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Highlights 40 

 The deflections of the submerged specimens are less than those in dry condition. 41 

 The dynamic and impact stiffness of the materials in wet condition seems to be very high while 42 
the damping tends to be lower than those in dry condition 43 

 The closed cell polymeric foam materials fit really well as a soft to medium bracket type of under 44 
ballast mat applications in railway track systems 45 

 46 
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Abstract  56 

Polymeric materials have been used as critical components in a wide range of engineering 57 

structures in built environments. The superior characteristics of polymeric materials have led to various 58 

applications such as energy absorber during shock or impact events, lightweight structures, and thermal 59 

insulation. The key benefit is derived from relatively lower weight and density in comparison with other 60 

materials. The emphasis of this study is placed on closed-cell polymeric material, which is flexible and 61 

can potentially be manufactured as a rubber mat for railway track applications. A critical literature review 62 

reveals that the dynamic behavior of closed-cell polymeric material has not been fully investigated, 63 

especially when the materials are usually exposed to water. We are the first to present the wet/dry 64 

influences on the characteristics of closed cell cross-linked polyethylene foam under static, dynamic and 65 

shock loads. In our study, the water absorption and swelling of the materials are measured after 24 hours 66 

of immersion in de-ionized water. Static, dynamic, and impact loading are applied to closed-cell 67 

polymeric materials on both wet and dry states. The behaviors and responses of the materials can inform 68 

whether or not a closed-cell polymeric material can be used as under ballast mats and under sleeper pads 69 

in railway tracks under operational environments. Based on our results, it is found that this closed-cell-70 

polymeric material is not suitable for use as under sleeper pads. However, they have reasonably strong 71 

potential for use as under ballast mats under various rail operational parameters. 72 

Keywords: Polymeric foam, cross-linked polyethylene foam, water absorption, dynamic characteristics, 73 

under-ballast-mat, under-sleeper-pad 74 

 75 

1. Introduction 76 

Nowadays, polymeric materials have been widely used in a variety of applications in diverse 77 

industries such as insulated materials, vibration reduction device, clothing, application for protection, 78 

construction, automobiles etc [1-4]. The adventurous characteristics of the polymeric materials are the 79 

ease in material processing, high ductility, lightweight, thermal insulation, elastic wave barrier, etc. 80 

Polymeric foam materials are one of the most popular types of polymers as can be seen in all fields of 81 

daily life. The polymer foams used as a replacement of natural rubber were initially made in the 1930s 82 

[5]. Polymer foams are manufactured from a synthetic mix of solid and gas phase.  Polymer foams can be 83 

characterized into open- or closed-cell structures by identifying their properties such as density, chemical 84 

properties, structure, and raw materials used. Naturally, open-cell foams are flexible, while closed-cell 85 

foams are relatively more rigid. The mechanical properties of foam are dependent on the type of polymer 86 

of which the cell walls are made of and their structure [6]. Also, the volume and amount ratio of open-cell 87 

to those of closed-cell is critical to establish strength of the foam. For closed-cell foams, the cells are 88 

surrounded by completed cell walls, which are isolated separately from each other. For open-cell foams, 89 

the cells are connected with each other. Hence, the advantages of open-cell foam are the softness, 90 

lightness, and inexpensiveness, while the closed-cell foams can gain more strength and have greater 91 

resistance to the leakage of air between the cells [7].  92 

In terms of water absorption, the literature review reveals that closed-cell foams are imperative 93 

for preventing water penetration. On the other hand, the performance of open-cell polymeric materials can 94 

be deteriorated due to the high possibility of water absorption [8-10]. When the open-cell is surrounded 95 



by moisture environment, the open-cell foams tend to absorb more water and become an ineffective. Over 96 

recent decades, the dynamic behavior of polymer material under normal condition has been studied [11-97 

15]. Nevertheless, the previous research has not considered the dynamic behavior of the polymeric 98 

material under wet condition. 99 

The aim of this study is to highlight the influences of water absorption on closed-cell polymeric 100 

material under dynamic and impact loading. In addition, this is thus the world first to investigate the 101 

feasibility to use the closed-cell polymeric material as an under ballast mat and under sleeper pad in 102 

railway built environments. However, the use of under sleeper pad (USP) and under ballast mat (UBM) 103 

has spread over recent years but they have been used only on a case-by-case basis [16-19]. In practice, 104 

USP has been used predominantly to mitigate ballast breakage while UBM is often used to isolate 105 

ground-borne vibration and to moderate track stiffness at bridge, tunnels and stiffness transition zone. The 106 

findings from our investigations will help improve the understanding into material behaviors of closed-107 

cell polymeric materials for real applications in railway track systems.   108 

 109 

2. Material and methodology 110 

2.1 Material 111 

Fig 1 shows the comparison between typical microstructures of open- and closed-cell polymer 112 

foams, respectively. Complete cells can be seen in the interior of open-cell polymer foams. As can be 113 

seen from Figure 1a, all the cell faces are open so that air can pass freely between the cells of such foams. 114 

