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Abstract –The Advanced Ensemble electron density (Ne) Assimilation System (AENeAS) is a new data
assimilation model of the ionosphere/thermosphere. The background model is provided by the Thermo-
sphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) and the assimilation uses
the local ensemble transform Kalman filter (LETKF). An outline derivation of the LETKF is provided
and the equations are presented in a form analogous to the classic Kalman filter. An enhancement to the
efficient LETKF implementation to reduce computational cost is also described. In a 3 day test in June
2017, AENeAS exhibits a total electron content (TEC) RMS error of 2.1 TECU compared with 5.5 TECU
for NeQuick and 6.8 for TIE-GCM (with an NeQuick topside).
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1 Introduction

1.1 Background

Comprehensive, global and timely specifications of the
Earth’s upper atmosphere are required to ensure the effective
operation, planning and management of both radio frequency
(RF) systems and satellites. The atmospheric layers most effected
by spaceweather are the ionosphere and thermosphere. The iono-
sphere/thermosphere is a coupled system which spans an altitude
of approximately 90–2000 km above the Earth’s surface. In this
region, radiation from the Sun causes photoionization of neutral
molecules (thermosphere) creating a plasma (ions and free elec-
trons, ionosphere). The thermosphere causes drag on satellites
and is the dominant error in propagating low Earth orbits (below
approximately 600 km). Furthermore, the ionosphere affects all
RF systems that operate via or through the ionosphere at frequen-
cies below approximately 2 GHz. Thus, systems such as global
navigation satellite systems (GNSS), high frequency (HF)
communications, space-based Earth observation radars and space
situational awareness radars can be impaired.

1.2 Modelling

Approaches for modelling the Earth’s upper atmosphere
(ionosphere/thermosphere) can be broadly split into three cate-
gories: empirical modelling, physics-based modelling and data

assimilation techniques. Empirical models are based upon
observations and the relationships between model variables
are usually found via curve fitting techniques (Llewellyn &
Bent, 1973; Bilitza et al., 1988). Physics-based models solve
the underlying equations of the physical processes in the atmo-
sphere. Often these are in the form of coupled ionospheric-
thermospheric physics models. Finally, data assimilation models
combine measurements of the atmosphere with a background
model.

Data assimilation (DA) is a broad term covering a number of
techniques. These include: weighted least squares (Plackett,
1950), Kalman filters (Kalman, 1960), optimal interpolation
(OI) (Gandin, 1963; Eddy, 1967) and variational methods
(Le Dimet & Talagrand, 1986). The background model for the
DA approach can be either an empirical or physics-based model.

Previous model comparison work has shown that, in terms
of specifying the current ionosphere (nowcasting), DA models
do best, followed by empirical and then physics-based models
(Shim et al., 2011, 2012; McNamara et al., 2013; Elvidge
et al., 2014). In particular, McNamara et al. (2013) showed that
two DA models (both with an empirical background model (the
Electron Density Assimilative Model, EDAM; Angling &
Jackson-Booth, 2011) and the GPS Ionospheric Inversion
model, GPSII; Fridman et al., 2009) perform close to the min-
imum achievable errors for nowcasting parameters related to the
peak ionospheric density.

Since both EDAM and GPSII rely on an empirical back-
ground model (the International Reference Ionosphere 2007
(IRI2007) (Bilitza & Reinisch, 2008), in the absence of data*Corresponding author: s.elvidge@bham.ac.uk
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they revert back to this model. This is a weakness suffered by
all empirically-based data assimilation models and means that
they are not well suited to forecasting. This weakness can be
overcome by using physics-based DA models, which, when
forecasting, can propagate the ionosphere/thermosphere state
forward in time.

An example of a physics-based DA model is the Utah State
University Global Assimilation of Ionospheric Measurements
(USU-GAIM) models. These models encompass a range of dif-
ferent modelling approaches (Schunk et al., 2016). In particular
the GAIM Gauss-Markov (GAIM-GM) (Scherliess et al., 2006)
and GAIM Full Physics (GAIM-FP) (Scherliess et al., 2009)
models both use physics-based background models, and whilst
GAIM-GM uses a Gauss Markov Kalman filter for assimilation,
GAIM-FP relies upon a ensemble Kalman filter. The back-
ground model for GAIM-FP includes six ion species (NO+,
Oþ

2 , N
þ
2 , O

+, He+, H+), as well as ion and electron temperatures
and plasma drifts (Schunk et al., 2005). However in this model
the thermosphere is modelled empirically and this limits the
model’s ability to model satellite drag.

Coupled models such as the Thermosphere Ionosphere
Electrodynamics General Circulation Model (TIE-GCM) (Qian
et al., 2014) have also been used in DA schemes. TIE-GCM
was developed at the National Center for Atmospheric Research
(NCAR) and solves for neutral and ion species in the upper
atmosphere. Using TIE-GCM in an ensemble Kalman filter
modelling scheme has been shown to increase skill in specify-
ing ionospheric parameters (Lee et al., 2012; Chartier et al.,
2013, 2016).

