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Abstract: Triple-shape memory epoxy (EP)/polycaprolactone (PCL) systems (PCL 

content: 23 wt %) with different structures (PCL nanoweb embedded in EP matrix and 

EP/PCL with co-continuous phase structure) were produced. To set the two temporary 

shapes, the glass transition temperature (Tg) of the EP and the melting temperature (Tm) of 

PCL served during the shape memory cycle. An attempt was made to reinforce the PCL 

nanoweb by graphene nanoplatelets prior to infiltrating the nanoweb with EP through 

vacuum assisted resin transfer molding. Morphology was analyzed by scanning electron 

microscopy and Raman spectrometry. Triple-shape memory characteristics were 

determined by dynamic mechanical analysis in tension mode. Graphene was supposed to 

act also as spacer between the nanofibers, improving the quality of impregnation with EP. 

The EP phase related shape memory properties were similar for all systems, while those 

belonging to PCL phase depended on the structure. Shape fixity of PCL was better without 

than with graphene reinforcement. The best shape memory performance was shown by the 

EP/PCL with co-continuous structure. Based on Raman spectrometry results, the 

characteristic dimension of the related co-continuous network was below 900 nm. 
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1. Introduction 

Shape memory polymers (SMPs) change their shapes reversibly from temporary to permanent 

under combined action of mechanical load and external stimulus, which is in most cases heat. For 

thermosets, the transformation temperature is the glass transition temperature (Tg). The temporary 

shape is set by deformation above Tg followed by cooling under load. During this procedure, the 

segments between the crosslinks adapt to the external load via conformational rearrangements. The 

strain energy, stored by this way, is released when the material is unloaded and heated above its Tg 

whereby the permanent shape is restored. The related SMPs are termed one-way, dual-shape memory 

systems because the reversible shape change occurs only from temporary to permanent.  

One-way SMP systems may, however, remember two or more temporary shapes before returning to 

the permanent one. In case of EP-based systems triple-shape memory functions has been triggered by 

two approaches so far, viz. (i) bilayer system of two EPs with different Tg that are, however, well 

bonded to each other (“bimetal” principle) [1]; and (ii) EP containing an electrospun semicrystalline 

thermoplastic nanoweb [2]. The material of the latter was poly(ε-caprolactone) (PCL) the melting 

temperature (Tm) of which was higher than the Tg of the embedding EP matrix. Note that in this case 

Tm of PCL served as a reversible switch for setting one shape, whereas the Tg of the EP matrix served 

to set the other temporary shape in the memorizing cycle. A large body of works has already addressed 

different SMPs, and the related knowledge is well summarized in reviews [3,4]. However, the  

above-cited works were dealing with EP-based triple-shape memory systems. Considering the second 

approach, it is obvious that infiltration of the electrospun nanoweb is a challenging task, irrespective of 

whether this occurs under vacuum and/or pressure. To facilitate the infiltration process with the EP, the 

structural stiffness of the nanoweb should be enhanced. This may happen by incorporation of graphene 

in the PCL solution to be electrospun. 

In the last two decades, electrospinning has gained a high interest as continuous nanofibers can be 

processed by this simple method [5–10]. The product of electrospinning is generally a fiber web in 

which the constituent fibers have a diameter range of 50–500 nm. Generally, electrospinning is 

practiced from polymer solutions, although polymer melts can also be spun. Compared to the classical 

fiber manufacturing techniques at electrospinning, fibers are drawn by electrostatic forces instead of 

mechanical ones. The formations of the fibers and the structure take place in the same time and place 

and therefore the technology is effective. Electrospinning technique makes possible to create 

composite fibers where the electrospun nanofibers play the role of the matrix. The smaller 

nanoparticles can be either embedded into nanofibers or they can be deposed or grafted onto their 

surface. In the former case, nanoparticles are admixed to the electrospinning solution. There are studies 

proving that carbon nanotubes [11–15], carbon black [16], nano-silica [17–19] and even metal 

