and frequency of the drops formed in a T-

junction channel. Timgren et al. (2008) who studied the formation of an organic phase droplet 

in an aqueous continuous phase inside a rectangular T-junction channel (width of the 

dispersed phase inlet << width of the continuous phase inlet) considered that drag, lift, 

inertial, buoyancy and interfacial forces act during drop detachment. Recently, Chen et al. 

(2015) developed a physical model to describe the droplet formation in the squeezing regime, 

considering the 3D curved interface of the forming drop. Assuming that the mass of both the 

dispersed and the continuous phases is conserved and based on the pressure-driven squeezing 

mechanism proposed by Garstecki et al. (2005), they modelled the shape of the droplet during 

a formation cycle. In the dripping regime, the dynamics of the formation are found to be 

mainly governed by the interfacial tension and the shear forces. The surface tension force 

initially dominates but the shear forces eventually become comparable and exceed the surface 

tension force leading to drop detachment (Utada et al., 2007; Wang et al., 2009). 

Despite the work in the literature, the knowledge of the hydrodynamics inside and outside 

the droplet during formation is still rather limited, especially when surface active agents are 
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present. Surfactants are usually added either to the continuous or the dispersed phase to 

enhance drop stability. They add, however, complexity in the system since they can induce 

interfacial tension gradients (Marangoni effects) and alter the dynamics of droplet breakup 

(Wang et al., 2009). Graaf et al. (2006) conducted experiments in a T-junction device using 

hexadecane as the dispersed phase and surfactant aqueous solutions as the continuous phase. 

They found that higher surfactant concentrations lead to smaller droplets and shorter droplet 

formation times. The formation of water/glycerol droplet in an organic continuous phase in 

the presence of surfactants was studied by Glawdel and Ren (2012) at a T-junction. By 

analysing the changes in the droplet surface area with high speed imaging, they estimated the 

dynamic interfacial tension. We need the drop formation process as a function of the 

surfactant properties and the experimental conditions. Kovalchuk et al. (2016) studied 

experimentally how the kinetics of thinning of liquid bridges during the breakage of 

surfactant-laden drops (using C10TAB, C12TAB, C16TAB, SLES, Triton X-100) are affected 

by both the surfactant activity and concertation. They found that the less active surfactants 

(with high critical micelle concentration, CMC) behave like pure liquids with constant 

interfacial tension value. When more active surfactants were used (low CMC values), the 

kinetics of the neck thinning close to the pinch-off were found to depend mainly on the 

dynamics of adsorption of the surfactant to the drop neck.  

For a better understanding of the drop formation process, knowledge of the velocity fields 

in the continuous and dispersed phases would be necessary to evaluate the effects of 

surfactants. Micro Particle Image Velocimetry (micro-PIV, μPIV) techniques have been 

extensively used to obtain velocity fields in microchannels. Steijn et al. (2007) studied the 

formation of bubbles in a T-junction microchannel using a micro-PIV system and constructed 

three-dimensional velocity fields in the continuous phase from measurements at different 

channel depths. Funfschilling et al. (2009) measured with μPIV the velocity fields in aqueous 
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solutions of SDS around oil droplets as they were forming in a flow focusing microchannel 

device in the dripping regime. The velocity data revealed that immediately after drop 

detachment, there is a stagnation point between the newly formed drop that moves towards 

the main channel and the dispersed phase interface that pulls back into the dispersed phase 

channel. This stagnation point is found to be driven by the interfacial tension and alters the 

local flow fields in the cross-junction inlet. Fu et al. (2012) also examined the velocity field 

in a water/glycerol continuous phase surrounding an oil drop forming in a flow-focusing 

device. For low viscosity ratios (μΟil/μWater, where μ is the viscosity) the droplet size was 

found to scale with the flow rate ratio of the phases (QOil/QWater, where Q is the flowrate) and 

the Ca number of the continuous phase (0.002<Ca<0.11) whereas for high viscosity ratios it 

was correlated with the continuous phase Weber number (0.015<We<0.44). 

The present work aims to improve the understanding of the droplet formation process in a 

flow-focusing device when surfactants are present. In a previous work (Kovalchuk et al., 

2018) it was found that surfactants C12TAB and C16TAB only affect the drop formation 

patterns at concentrations above their CMC values. In the current paper these surfactants are 

used at concentrations 50 mM for C12TAB and 5 mM for C16TAB, where they have the same 

equilibrium interfacial tension but different absorption kinetics. To investigate the effect of 

the different kinetics on the drop formation process and on the final drop size, a novel two-

colour micro-PIV technique is used to obtain detailed hydrodynamic properties and velocity 

fields in both phases. Differences between the two surfactant systems were only found in the 

initial drop expansion stage. A mechanistic model is developed, based on the hydrodynamic 

data, to describe the evolution of the forces acting at the drop at the various formation stages. 
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2. Materials, experimental method and data processing 

2.1 Materials 

All experiments were conducted with a low viscosity silicone oil (0.0046 Pa s, Sigma-

Aldrich) as the continuous phase and a mixture of 48% w/w water and 52% w/w glycerol as 

the dispersed phase. The aqueous phase was selected to match the refractive index of the oil 