This paper introduces the Advanced Ensemble electron
density (Ne) Assimilation System (AENeAS). AENeAS uses
TIE-GCM as its background model and uses a variant of the
ensemble Kalman filter (the local ensemble transform Kalman
filter, LETKF) to assimilate data. As well as describing the the-
ory behind the model, initial benchmark results are also
described.

2 Kalman Filters

2.1 Introduction

Kalman filters (Kalman, 1960) have found widespread use
in applications ranging from signal processing to spacecraft
navigation and control. They have also been used in a variety
of assimilative ionospheric models. For a full derivation of
the classic Kalman filter equations see Hamilton (1994).

Given a series of states at times t, xt, the Kalman filter gives
the optimal (i.e. the minimum mean square error) estimate of the
combination (analysis, xta) of a background model (xtb) and
observations yto. This optimality is dependent on the process
being linear and error statistics being Gaussian. The filter works
in two repeating steps:

1. Update;
2. Prediction.

Update step

The filter starts with a background state vector and its asso-
ciated error covariance matrix (xtb and Bt). The analysis (i.e. the

updated state vector, xta) and its associated covariance matrix
(At) are given by

At ¼ I�KtHð ÞBt; ð1Þ

xta ¼ xtb þK yto �Hxtb
� �

; ð2Þ
where

Kt ¼ BtHT ðHBtHT þOÞ�1
: ð3Þ

K is commonly called the Kalman gain matrix, B is the back-
ground error covariance matrix, O is the observation error
covariance matrix, H is the observation operator, xb and xa
are the background and analysis vectors respectively, yo is
the vector of observations and I is the identity matrix.

Prediction step

Using the values from the current update step, the prediction
step is used to find the background values xtþ1

b and Btþ1 for use
in the next update step:

xtþ1
b ¼ Mt;tþ1xta; ð4Þ

Btþ1 ¼ Mt;tþ1AðMt;tþ1ÞT þQt; ð5Þ
where M is the forecast model which moves the state from
one time step to the next and Qt is the associated error covari-
ance matrix. This process is repeated t times.

The classic Kalman filter (Kalman, 1960) specifically
defines a covariance matrix for the system (Eq. (1)), and conse-
quently the computational cost of the filter scales with the
square of the dimension of the model. For a fully coupled iono-
sphere/thermosphere model the dimension is approximately 107.
This is too large for most computers to be able to manipulate in
a reasonable amount of time. The ensemble Kalman Filter
(EnKF) (Evensen, 2009) is a Monte Carlo approximation to
the Kalman filter for high dimensional or non-linear models.
Since its introduction it has gained wide spread use throughout
a variety of data assimilation applications such as weather
forecasting (Etherton, 2007), fireline modelling (Mandel et al.,
2009), power system state tracking (Li et al., 2012) and soil
moisture estimation (Reichle et al., 2002). The EnKF replaces
the covariance matrix (Eq. (1)) by a sample covariance found
from a set of state vectors (called the ensemble) (Evensen,
1994). The ensemble members are independent until data is
assimilated, at which point all of the members are modified.
This approach is useful for both large dimensional systems
(where estimating the covariance matrix is necessary to reduce
the computational cost) and also in complex physical systems
where the exact covariances between model variables are
unknown.

There is no unique, optimal, method for implementing the
EnKF equations. Previous EnKF work using TIE-GCM as a
background model (e.g. Lee et al., 2012; Chartier et al., 2013,
2016, has used the NCAR’s Data Assimilation Research
Testbed (DART) (Anderson, 2009). DART provides a set of
tools for applying DA techniques to existing models across a
range of geophysics disciplines. As well as the EnKF, DART
includes the Ensemble Adjustment Kalman Filter (EAKF)
(Anderson, 2001) and the Rank Histogram filter (Anderson,
2010; Metref et al., 2014).
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2.2 Local ensemble transform Kalman filter

In this work, the local ensemble transform Kalman filter
(LETKF) is used as the DA scheme. An outline of the LETKF
equations are presented here; for a complete derivation see Hunt
et al. (2007).

As with the classic Kalman filter, background values and an
associated error covariance matrix are required to start the pro-
cess (we drop the time subscript t from the variables for ease of
reading). The single background state vector used in the classic
Kalman filter is replaced by a set of k background ensemble
members {xb(i): i = 1, 2, . . ., k} where each xb(i) contains
m variables. It is assumed that the best estimate of the true state
(before observations are taken into account) is the background
mean:

�xb ¼ k�1
Xk

i¼1

xb ið Þ: ð6Þ

The associated error covariance matrix B can then be found
in the following way. Define a matrix Xb to be an (m � k)
matrix of background perturbations; that is, a matrix where
the ith column is defined by xbðiÞ � �xb (i.e. each column of
Xb is an ensemble member with the ensemble mean removed).
The background error covariance matrix is then estimated by

B ¼ ðk � 1Þ�1XbðXbÞT : ð7Þ
This has at most rank k � 1, and only accounts for

uncertainty in k � 1 directions of the model space. This can
cause issues if k is small; however this can be somewhat over-
come by localizing the model space (described later in this
section). After an assimilation time step an analysis ensemble
({xb(i): i = 1, 2, . . ., k}) is returned. The analysis mean and error
covariance matrix are:

