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Abstract

Integration of sampled data arises in many practical applications, where the integrand function is available
from experimental measurements only. One extensive field of research is the problem of pest monitoring and
control where an accurate evaluation of the population size from the spatial density distribution is required for
a given pest species. High aggregation population density distributions (peak functions) are an important class
of data that often appear in this problem. The main difficulty associated with the integration of such functions
is that the function values are usually only available at a few locations therefore new techniques are required to
evaluate the accuracy of integration as the standard approach based on convergence analysis does not work when
the data are sparse. Thus in our paper we introduce the new concept of ultra-coarse grids for high aggregation
density distributions. Integration of the density function on ultra-coarse grids cannot provide the prescribed
accuracy because of the insufficient information (uncertainty) about the integrand function. Instead, the results
of the integration should be treated probabilistically by considering the integration error as a random variable
and we show how the corresponding probabilities can be calculated. Handling the integration error as a random
variable allows us to evaluate the accuracy of integration on very coarse grids where asymptotic error estimates
cannot be applied.
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Introduction

Integration of sampled data arises in a wide class of problems, as in many practical applications the integrand
function is available from experimental measurements only and is therefore given by a discrete set of function
values. Numerous examples include acoustics and signal processing [1, 2], image reconstruction [3], microbiology
[4], ecological applications [5], etc. A general problem of numerical integration has a long and successful history
and many accurate and efficient methods for integration of sampled data have been designed and documented in
the literature [6, 7, 8, 9]. Meanwhile the increasing complexity of practical problems resulted in the recent need
to revise existing algorithms as new problems have emerged. One such problem is that of insect pest monitoring
where an accurate evaluation of the population size from the spatial density distribution is required for a given
biological species [10].

Let us consider a particular problem of pest insect monitoring in a single agricultural field as an instructive
example. An accurate estimate of the total number of pest insects is crucial for making a reliable decision about
the use of pesticides in the area where the crop is grown [11]. The data for evaluation of the pest population size is
usually collected by trapping. Insect traps are installed at the nodes of a uniform Cartesian grid in the agricultural
field, they are exposed for a certain time, and then the traps are emptied and the caught insects are counted [12].
Under the assumption that the number of insects in each trap gives us the true value of the population density
obtained at the location of the trap [13], the methods of numerical integration on uniform grids can be employed
to estimate the total number of pest insects from the discrete density distribution [14]. However, as we show it
below, the application of well-known methods, such as the Newton -Cotes integration rules on a uniform grid, is
not straightforward at all.

The main difficulty associated with the estimation of the total number of pest insects from trap counts is that the
number N of traps at each direction cannot be made large enough to ensure that the integral estimate is accurate.
Installment of many traps per a unit agricultural area would in itself bring considerable damage to the agricultural
product. Also, trapping is costly and labour-consuming and it introduces a disturbance to agricultural procedures.
Hence the problem of numerical integration has to be solved for a small number N of traps.

From a computational viewpoint, the evaluation of the population size when the number N of traps is small
presents the problem of numerical integration of the integrand function on a very coarse uniform Cartesian grid.
Moreover, grid adaptation is not possible in the problem as the grid should be generated only once and N cannot
be further increased. This restriction appears because a repeated trapping with an increased number of traps is not
available in ecological applications due to the impossibility to reproduce the initial conditions.

Under the restrictions outlined above two following questions arise:

• What is the minimum number Nt of traps required to achieve desirable accuracy?

• What can be an alternative measure of accuracy on a coarse grid of traps where N < Nt?

Although the processing of sparse data has intensively been studied in various problems from physics and en-
gineering (e.g., see [15, 16, 17, 18]), to the best of our knowledge numerical integration of sparse data has not
been discussed in the literature. An attempt to address the questions above has been made in our recent work
[19, 20, 14]. In particular, it has been demonstrated in [14] that the answers to those questions depend strongly
on the integrand function under consideration. Namely, the accuracy of integration remains acceptable even on
very coarse grids if the pest population is distributed more or less over the whole area, no matter whether this
distribution is close to homogeneous or has a complex heterogeneous structure. On the contrary, the accuracy is
very poor when one has to integrate a high aggregation density distribution on a coarse grid.

The high aggregation density distributions (peak functions) are an important class of data that may appear
in ecosystems under various conditions. For instance, one common scenario of biological invasion is that the
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pest species starts spreading from a small localized area and invades the entire domain as time progresses [21].
Obviously the decision about the application of pesticides is best made before the ‘spot’ of high density will spread
over the whole agricultural field. Hence timely and accurate evaluation of the total number of pest insects at earlier
stages of biological invasion is very beneficial for the cultivation of the agricultural product. At the same time
the application of numerical integration methods is significantly hampered by the fact that the exact location of
the high density sub-domain is not known in the problem. Thus, instead of installing the traps locally (i.e., in the
initially infested area) to increase the accuracy of integration, a uniform grid of traps has to be generated over the
entire domain. That makes numerical integration of peak functions a very difficult task, as the information about
the density function on such a sparse grid may be insufficient for reasonably accurate integration.

The aim of our paper is to investigate this problem in order to answer the questions highlighted above. In doing
this, we develop a new approach to work with sparse data and show that integration of peak functions on coarse
grids may lead to a paradigm shift. Our research of ultra-coarse grids will be focused on the one-dimensional case
but the approach we present in the paper can be extended to two-dimensional density distributions.

The paper is organized as follows. In Section 1 we briefly revisit the problem of numerical integration and in-
troduce the concept of ultra-coarse grids for high aggregation density distributions. It will be shown that integration
on ultra-coarse grids cannot provide the prescribed accuracy because of the insufficient information (uncertainty)
about the integrand function. Instead, the results of the integration should be treated probabilistically by consid-
ering the integration error as a random variable. We calculate the probability of an accurate integral estimate in
Section 2, while in Section 3 we consider the transition from ultra-coarse grids to coarse grids where the integra-
tion error becomes deterministic. Numerical examples are considered in Section 4. The discussion of our results
is provided in Section 5.

