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Vision-guided state estimation and control of robotic manipulators
which lack proprioceptive sensors

Valerio Ortenzi1 Naresh Marturi1,2 Rustam Stolkin1 Jeffrey A. Kuo3 Michael Mistry4

Abstract— This paper presents a vision-based approach for
estimating the configuration of, and providing control sig-
nals for, an under-sensored robot manipulator using a single
monocular camera. Some remote manipulators, used for de-
commissioning tasks in the nuclear industry, lack propriocep-
tive sensors because electronics are vulnerable to radiation.
Additionally, even if proprioceptive joint sensors could be
retrofitted, such heavy-duty manipulators are often deployed on
mobile vehicle platforms, which are significantly and erratically
perturbed when powerful hydraulic drilling or cutting tools are
deployed at the end-effector. In these scenarios, it would be
beneficial to use external sensory information, e.g. vision, for
estimating the robot configuration with respect to the scene or
task. Conventional visual servoing methods typically rely on
joint encoder values for controlling the robot. In contrast, our
framework assumes that no joint encoders are available, and
estimates the robot configuration by visually tracking several
parts of the robot, and then enforcing equality between a set of
transformation matrices which relate the frames of the camera,
world and tracked robot parts. To accomplish this, we propose
two alternative methods based on optimisation. We evaluate the
performance of our developed framework by visually tracking
the pose of a conventional robot arm, where the joint encoders
are used to provide ground-truth for evaluating the precision
of the vision system. Additionally, we evaluate the precision
with which visual feedback can be used to control the robot’s
end-effector to follow a desired trajectory.

I. INTRODUCTION

In several nuclear sites in the UK, as well as important

nuclear sites world-wide, such as ongoing work at the

Fukushima Daiichi nuclear disaster site, very rugged remote

manipulators are used, which lack proprioceptive joint angle

sensors. It is not considered feasible to retrofit proprioceptive

sensors to such robots: firstly, electronics are vulnerable to

gamma and beta radiation; secondly, for nuclear applications,

the installation of new sensors on trusted machinery would

compromise long-standing certification; thirdly, such robots

are predominantly deployed on a mobile base platform and

typically use powerful hydraulic drilling and cutting tools

at the end-effector. Even if the robot had proprioceptive

sensors, such tools cause large and frequent perturbations

to the base frame, so that proprioceptive sensors would still

be unable to obtain the robot pose with respect to a task

frame set in the robot’s surroundings. For these reasons,

the adoption of external sensors, such as cameras, offers a

means of closing the control loop with quantitative feedback,
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Fig. 1. A BROKK robot, equipped with a gripper, being used for a pick and
place task at the Sellafield nuclear site in UK. This robot has no sensors for
measuring joint angles, and so must be directly controlled by a human oper-
ator, who pushes a separate switch for each joint and judges the robot’s pose
by eye. The human operator can be seen controlling the robot from behind
a 1.6m thick lead glass window which shields against radiation. For more
examples, refer to www.sellafieldsites.com/solution/decommissioning/.

enabling advanced trajectory control and increased autonomy

which are currently not possible.

At present, these kinds of remote manipulator machines

used for decommissioning tasks on nuclear sites are simply

tele-operated, where a human operator controls each joint

of the robot individually using a teach pendant or a set of

switches, as in Fig. 1. In some cases the human operator

controls the robot via CCTV cameras or from behind thick

lead glass windows, with very limited depth perception and

situational awareness. In other cases, the operator must be

positioned near to the robot, wearing protective clothing

and breathing apparatus. This not only means that task

performances are sub-optimal, but also that humans are

being exposed to risk in hazardous environments. This paper

contributes a step towards increased autonomy of such tasks,

including precise automatic control which is currently almost

completely lacking in such industries. Removal of the human

factor from such environments could improve safety, and

also improve the speed and precision of task performance

(e.g. scabbling, where an arm must move a grinding tool

across a wall or floor to a precise depth, in order to remove

contaminated surface material).