nanoparticles [20] can be embedded. 
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Considering the fact that graphene sheets are larger than the diameter of usual electrospun fibers, 

they may be present in them in rolled, folded forms. This should be associated with a substantial 

reinforcing effect that is essential for our target. Alternatively, the graphene sheets may be located 

between the nanofibers. Nonetheless, they still fulfill the main goal, i.e., acting as spacer whereby 

enabling good infiltration by the EP. On the other hand, an EP containing PCL nanoweb has some 

similarities to a system with semi-interpenetrating network structure (semi-IPN) because both phases 

are continuous and PCL is thermoplastic. Other criteria of semi-IPN are, however, not met; therefore 

this term is not used. In any case, EP with PCL nanoweb exhibits a co-continuous structure per se. 

Therefore, it is of paramount interest to check whether a thermoplastic nanoweb modified or a  

co-continuously structured EP has more favorable shape memory characteristics. Recall that the only 

difference between them, provided that the constituents are the same, is the structure of the 

thermoplastic phase. It is obvious that in a co-continuous morphology, achieved by phase separation 

during curing of the EP modified with PCL, the thermoplastic PCL should have a more fine and 

uniform structure than that given by the nanoweb. It is noteworthy that even semi-IPN structured 

systems, though not EP-based, have already been tested for shape memory performance [21]. 

EP-based systems with co-continuous morphology have not been tested for shape memory 

properties. PCL is an ideal “blending” material with EP to set co-continuous phase structure. Its 

application was pushed forward by the need for EP toughening. Thermoplastics of amorphous and 

semicrystalline nature are often used to modify EPs. Their droplets, or more sophisticated structures, 

covering co-continuously like those formed by phase separation upon curing of the EP, effectively 

trigger individual toughening mechanisms (cavitation and debonding, crack pinning, shear banding, 

etc.) [22]. Despite the Tm of PCL being quite low (see later) and thus not favored for EP modification, 

it has been also tried as a toughening agent in EPs [23,24]. 

Accordingly, this work was aimed at studying the type of PCL “structuring” on the shape memory 

(SM) behavior of an amine cured EP. PCL was present either as nanoweb (electrospun with or without 

additional graphene) or as in situ formed constituent of a co-continuous phase structure. Information 

on the structures was received from scanning electron microscopy (SEM) and Raman spectrometry 

studies. Their SM properties were determined in tension using DMA.  

2. Results and Discussion 

2.1. Electrospun PCL Nanoweb 

SEM images of the morphology of the electrospun nanofibers with and without graphene can be 

seen in Figures 1 and 2. Both PCL nanoweb with and without graphene contains fibers with diameters 

between 100 and 1000 nm. In case of the neat nanofibers, only a small number of beads can be 

observed. In the graphene containing nanofiber web, there are no beads, proving that, in this case, the 

viscosity of electrospinning solution was higher than that without graphene. This stabilized the liquid 

jet along the axis of drawing. Dispersion of graphene was effective because agglomerates cannot be 

found with SEM. Graphene nanoplatelets are located between nanofibers (Figure 2), but possibly also 

in folded form in the PCL nanofibers themselves. 



Materials 2013, 6 4492 

 

Figure 1. SEM pictures of polycaprolactone (PCL) nanoweb from different locations in 

magnification of (a) 5000×; and (b) 10,000×. 

  

(a) (b) 

Figure 2. SEM pictures of PCL nanoweb/graphene from different locations in 

magnification of (a) 5000×; and (b) 10,000×. Note: arrows show graphene nanoplatelets. 

  

(a) (b) 

2.2. Morphology of EP/PCL 

The structure of the original electrospun PCL nanoweb changed after impregnation. Without 

graphene in PCL, the EP impregnated the PCL fibers less perfectly, which triggered their “bundling” 

via melting of the PCL during curing of the EP. Thus, PCL fibers formed bundles in EP/PCL nanoweb 

system (Figure 3). The fiber bundles have a diameter range of 1–5 μm. By contrast, hardly any 

“bundling” phenomenon can be resolved in the EP/PCL nanoweb with graphene (Figure 4). This 

confirms that graphene platelets situated between fibers acted as spacer and strengthened the nanoweb 

during impregnation. This supported the EP flow through the web, guaranteeing a more effective wet-out. 
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Figure 3. SEM micrographs of (a,c) cryocut; and (b,d) cryofractured cross sections of 

epoxy (EP)/PCL nanoweb. 