�xa ¼ k�1
X k

i¼1
xa ið Þ; ð8Þ

A ¼ ðk � 1Þ�1XaðXaÞT ; ð9Þ
where Xa is the matrix of analysis perturbations (defined
equivalently as Xa). It is required that �xa and A should
estimate the best analysis of the system and its associated
uncertainty. Therefore to construct the analysis (post assimila-
tion) ensemble xa(i) the matrix Xa must satisfy Equation (9).
Let yo 2 Rs be a vector of s observations, O 2 Rs�s be the
observation error covariance matrix and H : Rm ! Rs be
an observation operator that maps from the model space to
the observation space. The Kalman gain for the LETKF is
found by substituting the definition of the background error
covariance (Eq. (7)) into the classic Kalman gain matrix
definition (Eq. (3)):

K ¼ ðk � 1Þ�1XbðHXbÞT ½ðk � 1Þ�1HXbðHXbÞT þO��1
:

ð10Þ

The matrix HXb is the background perturbation matrix
mapped into observation space. For simplicity this is rewritten
as Yb, defined similarly to Xb, i.e., the ith column is
HðxbðiÞÞ � �yb. Using this, the identity PT ðPPT þQÞ�1 ¼

ðIþ PTQPÞ�1QTP�1, and setting P ¼ ðk � 1Þ12Yb and
Q ¼ O, Equation (10) can be rewritten as:

K ¼ ðk � 1Þ�1Xb½Iþ ðk � 1Þ�1ðYbÞTO�1Yb��1ðYbÞTO�1:

ð11Þ
To find the analysis covariance matrix the LETKF Kalman

gain and background error covariance matrix is substituted into
Equation (1):

A ¼ I�KHð ÞB ðk � 1Þ�1XbðI� ðk � 1Þ�1

� ½Iþ ðk � 1Þ�1ðYbÞTO�1Yb��1ðYbÞTO�1YbÞðXbÞT ð12Þ
where again Yb = HXb. This can be simplified using the
identity I � (I + P)�1P = (I + P)�1 where P =
(k � 1)�1(Yb)

TO�1Yb:

A ¼ Xb½ðk � 1ÞIþ ðYbÞTO�1Yb��1ðXbÞT ; ð13Þ
the analysis error covariance matrix. For ease of writing,
define

~A ¼ ½ðk � 1ÞIþ ðYbÞTO�1Yb��1
; ð14Þ

so Equation (13) becomes:

A ¼ Xb
~AðXbÞT : ð15Þ

Using ~A in the Kalman gain definition for the LETKF (Eq.
(11)) gives:

K ¼ Xb½ðk � 1ÞIþ ðYbÞTO�1Yb��1ðYbÞTO�1Xb
~AðYbÞTO�1;

ð16Þ
and using Equations (15) and (16) one can define the ensem-
ble analysis mean (Eq. (2)) as:

�xa ¼ �xb þK yo �H�xbð Þ�xb þ Xb
~AðYbÞTO�1 yo � �ybð Þ: ð17Þ

Let wa ¼ ~AðYbÞTO�1ðyo � �ybÞ, which defines the analysis
increment in observation space, and thus:

�xa ¼ �xb þ Xbwa: ð18Þ

Letting

Wa ¼ ½ðk � 1Þ~A�12; ð19Þ
or equivalently WaW

T
a ¼ ðk � 1Þ~A, then using this in

Equation (15) gives the required definition of the analysis
covariance, Equation (9). As such the the analysis ensemble
can then be constructed by:

Xa ¼ XbWa: ð20Þ

For �xa to be the mean of the analysis ensemble, the sum
across the columns of Xa must be zero, i.e. Xal

T ¼ 0 (where
l ¼ ð1; 1; . . . ; 1Þ, a vector of 1’s). By the definition of Xb,
Xbl

T ¼ 0. Therefore for Xal
T ¼ 0 it is required that l is an

eigenvector of Wa. Wang et al. (2004a) showed that this is true
if the symmetric solution of the square root is chosen.

The complete set of LETKF equations (in form analogous to
the upate step of the classic Kalman filter) are:

K ¼ Xb
~AðYbÞTO�1; ð21Þ
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A ¼ Xb
~AðXbÞT ; ð22Þ

�xa ¼ �xb þ Xbwa; ð23Þ

Xa ¼ Xbððk � 1Þ~AÞ12; ð24Þ
where

~A ¼ ½ðk � 1ÞIþ ðYbÞTO�1Yb��1
; ð25Þ

wa ¼ ~AðYbÞTO�1ðyo � �ybÞ: ð26Þ

It can be seen that all the matrix operations take place in
ensemble space (i.e. on matrices defined by the ensemble) with
the largest matrix dimension being s (the number of observa-
tions). For the AENeAS implementation of the LETKF it is
assumed that the observations are independent and thus the
observation error covariance matrix, O, is diagonal.