While in a typical closed-cell foams, each cell is surrounded by connected faces. Partial cells, with cut 115 

edges and faces, are obvious on the cut surfaces (Figure 1b), while complete cells exist in the interior of 116 

the sample. Although, the cell faces are thicker and stronger than those in closed-cell polymer foams, the 117 

cell faces can be split or otherwise damaged [7]. The polymer foams have been specially manufactured 118 

and supplied by Palziv Ltd., as part of an industry-based research project. 119 

 120 

a) 121 



 122 

b) 123 

Fig 1. SEM photograph of (a) PU open-cell foam of density 28kgm
-3

  (b) closed-cell low density 124 

polyethylene (LDPE) foam of density 24kgm
-3

 [7]. 125 

Polymer foam used as an elastic rubber mat is examined in this work. For a cube shape, solid 126 

mechanics’ beam theorem can be applied. Young’s modulus of the closed-cell foam can be calculated as 127 

follow [20]: 128 

𝐸𝑓

𝐸𝑠
≈ 𝜑2 (

𝜌𝑓

𝜌𝑠
)

2
+ (1 − 𝜑)

𝜌𝑓

𝜌𝑠
+

𝑃0(1−2𝑣𝑓)

𝐸𝑆(1−
𝜌𝑓

𝜌𝑠
)
                 (1) 129 

Where 𝐸𝑓 is Young’s modulus of foam, 𝐸𝑠 is Young’s modulus of polymer, 𝜑 is the mass 130 

fraction, 𝜌𝑓 is the density of foam, 𝜌𝑠 is the density of polymer, 𝑃0 is the initial pressure of the gas 131 

contained in the foam cell, and 𝑣𝑓 is Poisson ratio. 132 

In terms of open-cell structure, for a cubic array of members, the beam theorem can also be 133 

adopted. The Young’s modulus of open-cell foams become the term of relative density of the foam as 134 

follows [20]:  135 

𝐸𝑓

𝐸𝑠
= 𝐶𝑅2                       (2) 136 

 Where C is a constant, ≈ 1, and R is a relative density, ratio of the density of foam to the density 137 

of polymer. It is important to note that the elastic modulus of the open-cell foam tends to be solid when 138 

the relative density is close to one. 139 

The polymeric material used in this study is block foam, which is a substance produced using 140 

plate-compressing technology. The polymeric material type used is hydrophilic polyurethane foam which 141 

has the density of 0.25 g/cm3.  This material consist linear segmented block copolymers composted of 142 

hard and soft segments. The properties of this material include elasticity, transparency, low temperature 143 

performance, high resistance to abrasion, oil and grease. It is interesting to note that hydrophilic 144 

polyurethane foam acts like a sponge and can absorb the water and return to the original size [21]. Table 1 145 

shows engineering characterization data for the polymer foam samples. 146 

 147 

 148 



Table 1. Characterization data for the polymer foam samples. 149 

Test Standard Result Unit 

Density ISO 845 25 kg/m
3
 

Tensile strength MD* ISO 1798 278 kPa 

Tensile strength TD** ISO 1798 209 kPa 

Elongation MD ISO1979 94 % 

Elongation TD ISO 1798 112 % 

Compression 10% ISO 844 17 kPa 

Compression 25% ISO 844 37 kPa 

Compression 50% ISO 844 96 kPa 

Compression Set 25% 0.5H ISO 1856 16.5 % 

Compression Set 25% 24H ISO 1856 9.5 % 

Compression Set 50% 0.5H ISO 1856 39 % 

Compression Set 50% 24H ISO 1856 30.5 % 

Working Temperature Range Palziv -60 / 80 C 

Water Absorption %Vol (max) Palziv 1 % 

Water Vapour Transmission ISO 1663 0.97 g/m
2 
(24hrs) 

Thermal Conductivity at 10C ASTM C177 0.039 W/mK 

Thermal Conductivity at 40C ASTM C177 0.045 W/mK 

Shore-OO ASTM D2240 48 oo 

*MD – Machine direction along the extruder’s axis;  150 
**TD – Transverse direction perpendicular to the extruder’s axis. 151 

 152 

The scanning electron microscope (SEM) was used to study the microstructure of this rubber by 153 

scanning electron microscope in to produce an image result from interaction between electron beam and 154 

atoms at various depths in the sample [22]. The test was carried out using Hitachi Tabletop Microscope 155 

