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ABSTRACT: The ability to discriminate between epige-

netic variants in DNA is a necessary tool if we are to in-

crease our understanding of the roles that they play in 

various biological processes and medical conditions. 

Herein it is demonstrated how a simple two-step fluores-

cent probe assay can be used to differentiate all three 

major epigenetic variants of cytosine at a single locus site 

in a target strand of DNA. 

The roles that modified nucleobases in DNA may play in 

cellular processes, gene expression and evolutionary de-

velopment show the importance that nature places on 

structural diversity.1 Cytosine modification is a crucial 

epigenetic process2 and methylation at the C5 position is 

well documented.3 However the recent discovery of 5-

hydroxymethylcytosine (hmC) in mammalian tissue 

DNA4 suggests rather subtle but important biological 

roles with potential medical significance for the cohort of 

cytosine variants (Figure 1a).5,6 It also highlights and re-

inforces the importance of identifying and discriminating 

between various cytosine modifications in DNA, that may 

range from large hyper- or hypo-methylated regions to 

single-site loci.7 Bisulfite sequencing can successfully 

discriminate between cytosine and methylcytosine (mC) 

residues but until very recently,8 this widely-used meth-

od could not discriminate between methyl- and hy-

droxymethyl modifications, as both prevented bisulfite 

mediated oxidation of cytosine to uracil.9,10 A number of 

other approaches have been used in an attempt to differ-

entiate between various cytosine variants, including sin-

gle-molecule real time sequencing (SMRT),11 chemical 

labeling,12 liquid chromatography/mass spectrometry 

(LC/MS-MS),13 antibodies,14 peptides,15 nanopores16,17 

and electrochemical sequencing.18 However, to date rela-

tively few strategies have attempted to use a simple and 

direct fluorescent readout to accomplish discrimination 

between these epigenetic markers (vide infra). This is in 

contrast to the wide range of fluorescence-based strate-

gies used to identify canonical base variations in DNA (i.e. 

single nucleotide polymorphisms or SNPs) using so-

called base discriminating fluorophores (BDFs).19,20 There 

are some examples of related approaches to sense modi-

fications in particular DNA bases, e.g. oxo-G from G,21,22 

but the similarity in size and structure of modified nucle-

obases tend to make the identification of such changes a 

challenging exercise.  
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Figure 1  Sensing epigenetic changes in DNA. (a) Target 

nucleobases cytosine (C), 5-methylcytosine (mC) and 5-

hydroxymethylcytosine (hmC) within a DNA strand; (b) 

Schematic representation of the fluorescent sensing assay 

where the colored boxes denote the different bases to be 

probed, the blue triangles represent the anthracene tagged 

probes P-4 and P-5, and the red and green triangles denote 

increased and decreased fluorescence emission upon hy-

bridization; (c) Structure of the anthracene tag in the DNA 

probe strands P-n, where n is the number of CH2 groups. 

 

We have previously reported on the use of anthracene 

tagged oligonucleotide probes to detect SNPs in target 

DNA strands23,24 via a modulation of the fluorescent out-

put from the excited anthracene chromophore upon hy-

bridization, which was found to increase or decrease de-

pending on the identity of the base at a single locus in the 

target strand. As with other BDF approaches, this method 

takes advantage of the simplicity of monitoring fluores-

cence changes at room temperatures as opposed to the 

need to precisely control the extent of hybridization via 

temperature variation, as is used in a number of existing 

commercial assays.25 Recently we extended the strategy 

to demonstrate the successful discrimination between C 

and mC bases at the centre of a target DNA strand.26 

Herein we report a further extension and optimization of 

this technique in which we not only report for the first 

time the sensing of hmC through a direct fluorescence 

sensing method but also the ability to discern all three 

epigenetic cytosine variants in one coupled sensing assay 

(Figure 1b) using two closely related probes. 

The anthracene oligonucleotide probes P-n containing 

various alkyl linker lengths, where n represents the num-

ber of methylene groups in the linker (Figure 1c), were 

synthesized via standard solid-phase DNA synthesis us-

ing a previously described synthetic procedure.26 The use 

of an enantiopure non-nucleosidic threoninol backbone, 

as used before by us and others,27 offered both a more 

straightforward synthesis of the tag and the assurance of 

forming only one diastereoisomer of the sensing strand. 

The tags (see Supporting Information) were incorporated 

into the centre of a 15-mer sequence P-n that allowed a 

CpG sequence to be targeted directly opposite the an-

thracene position, this being the most common site for 

methylation. The anthracene modified strands, the un-

modified control P-G and the three target strands S-C, S-

mC and S-hmC were all purified and then characterized 

by analytical RP-HPLC and ES mass spectrometry (see 

Supporting Information). 