1 Numerical integration of sparse data

The invasion regime when a spreading pest population forms the strongly heterogeneous patchy spatial distribution,
has its one-dimensional counterpart when a peak density function appears somewhere in a sub-domain Du at the
unit interval D = [0, 1] [19]. One computational problem related to the study of ecologically meaningful density
distributions is that the integral is not available in closed form. Hence before moving to the discussion of a more
general case we consider several examples where the exact value of the integral is available and the integration
error can therefore be computed.

A convenient example of a peak function is given by the normal distribution

u(x) =
1

σ
√

2π
exp

(
−1

2

(x− x∗)2

σ2

)
, (1)

shown in Fig. 1b for the peak width δ = 6σ = 0.25. Let us numerically integrate (1) over the unit interval
D = [0, 1]. Consider a uniform grid generated in the domain D as xi+1 = xi + h, i = 1, . . . , N − 1, where the
grid step size is h = 1/(N − 1). We employ the midpoint rule of integration [26] as a baseline integration method
in our problem. Once a computational grid has been generated, the integral I is computed by the compound
midpoint rule as

I =

1∫

0

u(x)dx ≈ Ĩ =
∑

i

wiu(xi), (2)

where wi = h for the interior nodes i = 2, . . . , N − 1 and wi = h/2 at boundary points i = 1, i = N .
In our discussion of the accuracy of numerical integration on coarse grids we will also compute the integral

by the compound Simpson method where the number N is required to be an odd number, N = 2m + 1, and the
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Figure 1: Numerical integration of a peak function. (a) The peak function (1), where the peak width is δ = 0.25 and the peak

is located at x∗ = 0.38. (b) The integration error (4) computed for the peak function of Fig. 1a on a sequence of uniformly

refined grids. The midpoint rule (MR): solid line, closed circle; the Simpson rule: solid line, open square; the statistical rule

(3) (StR): solid line, open right triangle. The uniform refinement of the original coarse grid ofN = 3 nodes does not decrease

the integration error, unless the domain of the non-zero density is resolved. c) The integration error computed when the peak

(1) is randomly located on the uniform grid of N = 5 nodes. The error (4) is shown for the ten realizations nr of the random

variable x∗. The midpoint rule (MR): solid line, closed circle; the Simpson rule: solid line, open square; the statistical rule

(3) (StR): solid line, open right triangle.

weights in (2) are given by wi = 4h/3, i = 2, 4, . . . , 2m, wi = 2h/3, i = 3, 5, . . . , 2m− 1, and wi = h/3, i = 1,
i = N . Finally, the third method we employ for numerical integration is a so called ‘statistical method’ widely
used in ecological applications [34]. The method evaluates the integral as

I ≈ Aū =
A

N

N∑

i=1

u(xi), (3)

where A is the given area (A = 1 when we integrate over the unit interval).
We define the integration error as

e =
|I − Ĩ |
|I| , (4)

where I is the exact integral and Ĩ is the approximate integral computed by the chosen method of numerical
integration. The accuracy of integration should be

e ≤ τ, (5)

where τ is specified tolerance. It is important to note here that in ecological applications the accuracy requirements
on coarse grids are essentially different from those arising in the conventional problem of numerical integration, as
the tolerance 0.2 < τ < 0.5 is considered as acceptable [27, 28]. However, we will see further in the text that even
such relatively low accuracy of computations is not always achievable when the number of grid nodes is small.

Let us compute the integration error (4) for the density distribution (1). Consider first the midpoint rule (2) of
integration. The error (4) of the midpoint rule is shown as a function of the number N of grid nodes in Fig. 1b.
It can be seen from the figure that the integration error of the midpoint rule is not controlled by uniform grid
refinement on very coarse grids that are in the focus of ecological research. Namely, the error e ∼ 1 remains
beyond the acceptable range e ∼ 0.2 − 0.5 on grids with N < Ñ , where Ñ ∼ 10 is the upper bound for the
realistic number of traps to be considered in ecological applications [29, 30].
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As the uniform refinement does not decrease the error on coarse grids (see Fig. 1b), the obvious decision
would be to apply a more accurate method of numerical integration (i.e., the Simpson method; see [26]) in order to
improve the accuracy of integration on grids with small N . However, it can be seen from Fig. 1b, where the error
of the Simpson method is shown on a sequence of uniformly refined grids, that the Simpson method is not more
accurate than the midpoint rule on coarse grids. On the other hand, the method (3) is theoretically less accurate
than (2) (see [26]), but it cannot be said from Fig. 1b that the method (2) is better than (3) when coarse grids are
considered.

Let us recall that the exact location of the ‘peak sub-domain’ Du is unknown to us. Meanwhile the value of
the approximate integral depends obviously on how many grid nodes are stationed inside the sub-domain Du on
a coarse grid. In order to better understand how the integration error (4) depends on the location of the peak with
respect to the position of grid nodes, we now consider the peak location x∗ in the function (1) as a uniformly
distributed random variable. Let us fix the number of grid nodes as N = 5 and randomly move the peak (1) over
the domain D 10 times. We integrate the function (1) every time that we move the peak, i.e. for each of the 10

realizations nr of the random variable x∗. The results of numerical integration are shown in Fig. 1c, where the
integration error (4) is computed for each of the 10 locations of the peak on the coarse grid of 5 nodes. For instance,
when nr = 3 the peak’s location is x∗ = 0.7013, while for nr = 7 the same peak is located at x∗ = 0.4188, etc. It
is readily seen from the graph of Fig. 1c that for the midpoint rule of integration the error (4) depends essentially
on the peak location as the error varies as 0.0173 ≤ e ≤ 1.379 on the grid with the fixed number of nodes. The
same observation with regard to the integration error is true for the Simpson rule and the integration rule (3).

