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Abstract: A union of surface with rough micro/nano structures and low surface free energy is critical 

for the preparation of superhydrophobic surfaces. In this study, a rapid one-step pulse 

electrodepositing method was used to prepare superhydrophobic surfaces on Cu substrates. The 

electrolyte was prepared with ethanol, myristic acid (CH3(CH2)12COOH) and lanthanum chloride 

(LaCl3·6H2O). The surface morphology, chemical composition and superhydrophobic property were 

characterized by SEM, XRD, FTIR, EDX, optical contact angle instrument and high-speed camera. It 

turned out that the deposited surfaces have micro/nano hierarchical structures mainly being 

composed of lanthanum myristate. It is found that the optimal water contact angle is approximately 

160.3° with a sliding angle of around 5°. The effects of pulse frequency on the surface morphology 

and wettability were specifically studied and discussed under an equivalent electrolytic time of 10 

min. In this way, it can effectively save time and be simply applied to other materials with good 

conductivity and has a promising wide range application. 
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1. Introduction 

Surfaces and interfaces are the keys to fulfill the functionality of devices and materials, and so the 

construction of surface micro/nano structures has great significance to the performance of materials[1, 

2]. Wettability, one of the foremost features of a solid material, has been extensively researched in 

recent years. Usually, the static water contact angles (WCA) above 150° are identified as 

superhydrophobic surfaces, while indications about the adhesion of water droplets are given by the 

hysteresis and the sliding angle (SA)[3]. Such surfaces have attracted enormous research interest in 

light of their applications in self-cleaning, anti-icing, anti-corrosion, bactericidal surfaces, water-oil 

separation and so on[4-10]. The superhydrophobic phenomenon is due to a suitably roughened 

surface having a particular micro-nanostructures and/or material with low surface energy. 

Enlighten by several kind of plants and insects in nature, such as rose petal[11], lotus leaf [12, 13], 

rice leaf[14], cicada wings[8] and mosquito complex eyes[15], numerous ways are sought to prepare 

surfaces of man-made superhydrophobicity, including electrochemical corrosion[16, 17], chemical 

corrosion[18-20], solution-immersion[21, 22], sol-gel processing[23, 24], femtosecond laser 

ablation[25, 26], CVD[27], electro-spinning[28], hybrid processes[29-32], etc. Nevertheless, there are a 

few disadvantages such as chemical pollution, ultra-clean and high vacuum operating conditions, 

high-priced equipment (e.g. photolithographic equipment), time-consuming, complicated multi-step 

machining with most of the methods mentioned above, which restrict their extensive potential 

applications.  

Direct current (DC) electrodeposition[33-39] has aroused great interest among the research staff 

for the preparation of superhydrophobic surfaces on conductive materials due to its appealing 

advantages of low cost, facility and high efficiency. Furthermore, no matter how complicated the 



  

geometric shape of the substrates is, the feasibility of the mass production in industrial applications is 

an obvious superiority of cathodic electrodeposition. Besides, the surface morphology of the deposits 

is able to be easily controlled by changing the processing parameters such as electrical parameters, 

concentration and composition of electrolyte, machining time and temperature. Rare earth elements 

(REE) were applied to the preparation of superhydrophobic surfaces owing to its effective role in 

enhancing thermal stability as well as anti-corrosion of advanced functional materials[7]. Y. Liu et al., 

prepared cerium myristate superhydrophobic surface with controlled adhesion by 

electrodeposition[34]. T. Ishizaki et al., studied the corrosion resistance and durability of 

superhydrophobic surfaces formed on a magnesium alloy coated with a nanostructured cerium 

oxide film and fluoroalkylsilane molecules[40]. W.J. Xiao et al., tuned the wettability of La0.7Sr0.3MnO3 

coatings from superhydrophilicity to superhydrophobicity by hierarchical microstructure[41]. 