The prediction step of the classic Kalman filter (Eqs. (4)
and (5)) is not needed. The forecast model (which moves the
state from one time step to the next) is replaced by a (not
necessarily linear) model which moves each ensemble member
forward in time.

The final component of the LETKF is localisation. The
localisation used by the LETKF is similar to that described by
Ott et al. (2004), where for each model grid point a subset of
the global matrices are used. First the background perturbation
matrices in both model and observation space are calculated
globally. Then for each grid point the observation vector
and associated background perturbation matrix mapped into
observation space (Yb) are restricted to only include observa-
tions from a region around that point (Fig. 1). Similarly the
perturbation matrix and associated mean vector are restricted
to only include model variables from the grid point. The
LETKF equations (Eqs. (21)–(26) from Sect. 2.2) are then

applied to each region. The output of the equations for each
region only updates the centre grid point.

At each grid point an optimum combination of ensemble
members are calculated (compared to the data). These represent
local multidimensional unstable manifolds (Szunyogh, 2014).
The global analysis is constructed by smoothly joining each
of these together, i.e. forming a global unstable manifold.
Szunyogh (2014) describes how this combination can be made
using a model propagator; however in the LETKF this combi-
nation relies upon the choice of the matrix square root in the
construction of the analysis (Wang et al., 2004b). The choice
of the symmetric square root transformation forces consistency
between adjacent local analyses since the transformation is a
continuous function of the analysis error covariance matrix
(Hunt et al., 2007). This consistency does not occur if the trans-
formation suggested in Bishop et al. (2001) is used. As long as
subsets of observations used for neighbouring grid points over-
lap heavily, the local weight vectors for the grid points are very
similar. When weight vectors do not change much, the analysis
ensemble members are roughly linear combinations of the
ensemble members, and so the changes between neighbouring
grid points remain reasonably physical. The effectiveness of this
smoothing as compared to the global approach (i.e. LETKF
compared to ETKF) is highly dependent upon the choice of
region size. The regions around each model grid point should
be chosen such that their intersection is sufficiently large (in
comparison to the number of observations in each region).

One issue with all EnKFs is undersampling, whereby the
ensemble is too small to statistically represent the error covari-
ance matrix. Consequences of undersampling are spurious
covariances and filter divergence (Anderson, 2001). Spurious
covariances between variables are ones where the variables
are not physically related. These may be in parts of the state
vector that are physically a large distance apart. Filter diver-
gence is the term used to describe when the assimilation stops

Fig. 1. Cartoon of how the LETKF works. For each grid point (green dots, selected point is blue) a localisation region is drawn (blue circle)
and only those observations (red triangles) which are in the localised region are included in the analysis. Cartoon based on that by Kalnay
(2005).
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improving the analysis state (Anderson, 2001). This can occur if
the model variances become too large or too small in relation to
the observation variance.

The localisation component of the the LETKF helps to
address filter divergence by improving the specification of the
covariance matrix. One of the underlying assumptions of
ensemble modelling is that the set of ensemble members span
the space of the model variables. In reality the whole space is
often not fully spanned, but it is necessary that it is a reasonable
approximation. By reducing the ensemble analysis to local
regions, the ensemble members only need to span the region
within those regions. The dimensionality of the reduced region
is significantly less than the whole space and the approximation
that the ensemble spans the space is a better one. Hunt et al.
(2007) used a Lorenz-96 model to investigate the effective-
ness of this localisation system by comparing the LETKF
and ETKF and varying the ensemble sizes for models of dimen-
sion 40 and 80. The results showed that the global ETKF
required an ensemble size of half the model dimension to be
effective. In contrast doubling the dimension of the model
had little effect on the performance of the LETKF, and a good
performance was obtained for ensemble sizes greater than or
equal to 10.

3 Advanced Ensemble electron density
(Ne) Assimilation System (AENeAS)

3.1 Introduction

The Advanced Ensemble electron density (Ne) Assimilation
System (AENeAS) is a new upper atmosphere DA model that
combines a physics background model and the LETKF.
Currently, the physics model is provided by TIE-GCM (de-
scribed in Sect. 3.2). However AENeAS is modular so that in
future other physics models can be used instead of, or as well
as, TIE-GCM.

The primary motivation for developing AENeAS has
been for ionospheric/thermospheric forecasting. Ionospheric/
thermospheric physics models rely upon knowledge of electron,
ion and neutral densities as well as temperatures and wind
speeds. However the most abundant data source in the upper
atmosphere is an integrated measurement of electron density
called the total electron content (TEC) (described in Sect. 4.3).
The LETKF is used so that the unknown covariances can be
estimated from the TIE-GCM ensemble. The optimal number
of ensemble members (balancing performance and computa-
tional cost) is still to be determined. However a 15 min
AENeAS timestep can be run with 100 ensemble members in
real-time on a 32-core computer. Benchmarking test results
have shown that using 32 ensemble members provides good
agreement with independent observations.