(nD
20

 = 1.39) and to eliminate any light refractions and optical distortions during the PIV 

measurements. Two ionic surfactants, dodecyltrimethylammonium bromide (C12TAB), 

(Across organics, 99 %, MW = 308 g/mol) and hexadecyltrimethylammonium bromide 

(C16TAB), (Sigma, BioXtra, ≥ 99 %, MW = 364 g/mol) were tested. The surfactants were 

dissolved in the aqueous phase and one concentration of each surfactant was used in the 

current experiments: 50 mM for C12TAB and 5 mM for C16TAB. The interfacial tension 

isotherms for C12TAB and C16TAB surfactant solutions are presented in Figure 1. In both 

cases, the concentrations are higher than the CMC values which are ~ 20 mM and ~2 mM for 

C12TAB and C16TAB respectively. Concentrations above CMC were chosen to ensure that an 

adequate surfactant concentration will be adsorbed on any newly formed interface 

(Funfschilling et al., 2009). In addition, in a previous work with the same surfactants 

(Kovalchuk et al., 2018) it was found that low surfactant concentrations did not affect the 

flow pattern map significantly. For this reason, surfactant concentrations above the CMC 

values were chosen which have a more pronounced effect on the flow pattern map. The two 

concentrations (50 mM for C12TAB and 5 mM for C16TAB) were selected because at 

equilibrium they result in systems with similar interfacial tension; these two surfactants, 

however, have different absorption kinetics during the droplet formation process (Kovalchuk 

et al., 2018). 
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Figure 1: Equilibrium interfacial tension against concentration for the surfactants C12TAB 

and C16TAB.  

In Table 1 the properties of the liquids used are summarized. The equilibrium interfacial 

tension for the oil and the surfactant solutions was measured using the Du Noüy ring method 

(K100 KRUSS GmbH
®
). The viscosity of each solution was measured with an Advanced 

Rheometric Expansion System (ARES, TA Instruments
®
); all solutions are Newtonian. As 

there are no suitable methods to measure the dynamic interfacial tension on the time scales of 

the droplet formation in microchannels (the drop formation time in the present study is below 

1s), the dynamic surface tension (liquid/air interface) was used to indicate trends for the 

dynamic interfacial tension. The dynamic surface tension was measured using the maximum 

bubble pressure tensiometer technique which can provide results in millisecond time scales 

(Kovalchuk et al., 2018). It was found that at short times the C16TAB system (CMC = 5 

mM) has high surface tension (close to the surfactant-free system), whereas at long times it 

has low surface tension (close to the C12TAB system). The C12TAB system (CMC = 50 

mM) was found to equilibrate much faster having similar surface tension values at both short 

and long times. The difference on the absorption rates of the two surfactants at the surfaces 
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was attributed to the lower CMC values of the C16TAB system compared to the C12TAB 

system. 

Table 1: Properties of the test fluids (T = 20
o
C). 

Fluid system 
ρ, 

(kg/m
3
) 

μ, Pa s 
σeq

*
., 

(mN/m) 

Dispersed 

phase 

Surfactant-

free 

Aqueous glycerol solution (52% 

w/w)  
1142 0.007 29 

C12TAB 
Aqueous glycerol solution (52% 

w/w)+ 50 mM 
1142 0.007 10 

C16TAB 
Aqueous glycerol solution (52% 

w/w) + 5mM 
1142 0.007 7.3 

Continuous 

phase 
O Silicone oil 920 0.0046 - 

*
equilibrium interfacial tension 

2.2 Experimental methods 

The experimental setup employed in the drop formation study is presented in Figure 2. 

The experiments were conducted in a glass flow-focusing device with cross-junction equal to 

190 μm x 195 μm (depth x width) and channels equal to 190 μm x 390 μm (Dolomite
®

 

microfluidics). Two syringe pumps (KDS Scientific
®
) were used to feed separately the two 

phases into the test section. The aqueous surfactant solutions (dispersed phase) were injected 

into the central channel whereas the silicone oil (continuous phase) was pumped via the two 

side channels. For each set of runs, the aqueous phase flow rate was kept constant and the 

organic phase flowrate was increased stepwise. The aqueous phase flow rates ranged from 

0.01 to 0.1 cm
3
/min, whereas the organic phase flow rates varied from 0.003 to 0.1 cm

3
/min.  

A two-colour micro-PIV system (TSI Inc.), as presented in Figure 2, was used to obtain 

the flow regimes and the velocity profiles in the two phases (for details see Chinaud et al. 

(2015)). The aqueous phase was seeded with 1 μm carboxylate-modified microspheres 

FluoSpheres® (540/560 nm) and the organic phase with 1 μm blue silica microspheres 

particles Sicastar® (350/440 nm). Rhodamine 6G fluorescent dye (1 ppm) was also added in 
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the aqueous phase to improve the detection of the liquid-liquid interface. Illumination was 

provided by a double pulsed Nd:YAG laser (Litron Lasers®) which emits simultaneously two 

different wavelengths, blue and green (355 and 532 nm). The light was guided with an optical 

fibre to the test section placed at an inverted microscope (Nikon Eclipse Ti-s) with a 10x 

magnification. The light emitted from the seeded fluids in the test section was directed from 

the microscope to a beam splitter (Andor® Technology) where the orange light (560 nm), 

emitted by the aqueous phase, was led through a dichroic mirror and a high-pass filter to a 

4MP, 32fps, CCD camera Link® Base (TSI, Powerview 4MP, with 2048×2048 pixels 

resolution and 2x magnification lens).  

 
Figure 2: Schematic of the experimental setup. 