Compared with conventional DC electrodeposition in which only the potential or current can be 

adjusted, pulse electrodeposition can provide better control on the structure of electrodeposits as well 

as their performance by adjusting duty ratio and frequency. These unique parameters offer the 

opportunity to perturb the adsorption-desorption phenomenon at the cathode/electrolyte interface 

(catholyte), which has a considerable impact on the nucleation rate and the growth rate of crystals 

during the electro-crystallization, and ultimately decide the size and shape of crystals[42-44]. 

Different from the direct current deposition method, the pulse electrodeposition owns some unique 

advantages, such as rapid refreshment of adsorptive ions, thin diffusion layer, high deposition 

efficiency and convenient control of surface morphology. Apparently, the forming mechanisms of 

pulse electrodeposition are different from that of DC electrodeposition. 

Nonetheless, to our knowledge, there are only a few explorations and reports on preparing 

superhydrophobic surfaces by pulse electrodeposition[38, 45-47]. Although, in these studies, a 

number of superiorities over the DC deposition method have been discussed, seldom systematic 

study has been conducted to investigate the influence of the electrical parameters of the pulsed 

current on the morphologies of the deposits as well as their effect on wetting properties. 

Taking the above background into account, in this study, a one-step processing method for 

preparing of superhydrophobic surfaces was presented. The effect of pulse frequency on the surface 

structure and wettability of the deposits was studied by pulse electrodeposition with an electrolytic 

solution containing REE. According to the results of experiments, the forming mechanism of the 

deposited layer and performance of superhydrophobicity are discussed. With the advantages of 

simplicity, low toxicity, cost-effectiveness and greater control, this presented method could be simply 

applied to other conducting materials with a promising future for wide applications. 

2. Materials and Methods  

2.1. Materials and sample preparation 

Analytically pure myristic acid (CH3(CH2)12COOH) and absolute ethanol were purchased from 

Damao Chemical Co., Ltd. Lanthanum chloride (LaCl3•6H2O) was supplied by Kemiou Chemical 

Reagent Co., Ltd, which can be used without purifying. Copper plates were employed  as the 

substrates for the preparation of deposited layers. Firstly, the copper substrates with the size of 30 

mm × 30 mm × 1 mm, were ground with abrasive papers (grade 800 - 2000), afterward, degreased 

ultrasonically in absolute ethanol for 10 min, and then ultrasonically cleaned in deionized water for 10 

minutes and finally dried at natural atmosphere. 

2.2. Pulse electrodeposition 

To prepare electrolytes, 0.1 M CH3(CH2)12COOH and 0.04 M LaCl3·6H2O were solved with 150 ml 

absolute ethanol under magnetic agitation at room temperature. The anode and cathode were both 

copper plates and the distance between them was set by 2 cm in the beaker. With voltage of 30 V and 

a duty ratio of 50%, pulse currents with frequencies ranging from 5 to 3000 Hz were applied by using 



  

a pulse power supply (ELGAR SW5250A, USA). Table 1 shows the electrical parameters and the 

composition of the electrolyte. The waveforms of the pulse current applied in the experiments are 

exemplified in Fig. 1. The used solution was replaced with fresh electrolyte to avoid pollution and 

lower the effects of solution concentration after each sample was prepared. All the samples were 

treated with an equivalent electrolysis time for 10 minutes at ambient temperature under agitation 

condition by a magnetic agitation setup with a rotation rate of 200 rpm. After that, ethanol and 

distilled water were used to wash the cathode for several times under atmospheric condition. 

Ultimately, the superhydrophobic surfaces with hierarchical micro-nanostructures were prepared. 

