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Abstract

We study the existence of rainbow perfect matching and rainbow Hamiltonian cycles in edge–
colored graphs where every color appears a bounded number of times. We derive asymptotically
tight bounds on the minimum degree of the host graph for the existence of such rainbow spanning
structures.

1 Introduction

A subgraph H of an edge-colored graph G is rainbow if the edges of H have pairwise distinct colors.
Erdős and Spencer [6] initiated the study of rainbow spanning structures motivated by a problem
of Ryser on the existence of Latin transversals in Latin squares [11]. By introducing the so–called
Lopsided Lóvasz local lemma, they showed that every edge–coloring of the complete bipartite graph
Kn,n admits a rainbow perfect matching provided that each color appears at most k ≤ (n−1)/(4e)
times. Motivated by this result, an edge–coloring of G is said to be k–bounded if every color appears
at most k times on the edges of G.

Albert, Frieze and Reed [1] proved the existence of rainbow Hamiltonian cycles in k-bounded
edge-colored complete graphs Kn, provided that k ≤ (n−1)/64 (see also [7] for a clarification about
the constant in the upper bound).

In a more general setting, Böttcher, Kohayakawa and Proccaci [3] proved that for every graph
H on n vertices and maximum degree at most ∆, there exists a rainbow copy of H in any k–
bounded coloring of the complete graph Kn, provided that k ≤ n/(51∆2). Their approach used the
framework developed by Lu and Székely [10] on negatively dependency graphs constructed from
matchings.

Other related results include the existence of almost spanning rainbow trees in Kn [7], the
existence of spanning rainbow multipartite graphs with bounded degrees in multipartite complete
graphs Kn,n...,n [8] as well as the existence of rainbow subhypergraphs in complete hypergraphs [5,
8]. All these results hold provided that the edge–coloring of the host graph is k-bounded for an
appropriate value of k and the proofs rely on variations of the Lóvasz local lemma.

∗Email: m.pilar.cano@upc.edu.
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A natural question is whether one can still find a rainbow copy of a spanning subgraph H in a
host graph G that is sparser than the corresponding complete graph structure (complete graphs,
complete multipartite graphs, complete hypergraphs . . . ). Obviously, a necessary condition is that
G must contain at least one copy of H. Among other conditions, the existence of a spanning
subgraph can be guaranteed by requiring G to have a large minimum degree.

Sudakov and Volec [13] gave a first step in this direction by proving the following (see also
Kamčev, Sudakov and Volec [8, Theorem 1.7] for a formal statement).

Theorem 1 ([13]). There exist positive constants β and c such that the following holds. Let H
be a graph on n vertices of maximum degree ∆ and G a graph on n vertices and minimum degree(
1− c

∆

)
n. Then any k-bounded edge–coloring of G has a rainbow copy of H, provided that k ≤ n

β∆2 .

In this paper we study the existence of rainbow copies of H in G with asymptotically tight
conditions on the minimum degree of G, in two particular cases: (1) H is a perfect matching and
G is balanced and bipartite, and (2) H is a Hamiltonian cycle and G is arbitrary. In both cases the
minimum degree threshold is n/2, which is also the minimum degree for the existence of a copy of
the considered spanning subgraphs as follows from classical results.

Our first result states that, provided there are not too many edges with the same color, at the
moment the minimum degree ensures the existence of a perfect matching in a bipartite graph, it
also ensures the existence of a rainbow one.

Theorem 2. For every ε > 0, there exist c > 0 and n0 such that for every n ≥ n0 the following
holds: If G = (A,B) is a bipartite graph with |A| = |B| = n and minimum degree at least (1 + ε)n2 ,
then every cn-bounded edge–coloring of G contains a rainbow perfect matching.

Theorem 2 has a direct consequence on Latin squares. A Latin square L of size n is an n × n
array with positive integer entries such that each number appears at most once in each row or
column. A partial Latin square is a latin square where some positions are blank. A transversal of
L is a set of n cells in the array, no two in the same row or column. A transversal is Latin if the
integers contained in its non-blank cells are pairwise distinct.

Corollary 3. For every ε > 0, there exist c > 0 and n0 such that for every n ≥ n0 the following
holds: If L is a partial Latin square of size n where each row and column have at least (1 + ε)n2
entries and no entry appears more than cn times, then L contains a Latin transversal.

Our second result deals with the existence of rainbow Hamiltonian cycles in sparse graphs.
Again the minimum degree required for the existence of a Hamiltonian cycle ensures the existence
of a rainbow one, provided that each color does not appear too many times.

Theorem 4. For every ε > 0, there exist c′ > 0 and n0 such that for every n ≥ n0 the following
holds: If G is a graph on n vertices with minimum degree at least (1 + ε)n2 , then every c′n-bounded
edge-coloring of G contains a rainbow Hamiltonian cycle.