The blue light (440 nm), emitted by the organic phase, was reflected by the dichroic mirror 

and was led through a band pass filter to a 12-bit CCD camera Dicam pro® (PCO Sensicam, 

Dicam pro® with 1270×512 pixels resolution and 1x magnification lens). Both cameras were 

connected to a laser pulse synchronizer (TSI Inc.) and a PC. The PIV acquisition frequency 

was 7 Hz per image pair. The μPIV measurement depth for the blue (355 nm) and green (532 
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nm) wavelengths was approximately 20 μm and 26 μm (~10% of the channel depth at the 

cross-junction) respectively, using a microscope lens with magnification equal to 10x (NA = 

0.30, n=1). It was found that neither the fluorescent dye nor the tracer particles affected the 

properties of the phases or the equilibrium interfacial tension values.  

2.3 PIV data processing 

A PIV image processing software (Insight 4G, TSIInc.) and MATLAB R2014a codes 

developed in-house were used for image treatment, detection of the liquid-liquid interface 

and calculation of average velocity fields in the two phases. For both cameras, a primary-to-

secondary correlation peak ratio was used to remove the false vectors whereas any vectors 

outside the seeded phases were set to zero. The PIV correlation box size for the CCD camera 

recording the aqueous phase was set to 64×64 pixels with 50% spatial overlapping which 

results in a final spatial resolution of 11.9×11.9 µm. For the camera recording the organic 

phase, the interrogation area was set to 128×64 pixels, without overlapping, leading to a 

spatial resolution of 132.8×66.4 µm and a clear displacement of the organic phase vectors. 

For the computation of the velocity fields a recursive Nyquist grid with an FFT correlation 

calculation was used and the two-component velocity field was reconstructed within the 

Eulerian frame of reference. Based on the optical parameters of the setup, the effective 

particle diameter, de, was found to be 25 μm for the carboxylate-modified fluorescent 

particles and 20 μm for the silicaparticles providing an uncertainty equal to de/10M = 0.25μm 

for the aqueous phase and de/10M =0.20μm for the organic phase. 

A 7×7 pixels computation median filter was applied to the PIV images in MATLAB. From 

the mean intensity of the pictures, a threshold value was found which was used to binarize the 

aqueous phase images and reconstruct the interface by fitting the contour of the white region. 

The same process was also applied to the organic phase images. To match the velocity fields 

of the two phases in the same frame, the contours of the reconstructed interfaces of both the 
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aqueous and the organic phase images were used as an adaptive mask for the image of each 

camera. For each experiment, the time delay between the two laser cavities was adjusted from 

40 μs to 3000 μs (depending on the flow rate of both phases) so that the maximum particle 

displacement would not exceed half of the final correlation box size. Image pairs were 

recorded during the droplet formation process. Since the acquisition frequency of the system 

is low (7 Hz), the drop formation process could not be resolved in time; instead image pairs 

were acquired at different drop propagation steps using as reference the droplet tip position 

in the channel. Each propagation step refers, therefore, to a particular tip position in the 

channel. To calculate averaged velocity fields, 600 micro-PIV images were obtained in each 

run. Depending on the flow rates, about 30 to 50 of the images were averaged to obtain the 

velocity fields at each drop propagation step. 

3. Experimental observations and discussion 

3.1 Flow pattern map  

Under the current experimental conditions, different flow regimes namely squeezing, 

dripping, jetting and threading were observed in the cross-junction device. Figure 3 presents 

the flow pattern map for the surfactant-free solution based on the volumetric flow rate of each 

phase, together with representative images of the corresponding patterns. The flow pattern 

map is in good agreement with the results obtained by Kovalchuk et al. (2018) in a similar 

system, which confirms that the added tracers and dye do not affect the flows. In the 

literature, Ca numbers are often used to represent the droplet formation regimes. In the 

current study the Ca numbers of the continuous      
      

        
 and dispersed phases, 

     
      

        
 vary only with the flowrates of fluids and the interfacial tension (μc, Qc and μd, 

Qd are the viscosities and flowrates of the continuous and dispersed phases respectively, σ is 

the interfacial tension, and Across is the cross-sectional area of the channel). The dynamic 

interfacial tension values are not known, while, as will be discussed below, the dynamic 
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phenomena seem to be relevant in the very first stages of drop formation and at later stages 

equilibrium values establish. If equilibrium interfacial tension values are used, then Ca 

depends only on the phase flow rates and these are used in Figure 3. By using this 

representation the differences between the various systems were also shown more clearly. 

 

Figure 3: Flow pattern map of the surfactant-free solution and theC12TAB solution and the 

silicone oil. Representative flow patterns (a) Plug flow (b) Drop flow (c) Thread flow (d) Jet 

flow. The dashed lines show the flow regime boundaries when the C12TAB solution is used. 

Roman numbers indicate regimes in the system with surfactant (I) Squeezing regime (II) 

Dripping regime (III) Threading regime and (IV) Jetting regime. D is the droplet size plugs 

immediately after the break-up inside the cross-junction inlet. 
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The squeezing regime (■), occurred at low flow rates 0.003 cm
3
/min < Qd < 0.03 cm

3
/min 

and 0.003 cm
3
/min < Qc < 0.01 cm

3
/min. In this regime, the breakup of the plug (Figure 3a) 

is dominated by the excessive pressure that builds up in the continuous phase during the plug 

formation. As the plug is forming, it obstructs the cross-junction and restricts the flow of the 

continuous phase to a thin film on the channel walls. As a result, the pressure inside the 

continuous phase increases and ‘squeezes’ the plug neck (Garstecki et al., 2006). The length 

of the plugs was found to be greater than the main channel width (LP> 390 μm), while a thin 

film of the continuous phase separated the plugs from the channel wall. 