Table 1. Experimental parameters of the pulse electrodeposition 

Current parameters  value Electrolyte parameters value 

Voltage(V) 30 Lanthanum chloride (M) 0.04 

Duty ratio 50% Myristic acid (M) 0.1 

Frequency(Hz) 5,50,500,1k,2k,3k Ethanol (ml) 150 

 

  

Fig. 1. An example of pulse waveforms 

2.3. Sample characterization 

The surface morphologies and the corresponding surface elements of the deposits were 

investigated by a scanning electron microscope (SEM, JEOL JSM 6060LV, Japan) equipped with an  

energy dispersive spectrometer (EDX, Genesis 60, USA). To investigate the cross-sectional structure 

of the deposited layer, a focused ion beam field emission scanning electron microscope (FIB-FESEM, 

LYRA 3 XMU, Tescan, Czech) was operated at 5kV to observe the surface and its FIB module was 

used to accurately remove materials from the as-prepared surface and then the SEM was used to 

observe the fabricated cross-section. The 3D profile and the corresponding surface roughness were 

measured by a white light interferometer (Bruker Contour GT-X, Germany). The average of six 

measurements at different locations on the samples was reported. The details of functional group 

were probed by an Fourier transform infrared spectrophotometer (FTIR, NICOLET 8700, USA) while 

the crystalline details was examined by an X-ray diffractometer (Bruker D8, Germany) applied with 

40 kV and 40 mA and monochromatic Cu Kα radiation (λ=0.15418 nm). Water contact angles were 

measured by an optical contact angle meter (XG-CAMB1, China) under room temperature for each 

sample. By vibrating the burette, about 4μl water droplets were fallen onto the deposition layers from 

a height of 20 mm. The sliding angles were measured and read from an angle scale which installed on 

the tilting platform. Five measurements were detected at different locations on the same sample to 



  

obtain the average. The water bouncing was photographed with 400 fps by a high-speed photography 

system (Fastec HiSpec5, USA). 

3. Results 

3.1. Surface morphology 

Morphology is one of the decisive factors of the wettability of surfaces. Fig. 2 demonstrates the 

SEM images of the deposited surfaces obtained for various frequencies under 30 V and 50% duty ratio 

after an equivalent electrolysis time of 10 minutes. Fig. 2a shows the morphology of the as-prepared 

surface deposited under 5 Hz condition. As demonstrated in Fig. 2a, urchin-like clusters with a 

diameter of about 300 μm were formed on the comparatively well-distributed micro particles which 

have a diameter of around 15-30 μm. The inset image in Fig. 2a reveals that the thorns of the 

urchin-like structures are sharp and have a length of about 150 μm. When the frequency was 

increased to 50 Hz, the urchin-like clusters disappeared and the flower-like clusters substituted (Fig. 

2b). With a diameter of around 50-80 μm, these clusters have countless and compact overlapping 

petals, which makes it similar to blooming flowers. Beneath the flower-like clusters, particles with a 

diameter of about 5-15 μm were deposited relatively uniformly. An enlarged image of partial (Inset of 

Fig. 2b) showed that the petals are actually formed with rope-like structures and with a diameter of 

about 1μm. When the frequency was further increased to 500 Hz, the SEM image of the surface 

morphology is shown in Fig. 2c. The flower-like clusters can also be found on the deposited surface. 

However, the petals of the flower-like clusters are looser than the ones shown in Fig. 2b. Around and 

under the flower-like clusters, particles with a diameter of about 5-15 μm were deposited which lead 

to heterogeneous surface structures. 

In order to provide more details of the flower-like clusters, a focused ion beam was used to 

fabricate a cross-section of the deposited layer obtained under 50 Hz. As shown in Fig. 3a, the 

flower-like cluster, with a diameter of about 80 μm, was semispherical and deposited on the small 

size particles. The petals of the flower-like structure were radial. After the fabrication using the 

focused ion beam, the cross-sectional image of the flower-like structure was shown in Fig. 3b. The 

stripe pattern of the cross-section was the fabricated trace caused by FIB, which is so called “stream 

effect”. According to the cross-sectional image, the inner part of the flower-like structure was solid, 

with a diameter of about 50 μm. Many rope-like structures were evolved and grown radically on the 

spherical solid core, with a length of about 15 μm, and finally formed into the flower-like cluster. 