This paper shows how reliable feedback of robot config-

urations can be achieved by tracking several parts of the



robot in monocular camera images. We present a framework

whose main component estimates the robot configuration

by enforcing the equality between a set of transformation

matrices relating frames set in the camera, world and the

tracked robot parts. For this purpose, we use a model-based

vision approach, derived from virtual visual servoing (VVS),

in order to track various parts of the robot [1]. The state of the

robot, i.e. the joint configuration, is estimated by combining

this tracked information with the robot’s kinematic model. In

the following we use the terms state estimation and configu-

ration estimation interchangeably. To solve this estimation

problem, we present and compare two different types of

non-linear optimisation scheme. In addition to estimating

the robot state, we also show how these estimations can

be successfully used as quantitative feedback to a classical

kinematic controller, in order to make the robot achieve a

desired end-effector position.

The vast majority of robots in research labs worldwide

possess joint encoders, which is why the vast majority of

previous robotics literature (including the visual servoing

literature) assumes knowledge of joint angles. In contrast, we

believe our approach of estimating the robot configuration

by using only monocular camera images, represents both

novelty and substantial usefulness for robotics applications

in harsh environments. Additionally, the methods proposed

in this paper may have wider applications to other problems,

e.g.: human-robot or robot-robot interaction; articulated robot

calibration; use of a remote camera for servoing of mobile

manipulator platforms with respect to surrounding objects.

The remainder of the paper is organised as follows. Sec. II

explains our contribution in the context of other related work.

Sec. III describes the proposed vision-based configuration

estimation scheme along with the details of each component.

Sec. IV reports the results of experiments to i) measure

the accuracy of our vision-based state estimates, and ii) to

measure the precision with which our vision-based approach

can be used to control a robot to move its end-effector to

a desired position. Sec. V provides concluding remarks and

suggests directions for future work.

II. RELATED WORK

The main goal of this work is to provide reliable quanti-

tative configuration feedback for under-sensored robots, so

neither the particular choice of visual tracking algorithm

nor the particular choice of visual servoing controller form

the primary focus of our contribution. This motivates our

choice of architecture, which is composed of three separate

components: visual tracking of parts of the robot; state esti-

mation; and a controller. We concentrate on state estimation,

and choose available methods for the other components. The

modularity of this architecture enables flexibility by allowing

modification of each of these components independently.

Although deeply influenced by the visual servoing (VS)

and articulated body tracking literatures, in this work we

are neither interested in controlling the robot directly using

visual features, as in a VS paradigm, nor solely in visual

tracking of the body of the robot. The VS literature pre-

dominantly relies on accurately knowing robot states derived

from joint encoders, which are not available in our case.

Furthermore, this work endeavours to find a balance between

computational speed, performance accuracy, robustness to

real-world conditions, and monetary cost. The choice of a

single monocular camera represents an efficient and robust

solution in terms of cost and reliability in nuclear or other ex-

treme environments, where variable range, strong variations

in lighting, reflective surfaces, outdoor sunlight conditions,

or dust can cause the performance of many kinds of depth

sensors to deteriorate.

Previously, Marchand et al. [2] demonstrated an eye-to-

hand visual servoing scheme to control a robot with no

proprioceptive sensors. In order to compute the Jacobian of

the manipulator, they need to estimate the robot configura-

tion. Thus, they feed the end effector position to an inverse

kinematics algorithm for the non-redundant manipulator. Our

work is related to this approach, but overcomes the redun-

dancy problem by simultaneously tracking multiple parts

of the robot, consequently having more relationships con-

straining the configuration, making our method potentially

applicable to high DOF robots. In [3], a model-based tracker

was presented to track and estimate the configuration as well

as the pose of an articulated object. In this work, an extended

Kalman filter was used to update the object configuration

using tracked feature locations. Our approach is marginally

related to this work. However, the major differences are that

we simultaneously track entire 3D models of various parts

of an articulated object and separately define an optimisation

problem to estimate the joint values using the tracked poses.

Our main objective is to estimate the robot joint config-

uration, a problem which is also related to pose estimation.

Pose estimation is classically defined for single-body rigid

objects, with 6 degrees of freedom (DOF). On the other hand,

articulated objects are composed of multiple rigid bodies

and possess higher DOF (often redundant). There are also

a number of kinematic (and potentially dynamic) constraints

that bind together the bodies belonging to kinematic chains.