As the continuous phase flowrate increased, under constant Qd, the dripping regime (○) 

dominates inside the microchannel. In the dripping flow pattern (Figure 3b), the drop 

formation process is controlled by the balance of viscous shear and interfacial forces (Wang 

et al., 2009). The forming drops do not obstruct completely the flow of the incoming 

continuous phase and their lengths are smaller (LD<390 μm) than the main channel width. At 

low continuous phase flowrates (0.003 cm
3
/min<Qc< 0.01 cm

3
/min), as the dispersed phase 

flowrate increased, there is a transition from the squeezing to the threading (△) regime. In the 

threading regime, a stable thread of the dispersed phase (Figure 3c) is produced in the flow-

focusing inlet. The thread width was found to increase with increasing dispersed phase flow 

rate (for constant Qc). An increase of the continuous phase flowrate resulted in a transition 

from the threading to the jetting regime (♦). In this regime, the dispersed phase is mainly 

driven by the drag force from the continuous phase flow that pulls it downstream and the jet 

becomes destabilized (Figure 3d). Utada et al. (2007) who studied the transition from the 

dripping to the jetting regime in co-flowing liquids, noticed that at large dispersed phase 

flowrates, the inertia force of the dispersed phase becomes comparable and acts cooperatively 

with the drag force from the continuous phase, shifting the pinch-off point of the drop further 

downstream the main channel. Kovalchuk et al. (2018) found a similar shift of the pinch-off 
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point with increasing dispersed to continuous phase flowrate ratio and noted that the length of 

the jet also depended on the interfacial tension i.e. the jet length increases with decreasing 

interfacial tension. 

When the 50 mM C12TAB solution was used, the boundaries shifted as shown in Figure 3 

with dashed lines. In particular, the squeezing regime and consequently plug flow was 

observed only in area (I) limited to low flow rates of both phases. The dripping regime was 

also reduced in the map in area (II) and drops were produced at low dispersed phase 

flowrates only (0.003 cm
3
/min <Qd < 0.02 cm

3
/min). However, the areas occupied by the 

threading and jetting regimes in the map increased. The thread flow pattern occurred for an 

extended range of continuous phase flowrates, 0.003 cm
3
/min<Qc< 0.05 cm

3
/min and for 

most of the dispersed phase flowrates (map area (III)). The jetting regime covered a large 

area in the map (area (IV)). The boundaries between regimes for the 5 mM C16TAB solution, 

which is less concentrated than the C12TAB, were in between those of the surfactant-free and 

of the C12TAB solutions, and are not presented here. The shift in the boundaries between the 

regimes reveals the effect of the surfactant concentration on the drop formation process.  

Droplet devices usually operate in the squeezing and dripping regimes where 

monodisperse droplets are generated (Xu et al., 2008). The mechanism of droplet generation 

in the squeezing and dripping regimes was further studied with the two-colour PIV system in 

the channel cross-junction.  

3.2 Formation process and droplet characteristics 

Following the pressure-driven mechanism proposed by Garstecki et al. (2006), Figure 4 

presents the formation process of a typical plug in the squeezing regime, which is divided 

into 3 stages, namely expansion, necking and pinch-off. The plug formation depends on the 

competition between the drag (shear stress and pressure gradient) force from the continuous 

phase and the interfacial tension force. At the first expansion stage, the dispersed phase is 
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expanding into the main channel (Figure 4a). Immediately after the pinch-off of the previous 

plug, the dispersed phase pulls back slightly into the dispersed phase channel inlet due to 

surface tension before it moves forward again into the main channel. At this initial stage, the 

plug grows mainly in the radial direction and slightly in the axial direction in the junction 

(Figure 4a).  

 

Figure 4: Typical plug formation in the flow-focusing geometry: (a) - (b) expansion stage, 

(c) – (d) necking stage, (e) pinch-off stage. Images obtained with the two-colour PIV system 

for Qd = Qc = 0.01 cm
3
/min. Channel walls have been added for clarity. 

Later on, the interface starts to expand in the axial direction towards the main channel. The 

plug reaches the edge of the main channel but it is still separated from the wall by a thin film 

of the continuous phase (Figure 4b). At this stage, the plug blocks the side inlet channels of 

the continuous phase, and the pressure there increases. The increased pressure overcomes the 

interfacial tension force and causes a change in the interface curvature and the thinning of the 

neck (Figure 4c). As neck is defined the part of the fluid that connects the dispersed phase 

(b) 

(c) 

(d) 

(e) 

(a) 

Expansion 

stage 

Necking 

stage 

Pinch-off 

stage 
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inlet with the forming droplet. The change in curvature signifies the beginning of the necking 

stage (Figure 4c – d) with the neck width decreasing as the dispersed phase propagates into 

the main channel. This change in interface curvature during drop formation has also been 

observed in T-junction inlets by Glawdel et al. (2012a) and Chinaud et al. (2015). During the 

necking stage, the flow of the continuous phase reduces the neck width in the radial direction 

and pushes the droplet in the axial direction. The transition between the necking and the pinch 

off stages was found to take place at neck widths of about 60-70 μm (depending on the 

continuous phase flowrate). At these neck widths a flow reversal was observed at the lower 

part of the drop (as revealed by the PIV results)  which was used as a criterion of the 

transition. In addition, at this neck width the dispersed phase acquired larger velocity values 

at the top part of the droplet compared to the corresponding velocities at the expansion and 

necking stages. After the break-up, the new plug is pushed downstream in the main channel 

by the continuous phase and the formation process starts again. After the break-up, the new 

plug is pushed downstream by the continuous phase and the formation process starts again.  