Fig. 2d shows the surface morphology of the pulsed electrodeposition under a high frequency of 

1000 Hz. Under this condition, neither the urchin-like clusters nor the flower-like clusters could be 

found on the deposited surface. Only the relatively uniform mastoids with a diameter of around 5-15 

μm were agglomerated. In addition, the interconnected hair-like nanostructure of about 1 μm in 

length and 50 nm in width could be found on the micro-scale convex structures. As shown by the 

inset of Fig. 2d, the high magnification image revealed the integration of micro/nano hierarchical 

structures, which is similar to the surface structure of lotus leaves. Therefore, the deposited layer 

acquired under such conditions presented a highly textured surface. With the increasing of frequency 

from 2000 to 3000 Hz, the images of SEM are shown in Fig. 2e and 2f. It is clear that the surfaces 

obtained under such conditions have similar morphology. Almost all particles of about 5-15 μm in 

diameter have cracks on the surface, which made them similar to the shape of coffee beans. The inset 

of Fig. 2f reveals that these micro particles have nano-scale roughness which enhances their 

heterogeneous texture. 



  
  

                                                 

  

Fig. 2. SEM images of the deposited surfaces with various frequencies at 30V and 50% duty ratio pulse 

current.(a) 5 Hz; (b) 50 Hz; (c) 500 Hz; (d) 1000 Hz; (e) 2000 Hz; (f) 3000 Hz. 



  

  

Fig. 3. SEM images of the sample surface obtained under 30V, 50Hz and 50% duty ratio(a) and its 

cross-section after the fabrication by focus ion beam(b). 

To investigate the relationship between the pulse frequencies and the surface roughness, a white 

light interferometer was used to characterize the 2D and 3D surface roughness, with a sampling area 

of 620×465 μm. Figs. 4a-b showed the contour images of the as-prepared surface obtained under 5Hz. 

The distribution of the colours revealed that the surface consisted of large size cluster of about 

250μm in diameter and many small size rough structures around the large cluster, which is in 

accordance with the urchin-like structure observed in Fig. 2a. Figs. 4c-d showed the contour images 

of the as-prepared surface obtained under 1000Hz. As revealed by the distribution of the colours and 

values, the surface obtained under such condition had no large clusters with only particles of about 

15μm in diameter distrusted relatively evenly on the surface. Moreover, these particles were 

overlapping each other, which is in line with the result shown in Fig. 2d. 

As shown in Fig. 5, the Ra of bare coppers after polishing is only about 0.25 μm while the Ra of 

the as-prepared surfaces coated under 5, 50, 500, 1000, 2000 and 3000 Hz is 5.09, 4.41, 4.37, 3.05, 3.94 

and 4.03 μm, respectively. Clearly, the Ra value firstly decreased with the frequencies and then 

slightly increased. 

 

(a)                                          (b) 



  

  

(c)                                          (d) 

Fig. 4. 2D and 3D contour images of the deposited surfaces with various frequencies at 30V and 50% 

duty ratio pulse current.(a)(b) 5 Hz; (c)(d) 1000 Hz; 

 

Fig. 5. The surface roughness of the polished copper plate and the as-coated surfaces deposited at 30V 

and 50% duty cycle pulse current for different frequencies. 

3.2. Phase and Chemical composition 

The crystalline information and chemical composition of the as-prepared surfaces were analyzed 

by employing XRD, FTIR, and EDX spectra. As shown in Fig. 6, the phase information of the 

superhydrophobic surface acquired under the application of pulse current with 30 V, 1000 Hz and 

50% duty ratio was given by the XRD pattern recorded with a 2θ range of 1.5~20.0°. Within the small 

angle range from 4.5° to 12.0°, a group of well-defined diffraction peaks labeled with (ln,0,0) could be 

found, which implied that the deposited layer is crystallized and has a layer structure [48, 49] 

although the mechenisim involved is still under investigation. 