It follows from the results of the test case (1) that the accuracy of computation cannot be determined when the
high aggregation density distributions are considered on grids with a small number of nodes. Since the integration
error depends on a random location of the point x∗, the error itself becomes a random variable and a probabilistic
approach should be used to evaluate the accuracy. We will refer to the grids, where the accuracy of numerical inte-
gration cannot be determined, as ultra-coarse grids. Correspondingly, the questions formulated in the Introduction
are re-formulated on ultra-coarse grids as follows:

1 Given the number N of grid nodes on a uniform grid (the grid step size h = const), what is the probability
of the event e ≤ τ0, where the integration error e is given by (4) and τ0 is the chosen tolerance?

2 What is the threshold number Nt of grid nodes when the error (4) becomes deterministic?

In the next two sections of our paper we answer the questions (1) and (2) when peak functions are integrated
using the general midpoint rule (2).

2 Ultra-coarse grids

Consider a high aggregation density distribution u(x) modelled by the following peak function

u(x) =

{
f(x) > 0, x ∈ (xI , xII),

0, otherwise,
(6)

where we assume that the function f(x) has a single maximum at point x∗ = 0.5(xI + xII). At this stage we are
not interested in a more detailed definition of the function f(x), as particular examples of u(x) will be considered
further in the text. A sketch of the peak function (6) is shown in Fig. 2.

5
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xi-1/2 xi+1/2xI xIIx* xi

b
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x

g(x)

xi-1 xi+1xI xIIx* xi

Figure 2: The midpoint integration rule for the peak function. (a) One grid node is located within the sub-domain [xI , xII ].

(b) Two grid nodes belong to the peak sub-domain.

Let us expand u(x) at the maximum point x∗ as u(x) = u(x∗) +
1

2

d2u(x∗)
dx2

(x− x∗)2 +R(x) and assume

that the remainder R(x) can be neglected in the vicinity of the peak, so that the integrand becomes

u(x) ≈ g(x) = B −A(x− x∗)2, x ∈ [xI , xII ],

u(x) = 0, otherwise,
(7)

where A = −1

2

d2u(x∗)
dx2

> 0, B = u(x∗) > 0. The integral I is then given by

I =

1∫

0

u(x)dx ≈
xII∫

xI

g(x)dx =
2

3
Bδ, (8)

where the peak width δ is defined as
δ ≡ xII − xI = 2

√
B/A. (9)

Consider a uniform grid of N nodes generated in the domain [0, 1] as xi+1 = xi +h, i = 1, . . . , N − 1, where
the grid step size is h = 1/(N − 1). We begin our study of ultra-coarse grids with the case when the grid step
size h > δ. In other words, we require that the grid is so coarse that only one grid node xi can be located in the
sub-domain [xI , xII ] (see Fig. 2a).

Let the grid step size be
h = αδ, (10)

where the parameter α > 1. We also parametrize the location of the grid node xi in the sub-domain [xI , xII ] as

xi = x∗ + γ h, γ ∈ [0,
1

2
], (11)

in order to compute the approximate integral Ĩ . The midpoint rule approximation of the integral for the geometry
α > 1 is shown in Fig. 2a. The integral Ĩ computed by the midpoint rule when we use the approximation (7) for
u(x) is as follows:

Ĩ =
(
B −Aγ2h2

)
h. (12)

6
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Figure 3: The range of parameter γ = γ(α) for which the integration error is e ≤ τ0. (a) The grid step size is h > δ where

δ is the peak width. (b) The grid step size is δ/2 ≤ h ≤ δ.

Hence the integration error (4) is

e =
|2
3
Bδ +Aγ2h3 −Bh|

2

3
Bδ

≤ τ0.

Without loss of generality let us choose the tolerance as τ0 = 1/4. Taking into account (9) and (10) and solving
the inequalities

3

4
I ≤ Ĩ ≤ 5

4
I (13)

for the node location γ, we obtain the following condition

γI(α) ≤ γ(α) ≤ γII(α), (14)

where

γI(α) =
1

2α

√
1− 5

6α
, γII(α) =

1

2α

√
1− 1

2α
, (15)

for the tolerance τ0 = 1/4.
For the sake of the discussion in Section 3 it is worth noting here that the inequality γI(α) ≤ γ(α) implies that

α ≥ αI = 5/6. If α < αI then Ĩ ≤ 5

4
I always holds and the inequalities (14) should be replaced as

0 ≤ γ(α) ≤ γII(α). (16)

Similarly, the inequality γ(α) ≤ γII(α) requires α ≥ αII = 1/2.
The curves γI(α) and γII(α) are shown in Fig. 3a. The conditions (15) define the parameter range where

integral is computed with the required accuracy τ0. Consider a peak of the width δ and let us fix α = α̂ > 1, so
that the grid step size becomes fixed as h = ĥ = α̂δ. Compute γ̂I = γI(α̂) and γ̂II = γII(α̂) on the grid of size
ĥ. The inequalities (14) provide the error e ≤ τ0 for any γ̂I ≤ γ ≤ γ̂II (see Fig. 3a).

Let us assume that the location x∗ of the peak maximum can be found at any point of the domain [0, 1] with
equal probability, that is the random variable x∗ is uniformly distributed. It then readily follows from the above
consideration that the probability p(h) of achieving the error e ≤ τ0 on a given grid of N nodes is given by

p(h) = (γII(h)− γI(h))/(γmax − γmin) = 2(γII(h)− γI(h)),

7
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where the entire range of γ is given by γmin = 0, γmax = 1/2, the grid step size is h = 1/(N − 1) and we use the
transformation α = h/δ for the fixed peak width δ. Straightforward analysis of expressions (15) shows that the
probability p of achieving the integration error e ≤ τ0 remains p < 1 on any ultra-coarse grid where the condition
h > δ holds.