The same three stages of formation (expansion, necking, pinch-off stage) were also 

identified for the dripping regime. During the expansion stage, the interfacial tension force 

that acts on the forming drop initially dominates and controls the growth rate. As the droplet 

grows into the main channel, the shear stress inside the continuous phase increases and 

exceeds the interfacial tension force, thinning the neck (necking stage). In addition, the 

pressure inside the continuous phase increases, because its flow is restricted by the droplet. 

The pressure that builds up in the continuous phase is less in the dripping regime than in the 

squeezing regime as the growing droplet has smaller size and blocks less the area of the side 

channels (Figures 3a,b). The neck of the dispersed phase eventually breaks (pinch-off stage) 

and a new droplet is formed.  
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The thinning rate of the neck is mainly dependent on the continuous phase flowrate (Fu et 

al., 2009). The neck width was measured at both the expansion and the necking stages, to 

determine which propagation stage determines the droplet size. Figure 5 shows the effect of 

the continuous phase flowrate (Qc = 0.003–0.1 cm
3
/min) on the neck width, Wd, at the 

expansion stage just before the next, necking stage (Figure 5, Inset). For a constant dispersed 

phase flowrate (Qd = 0.01 cm
3
/min) and low continuous phase flowrate (Qc = 0.003 cm

3
/min) 

the surfactant-laden solutions give similar neck width.  

 

Figure 5: Effect of the continuous phase flowrate on the neck width for all the aqueous 

solutions used at the end of expansion stage. Qd = 0.01 cm
3
/min. Inset: Neck width at the end 

of expansion stage. 

However, with increasing Qc, the differences in the width between the surfactant-laden 

solutions are becoming more pronounced. This is attributed to the differences in absorption 

kinetics of the two surfactants during drop formation (Baret et al., 2009; Jin et al., 2006). As 

was mentioned above, C16TAB appears to be reaching equilibrium at a lower rate compared 

to C12TAB (see also Kovalchuk et al. (2018)). When the continuous phase flowrates are high 

(Qc > 0.02 cm
3
/min) the drop expansion stage is very short (in the time scale of 0.004 – 0.02 

s, depending on the continuous phase flowrate, as revealed from the measurements) and the 
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concentration of C16TAB does not manage to reach equilibrium at the interface; the results 

(neck width) then are similar to the surfactant free system (Figure 5). This is not the case for 

C12TAB which absorbs faster and has time to reach equilibrium. In contrast, at low flowrates 

(Qc ≤ 0.02 cm
3
/min), the expansion stage takes longer (in the time scales of 0.05 – 0.09 s) and 

the concentration of C16TAB at the interface reaches a value closer to the equilibrium one. 

The results on neck width are in this case similar to C12TAB (Figure 5). The same trend was 

also observed for Qd = 0.02 cm
3
/min.  

Different trends are, observed in the necking stage, as can be seen in Figure 6, where the 

neck width is plotted against the continuous phase flowrate. The data represent the minimum 

neck width that can be measured at the end of the necking stage.  

 
Figure 6: Effect of the continuous phase flowrate on the minimum neck width for all the 

aqueous solutions used at the necking stage. Qd = 0.01 cm
3
/min. Inset: Neck width at the 

necking stage. 

The necking stage takes longer (time scales of necking stage: 0.13 s-0.58 s based on the 

continuous phase flowrate) and even C16TAB has time to reach the equilibrium 

concentration at the interface. The equilibrium interfacial tension of C16TAB is similar to 

C12TAB at the concentrations used, and as a result the neck widths from the two surfactants 

are similar at the necking stage (Figure 6).  
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The final drop sizes obtained for all fluid systems are shown in Figure 7 for constant Qd = 

0.01 cm
3
/min. As can be seen, the two surfactant systems give similar final drop sizes 

(maximum deviation 8%), which are smaller than those obtained in the pure system by ~ 100 

μm. The data shown in Figure 7 correspond to the axial drop diameter, D, measured 

immediately after the droplet formation at the cross-junction inlet (see Inset, Figure 7). 

Figures 6 and 7 demonstrate that the necking stage affects the final drop size more than 

the expansion stage. The dependence of the final droplet size on the necking stage has also 

been reported by Chen et al. (2015) and by Glawdel et al. (2012a). From Figure 7 it can be 

seen that as Qc increases the final drop sizes decrease for all three solutions in agreement with 

the findings by Wong et al. (2017) and Fu et al. (2016).  

 

Figure 7: Final droplet axial diameter plotted against the continuous phase flowrate for all 

the aqueous solutionsused. Qd = 0.01 cm
3
/min. Inset: Axial droplet diameter. 
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the relation between the droplet diameter and the Qc is not linear any more indicating that the 

formation mechanism changed from the squeezing to the dripping regime. 