 



  

Fig. 6. XRD spectrum of the superhydrophobic surface prepared under 1000 Hz 

 

Fig. 7. FTIR spectra of (a) pure myristic acid and (b) the superhydrophobic surface obtained under 

1000 Hz 

As shown in Fig. 7, the FTIR spectra were applied to obtain the functional group details of the 

pure myristic acid and the deposited layer prepared at 1000 Hz. On one hand, the absorption peak 

corresponding to the free carboxyl group (-COO-) from pure myristic acid could be found at 1702 cm-1 

when the frequency was lower while the deposited layer showed the adsorption peaks at 1440 cm-1 

and 1526 cm-1. This might be caused by the asymmetric and symmetric stretching of carboxyl group 

result from its carboxylate form with a metal atom. On the other hand, when the frequency was 

higher, the absorption peaks at 2915 cm-1 and 2849 cm-1 are attributed to methyl groups (-CH2-) 

symmetric and asymmetric stretching vibrations and the absorption peaks at 2955cm-1 are ascribed to 

methylene groups (-CH3) asymmetric stretching vibrations. The plane wave absorption peak 

appeared at 721 cm-1 belongs to the characteristic absorption peak of -CH2- if four or more -CH2- exist 

in the carbon chain. According to scientific report, the surface free energy of -CH3 and -CH2- groups 

are 24 mJ/m2 and 31 mJ/m2, respectively[50], indicating that the surface free energy of the deposited 

layers are relatively low. Furthermore, a very prominent broad peak found around 3445 cm-1 and a 

strong absorption peak at 1637 cm-1 in Fig. 7a are attributed to hydroxyl groups (-OH) stretching 

vibration and in-plane bending vibration respectively, which disappears in Fig. 7b, supports the 

formation of metal myristate[51]. Thus, the water-repellent long alkyl chains (namely, C13H27COO-) 

have been successfully deposited onto the surface of copper substrate. 

An EDX spectrum of the superhydrophobic surface deposited at 1000 Hz is depicted in Fig. 8. 

There are mainly four elements, La, C, O and Cl. The atomic percentage of La/C/O was listed in Table 

2, which was about 1:35.07:5.18. It is similar to the La/C/O atomic ratio (1/42/6) in lanthanum 

myristate (La[CH3(CH2)12COO]3). This measured atomic ratio is acceptable if taking the measurement 

errors of light elements (C & O) from heterogeneous morphology into consideration. Therefore, 

according to the chemical valences of La3+ and CH3(CH2)12COO- in the electrolyte and the La/C/O 

atomic ratio of the as-prepared sample, it can be deduced that the deposited layer on the copper 

substrates mainly contains La[CH3(CH2)12COO]3. As long chain aliphatic acid having hydrophobic 

hydrocarbon side effects[19], lanthanum myristate has low surface free energy. 



   

Fig. 8. EDX spectrum of the pulse-electrodeposited layer acquired at 1000 Hz 

Table 2. Element data of the pulse-electrodeposited layer acquired by EDX Spectrum. 

Element Weight % Atom % 

C-K 64.63 84.52 

O-K 12.73 12.49 

Cl-K 1.31 0.58 

La-L 21.33 2.41 

Total 100   100 

 

3.3. Surface wettability 

As shown in Fig. 9, the contact angles and sliding angles of the deposited layers were measured, 

which revealed the correlation between the hydrophobicity of the deposited surfaces and the 

frequency of the pulse current. After modified with pure myristic acid, the WCA of the polished 

copper plate is about 107.5° [41]. The WCA of the deposited layer increased to 150.4° with a SA of 

approximately 12° when applied with a current of 30 V, 50% duty ratio and 5 Hz, which indicated that 

the wettability has already reached the superhydrophobic state. When the frequency increased to 50 

Hz, the WCA was raised to 155.5° while a SA reduced to 8°, which indicated that the surface had low 

adhesion. However, the WCA slightly decreased to 153.6° while the SA remained almost the same at 

8° when the frequency increased to 500 Hz. The WCA was raised to 160.3° with a SA further 

decreased to about 5° as the frequency increased to 1000 Hz. However, the WCAs were slightly 

decreased to 157.0° and 156.7° and the corresponding SA slightly increased to 6° with the increasing 

of frequency to 2000 and 3000 Hz respectively, but still met the superhydrophobic standards. 