TM3030, as shown in Fig 2a, at the School of Metallurgy and Materials, University of Birmingham. It is 156 

clearly seen that rubber mats used in this study are closed cell polymer foam, as shown in Fig 2b. The 157 

foam samples were specially manufactured and kindly supplied by the industry partner (Palziv). They 158 

were produced in an extrusion process. The dimensional stability of the sample over 24 hr at 70C is less 159 

than 2%. It should be noted that the diameters of polymer foam are between 100 and 300 micron. 160 

 161 

a) 162 

https://www.birmingham.ac.uk/schools/metallurgy-materials/index.aspx


 163 

b) 164 

Fig 2 a) Hitachi Tabletop Microscope TM3030 b) SEM photograph of closed-cell hydrophilic 165 

polyurethane foam 166 

Polymer foam is primarily used in the following applications: packaging, automotive (cars, 167 

trucks, trains, etc.), toys, orthopedic products, brushes, car wash machines and other applications. In this 168 

study, polymer foam is used as a resilient material to study the feasibility of using polymer foam for 169 

practical applications in railway tracks such as under ballast mat and under sleeper pad.  170 

The specimens (3 samples each) used for the water absorption and static tests were of the 171 

following dimensions: 172 

i. 300 mm x 300 mm x 25 mm 173 
ii. 300 mm x 300 mm x 10 mm 174 
iii. 300 mm x 300 mm x 7 mm 175 

In term of dynamic and modal testing, the specimens with the dimension of 100 mm x 100 mm 176 

were used. The specimens used are shown in Fig 3. In this study, there were four experiments. Firstly, 177 

water absorption analysis was used to find the percentage of absorption and the average swelling of 178 

polymer foam. After that, the wet and dry materials were used to compare the material properties 179 

including static behavior, dynamic behavior, and modal properties. All the tests were carried out at a 180 

control room temperature of 20 C. 181 

 182 

 183 

Fig 3. Polymer closed cell cross-linked foam 184 

2.2 Water absorption analysis 185 



The tests were carried out at the Department of Civil Engineering Laboratory at University of 186 

Birmingham, according to DIN 53428 [23] to determine the absorption of water by immersion for 1-day 187 

test period. 188 

The area, weight and thickness of all three samples are measured. The samples are then 189 

submerged in water for 24 hours. The weight and thickness of the wet sample is calculated and the 190 

difference is noted to determine the water absorption rate and the swell behavior of the closed-cell 191 

polymer material. 192 

The water absorption percentage of the sample is calculated by employing the following equation (3) 193 

Water Absorption Percentage = 
𝑊𝑒𝑡 𝑀𝑎𝑠𝑠−𝐷𝑟𝑦 𝑀𝑎𝑠𝑠

𝐷𝑟𝑦 𝑀𝑎𝑠𝑠
 x 100                                        (3) 194 

The average swelling of the sample is calculated by using (4). 195 

Average Swelling = Average thickness of Wet Sample – Average thickness of Dry Sample                      (4) 196 

2.3 Static Testing 197 

The tests were carried out using the Universal Testing Machine (UTM), Fig 4a, at the School of 198 

Mechanical Engineering Laboratory at University of Birmingham. The specimen was mounted on to the 199 

UTM, between steel plates of 300 mm x 300 mm dimensions, as shown in Fig 4b. Dry and wet specimens 200 

were subjected to static loading under vertical compression. The specimen was centrally fixed to the 201 

bottom steel plate to measure the static force made by the reaction force of the specimen to the top plate. 202 

The vertical displacements of the specimens were recorded while subjecting them to three cycles of 10 kN 203 

and 30 kN. It should be noted that the loading rates were defined as close as possible to its original 204 

thickness of specimen per minute, as noted in [24]. 205 

 206 

a) 207 



 208 

b) 209 

Fig 4. a) Universal Testing Machine (UTM) b) Compression testing of specimen 210 

2.4 Dynamic testing 211 

The closed-cell polymer material samples with three thicknesses of (7, 10, 25 mm) with cross-212 

sectional area of 100 x 100 mm
2
 were compressed under cyclic loads using a dynamic compression 213 

machine (Fig 5). The dynamic cyclic pressures in between two stainless steel plates with the same loading 214 

area are simulated on the specimen stimulating the train passing over the rail segment. The test was 215 

conducted at the Metallurgy and Materials department at the University of Birmingham. 216 

  217 

Fig 5. Specimen sample loaded into Dynamic Testing Machine  218 

The experimental procedures were done to SBB standard (Swiss railway authority), consisting of 219 

a static pre-load of 0.6 kN (derived from a pre-load stress of 0.06 N/mm
2
) and a sine function load of 220 

amplitude 0.3 mm (maximum safe displacement at testing frequencies) was applied at 1, 5, 10 and 20 Hz 221 

frequencies in order to calculate the frequency-dependent moduli of the material. The peak loading at 222 

each frequency was recorded to derive the dynamic bedding modulus (N/mm
3
) as shown in equation (5).  223 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐵𝑒𝑑𝑑𝑖𝑛𝑔 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 =
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝐿𝑜𝑎𝑑 (𝑁)