We summarize the findings of this section as follows:

• We have shown that the integration error should be handled is a random variable on ultra-coarse grids where
the data available for integration are sparse.

• We have considered a quadratic approximation of the integrand function and found the probability p of an
accurate answer when a quadratic polynomial is integrated on an ultra-coarse grid.

Meanwhile, the important question that still remains is: If we gradually increase the number of grid nodes N ,
what is the threshold number Nt for which the error becomes deterministic? The answer to this question will be
found in the next section.

3 Transition from ultra-coarse grids to coarse grids

In this section we investigate the transition from grids where the integration error is a random variable to grids
where the condition e ≤ τ0 always holds for the given tolerance τ0. Let us increase the number N of grid nodes in
order to decrease the grid step size h as

δ/2 ≤ h ≤ δ, (17)

where δ again is the peak width (9). In other words, we now require that 1/2 ≤ α ≤ 1 when the parametrization
(10) is used. If the condition (17) holds, then either one or two grid nodes belong to the sub-domain [xI , xII ] (see
Fig. 2b).

Consider the location (11) of grid node xi. The minimum value γ0 that provides the location of two grid nodes
xi−1 and xi in the sub-domain [xI , xII ] is defined from the conditions xi−1 = x∗ − δ/2 and xi−1 = xi − h. We
have

γ0 = 1− δ

2h
= 1− 1

2α
, (18)

where the parametrization (10) is taken into account.
For γ ∈ [0, γ0) only one grid point belongs to the interval [xI , xII ], and we can use the result (15) to compute

the probability of accurate integration. Hence we now focus on the range γ ∈ [γ0, 1/2] when two grid points are
captured by the peak as it is shown in Fig. 2b.

Let us use again the quadratic approximation (7) of the integrand function. Since g(xi−1) = −A((γ−1)h)2+B

and g(xi) = −A(γh)2 +B, the integral Ĩ is computed by the midpoint rule as follows

Ĩ = (g(xi−1) + g(xi))h = −A((γ − 1)2 + γ2)h3 + 2Bh.

For the sake of simplicity we require again the tolerance τ0 = 1/4 to arrive at the inequalities (13). Consider

first the inequality Ĩ ≥ 3

4
I . Simple algebraic transformation results in

γ2(α)− γ(α) + C(α) ≤ 0,

where C(α) =
1

2
− 1

16α3
(4α− 1).

8
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Figure 4: (a) The set of parametric curves defining the admissible range of node location γ on grids with the grid step size

h ≥ δ/2. In the domain D1 : α ∈ [1/2, αt] the condition e ≤ τ0 holds for any γ, while in the domain D2 : α > αt the

integration error becomes a random variable. (b) The probability p(α) of having the integration error e ≤ τ0 for a peak of

the width δ integrated on a grid with the grid step size h = αδ.

Consider the roots γIII =
1−

√
1− 4C(α)

2
and γIV =

1 +
√

1− 4C(α)

2
of the equation γ2 − γ + C = 0.

The non-empty range γ ∈ [γIII , γIV ] exists, if the inequality 4C(α) ≤ 1 holds. Substituting the above expression
for C(α) into this inequality we obtain

4α3 − 4α+ 1 ≤ 0. (19)

Numerical solution of the equation (19) gives us the roots α1 ≈ −1.1072, α2 ≈ 0.2696 and α3 ≈ 0.8376. Hence if
α ∈ [1/2, α3] , the range γ ∈ [γIII , γIV ] will provide us with the integration error e ≤ τ0 = 1/4, where we should

also take into account the restriction γ ∈ [γ0,
1

2
]. It readily follows from the above computation that γIII(α) <

1

2

and γIV (α) >
1

2
for any α ∈ (

1

2
, 1).

Consider now the lower boundary γ0. The curve γIII(α) intersects the curve γ0(α) at point αt (see Fig. 3b).
We require γ0(αt) = γIII(αt) to obtain the equation

8α3
t − 8α2

t + 1 = 0. (20)

The only root αt in the subinterval [1/2, 1] is αt ≈ 0.8090. Hence the curve γIII(α) lies under the curve γ0(α)

for α ∈ [1/2, αt] and it is above the curve γ0(α) when α ∈ [αt, 1] (see Fig. 3b). Let us also note that αt < α3.

Finally, we consider the inequality Ĩ ≤ 5

4
I where after some algebraic transformations we arrive at

γ2(α)− γ(α) +D(α) ≥ 0, (21)

with D(α) given by D(α) =
1

2
− 1

48α3
(12α − 5). The requirement 4D(α) ≤ 1 results in the inequality

4α3 − 4α+
5

3
≤ 0,

that does not have any real roots for α > 0. Hence the inequality (21) holds for any value of γ.
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Let us now compute the probability p = p(α)theor of the event that the error is e ≤ τ0 on a grid with fixed
grid step size h = αδ, where α ≥ 1/2. The entire domain α ≥ 1/2 is shown in Fig. 4a, where the curves γ(α) of
Fig. 3a and Fig. 3b are now ‘glued’ together. The following cases should be considered.

1. α ∈ [
1

2
, αt], where αt ≈ 0.8090 has been obtained as a solution to the equation (20) derived under the

condition that the tolerance τ0 =
1

4
. Since γIII(α) < γ0(α) and γIV (α) >

1

2
then for any γ ∈ [γ0,

1

2
] the

conditions (13) hold. In other words, if there are two grid points in the sub-domain [xI , xII ] then the integration
error is e ≤ τ0, no matter how those grid points are located with respect to the maximum point x∗. The probability
of the accurate answer is p2(α) = (1/2 − γ0(α))/(γmax − γmin) = 1− 2γ0(α).

