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Abstract 

 

Glycosylation of the IgG-Fc is essential for optimal binding and activation of Fc receptors and 

the C1q component of complement. However, it has been reported that the effector functions are 

down-regulated when the Fc glycans terminate in sialic acid residues and that sialylated IgG 

mediates anti-inflammatory effects of intravenous immunoglobulin (IVIG). Although 

recombinant IgG is hypo-sialylated, Fc sialylation is shown to be markedly increased when a 

mouse/human chimeric IgG3 Phe243Ala (F243A) variant is expressed in Chinese hamster ovary 

(CHO)-K1 cells. Here we investigate whether sialylation is increased in IgG1 F243A when 

expressed in CHO-K1, mouse myeloma J558L and human embryonic kidney (HEK) 293. 

Although the sialylation level was 2 - 5% for IgG1 wild type (WT), it was increased to 31%, 

10% and 33% for the variant from CHO-K1, J558L and HEK293 cells, respectively. 

Interestingly, an increased addition of bisecting GlcNAc and (1-3)-galactose residues to the Fc 

glycan was observed for HEK293-derived and J558L-derived IgG1 F243A, respectively. 

Fucosylation of HEK293-derived IgG1 F243A was maintained despite increased bisecting 

GlcNAc content. Although sialic acid and bisecting GlcNAc residues are reported to have an 

opposing effect on antibody-dependent cellular cytotoxicity (ADCC), IgG1 F243A showed 7 

times lower ADCC activities than IgG1 WT, irrespective of bisecting GlcNAc residue. Thus, 

highly sialylated, human cell-derived IgG1 F243A with lowered ADCC activity may be of 

interest for the development of therapeutic antibodies with anti-inflammatory properties as an 

alternative to IVIG.  
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1. Introduction 

 

Glycosylation of IgG-Fc at Asn297 is essential for optimal activation of Fc receptors and 

complement (Jefferis, 2007; Jefferis, 2009; Mimura et al., 2009). The oligosaccharides of 

human serum IgG-Fc are heterogeneous, due to variable attachments of outer-arm sugar 

residues such as fucose, galactose, bisecting GlcNAc and sialic acid to the core heptasaccharide 

(GlcNAc2Man3GlcNAc2). Importantly, outer-arm sugar residues are involved in unique 

functions of IgG-Fc glycoforms including enhanced ADCC activity of non-fucosylated 

glycoforms (Shields et al., 2002; Shinkawa et al., 2003). Conversely, Fc sialylation has been 

reported to down-regulate Fc effector functions, thereby resulting in reduced ADCC activity 

(Scallon et al., 2007). It has also been shown that sialylated IgG is responsible for 

anti-inflammatory effects of intravenous immunoglobulin (IVIG) used for treatment of 

autoimmune disorders such as Kawasaki disease, immune thrombocytopenia and 

Guillain-Barré syndrome (Kaneko et al., 2006; Nimmerjahn et al., 2007; Anthony et al., 2008; 

Anthony and Ravetch, 2010). In a mouse model where mice with induced arthritis were treated 

by transfer of macrophages from human dendritic cell-specific intercellular adhesion 

molecule-3-grabbing nonintegrin (DC-SIGN)-transgenic mice, sialylated IgG was shown to 

engage DC-SIGN, which resulted in the induction of IL-33 that orchestrates anti-inflammatory 

responses including the induction of IL-4 from basophils and upregulation of inhibitory receptor 

FcRIIb on effector macrophages (Anthony et al., 2011). Although the impact of sialylation of 

IgG on immunosuppression remains unsolved (Guhr et al., 2011; Kasermann et al., 2012; 

Leontyev et al., 2012; Schwab and Nimmerjahn, 2013; Yu et al., 2013c; Campbell et al., 2014; 

Othy et al., 2014; Schwab et al., 2014; Washburn et al., 2015), sialylation of IgG has drawn 
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increased attention as a possible mechanism to generate therapeutic antibodies with 

anti-inflammatory properties.  

Currently approved therapeutic IgG antibodies for clinical use are produced in CHO and mouse 

myeloma NS0 and Sp2/0 cells, resulting in low levels of IgG sialylation (Mimura et al., 2009). 