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑚𝑚)
÷ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝐵𝑀 (𝑚𝑚2)                           (5) 224 

With respect to the load cell used to record the change in load, the sensitivity of the machine is 0.5 kN/V 225 

and therefore the peak-to-peak amplitude of the voltage change is equal to half of the amplitude of load. 226 



2.5 Impact Modal Testing 227 

Three sets of samples with different thicknesses (7, 10, 25 mm) and with the cross-sectional area 228 
of 100 x 100 mm

2
 were setup for resonance testing using modal impact hammer (Fig 6). The sample was 229 

installed between two lumped steel masses. The base steel mass is pinned onto strong floor and the upper 230 
mass is free to generate a single degree of freedom (SDOF) movement as shown in Fig 7. The test was 231 
conducted at the Civil Engineering department at the University of Birmingham. The experimental 232 
procedures were done in accordance with the ISO standard for resonance testing [25]. The dynamic 233 
characteristics of the sample in the vertical direction can be described by the well-known equation of 234 
motion: 235 

 236 
𝑚𝑝�̈� + 𝑐𝑝�̇� + 𝑘𝑝𝑥 = 𝑓(𝑡)                  (6) 237 

𝜔𝑛
2 =

𝑘𝑝
𝑚𝑝

⁄ , 2𝜔𝑛 =
𝑘𝑝

𝑚𝑝
⁄ ,  =

𝑐𝑝

2√𝑘𝑝𝑚𝑝
⁄                   (7a, b, c) 238 

 239 
Where mp, cp, and kp generally represent the effective rail mass, damping and stiffness of a rail pad, 240 
respectively. By taking the Fourier transformation of (6), the frequency response function can be 241 
determined. The magnitude of FRF is given by 242 

  243 

𝐻(𝜔) =
1

𝑚𝑝⁄

√(𝜔𝑛
2 −𝜔2)2+(2𝜔𝜔𝑛)2

                                                                                                                   (8) 244 

                                                                                          245 
Substituting equations (7) into equation (8) and using 2 f  , the magnitude of the frequency response 246 

function ( )H f  can be represented as follows: 247 

2 2
4

1
( )

2 2

2 2 2 2
1 4 4

p

p

p p p

m
f

k

H f
m

cm m
f f

k k k m



 



 

 
 
 
 

      
      

             

  (9) 248 

where: 249 
( )H f  = frequency response function (Nm/s

2
) 

f = loading frequency (Hz) 

m = effective mass of rail or upper part (kg)  

cp = damping value of rail pad (Ns/m) 

kp = dynamic stiffness of rail pad (N/m)  

 250 
Based on (9), these dynamic parameters can be extracted using modal testing measurements either in 251 
the laboratory or in the field. 252 



 253 

Fig 6. Impact hammer and Prosig 8004 portable acquisition. 254 

 

a) 

 

b) 

Fig 7.  a) SDOF dynamic modelling and b) Specimen sample under impact modal testing.  255 

 256 

3. Results and discussions 257 

3.1 Water absorption test 258 

The experimental results of the water absorption test are tabulated in Table 2. The data are 259 

derived from the average of three samples in each set. It is noted that the foams with thickness of 25 mm 260 

absorb lesser water than the thin mats, while the 7mm has a highest percentage of water absorption.  As 261 

for swelling, we observed that average swelling depend on the dimension and thickness. The larger 262 

dimension of under ballast mat can be swelled more than a smaller dimension due to larger surface area. 263 

When considering the volumetric effect, we note that the thinnest foams have the highest rate of swelling. 264 

However, the 25mm foams have the higher swelling rate than 10mm foams. Although the thicker closed 265 

cell cross-linked foams tend to have lesser permeability as seen in the water absorption results, some area 266 

of these foams may contain a little percentage of open cells which lead to the higher possibility of 267 

absorbing water.  268 

Table 2. Water Absorption Test for polymer foam (24 Hours) – Absorption and Swelling 269 

Percentages. 270 

Sample 

Thickness 

(mm) 

Water Absorption 

Percentage (% by mass) 

Swelling Percentage 

(% by volume) 