Consider now γ ∈ [0, γ0], so that just one grid point is located in the peak sub-domain. The admissible range
of γ is then given by the inequality (14). Let us investigate the position of the curve γII(α) with respect to the
curve γ0(α). Simplifying the equation γ0(α) = γII(α) we obtain the same cubic equation for α as the equation
(20). Hence the three curves γ0(α), γII(α) and γIII(α) intersect in a single point αt (see Fig. 2b).

As γ0(α) < γII(α) for α ∈ [
1

2
, αt], the upper bound in the inequality (14) should be replaced as γI(α) <

γ(α) < γ0(α). At the same time, the lower bound in (14) requires the restriction α ≥ αI that does not hold

for α ∈ [
1

2
, αt] and therefore the condition (16) should be considered. Hence the inequality (14) is transformed

as 0 ≤ γ(α) ≤ γ0(α), if there is one grid point in the sub-domain [xI , xII ]. That means the integration error
is e ≤ τ0 for the grid step size h < αtδ. As the admissible range becomes 0 ≤ γ(α) ≤ γ0(α), the probability
is p1(α) = (γ0(α) − 0)/(γmax − γmin) = 2γ0(α). Hence, the resulting probability of the accurate answer is
p(α)theor = p1(α) + p2(α) = 1 and the condition e ≤ τ0 holds for any γ if the grid step size is h = αδ, where
α ∈ [1/2, αt] for the fixed peak width δ.

2. α ∈ [αt, αI ], where αI =
5

6
≈ 0.8333 for τ0 =

1

4
(see Section 2). From condition (16) we now have

p1(α) = (γII(α)− 0)/(γmax − γmin) = 2γII(α) for γ ∈ [0, γ0] and p2(α) = (1/2− γIII(α))/(γmax − γmin) =

1− 2γIII(α) if γ ∈ [γ0(α),
1

2
]. The resulting probability is p(α)theor = p1(α) + p2(α) < 1.

3. α ∈ [αI , α3], where we have α3 ≈ 0.8376 from (19) for τ0 =
1

4
. For this range of α we have p1(α) =

(γII(α) − γI(α))/(γmax − γmin) = 2(γII(α) − γI(α)), as the inequality (14) now holds for any γ ∈ [0, γ0].

We also have p2(α) = (
1

2
− γIII(α))/(γmax − γmin) = 1− 2γIII(α), γ ∈ [γ0,

1

2
]. The probability p(α)theor =

p1(α) + p2(α) < 1.
4. α > α3. We compute the probability p as p(α)theor = p1(α) = (γII(α) − γI(α))/(γmax − γmin) =

2(γII(α)− γI(α)) (see also Section 2). The probability p2 = 0 because of the restriction α ∈ [ 1
2 , α3] required for

the inequality Ĩ ≥ 3

4
I when γ ∈ [γ0, 1/2].

The function p(α)theor is shown in Fig. 4b. For the fixed width δ of the peak the parameter αt is the threshold
value of the grid step size that provides the transition from ultra-coarse grids to coarse grids. On any grid with
α < αt (domain D1 in Fig. 4a) the error (4) is deterministic in the sense that the condition e ≤ τ0 always holds.
On ultra-coarse grids where α > αt (domain D2 in Fig. 4a) the error (4) is a random variable as the probability of
getting the accurate answer is p < 1.

Below we summarize the main results of the Section 3:

• We have found the threshold number Nt of grid nodes such that the integration error e is always e < τ , if
the number of grid nodes N > Nt. In other words, the error becomes deterministic when we approach the
threshold Nt.

• It has been shown that the grid step size ht that corresponds to the threshold number Nt on a uniform grid
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Figure 5: (a) A quadratic function (7). The peak width is δ = 0.06 and the parameters are A = 1000, B = 0.9. (b)

The probability p(h)num obtained by direct computation agrees with the theoretical results p(h)theor for the function (7) of

Fig. 6a. (c) The integration error for the function (7) on an ultra-coarse grid and a coarse grid with the fixed number of

nodes. The error (4) is shown for the ten realizations nr of the random variable x∗, where x∗ is uniformly distributed. The

probability of achieving an accurate answer (5) is p ≈ 0.3 on an ultra-coarse grid of N = 18 nodes (dashed line), while

p = 1 on a coarse grid of N = 25 nodes (solid line).

is a linear function of the peak width δ, that is ht = αtδ, where αt depends on the chosen tolerance τ only.
The coefficient α has been computed for the tolerance τ = 0.25 as α ≈ 0.8333.

The results above have been obtained under the assumption of a quadratic approximation of the integrand
function. Hence, numerical investigation of the problem is required when a peak funciton has the shape different
from quadratic in order to verify our findings. That will be done in the next section.

4 Numerical examples

In this section we first consider several standard test cases to illustrate our approach to numerical integration on
ultra-coarse grids. We then turn our attention to ecologically meaningful density distributions and discuss how the
theoretical predictions of Section 3 work for them.

4.1 Standard test cases

We begin our consideration with a quadratic function (7), as our first test case is to verify the probability estimate
p(h)theor derived in Section 3. Let us fix the peak width δ and consider the peak location x∗ as a random variable
that is uniformly distributed over the interval [δ, 1 − δ], as we require that the entire peak is stationed within the
unit interval [0, 1]. In our test we provide nr = 104 realizations of the random variable x∗ on a grid with the fixed
number Nl of nodes and compute the integral error (4) where we integrate the function (7) by the midpoint rule
for each realization of x∗. The probability p(hl)num of the accurate numerical integration is computed as

p(hl)num =
n̂r
nr
, (22)

where hl = 1/(Nl − 1) is the grid step size on a grid of Nl nodes and n̂r is the number of realizations for which
the integration error is e ≤ τ0, τ0 = 1/4. We then increase the number of grid nodes as Nl+1 = Nl + 1 and repeat
computation (22). We stop when the number NL of grid nodes results in a grid with the grid step size hL ≤ δ/2.
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Figure 6: Numerical test cases: (a) the cubic function (23), (c) the normal distribution (1). For the functions (a) and (c)

the peak width is chosen as δ = 0.06. (d)-(f) The probability (22) (solid line) of an accurate answer (5) and its comparison

with the theoretical curve p(h)theor (dashed line) obtained for the quadratic function: (b) the probability graph p(h)num

computed for the for the cubic function (23) (d) the probability p(h)num for the normal distribution (1).