The production of fully sialylated IgG remains a challenge although host cells have been 

glyco-engineered through overexpression of relevant glycosyltransferases or treated with 

additives known to enhance glycosyltransferase activities. Amino acid substitution of specific 

residues in the CH2 domain of the IgG molecule may provide an alternative route to increasing 

IgG sialylation level. It has been reported that sialylation is substantially increased for a 

mouse/human chimeric IgG3 antibody in which Phe243 of the CH2 domain is replaced by Ala 

(F243A) and, to a lesser extent, for the IgG3 F241A variant (Lund et al., 1996; Mimura et al., 

2001b). Differential scanning microcalorimetry analyses of homogeneous IgG-Fc glycoforms 

have shown that the removal of the GlcNAc and branching mannose residues that interact with 

Phe243 and Phe241 residues markedly lower the stability of the CH2 domains of IgG-Fc 

(Mimura et al., 2000; Mimura et al., 2001a; Mimura et al., 2001c). Nuclear magnetic resonance 

(NMR) analysis of the F241A and F243A variants has shown that these amino acid 

replacements increase the glycan mobility (Subedi et al., 2014), probably exposing the glycans 

for increased processing by the glycosyltransferases. Crystal structures of the Fc F241A variant 

have revealed increased conformational flexibility of the CH2 domains (Yu et al., 2013a; Ahmed 

et al., 2014), which is consistent with the NMR observation. In this study we have focused on 

the F243A variant because this IgG1 variant may serve as a suitable antibody model to 

investigate in greater detail as to the mechanism by which sialylated IgG or IVIG mediates 

anti-inflammatory properties in humans. As IgG N-glycan composition is species-specific, we 

selected CHO-K1, mouse myeloma J558L and HEK293 for stable expression of the target 
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protein followed by comprehensive glycan analysis. We found considerable variations in glycan 

profiles from the IgG1 WT and F243A expressed in these cell lines, primarily due to the 

species-specific glycosylation machinery. We then examined the effectiveness of the various 

glycoforms as potential anti-inflammatory biotherapeutics by applying our ex vivo cell-based 

assay. 

 

 

2. Materials and methods 

 

2.1. Cell lines 

Mouse myeloma cell line J558L (BALB/c) that produces  L chain and the J558L transfectant 

THG1-24 that produces anti-NIP (4-hydroxy-3-iodo-5-nitrophenacetyl) mouse/humanIgG1 

were obtained from European Collection of Cell Culture. CHO-K1 and human embryonic 

kidney (HEK) 293 were provided by the RIKEN BRC (Ibaraki, Japan). J558L, THG1-24 and 

CHO-K1 were grown in RPMI1640 cell culture media supplemented with 10% fetal calf serum, 

2 mM glutamine and 100 g/ml penicillin/100 U/ml streptomycin (10% RPMI). HEK293 cells 

were grown in DMEM supplemented with 10% fetal calf serum, 2 mM glutamine and 100 

g/ml penicillin/100 U/ml streptomycin. 

 

2.2. Construction of expression vectors for mouse/human chimeric IgG1 WT and F243A mutant  

2.2.1. Expression of IgG1 WT and F243A in mouse J558L cells  

Total RNA was isolated with RNeasy micro kit (Qiagen) from the mouse/human chimeric 

IgG1-producing THG1-24 cells (Bruggemann et al., 1987). The 1 gene encoding mouse VH 

region (GenBank accession no. J00529) and human constant region was reverse-transcribed by 
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using Titan One-Tube RT-PCR kit (Roche) with the forward primer containing Nco I site, 

5'-GAC CAT GGG ATG GAG CTG TAT CAT GCT-3', and the reverse primer with Not I site, 

5'-GCG GCC GCT CAT TTA CCC GGA GAC AGG GAG -3'. The PCR products of the 1 

chain gene were ligated to pGEM-T vector (Promega). PCR mutagenesis was performed to 

replace Phe243 with Ala in the CH2 domain using the Quickchange II Site-Directed Mutagenesis 

Kit (Stratagene), the 1 chain cDNA as the template and mutagenic primers 5'-GAC CGT CAG 