  

(a) (b) 

  

(c) (d) 

Figure 4. SEM micrographs of (a,c) cryocut; and (b,d) cryofractured cross sections of 

EP/PCL nanoweb/graphene. 

  

(a) (b) 

  

(c) (d) 
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SEM pictures of EP/PCL with co-continuous structure (Figure 5) do not allow us to resolve the 

constituents. In order to estimate the characteristic dimension of the phases in this co-continuous 

structure, the Raman mapping technique was adapted. Figure 6 shows the reference Raman spectra of 

EP and PCL. Considering the reference spectra, the PCL content was “mapped” (Figure 7). Raman 

map of co-continuous phase structure seems to be homogeneous, meaning that the characteristic 

dimension of the related structure is smaller than the focus diameter of the laser beam, which was  

900 nm. The size of the interpenetrating “bands” depends on the compatibility of the constituents and 

is usually in the range of hundreds of nanometers for thermoset IPNs [25]. In the case of nanoweb 

structure, the same characteristic diameter of fiber bundles can be found in the Raman map of EP/PCL 

nanoweb (Figure 7b) as that deduced from SEM micrographs (Figure 3). 

Figure 5. SEM micrographs of (a,c) cryocut; and (b,d) cryofractured cross sections of 

EP/PCL with co-continuous morphology. 

  

(a) (b) 

  

(c) (d) 
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Figure 6. Raman spectra of EP and PCL. 

 

Figure 7. Raman maps of (a) EP/PCL with co-continuous morphology; and  

(b) EP/PCL nanoweb. 

  

(a) (b) 

2.3. Thermal and Mechanical Properties 

Phase transitions (Tg of EP and Tm of PCL) of the samples were determined by both DSC and DMA. 

DSC and DMA curves are plotted in Figures 8 and 9, respectively. Numerical results of DSC and DMA 

are listed in Table 1. Based on these results, the deformation temperatures for SM tests were chosen. 

Accordingly, the first and second temporary shapes were to be set at 60 °C and 30 °C, respectively. 
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Figure 8. (a) Differential scanning calorimetry (DSC) curves of EP, PCL, EP/PCL with 

different structures; and (b) PCL nanowebs with and without graphene loading. 

  

(a) (b) 

Figure 9. (a) Storage modulus; and (b) tanδ curves of EP, PCL and EP/PCL samples with 

different structures. 

 

(a) 

 

(b) 
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Table 1. Transition temperatures determined by DSC and DMA. 

Samples Tg
DSC

 (°C) Tg
tanδ

 (°C) Tm
DSC

 (°C) Tm
E′

 (°C) 

EP 12 16 – – 

PCL – – 65 54 

EP/PCL co-continuous 16 21 57 52 

EP/PCL nanoweb 19 12 62 45 

EP/PCL nanoweb/graphene 20 11 62 46 

PCL nanoweb – – 56 – 

PCL nanoweb/graphene – – 56 – 

Figure 9 delivers the most persuading arguments for the presence of co-continuity for the EP/PCL 

systems. It is well resolved that the storage modulus of EP/PCL does not drop at the Tg of the EP, 

which would be expected for the dispersed PCL phase. Instead, the modulus runs in between those of 

the PCL and EP between the Tg of EP and Tm of PCL (Figure 9a). No clear plateau appears in this 

temperature range, reflecting the thermoplastic character of the PCL. Nevertheless, the load bearing 

capacity is given by the continuous PCL phase by whatever means achieved (nanoweb, in situ curing). 