Further, these constraints can also be used to locate and

track the chain of robot parts. In this work, for the sake

of modularity, the kinematic constraints are used only when

estimating the joint values, and not for visual tracking of

robot parts, i.e. each part of the robot is tracked individually,

and then a separate stage of our architecture performs best-

fitting of the robot kinematics to the tracked part positions.

A variety of ways to track articulated bodies can be

found in [3]–[7]. In contrast to our work, these authors

mainly focused on localising parts of the articulated bodies

in each image frame, and not on the estimation of joint

angles between the connected parts. Additionally, much of

this work focussed on tracking parts of robots, but made use

of information from the robot’s joint encoders to do so, in

contrast to the problem posed in our paper.

A real-time system to track multiple articulated objects

using RGB-D and joint encoder information is presented

in [8]. A similar approach was used in [9] to track and



Fig. 2. Overview of our modular pose estimation architecture. The visual
tracking module uses RGB images provided by a camera, together with the
models of a few selected robot parts, and returns the pose of those parts
with respect to the camera frame. The part poses are then used by the state
estimation module along with the robot kinematic model, which returns the
robot joint configuration. Finally, the controller utilises the overall estimated
state to servo the robot.

estimate the pose of a robot manipulator. SimTrack [10] is

also a framework for real-time robot tracking using cameras,

a Kinect and the joint angles. In [11], a marker-tracking

method was used to identify the joint origins of robots.

Other notable examples can be found in [12] and [13],

where the authors propose to use depth information for

better tracking of objects. Recently, an approach based on

regression forests has been proposed to directly estimate

joint angles using single depth images in [14]. Additionally,

in the context of our work, it is worth mentioning some

of the human hand pose tracking methods presented in e.g.
[15]–[17]. However, most of these methods require either

posterior information (e.g. post-processing of entire image

sequences offline to best-fit a set of object poses), or require

depth images, or must be implemented on a GPU to achieve

online tracking. In contrast, our approach does not make

use of depth information, does not require visual tracking

of the entire robot, and does not require special markers to

be attached to the robot. Instead, a small set of the robot’s

parts are tracked to estimate the joint configuration. We detail

the choice of these robot parts in Sec. III-B.

In summary, the use of depth information alongside stan-

dard RGB images can improve the tracking performances.

However, it also increases the computational burden and

decreases robustness in many real-world applications. Our

choice of using only a simple, monocular 2D camera is

motivated by cost, robustness to real-world conditions, and

also in an attempt to be as computationally fast as possible.

III. STATE ESTIMATION AND CONTROL FRAMEWORK

As stated earlier, our framework is composed of three main

parts. The first component is visual tracking of individual

robot links. The model-based visual tracker adopted in this

paper is given the 3D models of a small number of selected

robot parts, tracks the corresponding poses of these parts and

returns the homogeneous transformation matrices between

the camera and the tracked objects, CMobji . Previously, such

methods were used for virtual reality [18] and part assem-

bling [19]. The second component makes use of these matri-

ces in estimating the robot’s state i.e., the joint configuration

q. We propose two alternative methods to accomplish this

task, both based on optimisation. Finally, we implement a

classical kinematic controller to show how these estimations

can be used as feedback in a closed-loop control scheme. As

previously discussed, this choice of architecture is motivated

by the intention of being as modular as possible, i.e. the

proposed state estimation method can be easily replaced by

another one, with no major modifications. The same applies

to the visual part tracking module and the controller module.

Fig. 2 illustrates the architecture of our proposed framework.

A. Visual Tracking

In this work, visual tracking of various parts of the

robot has been accomplished using a model-based tracker

available in ViSP [20], which projects CAD models of

the parts onto camera images. Real-time tracking and pose

estimation is achieved by using a Virtual Visual Servoing

(VVS) framework [1]. Previous results [18], [19] suggest that

such trackers are robust to lighting intensity variations and

partial occlusions. Furthermore, this approach runs in real-

time on an ordinary CPU without needing GPU acceleration.