TCT TCC TCG CCC CCC CAA AAC CCA AG-3' (sense) and 5'-CTT GGG TTT TGG GGG 

GGC GAG GAA GAC TGA CGG TC-3' (antisense). The 1 chain Phe243Ala (F243A) DNA 

was released with Nco I and Not I restriction endonucleases (New England Biolabs), ligated to 

pTriEx1.1 neo expression vector (Merck Novagen) and transformed into XL1-Blue 

supercompetent cells (Stratagene) for plasmid propagation (Fig. 1A-i). The pTriEx1.1 neo 

expression vector encoding the H chain F243A was transfected by using Nucleofector® (Lonza) 

into L chain-producing J558L myeloma cells. IgG1 F243A-producing stable clones were 

established by applying the limiting dilution method in the presence of 0.6 mg/ml G418 (Sigma). 

The J558L transfectants were grown in the bioreactor CELLine CL1000 (INTEGRA 

Biosciences) in RPMI1640 containing 2% IgG-depleted fetal calf serum (Life Technologies). 

and purified on a protein G column (GE) (Fig. 1B-i). 

 

2.2.2. Expression of IgG1 WT and F243A in HEK293 cells 

Total RNA was isolated from J558L cells with RNeasy micro kit (Qiagen), and the L chain gene 

was amplified by RT-PCR with the forward primer 5'-ATG GCC TGG ATT TCA CTT ATA 

CTC-3' and the reverse primer 5'-CTA GGA ACA GTC AGC ACG GGA CAA-3'. The PCR 

product was ligated to the pGEM-T easy vector (Promega). Expression vectors encoding both 

the L chain and the H chain WT or F243A were constructed as follows. The L chain gene was 
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amplified by PCR using the forward primer with the Xho I site 5'-ATA GGC TAG CCT CGA 

GCA CCA TGG CCT GGA TTT CAC TTA TA-3' and the reverse primer with the Mlu I site 

5'-TGC ATG CTC GAC GCG TCT AGG AAC AGT CAG CAC GGG ACA A-3'. The PCR 

products and the digested pIRES vector (Clontech) with Xho I and Mlu I (New England 

Biolabs) were gel-purified and ligated by the InFusion technology (Clontech) (Fig. 1A-ii). By 

using the pGEM-T vectors encoding the H chain WT or F243A as a template (Section 2.2.1), the 

H chain WT or F243A gene was amplified by PCR using the forward primer with the Xba I 

site 5'-CCC GGG ATC CTC TAG ACA CCA TGG GAT GGA GCT GTA TCA TG-3' and the 

reverse primer with the Not I site 5'-TAA AGG GAA GCG GCC GCT CAT TTA CCC GGA 

GAC AGG GAG A-3'. The PCR products and the L chain-encoding pIRES vector digested with 

Xba I and Not I were gel-purified and ligated by the InFusion technology (Fig. 1A-ii). The L and 

H chain-encoding pIRES vector was transfected into HEK293 cells by electroporation using 

Neon Transfector (Life Technologies). Stable transfectants producing IgG1 WT or F243A were 

selected in the presence of G418 (0.4 mg/ml) and cloned by the limiting dilution method. The 

HEK293 transfectants were grown in the bioreactor CELLine AD1000 (INTEGRA Biosciences) 

in DMEM containing 2% IgG-depleted fetal calf serum (Life Technologies). IgG1 WT and 

F243A were purified from the supernatants on a protein G column (GE) (Fig. 1B-i). 

 

2.2.3. Expression of IgG1 WT and F243A in CHO-K1 cells 

The L and H chain genes with the intervening IRES sequence (Section 2.2.2) were amplified by 

PCR using the forward primer with the Hind III site 5'-GTT TAA ACT TAA GCT TCA CCA 

TGG CCT GGA TTT CAC TTA TA-3' and the reverse primer with the Not I site 5'-TAG ACT 

CGA GCG GCC GCT CAT TTA CCC GGA GAC AGG GAG A-3'. The PCR products and the 

pcDNA5/FRT vector (Life Technologies) digested with Hind III and Not I were gel-purified and 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

9 

 

ligated with the InFusion technology (Fig. 1A-ii). CHO-K1 cells were engineered to create a 

Flp-In CHO host cell line with pFRT/lacZeo vector using the Flp-In System (Life Technologies). 