(a) 

Strand 

 

Sequence 

P-G 5’–TGGACTCGCTCAATG–3’ 

P-n (n = 3-7) 5’–TGGACTCnCTCAATG–3’ 

S-C 3’–ACCTGAGCGAGTTAC-5’ 

S-mC 3’–ACCTGAGmCGAGTTAC-5’ 

S-hmC 3’–ACCTGAGhmCGAGTTAC-5’ 

 

(b) 

Figure 2  DNA strands and fluorescent response. (a) Table of 

the DNA probe and target strands synthesized; (b) Bar chart 

showing the change in fluorescence upon hybridization be-

tween probes P-n (where n = 3-7) and the targets S-C, S-mC 

and S-hmC at 426 nm, [DNA] = 1 µM, λex = 350 nm. 

The quantum yields arising from emission from the pho-

to-excited anthracene tag were found to differ to some 

extent among the single stranded probes P-n (e.g. ϕ = 

0.029 and 0.039 for P-4 and P-5 respectively, see Sup-

porting Information). This suggests that changing the 

alkyl linker length has an effect on the anthracene envi-

ronment upon its incorporation into DNA. Next, hybridi-

zation of each probe (concentration 1 µM) with one mo-

lar equivalent of a matching strand containing either cy-

tosine, mC or hmC directly opposite the anthracene tag 

was undertaken at RT. Emission spectra were then run 

and the variation in fluorescence output at 426 nm rec-

orded as a percentage change of the emission intensity 

from that of the anthracene of the unbound probe at that 

wavelength (Figure 2a). 

The data clearly indicates the fluorescence sensing of the 

DNA target strands, with percentage changes varying 

from +32 to –34%.  Most notably, a consistent trend in 

emission intensity was observed for duplexes formed 

with each probe as follows:  S-C > S-mC > S-hmC. Fur-

thermore the emission intensities were found to increase 

upon duplex formation with S-C targets for three probes, 

whereas the emission intensities decreased for all the 

duplexes formed with S-hmC.  These results illustrate the 

highly sensitive nature of the sensing system, with small 
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changes in both linker length and cytosine methylation 

status having a remarkable effect on the emissivity of the 

anthracene tag upon duplex formation.  

We then set about identifying a method through which 

the identity of all three targets (if unknown) could be 

identified through a simple read-out. The P-4 probe dis-

tinguishes between S-C and S-mC via a positive and nega-

tive change in emission intensity respectively.26 Hybridi-

zation with S-hmC gives a larger decrease in signal 

which, although distinguishable, was not considered ideal 

for simple ON-OFF sensing. However, the P-5 probe gives 

slightly more emissive duplexes, with now only the S-

hmC strand resulting in a decrease in emission. Conse-

quently, by splitting the sample and running two hybridi-

zation assays, one with P-4 and the other with P-5, we 

were able to distinguish identify the methylation status 

(i.e. cytosine, mC or hmC) at a single locus using basic 

instrumentation and a simple read-out methodology 

(Figure 1b). 

It was important to confirm that the fluorescence changes 

were a result of 1:1 duplex formation in each case rather 

than the extent to which hybridization had occurred. This 

was done in two ways; firstly through titrations and the 

addition of an excess amount of target strand, which gave 

no further changes to the spectra. Secondly, variable 

temperature UV spectroscopy measurements were un-

dertaken on the duplexes to determine their melting 

points (Tm values, Table 1). As expected, these values 

were considerably higher than RT (293 K), indicating the 

full formation of duplexes at the sensing study tempera-

ture. The values also gave some insight into the sensing 

results. First of all, very small differences in the Tm values 

for different modifications of cytosine were observed for 

the unmodified duplexes formed with P-G; this trend 

(albeit not outside of experimental error for the S-C sys-

tem) is the same as that found in previous studies.28 Fur-

thermore, replacing the G base in P-G with the anthra-

cene tag (to give P-n) gave little or no change in melting 

temperature despite there being one less C-G H-bonding 

base pair. This suggests that the anthracene moiety can 

intercalate into the DNA duplex, causing duplex stabiliza-

tion via aromatic stacking interactions. CD spectroscopy 

also supports this hypothesis (see Supporting Infor-

mation); as expected, the anthracene-modified DNA 

adopts a B-DNA structure. However, an extra band is ob-

served at ca. 260 nm, which can be ascribed to an induced 

CD signal that is indicative of strong interactions between 

the anthracene unit and the DNA duplex. 

Table 1. UV melting points (Tm values) for P-G, P-4 and P-5 

with S-C, S-mC and S-hmC. Recorded at 260 nm, [DNA] = 5 

µM, 10 mM pH 7 phosphate buffer, 100 mM NaCl. 

Strand
[a]

 P-G P-4 P-5 

S-C 52 51 51 

S-mC 53 52 49 

S-hmC 51 50 50 

 aAverage of 3 runs after annealing. Confidence limit is ± 

0.5 °C 

 

In order to further rationalize the sensing mechanism, 

fluorescent lifetime and molecular dynamic modelling 

studies were undertaken (see Supporting Information). 