  
 

Fig. 9. Correlation between the water contact angle & sliding angle and the pulse current frequency. 

If a surface has a property of water repellency, droplets would jump up rather than wet the 

surface [52]. In order to study the effect of micro/nano hierarchical structure on the durability of the 

superhydrophobic layer, a high-speed camera was applied to seize the droplet motion before and 

after it hit the pulse-electrodeposited layer which prepared at 1000 Hz condition and exposed in the 

atmosphere for ten months. From a height of 4 cm, a water droplet freely fell and collided the 

superhydrophobic surface and totally bounce back. The impact velocity is approximately 88.5 cm·s-1. 

As shown in Fig. 10, obviously, there was no residual droplet left on the surface of the cathode, which 

indicated that the droplet totally bounced away from the surface. However, because of slightly 

increasing of adhesion, the droplet almost spitted into two at 18.75ms, which indicated that the status 

of wettability has slightly changed after a long time of exposure in the air. In spite of this phenomenon 

the superhydrophobic layer still maintained outstanding nonsticking characteristics. Obviously, the 

deposited surface had a long-term stability of superhydrophobicity and resemble to the lotus effect 

which has remarkable self-cleaning characteristics. 

 

Fig. 10. Bouncing phenomenon of the water droplet on the as-obtained surface at 1000 Hz 

4. Discussion 

4.1. Effect of current frequency on surface morphologies 

Electrocrystallization consists of three basic steps: seed generation, nucleation and crystal 

growth. Firstly, seed crystals appear on the cathode/electrolyte interface (catholyte). Afterward, the 

seed crystals grow continuously and evolve into crystal nuclei when reaching the critical size. 

Ultimately, the nuclei grow into crystals. During the electrocrystallization process, the crystal 

nucleation rate and growth rate have a close relation to the grain size and density. 

In this research, the duty ratio of the current is 50%, which means that the on-time and off-time of 

the current are equal. The frequency determines the length of the period as well as the on-time and 

off-time of the current. During the current on-time, the La3+ close to the cathodic electrode react with 

CH3(CH2)12COOH resulting in the forming of La[CH3(CH2)12COO]3, meanwhile some H+ ions are 

generated on the cathode. The free H+ ions capture the free electrons generated from the anodic 



  

electrode and were evolved into H2, forming bubbles surrounded the cathode. Base on the 

electrochemical theory, reactive chemicals and the chemical composition data acquired by EDX and 

XRD, the reaction equations could be concluded by the following Equations (1) and (2). 

3

3 2 12 3 2 12 3( )  [ 3( ]3 )La CH CH COOH La CH CH COO H
 

(1) 

22  2H e H
 

(2) 

The evolution of H2 gases agitates the electrolytic solution, promoting the forming of the highly 

textured structure on the cathode. In addition, no Cu element appears on the EDX spectrum which 

means that there is no codeposition of Cu ions. The reason may be that the concentration of dissolved 

Cu ions is much lower than the hydrogen ions. This could be mainly ascribed to the formation of 

CuCl2 passivation film on anodic surface. 

However, in the intervals of the pulse current, a large amount of positive ions moves towards the 

cathode, promoting the sufficient recovery of the positive ion concentration of the dilute vicinity of 

cathode. At the same time, the intervals of pulse current also suppress the epitaxial growth and thus 

prevents the further crystal growth. 

Furthermore, the frequency of the pulse current would affect the nucleation rate of grains by[46]: 

2

1 1
exp( )

M
J K

nFRT
 (3) 

Where J  is the nucleation rate, K  is relative to the energy for the nucleation, 1  is the surface 

free energy between the solution and the grain, M  is the atomic weight,  is the density of the 

deposited layer, n  is the number of electrons, F is the Faraday constant, R  is the gas constant, T  

is the time of 1 pulse cycle, and  is the over-potential. Obviously, when applying with high pulse 

frequencies, the nucleation rate J  is enhanced, leading to retardation of the crystal growth. 