The quadratic function (7) is shown in Fig. 5a for the peak width δ = 0.06. The probability p(h)num of the
accurate numerical integration (5) of the function (7) is shown in Fig. 5b. We start from the grid of N1 = 5 nodes
and end our computations on the grid of N17 = 22 nodes where the condition (17) still holds. It can be seen from
the figure that all values of the probability p(hl), l = 1, . . . , 17, computed by direct evaluation (22) lie very close
to the theoretical curve p(h)theor shown as a dashed curve in the figure.

The results of Sections 2 and 3 are further illustrated in Fig. 5c where the integration error (4) is computed
for the function (7) on an ultra-coarse grid and a coarse grid. The computation resulting in the graphs shown in
Fig. 5c is similar to the test case discussed in Section 2 (cf. Fig. 1c). Namely, we randomly move the peak (7)
ten times (nr = 10) on a grid with a fixed number of nodes and compute the integration error every time that the
peak is moved. It can be seen from the figure that the error (4) depends on the peak location when we integrate the
function (7) on an ultra-coarse grid with the number of grid nodes N = 18 (i.e., the grid step size is h = 1/17).
The probability of achieving an accurate answer (5) is p ≈ 0.3 (see the graph in Fig. 5b). Meanwhile, the error is
deterministic on a grid of N = 25 nodes (h = 1/24) and the error is e ≤ τ0, no matter where the peak is located.

We now consider several peak functions different from the quadratic function (7) in order to understand how
the probability estimate obtained for (7) will work for them.

A cubic function

u(x) =





A(x− x∗ + (δ/3))(x − x∗ − (2δ/3))2, x ∈ [x∗ − δ/3, x∗ + δ/3],

0, otherwise,

(23)

presents an interesting test case because the peak now is asymmetric and we therefore use the notation x∗ for the
location of the first root rather than for the maximum point. The function (23) is shown in Fig. 6a, where we still
keep the peak width δ = 0.06 for A = 3 · 104. The probability graph for the function (23) is shown in Fig. 6b. The
graph p(h)num is in a good agreement with the curve p(h)theor on very coarse grids (α > α3) where the probability
of accurate integration is small. At the same time, the actual probability in the transition layer is smaller than the
probability estimate based on the quadratic approximation. One important observation about the graph p(h)num
of Fig. 6b is that the grid step size hnumt for which the error (4) becomes deterministic (i.e. p(hnumt ) = 1 and
p(h) < 1 for any h > hnumt ), is smaller than the theoretical estimate

ht = αtδ, (24)
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Figure 7: Numerical test cases: (a) the probability graphs p(h)num computed for the function (25) when the peak width δ

varies. δ = 0.06: solid line, closed right triangle; circle; δ = 0.1: solid line, closed square; δ = 0.01: solid line, open

circle; The computed probability p(h)num is compared with the theoretical estimate p(h)theor made for a quadratic function.

δ = 0.06: dash-dot-dotted line; δ = 0.1: solid line; δ = 0.01: dashed line; (b) the ”tail” of the probability graphs of Fig. 7a.

The legend is the same as in Fig. 7a. (c) the threshold values hnumt , computed for the function (25) when the peak width δ

varies, are compared with the theoretical curve (24) (dashed line) obtained for a quadratic function.

obtained for the quadratic approximation of the integrand function.
The normal distribution (1) already discussed in Section 1 gives us an example of a peak function that is

different from zero everywhere in the domain x ∈ [0, 1] (see Fig. 6c). However, the peak of width δ = 6σ is a
dominant feature of the function (1), and therefore we can expect a random integration error when we integrate
the normal distribution on ultra-coarse grids. The graph p(h)num computed for the function (1) with peak width
δ = 0.06 is shown in Fig. 6d. It can be seen from the figure that the entire probability graph p(h)num is now
shifted with respect to the curve p(h)theor . The maximum deviation is dp = 0.8129 and the threshold value of the
grid step size is hnumt ≈ 0.5δ instead of ht ≈ 0.8δ obtained for the quadratic function.

A smaller threshold grid step size hnumt is a consequence of the interpolation error eint = O(δ3) that we
introduce when we approximate the integrand function by a quadratic polynomial. As the interpolation error
depends on the peak width δ, our probability estimate p(h)theor should be accurate enough when δ is small (a
narrow peak) and it will diverge from the actual probability p(h)num when we increase the peak width δ. Below
we study this dependence in more detail by considering the Lorentz distribution - another peak function that often
appears in various fields of physics and interdisciplinary research (e.g., see [35]),

u(x) =





δ2

4

1

4(x− x∗) + δ2/4
, x ∈ [x∗ − δ/2, x∗ + δ/2].