3.2 Background Models

3.2.1 TIE-GCM

TIE-GCM is a global three-dimensional model of the cou-
pled thermosphere ionosphere system (Richmond et al., 1992).
At each time step the continuity, energy, and momentum equa-
tions are solved for neutral and ion species using a fourth-order,

centred finite difference scheme (Roble et al., 1988). The model
is driven by the daily F10.7 (the solar flux at a wavelength of
10.7 cm at the Earth’s orbit which is used as a proxy for solar
output) (Tapping, 2013), the 81-day F10.7 average and the Kp
(which indicates the severity of the magnetic disturbances in
near-Earth space) (Bartels, 1957). Instead of the Kp the model
can use the Earth’s magnetic field cross-tail potential (CTP)
and the hemispheric power (HP) which are measures of auroral
activity. These values are related to Kp via (Neale, 2010):

HP ¼ 16:82e0:32Kp � 4:86; if Kp � 7

153:13þ 146:87 Kp�7ð Þ
2 ; otherwise

(
ð27Þ

CTP ¼ 0:8Kp2 þ 15Kpþ 15: ð28Þ

The lower boundary condition (atmospheric tides) is given
by the Global Scale Wave Model (GSWM) (Hagan et al.,
1999).

3.2.2 NeQuick

TIE-GCM only extends to 600 km in altitude (depending
on solar conditions). Whereas in reality the ionosphere/
plasmasphere extends much further than this and for accurate
specification of the domain higher altitudes need to be consid-
ered. To achieve this in AENeAS, a higher reaching model of
the ionosphere is attached to the topside of the TIE-GCM
profiles which extends the electron density grids to 25,000 km.
The other species considered by the model also have their grids
extended to the same height (to ensure the altitude grid is the
same across all species); however all values above the TIE-
GCM maximum altitude are set to zero. The current ionospheric
topside model used by AENeAS is NeQuick (Nava et al., 2008).

NeQuick is an monthly median ionospheric electron density
model developed at the Aeronomy and Radiopropagation
Laboratory (now Telecommunications/ICT for Development
Laboratory) of the Abdus Salam International Centre for
Theoretical Physics (ICTP), Trieste, Italy, and at the Institute
for Geophysics, Astrophysics and Meteorology (IGAM) of
the University of Graz, Austria (Nava et al., 2008). The model
is based on the Di Giovanni-Radicella (DGR) model (Giovanni
& Radicella, 1990). It has been designed to have continuously
integrable vertical profiles which allows for rapid calculation
of the total electron content for trans-ionospheric propagation
applications. For use in AENeAS, the NeQuick bottomside
profile is driven by parameters (height and peak density of
the E, F1 and F2 ionospheric layers) taken from TIE-GCM.
At altitudes above the TIE-GCM maximum the electron
densities from NeQuick are used. By driving NeQuick with
parameters derived from TIE-GCM ensures that the bottom
and top-side profiles are smoothly connected.

As well as time and location, the model is also driven by
F10.7 (like TIE-GCM). The topside of NeQuick, which is ued
in AENeAS, is a simplified approximation to a diffusive
equilibrium. A semi-Epstein layer represents the model topside
with a height-dependent thickness parameter that has been
empirically determined (Nava et al., 2008). For AENeAS, the
University of Birmingham (UoB) Python version of NeQuick
has been used (Angling et al., 2018).
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3.3 Ensemble generation

To use the background model in the LETKF an ensemble of
the model must be generated. The spread of the ensemble
members should be sufficient to estimate the background covari-
ance matrix (Sect. 3.1). For AENeAS, the F10.7, cross-tail
potential (CTP) and hemispheric power (HP) are perturbed to
generate a set of different background models. The CTP and
HP values are chosen to be Normally distributed, where the
mean of the distribution is the observed Kp converted to HP
(Eq. (27)) and CTP (Eq. (28)) and the standard deviation is set
at 40% of the observed value. The F10.7 values are generated
using a random walk. At each time step the walk value has a
uniformly distributed random number in the range [�3, 3] added
to it but restricted to the range [�100, 100]. By construction the
mean of the F10.7 values (across the ensemble members) is close
to the observed F10.7, ensuring the long term trends of F10.7 are
captured. F10.7 values are updated every 3 h (which is in line
with the cadence of the Kp data) and ensures the ensemble
members have time to respond to changes in conditions. The
internal model time step is set to 60 s and each assimilation
window is set at 15 min.

3.4 Localisation

In AENeAS localisation regions of ±10� latitude and ±20�
longitude are used. These values have been chosen based on
the estimated correlation lengths in the ionosphere from
McNamara (2009) (Table 1).

3.5 Covariance inflation

Any EnKF depends on the accuracy of the estimated back-
ground and observation error covariances and errors can effect
the optimality of the data assimilation scheme (Liang et al.,
2012). Unfortunately, using the ensemble to estimate the covari-
ance matrices can result in sampling errors as the number of
ensemble members is limited. Previous work has shown that
small ensembles lead to underestimation of the covariances
which eventually result in filter divergence (Anderson &
Anderson, 1999; Constantinescu et al., 2007). Specifically the
ensemble members become too similar. To mitigate this covari-
ance inflation has been used. First proposed by Anderson and
Anderson (1999) covariance inflation artificially increases the
uncertainty in the background model. The required inflation
value to use depends on the specific case (both domain and
ensemble size) Hamill et al. (2005). Whilst there are various
strategies for implementing covariance inflation (e.g. Hamill &
Whitaker, 2005; Anderson, 2007, 2009; Whitaker et al., 2008;
Li et al., 2009; Miyoshi, 2011; Kang et al., 2012), here multi-
plicative inflation Anderson and Anderson (1999) has been used.