The fact that the tanδ values of the EP/PCL systems are between the parent components above Tm of 

PCL also supports the co-continuity (Figure 9b). A further peculiar feature is that incorporation of 

nanoweb (with and without graphene) shifted the Tg of EP toward slightly lower temperatures, whereas 

an adverse tendency was recognizable for the phase separated in in situ cured EP/PCL (Figure 9b). 

This may be due to a combination of chemical (reactive end groups of PCL) and mechanical constraint 

effects which were, however, not investigated.  

Deformability of the samples at the selected deformation temperatures were measured in tensile 

mode in the DMA device. Stress-strain curves are depicted in Figure 10. EP/PCL with co-continuous 

morphology has the highest strain at break in case of both temperatures. This is due to the better 

homogeneity and lower void content of the sample. Impregnation is always a critical step in 

preparation of composites when a preformed structure should be wet out. Recall that EP/PCL with  

co-continuous morphology was produced in situ via phase separation upon curing. For the first 

temporary shape (εm1) of the SM test, 2% strain was selected, because below this strain all the  

stress-strain curves, measured at 60 °C, were linear (Figure 10b). For the second temporary shape (εm2) 

a strain was chosen that was two times higher than εm1. 

Figure 10. Stress-strain curves of EP/PCL samples with different structures at (a) 30 °C; 

and at (b) 60 °C. 

  

(a) (b) 
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2.4. Triple-Shape Memory Properties 

Triple-shape memory tests were performed in Q800 DMA device. Registered temperature, stress 

and strain values in function of time are presented for the sample EP/PCL nanoweb in Figure 11. 

Figure 11. Temperature, stress and strain curves of EP/PCL nanoweb sample during SM 

test. Arrows indicate the strain values used for calculations. Dotted lines separate the steps 

of the test; where D1, F1, M, D2, F2 mean first deformation; first fixation; measurement of 

the first fixed shape; second deformation; and second fixation, respectively. 

 

SM properties corresponding to EP phase [shape fixity ratio of the second temporary shape (Rf2) 

and shape recovery ratio of the first fixed temporary shape (Rr1)] are quite similar for all samples. 

Note, that all the samples contained ca. 23 wt % PCL. The SM properties depending on PCL phase 

[shape fixity ratio of the first temporary shape (Rf1) and shape recovery ratio of the original shape 

(Rr1)] are, however, quite different for the studied systems. These SM properties for EP/PCL nanoweb 

with graphene are worse than those without. EP/PCL with co-continuous structure can fix the first 

temporary shape better than the EP/PCL nanoweb. On the other hand, the latter one can recover the 

original shape slightly better than the co-continuously structured EP/PCL. Calculated SM properties 

can be found in Table 2. Value ranges are given instead of average results, when the repeated test did 

not give the same result as the first one. 

Table 2. Results of the triple-shape memory tests. Tests were conducted on two 

parallel specimens. 

Samples Rf1 (%) Rf2 (%) Rr1 (%) Rr2 (%) 

EP/PCL nanoweb 67–74 94–95 94–96 89 

EP/PCL nanoweb/graphene 61–67 95 95 69–94 

EP/PCL co-continuous structure 81–82 94–95 94 85 
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3. Experimental Section 

3.1. Materials 

PCL granule (grade CAPA 6800) was supplied by Solvay (Brussels, Belgium) having a molecular 

weight of 80 kDa and Tm of 58–60 °C. Dichloromethane and ethanol solvents were purchased from 

Molar Chemicals (Budapest, Hungary). The graphene nanoplatelets (grade xGnP) used were from XG 

Sciences (Lansing, MI, USA). Ipox MR3012 type EP resin (Ipox Chemicals, Budapest, Hungary) and 

Jeffamine D230 type amine hardener (Huntsman, Bergkamen, Germany) were chosen, because their 

stoichiometric mixture provides a cured EP with a Tg of around ambient temperature [26]. Note that 

this Tg is considerably lower than the Tm of PCL which was essential to achieve the required  

triple-shape memory. 