7 8.37  1.04  1.86  0.33 

10 4.18  0.39 0.57  0.15 

25 2.57  0.16 0.90  0.08 

 271 

3.2 Static testing 272 

The static testing enables the analysis of static bedding modulus in order to evaluate the 273 

feasibility of using this closed cell foam materials in practice. The compression load-displacement and 274 

stiffness-compression load responses of dry specimens are shown from Figs 8a-8d, while the compression 275 

load-displacement and stiffness-compression load responses of specimens, submerged in water for 24 276 

hours, are shown from Figs 8-9. According to load-displacement curves, it can be divided into two 277 

phases: elastic phase and densification phase. The loads increase rapidly with relatively small increase in 278 

displacement when closed-cell foams are compressed, the cell fluid or gas is also compressed and 279 

opposing cell walls come into contact which leads to an additional stress on the cell walls resulting in the 280 

densification phase. Since the polymer foam used is a low density material, it was noted that lower 281 

density foam indicated the higher degrees of densification [26]. On the other hand, the higher density 282 

foam exhibited lower strains at which densification began to occur. As for 10kN, displacement or strain 283 

remains almost the same in all cycles, which indicates that there would be no permanent strain and 284 

dissipated energy. However, when the load applied is higher resulting in the increase of compression 285 

strain, strain or displacement reaches its maximum value and the material cannot recover to its initial 286 

position. It is also noted that the area of hysteresis loop under load-displacement or stress-strain curve 287 

indicate energy dissipation of material. Thus, the energy dissipations increase with the increase in load 288 

and strain as observed in case of 30kN compression load. Hence, the foam has the irreversible losses over 289 

the first 2-3 cycles resulting in the slight reduction of moduli. It should be noted that bedding modulus is 290 

calculated using secant modulus. 291 

Apparently, the modulus of submerged specimens is higher than the modulus of dry specimens. 292 

The bedding modulus, as shown in Table 3, is associated with the applications of the material as the 293 

resilient elements in railway tracks. It is noted that the modulus of this material is less than 0.1 N/mm
3
 294 

(which is the minimum stiffness requirement for the very soft under sleeper pads. Therefore, it is clear 295 

that this foam material cannot be applied as the under sleeper pads because the materials are too soft for 296 

such application. However, these foams can still be used in other industrial applications such as 297 

cushioning pads in packaging industry. 298 

 299 

 
a) 300 x 300 x 7 mm 

 
b) 300 x 300 x 10 mm 

 
c) 300 x 300 x 25 mm 



 
d) 300 x 300 x 7 mm (wet) 

 
e) 300 x 300 x 10 mm (wet) 

 
f) 300 x 300 x 25 mm (wet) 

Fig 8. 10kN Load-displacement plots. 300 

 301 

 
a) 300 x 300 x 7 mm  

 
b) 300 x 300 x 10 mm  

 
c) 300 x 300 x 25 mm  

 
d) 300 x 300 x 7 mm (wet) 

 
e) 300 x 300 x 10 mm (wet)  

 
f) 300 x 300 x 25 mm (wet)  

Fig 9. 30kN Load-displacement plots. 302 

Table 3. Static moduli of materials. 303 

Polymer 

foam 

thickness 

(mm) 

at 10 kN preloading at 30 kN preloading 

Wet modulus Dry  modulus Wet modulus Dry  modulus 

 (N/mm
3
)  (N/mm

3
)  (N/mm

3
)  (N/mm

3
) 

    

7 0.037±0.001 0.032±0.002 0.056±0.003 0.053±0.002 

10 0.035±0.001 0.031±0.002 0.053±0.003 0.047±0.001 

25 0.034±0.001 0.030±0.001 0.046±0.003 0.036±0.012 

3.3 Dynamic testing 304 

As shown in Tables 4, the dynamic bedding moduli lie in the ranges of 0.09 – 0.22 N/mm
3
. With 305 

respect to the stiffness categories set by SBB standards (by Swiss railway authority), the tested specimens 306 

are considered a ‘medium’ under ballast mat or ‘UBM’ (expected vertical deflection under a 225 kN load 307 



of between 0.5 – 1.0 mm), with the thicker 25 mm being one grade less stiff; the stiffness of 25 mm pads 308 

lie in the upper range of the ‘Soft’ UBM type with the vertical deflection being approximately 1.0 – 1.5 309 

mm at the same loads. Fig 10 summarizes the frequency-dependent moduli of the material. Note that the 310 

vertical deflections of the specimens under wet condition are slightly lesser than those in dry condition. It 311 

is interesting to note that these results can further be validated by the static testing, where the static 312 

stiffness at 0 Hz are much lower than the stiffness at 1 Hz for all thicknesses of specimens. In addition, it 313 

is clear that the cross-linked foams have dynamic softening behavior: the thicker the foam, the softer the 314 

moduli. 315 

Table 4. Results overview with derived stiffness of samples. 316 

Thickness (mm) Frequency (Hz) 
Stiffness (N/mm

3
)* 

Sensitivity 
Dry Wet 

7 

1 0.133 0.140 

0.5 kN/V 

  

  

  

  

  

  

  

  

  

  

  