Tracking 3D models of robot parts in images is related to

the classical pose estimation problem. The underlying idea

is to obtain a camera pose for which a projection of the

3D model best fits with the 2D image contours of the robot

part. This process involves estimating a rigid transformation

between the camera frame and the tracked object frame,
CMobji . The key steps include: projecting the model using

an initial pose estimate (typically the pose estimated at the

previous frame), perform a 1D search along the model edges

to update the pose, and propagate the updated pose to the

next frame. In general, the pose matrix CMobji links the 3D

object features P in the world frame to their corresponding

projections p in the image. Assuming the camera intrinsic

parameters K are known, this relationship is given by:

p = KCMobjiP (1)

Next, it is possible to estimate the transformation parameters

by minimising the error Δ between the current values s(r),
obtained by forward projection of the robot part model

using the pose r, and the edges s∗ detected in the image.

Its minimisation then corresponds to the movement of a

virtual camera (associated with the model) by updating r.

The regulation of Δ requires linking temporal variations of

s(r) with the velocity screw of the virtual camera defined by

pose r. This is achieved by using an image Jacobian matrix

Js. This algorithm is based on classical visual servoing, thus

we refer the reader to [21] for further details.

In this work, for proof of principle, we tracked four

different parts of a KUKA KR5sixx robot, Fig. 3. Trackers

are initialised for each part by the user mouse-clicking on

corresponding parts in the first image, while the robot is in



(a)

(b)

Fig. 3. Illustration of model-based tracking, using a KUKA KR5sixx robot
for proof of principle. (a) Automatic initialised poses in the first frame.
Numbers in circles represent the order of the parts selected for this work.
(b) Tracked parts in a later frame.

its home position, Fig. 3(a). In the case of highly cluttered

scenes the trackers’ performance can become erratic due to

redundant edges detected in the images. In order to minimise

these phenomena, we use a Kalman Filter (KF) to predict and

update the final pose after VVS, thus smoothing the changes

and also reducing the reactiveness of the tracker. Specifically,

we converted the CMobji into pose vectors, i.e. tuples of six

values, three for the orientation and three for the translation.

These values are regarded as the states in the KF. We treat

the pose from the estimated CMobji as noisy measurements

and update the states, consequently filtering brisk changes.

Finally, these updated CMobji from KF are supplied to the

next module of our architecture i.e. state estimation.

B. State Estimation

In the following, the standard convention for symbols

associated with the kinematics of the robot is observed, e.g.
we define q and q̇ as the configuration and the velocity

respectively of the robot in joint space.

For state estimation, we use the following key idea. As

shown in Fig. 4, there are two paths from the camera

reference frame CRF (in yellow) to each tracked part frame
objiRF (in red). As stated, we track four different parts of the

robot i.e, i = 1 . . . 4. These two paths kinematically coincide,

Fig. 4. Illustration of the proposed state estimation model. Nodes represent
reference frames and are classified by various colours: camera frame in
yellow, robot frames in blue and tracked object frames in red. The two paths
leading to each tracked object frame objiRF from the camera reference
frame CRF can be seen.

thus we enforce the following equalities to estimate the state:

CMobji =
C T 0

0T obji(q) (2)

where, CT 0 is the transformation from camera to world

frame and 0T obji(q) represents the transformation from

world to object i frame parametrised over the joint values

q, i.e., 0T obji(q) embeds the kinematic model of the robot.

Specifically, for each tracked robot part, we get:

CMobj1 = CT 0
0T 1(q1)

1T obj1 (3)
CMobj2 = CT 0

0T 1(q1)
1T 2(q2)

1T obj2 (4)
CMobj3 = CT 0

0T 1(q1)
1T 2(q2)

2T 3(q3)
3T 4(q4)

4T obj3

(5)
CMobj4 = CT 0

0T 1(q1)
1T 2(q2)

2T 3(q3)
3T 4(q4)

4T 5(q5)
5T 6(q6)

6T obj4 (6)

The state of the robot is now estimated by imposing the

equality given in (2), and casting it as an optimisation

problem. As already mentioned, we assume that we know the

initial configuration of the robot (occupying its home position

in the first image) and its kinematic model. The robot’s initial

configuration is used as a seed for the first iteration of the

optimisation problem and the kinematic model is used to

compute 0T obji(q). The optimisation problem is then stated

as:
minimise

q

∑

i

ei(q)

subject to |qj | ≤ qmax

(7)

where

ej(q) = vec(CMobji −C T 0
0T obji(q)) (8)



represents an error in the difference of the two paths shown

in Fig. 4 to define a transformation matrix from the camera

frame to the tracked objects frames, and qmax is the joint

limit for the joint. In order to compute 0T obji(q), we use the

convention of Denavit-Hartenberg parameters. The overall

estimation schema along with the transformation matrices

between each reference frame are shown in Fig. 4.