The pcDNA5/FRT vector encoding IgG1 WT or F243A and the pOG44 vector were 

co-transfected into the Flp-In CHO cells by electroporation. Stable CHO transfectants were 

selected in the presence of 0.2 mg/ml hygromycin and cloned by the limiting dilution method. 

The CHO transfectants were grown in the bioreactor CELLine AD1000 (INTEGRA 

Biosciences) in RPMI1640 containing 2% IgG-depleted fetal calf serum. The antibodies were 

purified from the supernatants on a protein G column (Fig. 1B-i). The antigen binding activities 

of IgG1 WT and F243A expressed in CHO-K1, J558L and HEK293 cells were compared by 

ELISA, which confirmed a very similar affinity of these antibodies for the NIP hapten (Fig. S1).   

 

2.3. Glycan analysis by HPLC 

N-glycan analysis of IgG by normal-phase high performance liquid chromatography 

(NP-HPLC) has previously been described (Royle et al., 2006). Briefly, affinity purified IgG (10 

– 50 g) was reduced with SDS sample buffer containing 50 mM dithiothreitol at 70 
o
C for 10 

min, alkylated with 10 mM iodoacetamide after cooling, and separated by SDS-PAGE. 

Coomassie Blue-stained H chain gel bands were excised, cut into 1 mm
3
, followed by alternate 

washes with acetonitrile and 20 mM NaHCO3 (pH 7.0). The glycans were released from protein 

in the gel with peptide-N-glycosidase F (Prozyme) at 37 
o
C for 18 h, extracted from the gel 

pieces by repeated sonication steps in water, then acetonitrile, dried under vacuum and 

fluorescently labeled with 2-aminobenzamide (2-AB) dye. The 2-AB derivatives were prepared, 

according to the manufacturer’s instruction (LudgerTag
TM

 2-AB Glycan Labeling Kit, Ludger, 

UK). The glycans were separated from the excess reagents by ascending paper chromatography 

in acetonitrile using Whatman 3MM Chr paper. The glycans were analyzed by NP-HPLC on a 
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4.6 x 250 mm TSK amide-80 column (Anachem, Luton, UK). The elution times of glycans are 

expressed in glucose units by reference to a dextran ladder. The glycans were digested with 

arrays of exoglycosidases including Arthrobacter ureafaciens sialidase (ABS, 2-6>3,8, 

Prozyme, GK80040), Streptococcus pneumoniae sialidase (NAN1, 2-3,8, Prozyme, GK80020), 

coffee bean -galactosidase (CBG, 1-3,4,6, Prozyme, GKX-5007) and bovine testis 

-galactosidase (BTG, 1-3,4, Prozyme, GKX-5013) for the identification of individual 

monosaccharides and linkages through enzyme specificity. The digested glycans were cleaned 

up with Micropure-EZ (Millipore, cat # 42530) before HPLC analysis. Peaks from glycan 

profiles can be allocated via web-based software that accesses our database (Campbell et al., 

2008). 

 

2.4. Glycosidase treatment of IgG1 WT and F243A 

For truncation of terminal sialic acid residues, purified IgG1 WT or F243A was treated with 

ABS (0.25 U/ml, Roche) for 18 h at 37 
o
C in 50 mM acetate buffer (pH 5.0). ABS-treated IgG 

was affinity purified using Streptococcal protein G Sepharose 4B (GE), eluted with 0.1 M 

glycine-HCl buffer (pH 2.7). Eluates were immediately neutralized with 1 M Tris/HCl (pH 9.0) 

and dialyzed against PBS (Fig. 1B-ii). Removal of the terminal sialic acid residues was 

confirmed by analysis of the N-glycan attached to the H chain as described in Section 2.3 and 

by lectin blotting with Sambucus Nigra lectin (Vector Laboratories) for HEK293-derived IgG1 

F243A (Fig. 1B-ii). 