The changes in the neck width during the expansion and necking stages are presented in 

Figure 8 for the surfactant-free and the C12TAB solution for all the continuous phase flow 

rates tested. To compare the results, the measurements were taken for the same position of 

the tip of the droplet; these represent different steps of the drop formation process. The last 

neck width point shown for each flow rate corresponds to the pinch-off stage. 

Generally, the neck width decreases with time and with increasing continuous phase flow 

rate. The decrease of the neck width at the different steps can be divided in two linear 

regimes, as shown with the dashed lines (I) and (II) for Qc = 0.04 cm
3
/min in Figure 8a. 

These two lines represent the thinning rate of the neck, while the change in slope corresponds 

to the transition from the expansion to the necking stage, where the neck curvature also 

changes. Similar observations on the different neck width regimes have been made by 

Glawdel et al. (2012a) and Garstecki et al. (2005). The critical width at the transition between 

the two regimes is found to be below 100 μm (< channel depth/2) for most of the cases 

studied, apart from the lowest continuous phase flow rate, Qc = 0.003 cm
3
/min, where the 

necking stage starts after 170 μm and 150 μm neck width for the surfactant-free and the 

C12TAB solutions respectively. As the continuous phase flow rate increases, the change in 

slope from the expansion to the necking stage starts at an earlier propagation step for the 

C12TAB solution (Figure 8b) compared to the surfactant-free solution. The neck width data 

for C16TAB fall in between those of the surfactant-free and the C12TAB solutions and are not 

presented here. 
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Figure 8: (a) Surfactant-free and (b) C12TAB neck width as a function of the propagation 

steps for all the continuous phase flowrates studied. Qd = 0.01 cm
3
/min. The dashed lines (I), 

(II) have been fitted to the data for Qc= 0.04cm
3
/min. 

The interfacial tension is found to affect the curvature of the droplet leading edge which is 

mainly controlled by the Laplace pressure (Glawdel and Ren, 2012). The leading edge radius 

was obtained from the μPIV images and is defined as the radius R of a circle fitted to the 

forming drop tip (Figure 9a, Inset). The curvature of the tip increases (radius decreases) with 
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necking stage (Figure 9b). Similar to Figures 5 and 6 for the neck width, the front radius of 

the C16TAB droplet is close to the pure system one for the expansion stage (Figure 9a) and to 

the C12TAB for the necking stage (Figure 9b). In general, for the same continuous phase 

flow rates, the tip radius of the surfactant-laden solutions is smaller than that of the 

surfactant-free system, because of the lower surface tension. Generally, during droplet 

formation, the tip radius increases as the droplet grows into the main channel. 

 
Figure 9: Effect of the continuous phase flowrate on the front radius of the forming drop at 

the (a) end of the expansion and (b) end of the necking stage. Qd = 0.01 cm
3
/min. Inset: Front 

radius of the droplet.  

4. Force balance and velocity fields during drop formation 

4.1 Forces on a droplet forming in the dripping regime 

The droplet formation in the flow-focusing device is considered to be dominated by the 

balance between the interfacial tension force that acts against the detachment of the droplet 

and the drag force by the continuous phase, which pulls the droplet downstream. The 

formation of the neck starts once the drag force becomes sufficiently large and exceeds the 

interfacial tension force. Figure 10 illustrates the forces that act on the droplet in the flow 

direction (y-direction) at the necking stage. The shear stress and the pressure gradient arising 

in the continuous phase as the droplet grows into the main channel, lead to a drag force, FD 

that promotes the drop detachment. 
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Figure 10: Schematic indicating the drag force (FD) and the interfacial tension force(Fσ) 

during the necking stage.  

The drag force applied by the continuous phase on the droplet acts in the positive y-direction 

and is defined as (Husny and Cooper-White, 2006):  

         
      

     
       

             (1) 

where    is the continuous phase viscosity, n is the viscosity ratio between the two phases 

       ,    is the droplet diameter and    
     is the relative local velocity between the 

continuous phase,   
          

     

  
  (where    is the hydraulic diameter of the 

continuous phase channel and    is the continuous phase velocity) and the droplet velocity, 

  . 

The interfacial tension force acts in the negative direction of the flow opposing the drop 

detachment. The interfacial tension force acting on the droplet is found from the Laplace 

pressure difference on the drop surface and is given by: 

      
 

 
  

 

 
     

  
 

 
       (2) 

where σ is the interfacial tension, R is the leading edge radius of the drop, h is the depth of 

the channel and Wd is the neck width (Figure 10). For the surfactant-free system, the 

interfacial tension σ is constant and equal to 29 mN/m. The interfacial tension of the C12TAB 

solution will be assumed to be constant and equal to the equilibrium value, σ = 10 mΝ/m, for 
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all the formation stages. This assumption is based on the work of Kovalchuk et al. (2018) 

who found that the dynamic surface tension of C12TAB surfactant reaches the equilibrium 

value very fast. The use of the equilibrium value is further justified given the approximate 

nature of the model which considers forces acting on the whole drop following similar 

approaches in the literature (Christopher et al., 2008; Glawdel et al., 2012b; Husny and 

Cooper-White, 2006), as well as the lack of knowledge of dynamic interfacial tension. 

These forces will be further used to explain the droplet formation in the flow-focusing 

microchannel along with the velocities obtained with the PIV. 