Multiplicative inflation is more suited to the ionosphere-
thermosphere problem than other inflation schemes due to the
dynamic range of values involved. Currently the Anderson
and Anderson (1999) fixed multiplicative inflation is imple-
mented in AENeAS. This involves multiplying the background
error covariance matrix, B, by an inflation factor q > 1. Since
B ¼ ðk � 1Þ�1XbX

T
b this is equivalent to multiplying Xb byffiffiffi

q
p

. This can be achieved efficiently by replacing
~A ¼ ½ðk � 1ÞIþ ðYbÞTO�1Yb��1 with ~A ¼ ½ðk � 1ÞI=qþ
ðYbÞTO�1Yb��1 in Equation (15) (Hunt et al., 2007).

3.6 Sporadic Forcing

It is well known that physics-based general circulation
models (GCMs) suffer in data assimilation schemes when
sporadically forced by data (Baker et al., 1987; Lorenc et al.,
1991; Macpherson, 1991; Bloom et al., 1996; Fox-Rabinovitz,
1996). The sporadic nature of the assimilated data (be it tempo-
rally or spatially) can upset the intrinsic balance of the equations
(Ham et al., 2016) leading to discontinuities and high-frequency
oscillations (Baker et al., 1987).

Two main approaches have been developed to deal with this
problem. The first relies on the repeated insertion (RI) of data
(also known as nudging). This involves using each observation
multiple times in an observation window (which in the lower
atmosphere community can be as long as 6 h). The observations
are weighted throughout the window so that the largest weights
are applied at the observation time, with decreasing weights
before and after (Lorenc et al., 1991; Macpherson, 1991). This
has the impact of slowly moving the background model state
towards the analysis state over time. Secondly, incremental
analysis updating (IAU) has been used (Baker et al., 1987).
IAU distributes one analysis increment throughout the assimila-
tion window rather than repeatedly assimilating differently
weighted observations. This acts as a low pass filter to reduce
high frequency oscillations (Ham et al., 2016). The key
difference between IAU and RI is that IAU only modifies the
analysis increment and not the background state, as RI does
(Polavarapu et al., 2004).

Whilst both approaches have been used extensively in the
lower atmosphere they have been developed in schemes which
use long (approximately 6 h) assimilation windows. AENeAS
relies on a much shorter assimilation window of 15 min, so
neither RI or IAU are directly applicable. Therefore a different
approach been developed; at each grid point the amount which
any variable can change has been limited. For example for a
single species, after calculating Xa in the LETKF (Xa ¼
Xbððk � 1Þ~AÞ12; Eq. (25)) the actual value of Xa (at each grid
point) used to update the model is determined by:

X used
a ¼

Xb
a ; if Xa

Xb
< 1

a

Xa; if 1
a � Xa

Xb
� a

aXb if Xa
Xb

> a

;

8>><
>>: ð29Þ

where a is a predefined constant set to the largest allowable
change (i.e. a = 1.1 limits the amount of changes from
�9.1% to +10%). This causes the background variables to
move “in the direction” of the analysis, but slowly so as to
ensure the background model equations remain stable.
Initially, many grid points changes are limited by this procedure
(since the difference between the background and analysis is
the largest; Lee et al., 2006), however this reduces over time
as the background model is moved nearer the observations.

Table 1. Ionospheric (F region) correlation lengths (km) from
McNamara (2009).

Solar activity North-South East-West

High 1000 1500
Low 700 1000
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3.7 Implementation

Hunt et al. (2007) described a computationally efficient
implementation of the LETKF in seven steps. Steps 4 and 5
involve calculating ~A (Eq. (14)) andWa (Eq. (19)). The compu-
tational cost of both calculations is proportional to the cube of
the ensemble size. However the number of calculations can
be reduced by first calculating

~A� ¼ k � 1ð ÞIþ CYb½ �; ð30Þ
which is the pre-inverse of ~A defined in Equation (14). This
can then be factorized to

~A� ¼ QKQ�1; ð31Þ
where Q is the matrix of eigenvalues of ~A� and K is a diago-
nal matrix whose elements are the eigenvalues of ~A�. The
number of operations to do this is, at most, the order of the
cube of the ensemble size (since it is known that ~A� is sym-
metric). Since K is diagonal it is easy to calculate both K�1

and K�1
2 (with the number of operations linearly proportional

to size of the ensemble) and so

~A ¼ QK�1Q�1; ð32Þ

Wa ¼ QK�1
2Q�1: ð33Þ

This approach also allows for a simple check that ~A is
positive definite (as required by the LETKF) since all the
eigenvalues will be > 0.