Two different optimisation schemes have been imple-

mented. The trackers return a set of matrices, i.e. one for

each tracked part. These matrices can be used all together,

which we term the “full” method. Alternatively, the sets of

equations coming from each of the four CMobji can be

used in series to solve for subsets of joint variables, which

we call the “chained” method. From Fig. 4, the following

dependencies can be observed for each tracked object: 1) first

object’s position obj1RF depends only on q1; 2) second

object’s position obj2RF on q1 and q2; 3) third object’s

position obj3RF on q1, q2, q3 and q4; 4) finally fourth

object’s position obj4RF on all the six joints. As shown

in Fig. 3, in this work we track two cylindrical and two

cuboid shaped parts of a KUKA KR5sixx robot for proof

of principle. However, this choice is not a limitation of

our work, and a variety of different parts could be chosen.

Nevertheless, the parts must be chosen such that they provide

sufficient information about all joints of the robot. Due to

the modular architecture followed, using alternative parts for

visual tracking will not affect the estimation scheme.

Because the “full” method uses all of the tracked part

poses at once, the optimisation problem is as given in (7),

with i = 4 and j = 6. In this case, the solution is the tuple

of joint angles that best fits all the equations. Alternatively,

the chained method uses each object to estimate only a

subset of joint values. These, in turn, are used as known

parameters in the successive estimation problems. In the

presented example, q1 can be retrieved using obj1, as in:

minimise
q1

e1(q1)

subject to |q1| ≤ qmax

(9)

and from now on it is treated as known. q2 is estimated using

obj2:
minimise

q2
e2(q1, q2)

subject to |q2| ≤ qmax,
(10)

In a similar fashion, q3 and q4 are estimated using obj3:

minimise
q3,q4

e3(q1, q2, q3, q4)

subject to |qj | ≤ qmax, j = 3, 4.
(11)

And finally, obj4 provides the equations to compute q5 and

q6:
minimise

q5,q6
e4(q)

subject to |qj | ≤ qmax, j = 5, 6.
(12)

There are a number of considerations regarding these two

alternative approaches. Using only one object at a time, as in

the chained method, the quality of configuration estimation

becomes highly dependent on the tracking performance for

each individual part. Although it induces the advantage

of being robust to single part tracking failure (producing

outliers that influence the estimation of only the relative

subset of angles), it adds the disadvantage of propagating

the possible error of already estimated angles in subsequent

estimations. On the other hand, the full method overcomes

this problem. However, it has to accommodate a solution

for a higher number of equations. Thus, an error in any

parameter will potentially lead to estimation errors on all

joints, independently of the tracking performance.

C. Controller

For proof of principle, we implemented a classical kine-

matic controller of the form given in Eq. (13) to validate our

methodology and also to demonstrate how the vision-derived

state estimations can be used to servo the robot’s end-effector

to a desired point in the workspace.

q̇ref = J†(q)(KPe)−KDq̇ (13)

Here, q̇ref is the desired/reference velocity, and J†(q) is

the pseudo-inverse of the robot Jacobian computed using

our estimated joint configuration. The pseudo-inversion is

needed since the tasks are positional, thus the Jacobian J is

3x6. The error e has been defined as the difference between

desired and estimated Cartesian positions of the end-effector.

Note that the Cartesian positions are updated in each iteration

using the direct kinematics with the estimated configuration.

Finally, KP and KD are the proportional and derivative

gain matrices. The estimation of the robot joint velocity has

been computed as the difference between the present and the

previous robot configuration. Since the commands sent to the

robot are in position, Eq. (13) is integrated numerically to

compute such commands:

qcmd = qt +Δt q̇ref (14)

where qcmd are the commands sent to the robot, qt is the

estimated robot configuration, Δt is the integration time and

q̇ref is as defined in Eq. (13).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The estimation and control framework presented in the

previous section has been evaluated in real-time on an

experimental set-up comprising a 6 DOF KUKA KR5 robot

and a commercial Logitech c920 camera. Even though this

robot is equipped with joint encoders, we do not use those

values for state estimation or control, but we record them

as ground truth which we use for performance evaluation.