0, otherwise,

(25)

Let us vary the peak width in (25) and compute the probability graph p(h)num for each fixed value δ by
employing the procedure (22). A family of probability curves is shown in Fig. 7 for the function (25) with the peak
width δ = 0.06 (a baseline peak), the peak width δ = 0.1 (a wide peak) and the peak width δ = 0.01 (a narrow
peak). For the sake of convenience we show the ‘transition layer’ in Fig. 7a, while the ‘tails’ of the probability
curves are shown in in Fig. 7b. It can be seen from the figure that the computed probability curve p(h)num gets
closer to the probability graph p(h)theor when we decrease the peak width δ. From the ecological viewpoint, the
most important conclusion we derive from the consideration of the probability graphs shown in Fig. 7 is that the
difference between the predicted value (24) and the actual threshold value hnumt obtained by direct computation
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decreases when we decrease δ. In other words, we can rely upon the estimate (24) to determine how many grid
nodes are required to guarantee the accuracy (5) when a narrow peak is integrated. Thus our next test is to compute
the function hnumt (δ) and to compare it with the theoretical estimate (24).

The results of the computation of hnumt for the function (25) where the peak width δ varies are shown in Fig. 7c.
The value hnumt is computed for each fixed peak width δ from the condition that p(hnumt ) = 1 and p(h) < 1 if
h > hnumt . The computed threshold grid step size is in a very good agreement with the estimate (24) for narrow
peaks (δ < 0.1). At the same time, the theoretical curve (24) lies above the actual values when wide peaks are
considered and therefore the estimate (24) can be used in ecological problems as the upper bound for the threshold
value ht.

The standard numerical test cases discussed in this section confirmed that

• Replacing the integrand function by a quadratic polynomial can be considered a reliable approximation when
the probability of accurate integration is computed.

• The formula (24) gives us a good estimate of the threshold grid step size ht when a narrow peak is integrated.

• The same formula (24) can be used as the upper bound for ht if a wide peak is considered.

Once the the estimate (24) of the threshold grid step size ht has been verified for standard numerical test cases,
our next goal is to check how formula (24) will work when ecologically meaningful peak functions are considered.
That will be done in the next sub-section.

4.2 Ecological test cases

We use the pest density distributions u(x) generated from the spatially explicit predator-prey model describing
spatiotemporal dynamics of a pest insect population [22, 23],

∂u(x, t)

∂t
= d

∂2u

∂x2
+ u(1− u)− uv

u+ p
,

∂v(x, t)

∂t
= d

∂2v

∂x2
+ k

uv

u+ p
−mv .

(26)

The model (26) presents a system of coupled diffusion-reaction equations written in dimensionless variables.
The functions u(x, t) and v(x, t) are the densities of the pest insect (considered as the prey) and its consumer
(the predator), respectively, at time t > 0 and position x. Coefficient d describes species diffusivity due to the
movement of the individuals, p is the half-saturation prey density, k is the food assimilation efficiency coefficient
and m is the predator mortality. Also, numerical solution of the system (26) requires us to augment the equations
by some initial conditions u(x, 0), v(x, 0).

Ideally, our results on the accuracy of integration on ultra-coarse grids should be checked against appropriate
ecological data. However, one serious obstacle in the problem is that our further discussion will require the
handling of data on a sequence of refined grids and it is not possible to fulfil this requirement when field data are
considered. Meanwhile the model (26) and its two-dimensional counterpart (e.g., see [22]) have been thoroughly
validated against experimental data to demonstrate that the model is in good agreement with the results of field
measurements [5]. Hence we believe the model (26) can be used for the generation of ecologically realistic data.

The equations (26) provide a rich variety of spatiotemporal distributions of the pest density function u(x, t).
In particular, it is well known (e.g., see [5]) that the properties of the spatial distribution u(x) considered at a given
time t are determined by the diffusion d in the problem and that the initial conditions u(x, 0), v(x, 0) can evolve
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Figure 8: Ecological test cases. The spatial distribution of the pest population density u(x) as predicted by the model (26)

for different values of the diffusivity d; (a) the density distribution u1(x) has been obtained for for d = 10−4 (b) the pest

population density u2(x) obtained for d = 10−5 (c) the density u3(x) for d = 10−6. An example of the system’s parameters

(the density distribution u2(x)): t = 50, k = 0.5, p = 2.0, m = 0.42. The initial conditions are u(x, 0) = u0, 0 < x < xu,

v(x, 0) = v0, 0 ≤ x ≤ xv , where u0 = 0.8, v0 = 0.5, xu = 0.6, xv = 0.55, and u(x, 0) = 0, x > xu, v(x, 0) = 0, x > xv .

into the one-peak spatial pattern if the diffusion is d � 1 (see [25] for a more detailed discussion on the pattern
formation). Several examples of one-peak density distributions are shown in Fig. 8, where the functions u1(x),
u2(x) and u3(x) have been obtained from the numerical solution of the equations (26) for the diffusion coefficient
d = 10−4, d = 10−5 and d = 10−6 respectively. One important observation that can be made from Fig. 8 is that
the peak width δ depends on the diffusion coefficient d. A simple estimate of the function δ(d) discussed in [20]
can be written as

δ = ω
√
d, (27)

where the coefficient ω in the expression (27) depends on the system’s parameters. An extensive numerical study
performed in [24, 25] revealed that, in the predator-prey system (26), the value ω is relatively robust to changes in
the parameter values, and can typically be considered as ω ≈ 25. Hence we can evaluate the upper bound for the
threshold grid step size ht as

ht = αtδ ≈ C
√
d, (28)

where the coefficient C = αtω.
Consider the function u1(x) shown in Fig. 8a. The diffusion coefficient is d = 10−4, hence the estimate (28)

gives us the grid step size as ht ≈ 0.2. The corresponding number of grid nodes is Nt ≈ 6.
Let us compute the integration error (4) by the midpoint rule on a sequence of refined grids, where we add

just one node to the grid at each consecutive refinement step. The results of numerical integration of the function
u1(x) are shown in Table 1.

N 3 4 5 6 7 8 9 10
h 0.5 0.3333 0.25 0.20 0.1667 0.1429 0.125 0.1111
e 0.6948 0.1119 0.5459 0.07983 0.1699 0.02305 0.08228 0.001918

Table 1: The integration error (4) for the density distribution u1(x) on a sequence of refined grids with grid step
size h. N is the number of grid nodes on a uniform grid.