According to the discussion above, the frequency affects the mechanism of electrocrystallization 

by affecting the nucleation rate and the growth rate of crystals. Obviously, the frequency is a critical 

factor for deciding the morphologies and thus the superhydrophobicity. For instance, when the 

current frequency was only 5 Hz, the on-time and the off-time was 200 ms, the consumption of 

reactants in the vicinity of the cathode was so quick and the electrolyte concentration near cathode 

reduced correspondently, leading to the domination of mass transfer other than electrochemical 

reaction. Hence, competitive crystal growth became more prominent than nucleation, leading to the 

formation of urchin-like microstructures. When the frequency increased to 50 and 500 Hz, the pulse 

width decreased and the proportion of crystal growth correspondingly weaken. The micro crystals 

formed at such conditions had flower-like structures as shown in Fig. 2b and 2c. In fact, when the 

frequency is too low, the pulse electrodeposition will lose the superiority of rapid refreshment of 

adsorptive ions and possession of a thin diffusion layer, thereby approaching the effect of DC 

electrodeposition. 

Further increasing the frequency to 1000 Hz resulted in the disappearance of large clusters and 

only relatively well-distributed particles occurred. It was interesting to notice that hair-like 

nanostructures were overlaid on the microstructures. It may be due to the fact that nucleation rate and 

growth rate play a relatively equal role under such condition. Although the involved mechanism still 

need to be studied, this hierarchical micro/nano structure is resemble to the structure of lotus leaves 

and might be a great contribution to the highest WCAs about 160.3°. With the increasing frequency to 

2000 and 3000 Hz, the on-time were only 0.25 and 0.17 ms and the competitive nucleation rate became 

more pronounced than crystal growth, thus resulting in smaller size of particles than the other 

surfaces prepared by a lower frequency.  

4.2. The wettability of the pulse electrodeposited surfaces 



  

As shown in the previous section, Fig. 2 reveals that the morphologies of the as-obtained surfaces 

have a close correlation with the pulse current frequency. Compared with an untreated copper plate, 

all the deposited surfaces demonstrated remarkably increased WCA to the superhydrophobic state. 

This might be ascribed to the formation of La[CH3(CH2)12COO]3 by electrocrystallization with low 

surface free energy (Figs. 6, 7 & 8)  combined with hierarchical micro/nano structures (Fig. 2).  

The frequency of pulse current ranged from 5, 50 to 500 Hz, the WCA of the deposited surfaces 

were 150.4°, 155.5° and 153.6° with a SA of 12°, 8°, and 8° respectively. All of the surfaces prepared 

under these conditions presented the similar property: formation of relatively large clusters larger 

than 50 μm which deposited on the relatively uniform micro particles with a diameter of about 5-15 

μm. The surface with the urchin-like structure obtained under 5 Hz demonstrated the poorest 

superhydrophobicity while the surface with the tight flower-like structure obtained under 50 Hz 

showed a slightly better hydrophobicity than the surface with the loose flower-like structure obtained 

under 500 Hz. It can be presumed that the water droplets easily tend to penetrate into the gaps of such 

large and loose clusters and get stuck than the small and tight ones, leading to the difference of 

wetting performance. 

With further increase of frequency to 1000 Hz, the urchin-like or flower-like structures 

disappeared and the obtained surface exhibited the highest WCA (160.3°) with lowest SA (5°). When 

the frequency was further increased to 2000 and 3000 Hz, the WCA slightly reduced (157.0° and 

156.7°) rather than increased, although both the surfaces had a similar micro particle size with the one 

prepared under 1000 Hz. Obviously, this phenomenon cannot be simply elucidated from the 

perspective of particle size and surface energy and there should be other potential mechanisms need 

to be revealed. 