3.2. Electrospinning 

PCL granule was dissolved in a mixture of dichloromethane/ethanol in a mass ratio of 7:3. The 

solution was stirred by magnetic mixer for 6 hours at ambient temperature for complete dissolution. 

The PCL concentration was 3.5 wt %. Another solution with additional graphene of 3.5 wt % relative 

to the PCL content was also produced. In this case the graphene was dispersed as follows. The 

graphene was admixed to the solvent mixture, and then it was treated for 20 min by Bandelin Sonoplus 

HD2200 type (Bandelin, Berlin, Germany) ultrasonic homogenizer equipped with an UW 2200 type 

ultrasonic converter of the same company. After the treatment, the PCL was mixed to the solution and 

the ultrasonic treatment was repeated. The adequate dispersion of the graphene was empirically 

confirmed by the increase of the solution viscosity. 

Electrospinning was carried out by the classical, single capillary setup [16] in a bottom to top 

vertical arrangement. The applied capillary spinneret was a hypodermic needle that was connected to a 

DC high voltage power supply. The solution was fed through the capillary by a SEP-10S Plus (Aitecs, 

Vilnius, Lithuania) type syringe pump. The applied voltage, the distance between the grounded metal 

plate electrode and the spinneret and the constant solution feed rate was set to 40 kV, 100 mm and  

16 mL/h, respectively in both cases. Layers of PCL nanowebs, having a thickness of 0.1–0.4 mm, were 

produced from both neat and graphene-containing solutions. 

3.3. Specimen Preparation 

The ratio of EP resin and hardener was stoichiometric. For their mixing a radial stirrer was used. In 

order to remove the residual air bubbles, the resin was put in a desiccator and vacuum was applied. 

Preparation of PCL nanoweb-containing EP samples took place in an open mold made of 

polytetrafluoroethylene (PTFE). Two layers of nanofiber mats were placed into the mold and then 

hermetically sealed by polyamide foil prior to the impregnation via vacuum assisted resin transfer 

molding. As the PCL has low Tm, the EP was cured at ambient temperature for 48 hours. Afterward, 

the EP/PCL nanoweb composites were removed from the mold and post-cured at 80 °C for 2 hours. At 

this temperature the nanofibers were molten and after their recrystallization the web obtained its final 
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structure. The composite samples had a thickness range of 0.2–1.0 mm, from which 25 mm long and  

7 mm wide specimens were cut. 

EP/PCL sample with co-continuous morphology, containing 23 wt % PCL, was made as follows. 

PCL granule was dissolved in the EP resin by mixing at 100 °C for one hour, and then cooled to 70 °C. 

Afterward, hardener was added, and mixed for 2 min. This mixture was cast into the PTFE mold, the 

entrapped air removed in vacuum desiccator (“aerated” 3 times), and cured at ambient temperature for 

48 hours followed by post curing at 80 °C for 2 h. 

3.4. Morphology Determination Techniques 

The morphology of the samples was studied by scanning electron microscopy (SEM) using a JEOL 

JSM-6380LA device (Jeol, Tokyo, Japan). Specimens were cryomicrotomed with a glass knife at  

−80 °C using a Leica EM UC6 microtome (Leica Microsystems, Wetzlar, Germany) equipped with a 

cryochamber. Specimens were cryofractured, as well. The cryocut and cryofractured surfaces were 

sputtered with Au/Pd alloy before SEM inspection. 

The cryofractured surfaces were also analyzed by Raman spectrometry. The Raman spectra have 

been recorded using a Horiba Jobin-Yvon (Lyon, France) LabRam system with a 532 nm Nd: YAG 

laser (Sacher Lasertechnik, Marburg, Germany) and an Olympus BX-40 optical microscope (Olympus, 

Hamburg, Germany). An objective of 50× magnification was used for spectrum acquisition. In this 

case the diameter of laser beam in focus point is 900 nm. Spectrum acquisition time was 20–30 s and 

two spectra were averaged at each pixel. The step size between adjacent pixels was 1 μm along both 

axes. Details of the used Raman mapping technique are available elsewhere [27]. 