 

2.5. ADCC assay 

Peripheral blood mononuclear cells (PBMCs) used as effector cells were isolated from 

heparinized blood with Ficoll-Hypaque at 400 g for 30 min, washed with PBS twice and 
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cultured in 10% RPMI overnight. CHO-K1 cells were suspended in borate-buffered saline (pH 

8.0), derivatized with NIP-e-aminocaproyl-OSu (Biosearch Technologies) at 0.1 mg/ml for 30 

min by agitating at room temperature, and washed with PBS three times. The NIP-derivatized 

CHO-K1 cells were resuspended in IMDM (Life Technologies, cat # 12440-053) containing 1% 

bovine serum albumin at 2 x 10
5
/ml and seeded in triplicate in a 96-well plate (50 l/well). 

Serially diluted anti-NIP IgG1 WT or F243A (2 x 10
-4

 – 6 g/ml) were added (50 l/well). 

PBMCs resuspended at 2.5 x 10
6
/ml in fresh 10% RPMI medium were added to the sensitized 

target cells (100 l/well) and incubated for 4 h at 37 
o
C. One hour before the termination of the 

incubation 10 l of 10% Triton-X100 was added to positive control samples to prepare fully 

lysed controls. The LDH activity from 50 l of the lysed cell supernatant was measured with the 

CytoTox96 non-radioactive cytotoxicity assay (Promega). The ADCC data were fitted to a 

sigmoidal dose-response curve (GraphPad Prism v6). The differences in the ADCC activities 

between IgG1 WT and various glycoforms of the F243A variant were tested by the extra sum of 

squares F-test (GraphPad Prism v6). p <0.05 was considered statistically significant.    

 

3. Results  

 

Glycosylation of IgG1 WT and F243A from CHO transfectants 

Increased sialylation of the Fc glycans of the F243A variant was first described for IgG3 

produced in CHO-K1 transfectants (Lund et al., 1996). We examined if increased sialylation is 

also observed in the IgG1 subclass by F243A mutation when expressed in stable CHO-K1 

transfectants. Although the proportion of sialylated glycoforms was 3.9% for IgG1 WT (Fig. 2A, 

Table 1), IgG1 F243A exhibited increased levels of sialylated glycoforms (31.0%, Fig. 2B, 

Table 1). Terminal sialic acid residues were sensitive to digestion with both Arthrobacter 
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ureafaciens sialidase (ABS) and Streptococcus pneumoniae sialidase (NAN1), indicating that 

the sialic acids are (2-3)-linked as predicted (Fig. 2B-ii & iii).  

 

Glycosylation of IgG1WT and F243A from J558L transfectants 

Mouse myeloma cells are also of significant industrial importance for the production of 

therapeutic antibodies. The HPLC profile of IgG1 WT from the mouse J558L transfectant 

THG1-24 showed minor glycan peaks larger than G2F (Fig. 3A). The glycans larger than G2F 

were heterogeneous from the IgG1 F243A expressed in stable J558L transfectant compared 

with those of CHO-derived IgG1 F243A (Fig. 3B-i). Unexpectedly, some of these glycan peaks 

were not ABS-sensitive (Fig. 3B-ii), in contrast to those of CHO-derived IgG1 (Fig. 2B-ii). A 

combination of ABS and coffee bean -galactosidase (CBG) completely digested these glycans 

to G2(F) (Fig. 3B-ii & iii). This result indicates the presence of -galactosylated glycans 

G2FGa1 and G2FGa2 as well as sialylated glycans G2FS1 and G2S2. The ratio of 

-galactosylated glycans to sialylated ones was 3:1, suggesting a preference for 

-galactosyltransferase activity on the terminal end of the G2(F) glycan in mouse myeloma cell 

lines.  

 

Glycosylation of IgG1 WT and F243A from HEK293 transfectants 

IgG1 WT produced in HEK293 cells also displayed low levels of sialylation compared to the 

same molecule expressed in the other two rodent cell lines (Fig. 4A-i & ii). In depth analysis of 

the HPLC profiles identified the glycan with a bisecting GlcNAc residue, one of the structural 

variations of the human N-glycan, which accounts for 10.1% of the relative percentage of 

glycans from IgG1 WT. The level of sialylated glycans G2FS1 and G2FS2 was markedly 

increased for the F243A variant from stable HEK293 transfectant (33.1%, Fig. 4B-i, Table 1). In 
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addition, the proportion of bisecting GlcNAc-containing glycans was also increased for the 

variant (39.3%, Fig. 4B-ii & iii, Table 1). In contrast, neither the CHO-derived nor the 

J558L-derived IgG antibodies bore bisected glycan.  