4 Initial results – AENeAS benchmarking

4.1 Overview

During the AENeAS development cycle a short benchmark
test has been developed for investigating changes in perfor-
mance as improvements are made. A more detailed statistical
study to quantify the performance of the model is necessary
in the future. This initial test compares AENeAS with its
background model, TIE-GCM+ (TIE-GCM with an NeQuick
topside), NeQuick and the IGS global TEC map.

4.2 Test scenario

The time period for the test scenario is between June 4th and
June 7th, 2017. Figure 2 shows the solar and geomagnetic
conditions during the test period. It is a solar and geomagneti-
cally quiet time with the F10.7 only varying between 75 and
79 and the Kp between 0 and 2 (well below the storm threshold
of Kp 4). This is beneficial for the benchmarking test as the
models do not have to respond to any rapidly varying geophys-
ical conditions.

4.3 Data

Signals from global navigation satellite systems (GNSS) can
be used to determine the total electron content (TEC) between
the satellite and a receiver on the ground (or in space for radio
occultation, RO). TEC is the line integral of electron density on

a path between two points (i.e. between the satellite and the
receiver)

TEC ¼
Z

Ne dl; ð34Þ

where Ne is the electron density. TEC is often expressed in
TEC units (TECU), which is 1016 electrons/m2. A full deriva-
tion of how TEC is estimated can be found in Elvidge (2014).

The TEC data has been provided by the Ionospheric deter-
mination and Navigation based on Satellite And Terrestrial
(IonSAT) systems research group at the Universitat Politcnica
de Catalunya (UPC). The data has been calibrated (i.e. biases
have been removed) by leveling the data to the UQRG model
which is produced by combining tomographic modelling of
the ionosphere with Kriging interpolation (Hernández-Pajares
et al., 1999; Orus et al., 2002). This model has been shown
to provide excellent performance compared to independent
observations and other Global Ionosphere Maps (GIMs)
(Hernández-Pajares et al., 2017).

An example map of the data is shown in Figure 3. This
figure shows the TEC values (which are assimilated) mapped
to vertical TEC (VTEC) values (in order to more easily
visualize the data). The mapping function assumed a thin-shell
ionosphere at a fixed altitude of 300 km.

For testing, the models are compared in terms of their ability
to reproduce the total electron content (TEC) from a receiver
that has not been assimilated.

4.4 Results

Assimilating the data causes AENeAS to make global
changes to the background model. A sample AENeAS post
assimilation TECmap (at 1230 on June 5th) is shown in Figure 4.
The corresponding TIE-GCM+ output is shown in Figure 5.

The changes result in the AENeAS TEC being generally
higher than TIE-GCM+ in the northern hemisphere and lower
or unchanged in the south. The exception to this is Australasia
that has a higher TEC than the background model. Additional
small scale structure is also created and can be seen especially
clearly around the equator. Figures 3–5 are plotted on the same
colour scale for direct comparison. It can be seen that the
AENeAS results are consistent with the input data. For refer-
ence the IGS Global (IGSG) TEC map is shown in Figure 6

Fig. 2. Kp and F10.7 values for the AENeAS benchmarking test
(June 4th 2017–June 7th 2017).
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(Hernández-Pajares et al., 2009). It should be observed that the
general structure more closely agrees with the AENeAS output
rather than TIE-GCM+. In particular the areas of increased
density over Australasia, the South Atlantic and California.

The GPS station “REDU” (based in Belgium) was excluded
from the assimilation so that it could be independently
compared against the AENeAS results. At 1230 on June 5th
the REDU receiver could see 8 satellites and therefore returned
8 slant TEC observations. As with the assimilated data, these
TEC values are levelled to UQRG to provide calibrated TEC.
For comparison, the modelled TEC is then found by integrating
along each ray path through the electron density grids.

The observations have been compared with AENeAS (pre-
and post-assimilation), TIE-GCM+ and NeQuick (Fig. 7). The
REDU observations are plotted with black vertical lines
representing the uncertainty of the observations. TIE-GCM+
is shown in green and is significantly different from the

observations. On average the TIE-GCM integrated TECs are
approximately 70% of the observation. The NeQuick results
(yellow) are very similar to the TIE-GCM+ values and are lower
than all of the observations. The pre-assimilation AENeAS
results (blue) shows that the model has successfully “moved”
the background TIE-GCM+ values to nearer the observed
values. The pre-assimilation results include all of the AENeAS
history upto the previous timestep. Assimilating data has the
effect of moving the mean closer to the observation and reduc-
ing the spread of the ensemble members (shown in red). For
each observation at least one fifth of the analysis ensemble
member is within the uncertainty of the observation.

Figure 8 shows a snapshot of electron density profiles from
June 5th at 1230 from Dourbes, Belgium (longitude: 4.6, lati-
tude: 50.1). Each individual AENeAS ensemble member (red)
is shown, as well as TIE-GCM (blue) and NeQuick (yellow).