3.5. Thermal and Mechanical Analysis 

Differential scanning calorimetry (DSC) was carried out in a Q2000 type DSC device (TA 

Instruments, New Castle, DE, USA) using aluminum sample holders. Heating rate was set to  

10 °C/min, temperature range was between −30 °C and 80 °C. From DSC curve (heatflux as a function 

of temperature) Tg of EP and Tm of PCL were determined as the median of baseline change and peak 

temperature of melting, respectively. DSC curves shown represent the first heating. 

DMA and tensile test were conducted in a DMA Q800 device (TA Instruments) in tension mode, 

where clamping distance was 12 mm and clamping force was similar for each specimen, verified by a 

torque screw. In the case of DMA heating rate, oscillation frequency and oscillation amplitude were  

3 °C/min, 10 Hz and 0.05%, respectively. From DMA curves (storage modulus or tanδ as a function of 

temperature) Tg of EP and Tm of PCL were read as peak temperature of tanδ and onset temperature of 

storage modulus’ drop, respectively. Tensile tests were performed at both 30 and 60 °C. Force rate of 

tension was set to 3 N/min. DSC, DMA and tensile tests were conducted on single specimens. 

3.6. Triple-Shape Memory Behavior 

In order to test SM properties also the Q800 DMA device was used in tension mode. Clamping 

distance was 12 mm and clamping force was similar for each specimen. During SM tests the 

specimens were deformed at 60 °C to εm1 = 2% strain and immediately cooled to 30 °C, while εm1 was 
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maintained. After 30 min, the stress was reduced to zero and the first fixed temporary shape (εu1) was 

measured. Specimens were deformed at 30 °C further to εm2 = 4% strain and immediately cooled to  

0 °C, while εm2 was maintained. After 15 min, the stress was reduced to zero and the second fixed 

temporary shape (εu2) was recorded. After this programing procedure specimens were heated up to  

60 °C with a heating rate of 1 °C/min. During reheating, the stress was set to zero and the strain was 

measured. The latter formed a double sigmoid in function of time having a plateau, which is the 

recovered first temporary shape (εp1) around 30 °C and ending in the recovered original shape (εp2) 

around 60 °C. 

Abilities to fix the first and second temporary shapes, and to recover the first fixed shape and the 

original shape, were characterized with shape fixity ratios Rf1 and Rf2, and shape recovery ratios Rr1 

and Rr2, respectively. These ratios are calculated according to Equations (1–4), in which meaning of 

symbols are listed in Table 3. Figure 12 demonstrates graphically the triple-shape memory cycle and 

the mentioned strain values and ratios. 
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Table 3. Meaning of symbols appearing in Equations (1–4).  

Symbol (unit) Meaning 

Rf1 (%) Shape fixity ratio of fixing the first temporary shape. 

Rf2 (%) Shape fixity ratio of fixing the second temporary shape. 

Rr1 (%) Shape recovery ratio of recovering the first fixed shape. 

Rr2 (%) Shape recovery ratio of recovering the original shape. 

ε0 (%) Original or initial shape, which is zero in our case. 

εm1 (%) Required first temporary shape, which is 2% in our case. 

εm2 (%) Required second temporary shape, which is 4% in our case. 

εu1 (%) Fixed first temporary shape, which was measured. 

εu2 (%) Fixed second temporary shape, which was measured. 

εp1 (%) Recovered first temporary shape, which was measured. 

εp2 (%) Recovered original shape, which was measured. 
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Figure 12. Schematic diagram of triple-shape memory test, where horizontal axis is time 

and vertical axis is strain. 