5 0.143 0.151 

10 0.149 0.156 

20 0.151 0.159 

10 

1 0.120 0.125 

5 0.130 0.134 

10 0.136 0.140 

20 0.139 0.145 

25 

1 0.073 0.075 

5 0.079 0.082 

10 0.083 0.086 

20 0.086 0.089 

    *standard deviations are less than 5%. 317 

 318 

Fig 10. Frequency dependent moduli of samples. 319 



 320 

3.4 Modal testing 321 

The results of modal dynamic parameters can be obtained using a curve fitting method of SDOF 322 
vibration theory as demonstrated by Fig 11. The curve fitting method using DataFit is applied to the 323 
frequency response functions (FRFs) obtained from modal testing measurements to extract the effective 324 
mass, dynamic stiffness and damping of the polymeric foams. It should be noted that the correlation 325 
coefficients of curve fiting are less than 5%.Table 5 shows the summary of the impact modal parameters 326 
of the materials. 327 

 328 
Fig 11. Best curve fitting to extract modal parameters (10 mm thickness in dry condition). 329 

 330 

Table 5. Impact modal properties of materials. 331 

Polymer 

Foam 

thickness 

(mm) 

Dry Wet 

Moduli 

(N/mm
3
) 

Damping 

(Ns/m) 

Resonant 

Frequency 

(Hz) 

Moduli 

(N/mm
3
) 

Damping 

(Ns/m) 

Resonant 

Frequency 

(Hz) 

7 0.152 225 68 0.470 240 121 

10 0.139 218 65 0.386 160 110 

25 0.110 170 58 0.210 68 81 

As can be seen from the Table 5, the material properties are changed by the water absorption. It is 332 

clear that the resonant frequencies and moduli increase when the foam cells absorb water, while damping 333 

tends to be lesser. Although damping constant of 7mm pad tends to be higher when it absorbs water, 334 

damping ratio is lesser due to the effect of moduli. This is clear from the solid mechanics perspective that 335 

the materials stiffen under impact pulse conditions. Also, the foams still maintain softening behavior 336 

under impact loading as the dynamic stiffness reduces with the thickness of material. 337 

3.5 Feasibility study for UBM and USP applications of closed-cell polymeric materials 338 

Railway tracks around the world suffer from the material deterioration, excessive noise and 339 
vibration, and differential settlements due to high-intensity dynamic impact load conditions generated at 340 
wheel and rail interface [27-29]. The impact load induced by train-track interaction can then exacerbate 341 



structural integrity of track components such as ballast, fastening system, sleepers and rails [30-38]. The 342 
deterioration of rail track geometry can also lead to poor ride quality and high stress threshold on train 343 
bogies and train couplers. Importantly, the cumulative damage of track components can undermine the 344 
safety of passengers. As a result, expensive and frequent maintenance of railway tracks can often be 345 
observed, especially at the location with impact damage of components such as ballast, formation and 346 
sleeper. In addition, the train speed might have to be reduced later due to the large track settlement in 347 
order to assure safe and comfort operations [39]. Such the speed penalty incurs service downtimes, delays 348 
and improvised train driving pattern, which can also cause other flow-on problems. 349 

In order to reduce rapid track deterioration, special attention has been paid to the insertion of 350 
elastic layers in between track layers from rail foot to the top of formation. Fig 12 shows the feasible 351 
resilient insertion materials between component layers [40]. It was found that the insertions at rail and 352 
sleeper (i.e. rail pad and under sleeper pad) tend to dominantly improve the dynamic train-track 353 
interaction, while the resilient mat under ballast has very little effect on wheel/rail dynamics.  354 

 355 

Fig 12. Feasible resilient insertion materials [13]. 356 

There are engineering guidelines regarding the appropriate use of the elastic layers, which have 357 

been developed by UIC [41]. The UIC Leaflet 179 presents the guideline for general USP usage, while 358 

UIC Code R-179-1 is the recommendations for UBM in ballasted tracks with a standard gauge. The code 359 

also provides information on the characterization of UBM such as mechanical characteristics, possible 360 

uses and some limitations.  361 

3.5.1 Under ballast mat (UBM) 362 

UBM can be applied in various operational environments such as conventional main lines, urban 363 

or high speed lines or light rail and metro lines. It is often been used in tunnels, bridges, elevated stations, 364 

underpasses, cuts, embankments, switches and railway stations. Different types of UBM are used for 365 

different locations and purposes. However, the main application of UBM is associated with vertical 366 

stiffness of the mat and tracks [42-46]. 367 

The UBM is characterized by the bedding modulus C (N/mm
3
), that is to say the stiffness (N/mm) 368 

per unit area (mm
2
) related to the area of the UBM situated under the ballast section (e.g. 1 bay of 369 

sleepers or 600 mm) that actually supports the load [47]. Table 6 shows the definition of very soft, soft, 370 

medium and hard UBM in relation to their dynamic bedding modulus Cdyn, with expected dynamic track 371 

vertical deflections under passing loads. 372 

Table 6. UBM characterisation [40]. 373 

Type of UBM Expected increase of the vertical track deflection 

up to 225 kN axle load (measurement [SBB]) mm
a
 

Dynamic bedding modulus 

N/mm
3bcde

 