It can be seen from the table that our estimate of the threshold grid step size is in surprisingly good agreement
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with the results of computation. The actual threshold number obtained in computations is Nt = 6 and, while the
integration error keeps oscillating on grids with N > Nt nodes, the condition (5) always holds on those grids.

Let us repeat the previous computational procedure for the function u2(x) shown in Fig. 8b. The diffusion
coefficient d = 10−5, for which the density distribution u2(x) has been generated, gives us the upper bound for
the threshold number of nodes estimated as Nt ≈ 16. The results of numerical integration of the function u2(x)

are shown in Table 2 where the threshold number obtained in computations is Nt = 21. That number of traps is
not realistic in real-life computations and other factors should be taken into account when a decision is made on
the number of traps to be installed. One such factor that will be considered in future work is that the integral value
depends obviously on the peak width and the true value of the integral can be small if a narrow peak is considered.
A small value of the integral (i.e., a small number of pest insects) means, in turn, that the risk of making a wrong
decision about pesticide application is low. Hence we can increase the tolerance τ0 in the problem (e.g., τ0 = 0.5

or even τ0 = 1 in some cases) and use the technique discussed in Section 2 and 3 in order to re-compute our
estimate of the threshold number Nt for the new tolerance.

N 17 18 19 20 21 22 23 24 25
h 0.0625 0.0588 0.0556 0.0526 0.05 0.0476 0.0455 0.0435 0.0416
e 0.4127 0.5412 0.5101 0.4124 0.1960 0.0028 0.1454 0.2234 0.2137

Table 2: The integration error (4) for the density distribution u2(x) on a sequence of refined grids with grid step
size h. N is the number of grid nodes on a uniform grid.

Finally, let us have a look at a very narrow peak u3(x) shown in in Fig. 8c. The diffusion coefficient d = 10−6

gives us the estimate Nt ≈ 50. Clearly this number of traps is beyond any reasonable range and cannot be
used in real-life applications. However, as the integral is very small (for the density distribution u3(x) we have

I =

1∫

0

u3(x)dx = 0.007161) our recommendation to ecologists would probably be to not take any action until

the time evolves and the peak function gets wider. On the other hand, an important conclusion derived from the
extreme case of the distribution u3(x) is that installing a reasonable number of traps (e.g., N ∼ 10) with the
aim to try to evaluate the total number of insects at very early stage of the biological invasion is senseless, as the
probability of a correct answer is very small (see the discussion of the case h > δ in Section 2).

5 Conclusions

We have considered a problem of numerical integration for high aggregation density distributions (peak functions)
on coarse uniform grids. Our study has originally been prompted by the needs of ecological monitoring and control
where minimization of the number of measurements made in order to accurately reconstruct a density distribution
remains an important problem.

The main results of the paper are as follows:

1. We have introduced the concept of ultra-coarse grids. An ultra-coarse grid is defined as a grid where the in-
tegration error is a random variable because of the insufficient information (uncertainty) about the integrand
function.

2. The definition of a coarse grid implies that we have to evaluate the probability p of achieving an integration
error smaller than the given tolerance rather than to evaluate the error itself when computations on ultra-
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coarse grids are performed. In our paper we have obtained a probability estimate based on a quadratic
approximation of the integrand function. We then carried out a number of numerical test cases to demonstrate
that our probability estimate gives us a reliable upper bound for the threshold grid step size ht for which
the probability p(ht) = 1. Thus the approach suggested in the paper can be used to evaluate the minimum
number Nt, such that the desirable accuracy of integration is guaranteed on a grid of Nt nodes.

3. It has been shown in the paper that conventional methods of the error control and analysis do not work
on ultra-coarse grids. It has been discussed in Section 1 of the paper that the uniform refinement of an
ultra-coarse grid does not reduce the integration error, as the integration error on a refined grid can be even
bigger than the error on the original grid unless the number Nt of nodes is reached. However, increasing
the number N of grid nodes does increase the probability of an accurate integral estimate and is therefore
desirable. This conclusion corrects the results of paper [32] where it was suggested that the refinement of a
coarse grid is not efficient as it does not improve the accuracy of integration.

One important direction of future research is to investigate the transition from ultra-coarse to coarse grids for
other classes of functions. Peak functions present just one class of density distributions and a similar problem of
accurate integral evaluation arises when other spatially heterogeneous functions are considered. In particular, we
are interested in rapidly oscillating functions that often appear in ecological applications. Also, our future work will
be to extend our results to the two-dimensional case as we want to apply our approach to real-life problems. Since
field measurements are carried out on a regular basis in ecological applications, heuristic estimates are available
for many common pest species distributions and practical recommendations with regard to the number N t of
traps have already been obtained based on these heuristic estimates. We intend to check those recommendations
against a theoretical probability estimate of the threshold number Nt after our evaluation technique is extended to
two-dimensional problems.

The examples of integration of ecologically meaningful distributions we discussed in the paper can only be
considered as the very first steps on our way to design a robust procedure for risk evaluation in agricultural applica-
tions. At the same time our results demonstrate that a conventional approach that ecologists use in their problems
has to be revisited. A standard procedure of the risk evaluation in pest management is to compare an estimate of
the total number of pest insects with a certain critical number and to make a decision about the use of pesticides
based on that comparison. Ecologists readily admit that there is uncertainty surrounding the estimation of the
pest abundance, which may become worse as the number of samples decreases [33]. However, to the best of our
knowledge, the error in the pest abundance estimation has never been considered in the ecological literature as a
random variable in order to take into account the risk factor related to the uncertainty in integral evaluation when
the number N of traps is small. Taking this risk factor into account when designing an appropriate methodology
for decision making in pest insects management should constitute a topic of our future work.
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