 

4. Conclusions 

This work was devoted to produce triple-shape memory epoxy (EP)/polycaprolactone (PCL) 

systems with different phase structures at the same PCL content (23 wt %) and to study the effect of 

their structure on the triple-shape memory behavior. The three structurally different systems, analyzed 

by scanning electron microscopy and Raman spectrometry, were: 

1. EP/PCL nanoweb: EP could not fully penetrate in between the web forming fibers due to 

processing-induced “compaction”. Therefore, the fibers tended to form bundles with diameters 

of 1–5 μm after post curing conducted above the melting temperature of PCL; 

2. EP/PCL nanoweb with graphene: graphene nanoplatelets, located also between the fibers, 

likely acted as spacers and strengthened the nanoweb structure during impregnation. As a 

consequence, the infiltrating EP could wet out the fibers well, and no cure temperature-induced 

“bundling” phenomenon was observed; 

3. EP/PCL with co-continuous structure: both phases are continuous and the characteristic 

dimension of the “intermingling bands” is most likely below 900 nm. 

Based on the results achieved with specimens subjected to triple-shape memory test in tension mode, 

the following conclusions can be drawn: 

1. Shape memory properties, related to the EP phase, are similar for all samples, irrespective of 

their structure; 

2. Shape memory properties belonging to PCL phase are worsened by incorporation of grapheme; 

3. EP/PCL with co-continuous morphology possessed the best triple-shape memory properties. 

Therefore, attention should be focused on co-continuously structured EP-based systems for 

achieving triple-shape memory performance. 

Acknowledgments 

The work reported here was supported by the Hungarian Research Fund through OTKA NK 83421 

and OTKA K 100949. This work is also connected to the scientific programs: “Development of 

quality-oriented and harmonized R+D+I strategy and functional model at BME”-TÁMOP-4.2.1/B-

09/1/KMR-2010-0002; “Talent care and cultivation in the scientific workshops of BME”-TÁMOP-

4.2.2/B-10/1-2010-0009; and “Smart functional materials”-TÁMOP-4.2.2.A-11/1/KONV-2012-0036. 



Materials 2013, 6 4503 

 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Xie, T.; Xiao, X.; Cheng, Y.T. Revealing triple-shape memory effect by polymer bilayers. 

Macromol. Rapid Comm. 2009, 30, 1823–1827. 

2. Luo, X; Mather, P.T. Triple-shape polymeric composites (TSPCs). Adv. Funct. Mater. 2010, 20, 

2649–2656. 

3. Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape-memory polymers: Structure, 

mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720–1763. 

4. Xie, T. Recent advances in polymer shape memory. Polymer 2011, 52, 4985–5000. 

5. Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by 

electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. 

6. Vigh, T.; Horváthová, T.; Balogh, A.; Sóti, P.L.; Drávavölgyi, G.; Nagy, Z.K.; Marosi, G. 

Polymer-free and polyvinylpirrollidone-based electrospun solid dosage forms for drug dissolution 

enhancement. Eur. J. Pharm. Sci. 2013, 49, 595–602. 

7. Li, J.; Gao, F.; Liu, L.Q.; Zhang, Z. Needleless electro-spun nanofibers used for filtration of small 

particles. Express Polym. Lett. 2013, 7, 683–689. 

8. Yu, Q.Z.; Qin, Y.M. Fabrication and formation mechanism of poly (L-lactic acid) ultrafine  

multi-porous hollow fiber by electrospinning. Express Polym. Lett. 2013, 7, 55–62. 

9. Nagy, Z.K.; Balogh, A.; Vajna, B.; Farkas, A.; Patyi, G.; Kramarics, Á.; Marosi, G. Comparison 

of electrospun and extruded soluplus
®

-based solid dosage forms of improved dissolution.  

J. Pharm. Sci. 2012, 101, 322–332. 

10. Molnár, K.; Vas, L.M. Electrospun composite nanofibers and polymer composites. In Synthetic 

Polymer-Polymer Composites; Bhattacharyya, D., Fakirov, S., Eds.; Hanser: München, Germany, 

2012; p. 301. 

11. Jeong, J.S.; Jeon, S.Y.; Lee, T.Y.; Park, J.H.; Shin, J.H.; Alegaonkar, P.S.; Berdinsky, A.S.;  

Yoo, J.B. Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning. 