 

ADCC of IgG1 WT and F243A 

Sialylated IgG fractions of IVIG or recombinant IgG have been reported to have reduced ADCC 

activity that is mediated by Fc receptor III (FcRIII) on NK cells (Scallon et al., 2007). ADCC 

activities of the anti-NIP IgG1 WT and F243A expressed in CHO and HEK293 cells were 

measured by using NIP-derivatized CHO cells as target cells and peripheral blood mononuclear 

cells as effector cells. The concentrations of the HEK293-derived antibodies that achieved 20% 

of cytotoxicity, i.e., half of the maximal wild-type activity, was 0.015 g/ml and 0.1 g/ml for 

WT and F243A, respectively (Fig. 5A). This indicates that the ADCC activity of the F243A 

variant was reduced 7-fold compared with that of IgG1 WT. To examine if the presence of the 

sialic acid residue affects ADCC, IgG1 F243A was enzymatically de-sialylated. The ADCC 

activity of de-sialylated IgG1-F243A was comparable to that of mock-digested IgG1-F243A 

(Fig. 5A), indicating that the Phe243 residue is implicated in FcRIII binding, irrespective of the 

terminal sialic acid. Furthermore, we examined the effect of bisecting GlcNAc residue on 

ADCC because bisecting GlcNAc has been reported to enhance ADCC (Umana et al., 1999). 

The ADCC activities of de-sialylated HEK293-derived and CHO-derived IgG1 F243A were 

compared due to the presence and absence of bisecting GlcNAc, respectively. Interestingly, the 

ADCC activities of these F243A glycoforms were not distinguishable (Fig. 5B), indicating that 

the presence of bisecting GlcNAc in the glycan of the F243A variant has a negligible effect on 

the ability of the molecule to modulate ADCC activity.   
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4.  Discussion 

 

Intravenous immunoglobulin (IVIG) is one of the limited treatment options for certain 

autoimmune disorders. Although the mechanism of action of IVIG has not been fully elucidated, 

sialylated IgG-Fc has been shown to be involved in the anti-inflammatory properties of IVIG in 

a mouse model (Anthony et al., 2011). Development of recombinant antibodies with efficient 

anti-inflammatory properties similar to IVIG would therefore be of interest for therapeutic 

purposes. However, the Fc glycans of recombinant antibodies produced in CHO cells are 

severely hypo-sialylated (Fig. 2A) (Mimura et al., 2009). Our attempt to increase the sialylation 

of IgG1 through the F243A mutation achieved approximately 30% of sialylated glycoforms 

from stably transfected CHO cells (Fig. 2B). Although glycosylation of CHO-derived IgG is 

generally human-like, sialic acid linkage differs between CHO and humans in that the 

CHO-derived IgG is (2-3)-sialylated whilst the human serum IgG is (2-6)-sialylated 

(Takeuchi et al., 1988). Previously the production of (2-6)-sialylated IgG3 F243A has been 

reported through overexpression of rat (2-6)-sialylatransferase in CHO cells (Jassal et al., 

2001). Although the sialylation level was slightly increased by the cell engineering, the resulting 

IgG3 was both (2-3)- and (2-6)-sialylated with a ratio of 0.9:1. It has recently been reported 

that nearly 80% of IgG1 F243A is sialylated when the H and L chains, human 

(1-4)-galactosyltransferase and (2-6)-sialyltransferase were transiently co-expressed in CHO 

cells (Raymond et al., 2015). Although the study successfully optimized the transient expression 

of highly sialylated IgG F243A from CHO cells, approximately 20% of glycans of the IgG 

mutant contained the mixture of (2-3)- and (2-6)-linked sialic acids. As biantennary glycans 

with such mixed sialylation linkages are unnatural, their biological consequence is not 
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predictable.  

 

Mouse myeloma cell lines are commonly used for the production of therapeutic antibodies with 

a low level of (2-6)-linked sialic acid attached to the terminal end of the IgG glycan (Mimura 

et al., 2009). Interestingly, we have shown by using mouse myeloma J558L cells that addition of 

-galactose takes precedence over sialylation during IgG1 F243A glycan synthesis (Fig. 3B). 