Very soft 1.5 – 2.0 0.03 < Cdyn ≤ 0.05 

Soft 1.0 – 1.5 0.05 < Cdyn ≤ 0.09 

 Medium stiff 0.5 – 1.0 0.09 < Cdyn ≤ 0.22 

 Stiff ≤ 0.5 0.22 ≤ Cdyn 
a. Measured with an SBB moving measuring car at 10 km/h (200 kN axle load “Einsenkungsmesswagan”). 374 
b. Estimated values for the dynamic bedding modulus Cdyn are only valid for very stiff foundations (e.g. concrete). 375 
c. For sleepers with smaller dimensions the Cdyn are shifted towards higher values. Lower axle loads imply a shift 376 

of the reference dynamic bedding modulus towards lower values. In contrast, higher train speeds in principle 377 
require a higher UBM bedding modulus in order to control ballast destabilization phenomena. 378 

d. SBB: with 0.06 N/mm
3 
preload and ± 0.04 N/mm

3
 load at 20 Hz, using a flat steel plate. 379 

e. Lower Cdyn values are expected using a ballast plate. 380 

The applications of UBM in relation to its characterization can be found in Table 7. It is found 381 

that the softer the UBM, the better the vibration reduction.  382 

Table 7. UBM applications and characterisations. 383 

Fields of application of 

UBM 

UBM 

Very soft Soft Medium Hard 

Vibration reduction and 

ground-borne noise 

    

Ballast breakage protection     

On existing structures with 

reduced ballast thickness 

    

Transition zones     

The uses of UBM in the field have showed that very soft UBM can cause ballast dilation and 384 

destabilization. As a result, very soft and soft UBM shall be avoided for high speed tracks. The 385 

combinations of UBM with USP or even soft rail pads are also not recommended in general. The negative 386 

consequences are highly likely to reduce lateral track resistance due to ballast destabilization. Therefore, 387 

the use of UBM in sharp-radius curves is not recommended at present, unless ballast wall is constructed. 388 

3.5.2 Under sleeper pad (USP) 389 

USP can also be applied in various operational environments such as conventional main lines, 390 

urban or high speed lines or light rail and metro lines. It is often used in ballasted tracks with concrete 391 

sleepers. Different types of USP can be used at different locations and for different purposes [48-53]. 392 

However, the main application of USP is associated with vertical stiffness optimization of overall rail 393 

tracks in order to reduce ballast breakage [54-58]. 394 

Again, the USP is characterized by the bedding modulus C (N/mm
3
), that is to say the stiffness 395 

(N/mm) per unit area (mm
2
) related to the area of the USP situated under the concrete sleeper block (e.g. 396 

250 mm wide) that actually supports the load. Table 8 shows the definition of very soft, soft, medium and 397 

hard USP in relation to their static bedding modulus Cstat. It is noted that the relationship between static 398 

and dynamic bedding modulus differs depending on the material.  Therefore, this classification is not 399 

exactly corresponding to the dynamic behavior of the track. 400 

Table 8. USP characterisation [41]. 401 



Type of USP Stiffness N/mm
3
 

Stiff 0.25 < Cstat ≤ 0.35  

Medium stiff 0.15 < Cstat ≤ 0.25  

Soft 0.10 < Cstat ≤ 0.15  

Very soft Cstat ≤ 0.10  

 402 

The applications of USP in relation to its characterization can be found in Table 9. The 403 

recommendations are based on the experience on tracks with axle load  250 kN and speeds up to 300 404 

km/h. There is little experience on higher axle load tests, but a trial has been in progress in Sydney 405 

Australia. At this stage, it is not clear if USP will generate positive influences on heavy haul rail 406 

networks. 407 

The USP has different effects on lateral track resistance. It cannot be confirmed whether positive 408 

or negative effects will occur at this stage. However, USP can lead to excessive sleeper vibration, 409 

resulting in ballast dilation or ballast spreading. As such, special inspection and maintenance regime 410 

should be applied especially when using soft USP. The track degradation will further reduce the lateral 411 

track resistance. The longitudinal and lateral track resistance must be considered on a case by case basis, 412 

depending on the methodology of rail stress adjustment for continuous welded rail (CWR). Curve pull-in 413 

can incur if there is a loose of ballast and track support. The combination of USP and UBM can lead to 414 

unpredictable behavior of ballast and therefore such combination is not recommended. This negative 415 

influence also applies to the combination of USP with soft rail pads. 416 

Table 9. USP applications and characterisations. 417 

Fields of application of 

USP 

USP 

Very soft Soft Medium stiff Stiff 

Improve track quality 

(reduce ballast breakage 

and track/turnout pressure) 

    

Transition zones     

On existing structures with 

reduced ballast thickness 

    