Our architecture was implemented in C++ and executed on

an ordinary PC running Linux (8 GB RAM, 3.1 GHz Intel

core i5 CPU). The communication between the PC and the

robot controller was realised using TCP/IP. CAD models of

robot parts were supplied to the tracker along with the part

poses for a pre-defined home position during the initialisation

step. All the proposed optimisation problems are solved

using the constrained optimisation by linear approximation

(COBYLA) algorithm available in NLopt C++ library [22].



Two series of experiments have been conducted. Firstly,

we assess the precision of the proposed framework in esti-

mating the robot configuration. For this purpose, the robot

was asked to repeatedly perform three different trajectories,

and the vision-estimated joint angles were compared to the

ground-truth angles derived from the robot’s joint encoders.

Secondly, we used the vision-derived state estimates as

feedback in a kinematic control loop in order to perform reg-

ulation tasks. On average, a single control iteration including

visual tracking of all the parts takes a computational time of

12 ms, i.e. the system is capable of running at equivalent of

> 80 frames per second on the CPU of an ordinary computer.

B. State Estimation

To analyse the performance of our state estimation module,

3 arbitrary trajectories were performed as shown in the first

column of Table I. The trajectories were selected such that

all robot parts were visible in the camera field of view

at all times. Trajectory 3 was chosen so as to excite one

joint at a time. Fig. 5 shows screenshots of the tracking

during various trajectories. More results can be found in the

provided supplementary video. Each trajectory was executed

5 times in order to perform quantitative analysis (measuring

accuracy and precision). The obtained results are summarised

in Table I. It can be seen that the chained method consistently

outperformed the full method in all the tests, and its average

error typically remains lower than 4◦ on all joints. Fig.

6(a) and 6(b) show the estimated states of all joints during

trajectories 2 and 3, respectively using the chained method.

These results clearly demonstrate the efficiency of our state

estimation framework in terms of accuracy and repeatability.

C. Controller

In this section, we use the values provided by the state

estimation module as feedback for a kinematic controller.

Five different goal positions were selected in the robot task

space and the objective was to regulate the error using the

estimated joint values and position the robot end-effector at

the desired location. Fig. 7 reports the evolution of robot end-

effector position values during one of the runs. For compari-

son purposes, we also show the values computed using joint

encoders. It can be seen that the process converged at around

±10 mm on all three axes, which is quite acceptable for the

tasks this framework has been designed for. Additionally,

the overall task space convergence was analysed using a

cost function given by the squared error. Fig. 8 shows the

cost variations during all five tasks. Also the trajectories

followed by the end-effector during two of the tasks are

shown in Fig. 9. The obtained results clearly demonstrate

the robustness of our approach in estimating the robot joint

state values and using them for regulation tasks.

Additionally, a test was performed in which the robot was

required to move its end-effector along a trajectory tracing

out the perimeter of a square. Corners of the square were

supplied as goal positions to the controller. Results of three

different runs are illustrated in Fig. 10.

(a) (b)

(c) (d)

Fig. 5. Tracking of parts for state estimation during various trajectories.
More results can be found in the provided supplementary video.

TABLE I

PERFORMANCE ANALYSIS OF THE PROPOSED FRAMEWORK.

Trajectory Joint
Chained method Full method

RMSE STD RMSE STD

500
550

600
650

700

−200
−100

0
100

200
500

600

700

800

900

x

Trajectory 1

y

z

q1 0.9276 0.8853 3.0474 2.8839
q2 2.2015 1.9099 5.6387 1.7151
q3 3.5611 1.6257 5.3594 2.8850
q4 2.3186 2.2327 2.7001 2.3568
q5 3.3825 2.4752 3.0220 2.4087
q6 3.8366 3.2841 3.4607 2.6246

550
600

650
700

−400

−200

0

200
550

600

650

700

750

800

x

Trajectory 2

y

z

q1 0.4684 0.4647 1.7158 1.6921
q2 1.0553 0.8797 6.5830 1.1917
q3 2.1721 1.8104 6.4424 3.5762
q4 0.9231 0.8509 1.3283 0.7681
q5 2.6000 2.0987 2.2649 2.0423
q6 3.4227 2.0007 2.7552 2.4180