Fig. 3. Example map of vertical TEC values derived from the UPC
dataset of slant TEC (which is assimilated) on June 5th 2017 at 1230
UT. The colour bar shows the VTEC value (in TECU).

Fig. 4. TEC map for June 5th at 1230 from AENeAS.

Fig. 5. TEC map for June 5th at 1230 from TIE-GCM+.

Fig. 6. TEC map for June 5th at 1230 from the IGS Global map.
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For reference the profile derived from the Dourbes ionosonde
(DB049) is shown in black. It can be seen that AENeAS does
very well moving from the background model (TIE-GCM)
towards the Dourbes ionosonde. It is important to remember
that the electron density profile has not been assimilated into
AENeAS, and only slant TEC has. Even with the lack of height
information from the TEC measurements, the reconstructed
peak electron density from AENeAS closely matches the value
from the ionosonde.

The overall statistics for the full 3 day test are shown in
Table 2. It can be seen that AENeAS performs very well, espe-
cially compared to its background model, TIE-GCM+. Both the
mean and standard deviation of the model errors (model minus
observation) are much less for AENeAS than the other two
models. NeQuick, the empirical model, also performs better

than the physics-based TIE-GCM+. For further reference the
statistics from the IGSG model are also included. Two impor-
tant things should be noted with regards to the IGS global out-
put. Firstly the REDU observations have not been removed
from the IGSG model, and, unsurprisingly, the mean error is
significantly, 1.5 TEC units, less than AENeAS. Secondly,
the IGS global map is only output every 2 h, and the map for
1230 is linearly interpolated from the 1200 and 1400 maps.
Whilst the mean error of the IGSG is the smallest of all of
the models, it has the largest error standard deviation. This
could be a result of comparing the smoothed IGSG output to
the 30 s observations (Hernández-Pajares et al., 2009).

Although AENeAS performs well there are some issues
with artificial boundary effects in the assimilation. This is most
obvious in the region around Hawaii in Figure 4. Whilst
Section 2.2 presents approaches for improving smoothness
these are clearly insufficient in areas of very sparse data.
Another method for ensuring smoothness has been described
by Yang et al. (2009). This approach involves performing the
LETKF calculations on a coarse grid and then interpolating to
the required grid resolution (Fig. 9). Specifically the ensemble
weight vectors are interpolated to find the high resolution
grid point values. Yang et al. (2009) use a smooth bivariate

Fig. 7. Observed TEC from REDU and the same TEC values
modelled by AENeAS, TIE-GCM+ and NeQuick at 1230, 5 June
2017. The x-axis numbering is the receiver channel number and the
ordering is arbitrary.

Fig. 8. Example electron density profiles. Observed profile (DB049)
is from Dourbes, Belgium at 1230, 5 June 2017. Profiles from TIE-
GCM, NeQuick and each individual AENeAS member is plotted.

Table 2. Overall statistics of the model test for June 4th–7th, 2017.

Models Error mean
(TECU)

Error standard
deviation (TECU)

Root mean
square error

NeQuick �5.3 1.6 5.5
TIE-GCM+ �6.1 2.9 6.8
IGSG �0.6 4.3 4.3
AENeAS �1.9 0.8 2.1

Fig. 9. The circles are where the LETKF assimilation is performed.
The higher resolution grid (crosses) is then found by interpolation of
the weight vectors. Image from Yang et al. (2009).
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interpolation scheme by locally fitting quintic polynomials to
the zonal and meridional values of the coarse analysis grid. This
scheme insures that the analysis ensemble perturbations main-
tain the zero mean property as required for the LETKF. Whilst
this method is a sub-optimal assimilation scheme it has the
advantage that the smoothness is guaranteed. It will be imple-
mented in the next iteration of AENeAS.

5 Conclusions

A new model, the Advanced Ensemble electron density
(Ne) Assimilation System (AENeAS) has been developed.
AENeAS is a physics-based data assimilation model of the
Earth’s upper atmosphere. Its background model is TIE-GCM
and the model uses the local ensemble transform Kalman filter
(LETKF) for the assimilation scheme. The LETKF is an effi-
cient implementation of the ensemble Kalman filter which
defines local regions where the assimilation is performed. The
advantage of this is that it reduces the state space of the model
and brings it closer to the space spanned by the ensemble
members. The algorithm iterates through each grid point inde-
pendently and so is naturally suitable for parallelization. A com-
putationally efficient implementation using eigendecomposition
has also been presented.

Data assimilation with physics-based models can upset the
intrinsic balance of the model equations. Nudging or incremen-
tal analysis updating is used in the meteorological community to
slowly move the background model to the analysis state.
However in the lower atmosphere the assimilation window is
usually 6 h and these approaches have been developed with that
in mind. For the upper atmosphere the assimilation windows are
usually much shorter (15 min) and therefore a new sporadic
forcing technique is described.

Results of initial testing show that AENeAS can effectively
assimilate GPS TEC data and reduce TEC errors compared to
TIE-GCM and NeQuick. However a more detailed statistical
study is required to quantify the performance of the model.
Further methods will be required to ensure model smoothness
in areas with very sparse data.
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