The presence of increased (1-3)-galactosylation as well as (2-6)-sialylation suggests 

increased accessibility of the respective enzymes to the glycan as a result of disruption of the 

interactions between Phe243 residue and the glycan. To our knowledge, the increased 

(1-3)-linked galactose content in the Fc glycan of an IgG variant from mouse cells has not 

previously been described. Although other murine myeloma cell lines need to be tested to 

generalize this finding, it seems unlikely that mouse cell-derived IgG1 F243A variant is 

appropriate candidate for therapeutic purposes due to immunogenicity of the (1-3)-linked 

galactose epitope in humans (Galili et al., 1993; Chung et al., 2008).  

 

Glycan profiles of recombinant IgG antibodies produced in human cells have not been fully 

documented. The expression of IgG1 F243A in stably transfected HEK293 cells not only 

increased terminal sialic acid of the glycan but also increased bisecting GlcNAc content (Fig. 4), 

again suggesting increased exposure and accessibility of glycans to glycosyltransferases due to 

the F243A mutation. The lack of effect of the bisecting GlcNAc residues of the F243A variant 

on ADCC (Fig. 5B) may not be consistent with the previous report about enhanced ADCC 

activity of IgG with bisecting GlcNAc (Umana et al., 1999; Ferrara et al., 2006). In the 

N-glycan biosynthesis pathway, the addition of bisecting GlcNAc to the core -mannose residue 

prevents the action of 1,6-fucosyltransferase (1,6-FT), resulting in lack of core fucose 
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(Longmore and Schachter, 1982). Overexpression in antibody-producing cells of 

N-acetylglucosaminyltransferase III (GnT-III) that catalyzes the addition of bisecting GlcNAc is 

shown to result in the production of non-fucosylated IgG with increased ADCC activity. 

Importantly, fucosylation of the HEK293-derived IgG1 F243A was maintained despite 

increased bisecting GlcNAc content (Fig. 4B-ii, Table 1), indicating that 1,6-FT acts on the Fc 

glycan before GnT-III does in HEK293 cells. The fucosylation level may depend on the balance 

of expression between GnT-III and 1,6-FT. With regard to sialylation, it should be possible to 

obtain higher (2,6)-sialylation levels of the F243A variant from HEK293 through 

co-expression of galactosyltransferase and sialyltransferase, as shown with CHO cells 

(Raymond et al., 2015). Combination of glyco-engineering of human host cell with engineering 

of Fc amino acid sequence may be an appropriate strategy to produce highly sialylated IgG 

molecules.   

 

Fc conformational flexibility as well as sialylation has been proposed to account for the 

anti-inflammatory activity of IgG. Surprisingly, it has recently been reported that the F243A and 

F241A variants can induce anti-inflammatory cytokine IL-33 production from mouse 

macrophage expressing DC-SIGN in a similar manner to IVIG and sialylated IgG (Fiebiger et 

al., 2015). Crystallographic analyses of the F241A Fc (PDB IDs: 4BM7 and 4Q74) have 

revealed localized destabilization of the protein-glycan interface in the CH2 domain, indicating a 

great degree of conformational flexibility compared to native Fc (Yu et al., 2013a; Ahmed et al., 

2014). On the other hand, distinct crystal structures of sialylated Fc (PDB IDs: 4BYH, 4Q6Y) 

suggest heterogeneity of the conformation of the sialylated CH2 domains (Crispin et al., 2013; 

Ahmed et al., 2014), which might be related to DC-SIGN engagement. Another key question 

exists around the IVIG anti-inflammatory mechanism regarding the identification of the human 
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counterpart of the macrophage from the DC-SIGN-transgenic mouse. Although in preliminary 

studies we pulsed human monocyte-derived mature dendritic cells (DC-SIGN-positive) with 

IgG1 WT or F243A, IL-33 production was not demonstrated from the dendritic cells (data not 

shown). The molecular basis for the modulation of autoimmune disorders by IVIG still presents 

an intriguing question in humans, and the F243A variant could provide a key insight into the 

mechanism of action of IVIG. 
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Table 1. Analysis of the key features of the N-glycans released from the mouse/human chimeric 

IgG1 antibodies 
a
 

Host cell IgG1 

Sialic acid (%) 
-Gal 

(%) 

Term. Gal 

(%) b 

Term. 