550
600

650
700

−400

−200

0

200
550

600

650

700

750

800

x

Trajectory 3

y

z

q1 0.5818 0.2619 1.4042 0.9870
q2 0.8010 0.7774 9.7963 1.4538
q3 1.3725 1.0542 10.0045 1.9927
q4 1.5080 1.5049 2.1949 2.0882
q5 2.5129 1.6345 2.5898 1.4391
q6 4.1069 2.6367 3.1573 2.5723

Overall (avg. values)

q1 0.6593 0.5373 2.0558 1.8543
q2 1.3526 1.1890 7.3393 1.4535
q3 2.3686 1.4968 7.2688 2.8180
q4 1.5832 1.5295 2.0744 1.7377
q5 2.8318 2.0695 2.6256 1.9634
q6 3.7887 2.6405 3.1244 2.5383

RMSE:- Root mean square error. STD:- Standard deviation.
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(a) State estimation for trajectory 2.
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(b) State estimation for trajectory 3.

Fig. 6. Real and estimated states with various trajectories using chained
method. Angles are expressed in degrees.
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Fig. 7. Evolution of the robot end-effector positional values on all three
axes during a regulation task.
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Fig. 8. Cost variations during all five regulation tasks.
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Fig. 9. Trajectories followed by the end-effector during two different
regulation tasks. Diamond shaped point represents goal position.
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Fig. 10. Square-perimeter trajectories followed by the end-effector.
Diamond marker represents robot starting position.

D. Discussion

During these experiments, the root mean square errors of

the joint angle estimates with respect to ground truth values

were generally less than 4◦. The chained method outperforms

the full method most of the time. In our opinion, this can

be explained by supposing that the first three robot parts

were tracked very accurately and so the chained method

was able to estimate the relative joint configurations very

precisely. The last robot part (a cuboid section of the gripper

mounted on the end-effector) represented more of a challenge

to the tracking algorithm, and demonstrated slightly worse

results. On the other hand, the full method averages out the

performances of the trackers for each robot part, thereby



achieving slightly better performances in the last two joints

at the cost of a slightly higher error on the first two joints.

In the Cartesian regulation tasks, the errors at pseudo-steady

state are approximately 10 mm on each Cartesian axis.

V. CONCLUSION

This paper has presented a framework to estimate the

configuration of an under-sensored robot through the use

of a single monocular camera. First, we track several parts

of the robot using an algorithm based on virtual visual

servoing, then we use the information given by each part’s

tracker, combined with the kinematic model of the robot,

to compute an estimation of the configuration of the robot.

We present two alternative methods, and highlight their

differences. A study of the precision and robustness of the

estimation methods was presented, as well as the results of

using those state estimations in a kinematic controller used

to perform Cartesian tasks. Joint angle errors not greater

than 4◦ were achieved consistently in the estimation module

using the chained method, and a Cartesian error of 10 mm
was achieved while performing Cartesian regulation tasks.

These results are acceptable for many practical tasks in the

nuclear industry, however in future work, we believe that

these estimates can be improved by: incorporating kinematic

constraints into the visual tracking module; estimating veloc-

ities and accelerations; exploiting such physical information

to robustify tracking [23].

This work has been motivated by the needs arising in the

nuclear industry, where many robotic devices do not possess

proprioceptive sensors. However, we believe that a larger

community can benefit from this work. For example, this

framework could be used in other fields of application, such

as human-robot interaction, where robots ideally are asked

to understand the movements of human agents in order to

perform safe and effective interaction. In future work, we aim

to generalise this framework to other robots and to different

tasks. Finally, we are interested in estimating velocities and

accelerations alongside joint values.

This framework can also be easily extended to take into

consideration possible motions of the base of the robot.

Because of forceful interactions of end-effector tools with

the environment, the base of mobile manipulators can be

significantly perturbed. These unpredictable motions of the

base can be regarded as additional degrees of freedom to be

modelled in the kinematics of the robot. A possible solution

would be an additional tracker for the base.
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