Close characterization of the morphology of electrodeposited layers prepared at 1000, 2000 and 

3000 Hz has shown hierarchical micro/nano structures. As revealed in Fig. 2d, the overlapping 

hairy-like nanostructures are superimposed on the top of the microstructures. This kind of surface 

morphology is resembled to the properties of lotus leaves and might be the reasonable explanation 

for the measured wettability with the highest WCA approximately 160.3° and the lowest SA 

approximately 5°. Nevertheless, the nanostructures formed on the superhydrophobic surfaces 

prepared at 2000 and 3000 Hz (Fig. 2e & 2f) are not so distinctly developed as the one prepared at 1000 

Hz (Fig. 2d). 

Combined with low surface energy, the construction of rough structures on the surface has led 

to the significant improvement of water repellency compared with polished substrate. As shown in 

Fig. 5, the Ra value of the deposited surfaces firstly decreases with the frequencies and then slightly 

increases; however, the highest WCA (160.3°) was obtained under the surface with the lowest Ra 

value (3.05 μm). This indicates that the surface roughness should have an optimal value other than 

simply consider that rougher surfaces will achieve better hydrophobicity. 

It is generally accepted that if the sliding angle is less than 10°, the superhydrophobic surface is 

in a Cassie-Baxter state. According to the observation above, the superhydrophobicity of the pulse 

electrodeposited surface prepared under 1000 Hz could be expressed by Cassie–Baxter equation[53]: 

1 2cos cosr f f  (4) 

where 1f  is the area fraction of solid surface and 2f  is that of the air, moreover, 1 2 1f f
; r  

is the apparent CA of the roughened surface while  is the intrinsic CA of the flat surface. For this 

research, the WCA of the polished Cu plates modified with CH3(CH2)12COOH is only about 107.5° 

while the deposited layer with highly textured surface is about 160.3°. Therefore, the value of 1f  and 

2f  could be figured out as 0.0837 and 0.9163 separately, which indicated that only 8.37% droplet 

bottom is supported by the deposits directly while about 91.63% droplet bottom is in touch with the 

air of the gaps. The interface between the water and the air was increased by the trapped air, thereby 

stopping the wetting of water on the surface. The highly textured surface allows droplets to be 



  

supported by the air cushion, leading to a significant increase of WCA. This obviously showed that 

the air cushion is a critical reason for improving the superhydrophobic performance of the surface 

and it is the formation of hierarchical micro-nanostructure during the electrocrystallization with an 

optimal current frequency that makes a contribution to the special superhydrophobic performance 

observed. 

In short, the performance of the as-obtained surfaces and the applied frequencies during pulse 

eletrodeposition have a close correlation. The frequencies have a significant influence on the 

mechanism of electrodeposit formation by affecting the nucleation rate and the growth rate of crystals 

and ultimately affected the wettability.   

 

5.Conclusion 

Pulse electrodeposition has been successfully employed as a one-step processing method to 

achieve the preparation of superhydrophobic surfaces. An electrolyte consisting of ethanol, myristic 

acid and lanthanum chloride is adopted. As the experimental results revealed, the main conclusions 

could be drawn as follows. 

 The pulse current frequency is a prominent factor which affects the formation mechanism of 

deposits and hence the surface morphologies. 

 The electrodeposited layer mainly contains lanthanum myristate, which possesses a union of 

hierarchical micro/nano structure and low surface free energy, has a great contribution to the 

superhydrophobic surface with a WCA of 160.3° and a corresponding SA of approximately 5°. 

 After ten months exposure in the air since the deposition, the outstanding durability of the 

electrodeposited layers has been proved by the bouncing of the water droplet. 

 This processing method is expected to be conveniently applied to some other potential materials 

with good conductivity for the preparation of advanced surfaces with superhydrophobic 

characteristics. 
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Highlights 

 Pulse electrodeposition of superhydrophobic surface with rare earth electrolyte. 

 Pulse frequency has a great influence on the formation and morphology of 

deposits. 

 The as-prepared surfaces are superhydrophobic without further modification. 

 This method is time-saving and the superhydrophobic surface is long-term 

stable. 

 

 