4.2 Velocity fields inside and outside a forming droplet in the dripping regime 

The images and the velocity fields obtained from the two-colour PIV measurements can 

reveal how the surfactants alter the drop formation process and the flow fields inside and 

outside the droplet. Figure 11 and Figure 12 show the averaged total velocity fields at 4 

different steps during the drop formation process of the surfactant-free and the surfactant-

laden 50 mM C12TAB solutions respectively for the same continuous and dispersed phase 

flowrates. 

In the surfactant-free solution a circulation pattern can be observed inside the forming 

drop at the first propagation step while on the sides the dispersed phase velocity has large 

values (Figure 11a). The recirculation pattern shows that the droplet grows mainly in the 

radial direction during the the first propagation step while the continuous phase obstructs the 

growth of the droplet. As the droplet enters into the main channel, the circulation area moves 

gradually forward and weakens while the velocities increase (Figure 11b). These 

observations also agree with the results by Timgren et al. (2008) who studied the velocity 

fields inside and outside of a forming oil drop in a cross-flow rectangular channel using PIV. 

In addition, the aqueous solution is mainly transported to the tip via the sides of the droplet as 

the middle part moves at low velocity.  
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Figure 11: Averaged total velocity fields inside and outside the forming surfactant-free 

droplet. Qd = 0.01 cm
3
/min and Qc = 0.08cm

3
/min. Droplet diameter is equal to 203 μm. 

Images (a), (b), (c) and (d) correspond to propagation steps 1, 3, 5 and 7 respectively. Inset: 

Dotted rectangle indicates the region used to average the velocity profiles at the top of the 

droplet. 

Under constant dispersed phase flowrate, the forming drop expands into the main channel 

and obstructs the flow of the continuous phase that has to travel through a smaller cross-

sectional area next to the wall. As a result, the velocity and the pressure inside the continuous 

phase, at the cross-junction area, increase leading to the change in the neck curvature and to 
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the necking regime (Figure 11c). During the pinching–off stage (Figure 11d) the velocity 

acquires large values at the top part of the droplet.  

 

   

 

   

Figure 12: Averaged total velocity fields inside and outside the forming C12TAB droplet. Qd 

= 0.01 cm
3
/min and Qc = 0.08 cm

3
/min. Droplet diameter is equal to 142 μm. Images (a), (b), 

(c) and (d) correspond to propagation steps 1, 3, 5 and 7 respectively. Inset: Dotted rectangle 

indicates the region where the velocity difference between the two phases was calculated. 

As the neck width reduces at a fast rate a flow inversion at the neck can be observed 

leading to a weak recirculation at the base of the droplet. It appears that the neck is stretched 

over two opposite directions (in the main channel by the continuous phase and towards the 

inlet by the flow reversal in the dispersed phase) that lead eventually to the neck break up. 
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Once the drop has detached, the dispersed phase pulls back into its inlet channel under the 

action of surface tension. 

During the formation of the C12TAB droplet (Figure 12), a recirculation pattern cannot be 

observed during the expansion stage (Figure 12a). As the droplet moves into the main 

channel, the velocity is more uniform and acquires larger values at the top part of the droplet 

(V ~ 0.076 m/s) (Figure 12b) compared to the surfactant-free case (V ~ 0.065 m/s) in Figure 

11b. The differences of the C12TAB system compared to the pure one can be attributed to the 

accumulation of surfactant to the tip of the droplet from the flow of the continuous phase. 

The variations of surfactant concentration along the drop interface would initiate Marangoni 

effects which will cause the movement of the interface to the opposite direction. This motion 

may prevent the recirculation inside the drop; in addition the local accumulation of the 

surfactant would increase the rigidity of the interface and reduce any velocity gradients inside 

the drop. Riaud et al. (2018) who studied both numerically and experimentally the dynamics 

of surfactants during drop formation in a T-junction, found similar results at the expansion 

stage. The authors suggested that the accumulation of surfactants at the tip of the drop 

prevents recirculation inside the dispersed phase, makes the interface more rigid and leads to 

a more uniform velocity field compared to the surfactant-free case.  

Figure 13 presents this difference in the averaged axial velocity profiles at the top part of 

the droplet (see Inset, Figure 11) between the surfactant-free and C12TAB systems for the 

propagation steps 1 and 3 (that correspond to Figures11a, 11b, 12a and 12b respectively). As 

can be seen during the first propagation step (step 1) the highest velocity values are at the 

side of the droplet whereas the lowest values are in the middle, which show that the dispersed 

fluid is mainly transported through the sides of the droplet. As the C12TAB drop enters into 

the main channel (step 3), high velocities appear in the top part of the droplet whereas in the 
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surfactant-free system the highest velocities can still be seen at the sides of the droplet 

(Figure 13).  

 
Figure 13: Averaged axial velocity profiles at the top part of the droplet for the surfactant-

free and the C12TAB solutions. C12TAB_step 1, C12TAB_step 3 and surfactant-free_Step 1, 

surfactant-free_Step 3 correspond to Figures11a, 11b, 12a and12b respectively. 

At the next propagation steps (during necking and pinch-off stage) the highest velocities 

are in the middle of the C12TAB droplet. This is different from the work by Carrier et al. 

(2015) who showed that during the growth of the droplet into the channel a weak 

recirculation pattern forms inside the newly forming droplet (aqueous SDS solution). They 

found the same recirculation pattern at the necking stage where the dispersed fluid is still 

transported to the tip via the sides of the droplet. As can been seen in Figure 13, in the 

surfactant-free system high velocities can be still found at the sides of the droplet at the 

necking stage and only at the pinch-off stage the highest velocities appear along the tip. 