GlcNAc 

(%) c 

High 

mannose- 

type (%) 

Bisecting 

GlcNAc 

(%) 

Core 

fucose 

(%) 

Predominant 

glycoform S1 S2 

CHO-K1 

WT 1.5 2.4 0 70.7 21.9 3.5 0 84 G1F 

F243A 13.4 17.6 0 52.5 11.8 4.7 0 84.1 G2F 

J558L 

WT 1.1 3.8 6.5 38.6 44.5 5.5 0 87.2 G0F 

F243A 2.7 7.8 28.5 46.7 6.6 7.7 0 69.3 G2F 

HEK293 

WT 1.4 0.2 0 54.4 42.9 1.1 10.1 88.3 G1F 

F243A 17.5 15.6 0 55.1 6.9 1.6 39.3 90.4 G2F 

a
Glycans were quantitated by measuring peak areas in the HPLC profiles (Figs. 2, 3 and 4).  

b
Glycoforms terminating in galactose residues (G1F, G1FB, G2, G2F and G2FB) 

c
Glycoforms terminating in GlcNAc residues (G0, G0B, G0F and G0FB) 
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Legends 

 

Fig. 1. Production of mouse/human chimeric IgG1 WT and its F243A variant. (A) Schematic 

representation of the vectors encoding for the human chimeric IgG1 WT and F243A variant in 

mouse J558L cells (i) and CHO-K1 and HEK293 cells (ii). (B) SDS-PAGE pattern of the IgG 

proteins produced from CHO-K1, J558L and HEK293 cells (i) and that of sialidase 

(ABS)-treated H chains of IgG1 WT and F243A stained with Coomassie Brilliant Blue (CBB) 

(ii, top) and Sambucus Nigra (SNA) lectin specific for (2-6)-linked sialic acid (ii, bottom).   

 

Fig. 2. NP-HPLC analysis of CHO-derived IgG1 WT (A) and F243A (B). Symbols of 

monosaccharides and lines for showing glycosidic linkages (inset). Note that the F243A variant 

bears highly sialylated glycans that are Streptococcus pneumoniae sialidase (NAN1)-sensitive, 

i.e., (2-3)-linked. Glycans are designated by G0, G1 and G2 according to the numbers of 

terminal galactose followed by the letter F indicating the presence of fucose. [3] and [6] in the 

G1 glycan codes indicate the attachment of galactose on the 3- and 6-arm, respectively. M6 

denotes a high-mannose-type glycan containing six mannose residues. 

 

Fig. 3. NP-HPLC analysis of mouse myeloma J558L-derived IgG1 WT (A) and F243A (B). 

Note that the F243A variant has increased levels of both sialylated and -galactosylated glycans. 

“Ga” designates (1-3)-linked galactose residue. Peaks marked with asterisk were artifacts.  

 

Fig. 4. NP-HPLC analysis of HEK293-derived IgG1 WT (A) and F243A (B). The letter B in a 

glycan code indicates the presence of bisecting GlcNAc. Note that the F243A variant exhibits 
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increased levels of the glycans with sialic acid and bisecting GlcNAc residues. 

 

Fig. 5. Comparison of ADCC between IgG1 WT and various F243A glycoforms. (A) Effect of 

de-sialylation of IgG1 F243A on ADCC. (B) Effect of the presence and absence of bisecting 

GlcNAc residue in the N-glycans of IgG1 F243A on ADCC. Samples were analyzed in triplicate, 

and the error bars represent S.E.M. The data were fitted to a sigmoidal dose-response curve. The 

differences in the ADCC activities between the samples were determined by the extra sum of 

squares F-test. Note that the presence of sialic acid or bisecting GlcNAc residue(s) in the 

glycans had no significant effect on the ADCC activity of IgG1 F243A. *p<0.001, N.S.: not 

significant  
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Highlights 

 Sialylation of IgG1-Fc is enhanced by F243A mutation. 

 The glycan structures of IgG1 F243A differ between the species of host cells. 

 Low ADCC activity of IgG1 F243A is not influenced by bisecting GlcNAc residue. 

 IgG1 F243A can be of interest for development as therapeutics. 