Diam. Relat. Mater. 2006, 15, 1839–1843. 

12. Hou, X.; Yang, X.; Zhang, L.; Waclawik, E.; Wu, S. Stretching-induced crystallinity and 

orientation to improve the mechanical properties of electrospun PAN nanocomposites. Mater. Des. 

2010, 31, 1726–1730. 

13. Baji, A.; Mai, Y.W.; Wong, S.C.; Abtahi, M.; Du, X. Mechanical behavior of self-assembled 

carbon nanotube reinforced nylon 6,6 fibers. Compos. Sci. Technol. 2010, 70, 1401–1409. 

14. Shin, M.K.; Kim, Y.J.; Kim, S.I.; Kim, S.K.; Lee, H.; Spinks, G.M.; Kim, S.J. Enhanced 

conductivity of aligned PANi/PEO/MWNT nanofibers by electrospinning. Sens. Actuat. B Chem. 

2008, 134, 122–126. 

15. Kostakova, E.; Meszaros, L.; Gregr, J. Composite nanofibers produced by modified needleless 

electrospinning. Mater. Lett. 2009, 63, 2419–2422. 



Materials 2013, 6 4504 

 

16. Andrady, A.L. Science and Technology of Polymer Nanofibers; Wiley: Hoboken, NJ, USA, 2008; 

pp. 153–182. 

17. Schiffman, J.D.; Blackford, A.C.; Wegst, U.G.K.; Schauer, C.L. Carbon black immobilized in 

electrospun chitosan membranes. Carbohyd. Polym. 2011, 84, 1252–1257. 

18. Fong, H.; Liu, W.; Wang, C.S.; Vaia, R.A. Generation of electrospun fibers of nylon 6 and nylon 

6-montmorillonite nanocomposite. Polymer 2002, 43, 775–780. 

19. Li, L.; Bellan, L.M.; Craighead, H.G.; Frey, MW. Formation and properties of nylon 6 and nylon 

6/montmorillonite composite nanofibers. Polymer 2006, 47, 6208–6217. 

20. Saquing, C.D.; Manasco, J.L.; Khan, S.A. Electrospun nanoparticle-nanofiber composites via a 

one-step synthesis. Small 2009, 5, 944–951. 

21. Ratna, D.; Karger-Kocsis, J. Shape memory polymer system of semi-interpenetrating network 

structure composed of crosslinked poly (methyl methacrylate) and poly (ethylene oxide). Polymer 

2011, 52, 1063–1070. 

22. Grishchuk, S; Gryshchuk, O.; Weber, M.; Karger-Kocsis, J. Structure and toughness of 

polyethersulfone (PESU)-modified anhydride-cured tetrafunctional epoxy resin: Effect of PESU 

molecular mass. J. Appl. Polym. Sci. 2012, 123, 1193–1200. 

23. Siddhamalli, S.K. Thoughening of epoxy/polycaprolactone composites via reaction induced phase 

separation. Polym. Compos. 2000, 21, 846–855. 

24. Rotrekl, J; Matějka, L.; Kaprálková, L.; Zhigunov, A.; Hromádková, J.; Kelnar, I. Epoxy/PCL 

nanocomposites: Effect of layered silicate on structure and behavior. Express Polym. Lett. 2012, 6, 

975–986. 

25. Gryshchuk, O.; Karger-Kocsis, J. Influence of the type of epoxy hardener on the structure and 

properties of interpenetrated vinylester/epoxy resins. J. Polym. Sci. A Chem. 2004, 42, 5471–5481. 

26. Fejős, M.; Karger-Kocsis J. Shape memory performance of asymmetrically reinforced 

epoxy/carbon fibre fabric composites in flexure. Express Polym. Lett. 2013, 7, 528–534. 

27. Vajna, B.; Marosi, G.; Farkas, A.; Firkala, T.; Farkas, I. Investigation of drug distribution in 

tablets using surface enhanced Raman chemical imaging. J. Pharm. Biomed. 2013, 76, 145–151. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