The former show the existence of three different decay 

pathways in the single strands with approximately equal 

weightings. These have been tentatively identified as cor-

responding to decay from base-contact static quenching 

(τ1), water dynamic quenching (τ2) and fluorescence 

emission from a solvent-shielded environment (τ3). Hy-

bridisation leads to changes in the weightings of the dif-

ferent lifetimes and, in some instances, a disappearance 

of the third decay pathway. These observations give a 

further indication of how sensitive the anthracene tag is 

to structural modifications to the linker length and to the 

base opposite, which in turn must affect its position in its 

immediate local environment. In support of this, the mo-

lecular dynamics studies also identify a number of differ-

ent environments in which the anthracene can find itself 

in one duplex system, including fully intercalated, partial-

ly intercalated and minor groove binding configurations.  

 

Figure 3  Molecular model of the P-5:S-hmC duplex showing 

the three base-pair core with the anthracene tag (yellow) 

intercalated and the 5-hydroxymethylcytosine base opposite 

it (black arrow) flipped out of the base-pair stack.  

 

It has been shown through molecular dynamics studies 

that modifications to cytosine affect the dynamics of base 

pairing and duplex stability.16 Interestingly, the same 

studies identified the ability of the hydroxyl group in hmC 

to increase its solvation within the major groove by form-

ing polar cavities that capture water molecules within the 

first solvation shell. As water could be one of the fluores-

cence quenching pathways, it may partially explain the 

lower emission intensity of the S-hmC system relative to 

the other modifications, with the τ2 pathway indeed 

showing a marginally greater contribution and shorter 

lifetime for some duplexes (see Supporting Information). 

Another factor that may influence the preponderance of 

one anthracene position over another (and therefore 

emission intensity) is the degree to which the cytosine 

base opposite it can “flip out” from the base-pair stack, a 

process that is in fact integral to the enzymatic conver-

sion of C to mC in nature.29 Our models indicate that this 

process can occur for all three epigenetic variants when 
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the anthracene is fully intercalated (e.g. Figure 3). Overall 

these studies indicate that both the cytosine base and the 

anthracene moiety are highly dynamic, with the overall 

distribution of the anthracene across these environments 

resulting in the observed steady-state spectra in the sens-

ing assay. 

Conclusion 

We have conceived a simple fluorescence-based assay for 

discriminating between the three major epigenetic struc-

tural variants within DNA bases: cytosine, 5-

methylcytosine and 5-hydroxymethylcytosine. The sys-

tem requires only two modified oligonucleotide probe 

strands that can hybridise around the base of interest, 

which can then be unambiguously identified by a simple 

read-out (UP or DOWN) of two fluorescence readings 

upon duplex formation. Given the important role that 

these epigenetic variations appear to play in a number of 

biological and medically-related processes, the need to 

accurately and rapidly identify site-specific loci is likely 

to become even more pressing in the future. This new 

sensing system provides a potential avenue towards the 

goal of simple, low cost and rapid base-specific sensors 

that should be attractive to many researchers interested 

in the role of specific genetic and epigenetic changes in 

DNA. 

Methods 

The synthesis of the anthracene phosphoramidites was carried 

out as reported previously.26 Automated DNA synthesis of probe 

sequences was performed on an Applied Biosystems ABI 394 

synthesizer using standard phosphoramidites and reagents. The 

dMeC and dHOMeC phosphosphoramidites used in the target 

strands were obtained from Link and were deproteccted accord-

ing to the manufacturer’s instructions. Millipore pure H2O was 

used in all syntheses and studies of oligonucleotides. HPLC 

purification was carried out using a Dionex system with Summit 

P580 pump and Summit UVD 170s UV/VIS Multi-Channel 

Detector with prep flow cell. Electrospray Mass spectra were 

measured by a Waters micromass LCT Time of flight mass 

spectrometer.  

UV/Vis spectra were recorded at the University of Birmingham 

using a Varian Cary 5000 or Varian Cary 50 spectrometer. DNA 

melting temperatures were determined on a Varian Cary 5000 

with a peltier heating accessory on a range of 15 to 85 °C with a 

heating rate of 0.5 °C /min. The value of the Tm was calculated 

from the first derivative of the melting curve using Varian soft-

ware. All samples were monitored at 260 nm. Circular Dichro-

ism spectra were taken on a Jasco J-810 spectropolarimeter 

scanning at a rate of 100nm/min, medium sensitivity. 

Quantum yields and fluorescence titrations were carried out on a 

Shimadzu RF-5301 PC spectrofluorimeter. Fluorescence decay 

profiles and lifetimes were taken using a Houriba Jobin Yvan 

Fluorolog 211 using a 371 nm pulsed LED excitation source 

operated at 1 MHz. The detection was accomplished with a 

cooled Hammamatsu 6158 single photon counting accessory. 

The decay profiles were fitted using a multiexponential decay 

function. Different exponential fitting functions were applied 

and the best fitting one was chosen by consideration of the χ2 

parameter and Durbin-Watson test statistic. 

Molecular modeling using the AMBER modeling program. The 

anthracene modifications were built into a B-form duplex (con-

sistent with CD data), replacing a pre-existing guanine nucleo-

side. Molecular dynamics modeling was then carried out on the 

University of Birmingham Bluebear computer cluster for a total 

simulation time of 10 ns. 
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