The main ingredient of our proofs is the study of the uniform measure on the set of perfect
matchings (or of Hamiltonian cycles) of G. In contrast to the results for complete graphs, here
the lack of symmetry poses a challenge to prove properties of typical spanning subgraphs. By
performing a counting argument directly on G, we obtain an asymptotically tight result.

We make the following remarks on our results.
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1) If n is even, then Theorem 4 also provides the existence of a rainbow perfect matching in the
graph. This does not supersede the result of Theorem 2 as the minimum degree condition
there is much weaker.

2) The condition on the minimum degree in both theorems is asymptotically tight, since there
are bipartite graphs with minimum degree dn/2e − 1 and no perfect matching, as well as
graphs with minimum degree dn/2e − 1 and no Hamiltonian cycle. However, the dependence
on the number of colors is not best possible. The use of the local lemma forces us to pay
a constant factor. The dependence of c in ε is c = O(ε2) for Theorem 2 and c = O(ε3) for
Theorem 4. As a corollary, we obtain that Theorem 2 and 4 are still valid for minimum degree
at least n

2 + O(
√
n) and n

2 + O(n2/3), respectively, provided that the coloring is 2-bounded.
We conjecture the exact version of our results:

Conjecture 5. There exists c > 0, such that the following holds:

- any cn-bounded coloring of a balanced bipartite graph on 2n vertices and minimum degree
at least n/2, admits a rainbow perfect matching.

- any cn-bounded coloring of a graph on n vertices and minimum degree at least n/2,
admits a rainbow Hamiltonian cycle.

3) As a corollary of Theorem 2, one can obtain the existence of linearly many disjoint rainbow
perfect matchings on balanced bipartite graphs under the same minimum degree condition.
A similar statement also holds for Hamiltonian cycles.

4) Theorem 1 in [13] sets a starting point for the study of rainbow subgraphs in graphs with
large minimum degree. Define δ(∆, n) to be the infimum over all δ such that every graph
G on n vertices and minimum degree at least δn contains any graph H on n vertices and
maximum degree ∆. Let δ(∆) = lim supn→∞ δ(∆, n). Bollobás and Eldridge [2] and Catlin [4]
independently conjectured that δ(∆) = 1− 1

∆+1 . The lower bound δ(∆) ≥ 1− 1
∆+1 is given by

considering H to be the union of n/(∆+1) cliques and G a slightly unbalanced (∆+1)-partite
complete graph. While partial results have been obtained [9, 12], the conjecture is still wide
open. Motivated by Theorems 2 and 4, we conjecture the sparse analogue of [3, Theorem 7]:

Conjecture 6. For every ε and ∆, there exist c > 0 and n0 such that for every n ≥ n0 the
following holds: If G is a graph on n vertices with minimum degree at least (1+ε)δ(∆) and H
is a graph on n vertices with maximum degree at most ∆, then every cn-bounded edge-coloring
of G contains a rainbow copy of H.

2 Sketch of the proofs

We next give a sketch of the proof of our results. Let Ω be the space of perfect matchings of G
equipped with the uniform measure. Since δ(G) ≥ n/2, Hall’s theorem ensures Ω 6= ∅. Our goal is
to apply the Lopsided version of the local lemma to a set of bad events E defined on Ω. While these
events do not exhibit bounded dependencies, the effect of events whose support does not intersect
is weak and can be bounded.

We use the Lopsided version of the Lovász local lemma, which allows us to lower from above
the probability of avoiding all bad events simultaneously, in terms of conditional probabilities.
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Lemma 7 (Lopsided Lovász Local Lemma [6]). Consider a set E of (typically bad) events in a
probability space Ω. Let P ∈ (0, 1). For every E ∈ E, consider a set D(E) of at most D other
events in E. Suppose that for all T ⊆ E \ ({E} ∪ D(E)) we have that

P

[
E |

⋂
F∈T

F c

]
≤ P . (1)

If 4PD ≤ 1, then P
[⋂

E∈E E
c
]
> 0.

The main part of the proof consists on bounding P
[
E |

⋂
F∈T F

c
]
. In order to do it, we use

the switching method, a classic idea to bound probabilities in uniform combinatorial spaces. Let
P ⊆ Ω be a property of perfect matchings. We define a local operation that transforms perfect
matchings that satisfy P into other perfect matchings in Ω \ P and vice versa. By counting the
number of operations that can be perform to each perfect matching, we get estimates on P[P]. In
constrast to [6], the non-existence of edges has a strong effect on the number of defined operations.

The proof of Theorem 4 uses a similar approach with some variations. In this case, the natural
switching operation can transform Hamiltonian cycles into other spanning 2-regular subgraphs.
We use a density argument to justify that, in average, a positive proportion of operations produces
Hamiltonian cycles. This suffices to bound (1).
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