The necking stage of the C12TAB droplet (Figure 12c) can be identified by an increase in 

the aqueous phase velocity in the neck region. The velocity vectors in the organic phase in 

Figure 12c are almost perpendicular to the aqueous/oil interface at the cross-junction inlet 

(similar to the surfactant-free case) leading to the thinning of the neck. At this stage, the local 

velocity difference at the top of the droplet between the two phases (see Inset, Figure 12c) is 
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larger (ud = 0.045 m/s; uc = 0.022 m/s) than in the surfactant-free solution (ud = 0.071 m/s; uc 

= 0.056 m/s) (Figure 11). During the pinching–off stage (Figure 12d) a less intense 

recirculation pattern, compared to the one in the surfactant-free case, can be observed at the 

base of the droplet. Carrier et al. (2015) who studied the formation of SDS droplets in a flow-

focusing channel also reported a flow inversion and weak recirculation at the base of the 

dispersed phase during the pinch off stage. 

The evolution of the forces at the different steps of the drop formation can be seen in 

Figures 14a and b for the surfactant-free and the C12TAB solutions respectively.  

 

 

Figure 14: Forces during the formation of (a) surfactant-free and (b) C12TAB surfactant-

laden droplets. QD = 0.01 cm
3
/min and QC = 0.08cm

3
/min. 
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The forces were calculated based on Eqs 1-2 using the data obtained from the experiments. 

The inertia force of the dispersed phase was found to be of the order of magnitude of 

         

   and was not taken into account. As the droplet grows into the main channel, the 

difference in the local velocities between the continuous and the dispersed phases increases 

(Figures 11 and 12). This leads to an increase in the shear imposed by the continuous phase. 

At the same time, the pressure gradient in the continuous phase increases as the droplet size 

increases and blocks the flow-focusing inlet. As a result, the drag force gradually increases 

and overcomes the interfacial tension force at the propagation step 5 (Figures 14a and b). 

This is the step where the rate of the neck thinning changes as can be seen in Figure 8 (for 

the experimental condition Qd = 0.01 cm
3
/min and Qc = 0.08 cm

3
/min) which denotes the 

transition from the expansion to the necking stage. The last points of the drag and interfacial 

tension forces that appear in Figures 14a and b correspond to pinch-off. 

The axial velocity at the neck averaged over 40 PIV images is plotted in Figure 15 at each 

propagation step for both fluid systems. As can be seen, the velocity increases until step 5 

where it starts to decrease again until rupture occurs. In agreement with Figures 11 and 12 

the average velocity is higher for the surfactant-laden system, where there is no recirculation.  

 

Figure 15: Averaged velocity at the neck obtained from PIV. Qd = 0.01 cm
3
/min and Qc = 

0.08 cm
3
/min.  
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1.5 Conclusions 

The flow patterns and drop formation process were studied in a flow focusing microfluidic 

device using silicone oil as the continuous phase and water/glycerol aqueous solutions that 

contained different concentrations of surfactants as the dispersed phase. An innovative two-

colour Particle Image Velocimetry technique was used to obtain the flow fields in both 

phases and the characteristics of the forming drops.  

It was found that the addition of surfactants reduced the areas of the squeezing and 

dripping regimes in a flow pattern map with the flowrates of the two phases as coordinates, 

whereas it extended the areas occupied by the threading and jetting regimes. The droplet 

formation process in the squeezing and dripping regimes was divided in three distinct stages, 

namely expansion, necking and pinch-off. The neck width reached at the end of the 

expansion and the necking stages was found to be depended on the continuous phase 

flowrates and on the type of surfactant. It was proposed that the dynamic interfacial tension 

of the different surfactant solutions, rather than the equilibrium one, explained the differences 

between the two surfactant systems. The rate of reduction of the neck width increased from 

the expansion to the necking stage. In general, the drops produced in the surfactant-laden 

solutions were smaller with higher tip curvature than in the surfactant free one. The velocity 

profiles in the squeezing regime showed that during the expansion stage, an internal 

circulation appeared at the center of the forming drop which gradually weakened as the 

droplet moved into the main channel. This circulation was less prominent in the surfactant-

laden system which was attributed to the accumulaiton of surfactants at the drop tip. As the 

drop propagated into the main channel and the neck decreased in size, the velocities increased 

in the neck region. During pinching–off, a flow inversion at the thinnest part of the neck was 

observed which caused the dispersed phase to pull back into the inlet channel after the drop 

had detached. In general, the averaged velocity fields revealed that the addition of surfactants 
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increased the local velocity difference between the two phases compared to the surfactant-

free case, for the same phase flowrates. Based on the geometric characteristics of the forming 

drops and the velocity fields obtained with PIV, the forces acting on the drop were estimated. 

It was found that drag forces overcome the surface tension ones between the expansion and 

the necking drop formation stages.  

Future studies will investigate the process of droplet formation for different surfactant 

systems to understand the effects of interfacial tension and dynamics of surfactant absorption.  
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Highlights 

 Use of an innovative, two-colour micro-PIV technique to investigate velocity fields; 

 Study of kinetics of surfactant absorption during the droplet formation process; 

 Development of a mechanistic model for the droplet formation based on PIV data; 

 Investigation of the effect of surfactants on the flow pattern maps 

 

 

 