Reduction of long-pitch 

low-rail corrugation in 

tight curves 

    

Reduction of ground-borne 

vibration 

    

 418 

3.5.3 Design specifications for USP / UBM 419 

The uses of USP and UBM depend largely on the operational parameters (such as speed, axle 420 

load and services tonnage) and track parameters (stiffness, insertion loss, thickness of ballast, and existing 421 

support structure). Fig 13 shows the effectiveness of resilient layer in improving dynamic forces where P1 422 

is the high frequency dynamic force and P2 is the lower frequency dynamic force [58]. 423 



 424 

Fig 13. Reduction of dynamic wheel/rail forces using resilient materials [58-60]. 425 

3.5.4 Applications of closed cell cross-linked polymeric foam materials 426 

Few types of resilient material have been kindly provided and then preliminarily evaluated for 427 
feasible applications as under-ballast mats in railway tracks. The materials have been assessed under 428 
static, dynamic and impulse loading conditions, in order to map their functionalities across the 429 
applications in rail operational environments. 430 
 431 

1. Insight from static tests 432 
The materials tend to have a very low stiffness and bedding modulus. It is noted that the moduli 433 

of this material are in the ranges between 0.03 and 0.06 N/mm
3
 as seen in table 3, while the 434 

minimum stiffness requirement for the very soft under sleeper pads is 0.1 N/m
3
. Thus, they 435 

cannot be used as under sleeper pads.  436 

 437 

2. Insight from dynamic tests 438 
The dynamic bedding moduli of 25mm pad lie in the range of 0.05 and 0.09 N/mm which is a soft 439 

UBM. It is interesting that both 7mm and 10mm fit as a medium UBM. The materials fit really 440 

well as a soft to medium bracket type of under ballast mat applications. According to table 7, the 441 

25mm can be used on transition zones and on existing structure to reduce ballast thinkness, while 442 

7mm and 10mm pads can be used for vibration reduction and ballast breakage reduction. 443 

 444 

3. Insight from impact modal tests 445 
In wet condition, the dynamic stiffness of the materials seems to be very high while the damping 446 
tends to get lower than those in dry condition. 447 
 448 

 It is important to note that our experimental results reveal that the materials have strong potential 449 

for uses as under ballast mat in various applications as tabulated in Table 10 below. 450 

Table 10. Applications of UBM. 451 

Fields of application of UBM UBM 

Vibration reduction and ground-borne noise 

mitigation 

25mm pad 

Ballast breakage protection 25mm pad or 10mm pad 



On existing structures with reduced ballast 

thickness 

10mm pad 

Stiffness transition zones (bridge end, turnout, 

slab tracks) 

10mm pad or 7mm pad 

It is recommended that further tests of the prototype UBM be carried out in details under 452 

laboratory conditions (with various temperatures) and under actual operational conditions to understand 453 

its behavior under train loads. However, the use of UBM tends to be fit for purpose and a field 454 

demonstration should be carried out before its commercialization. In the field experiments, the material 455 

could be installed on top of the formation and on top of bridge deck. Actual train services could be 456 

operated to yield a realistic field performance of the product. 457 

 458 

4. Conclusion 459 

In this study, closed cell cross-linked hydrophilic polyurethane foam materials, which are flexible 460 

with medium hard surface, are investigated for applications in civil construction and railway industries. 461 

There have been several studies focusing on behavior of closed-cell polymer foams. Nonetheless, the 462 

dynamic and impact behaviors of closed-cell polymeric foam material has not been thoroughly 463 

investigated, especially when the foam materials are exposed to water. This paper presents the influences 464 

of water absorption on closed-cell polymeric cross-linked foam materials under static, dynamic, and 465 

impact loading. Moreover, the feasibility to use polymer foams for rail track applications such as under-466 

ballast mat, under-sleeper pad, is evaluated. After the samples are submerged in de-ionized water for 24 467 

hours, it is interesting to note that 2.5-10% of water absorption and 0.5–2% of average swelling can be 468 

observed. The static and dynamic moduli of submerged specimens are more than the moduli of dry 469 

specimens. In addition, the deflections of the submerged specimens are less than those in dry condition. In 470 

wet condition, the dynamic and impact stiffness of the materials seems to be very high while the damping 471 

tends to be lower than those in dry condition. Moreover, material properties of the closed cell polymeric 472 

foams portray softening behavior when the thickness of foams increases elasticity of the material. The 473 

highlight of this paper is the functionality mapping of material performance across the applications in rail 474 

operational environments. The experiments exhibit that the closed cell polymeric foam materials fit really 475 

well as a soft to medium bracket type of under ballast mat applications in railway track systems. It is 476 

recommended that future tests include laboratory tests under various temperature conditions and field 477 

tests under actual operational conditions to understand its real behavior under train loads. 478 
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