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BTX abatement using Chilean natural zeolite: the role of

Brønsted acid sites

S. Alejandro, H. Valdés, M.-H. Manero and C. A. Zaror
ABSTRACT
In wastewater treatment facilities, air quality is not only affected by conventional unpleasant odour

compounds; toxic volatile organic compounds (VOCs) are also found. In this study, the adsorptive

capacity of Chilean natural zeolite toward VOC removal was evaluated. Moreover, the influence of

zeolite chemical surface properties on VOC elimination was also investigated. Three modified zeolite

samples were prepared from a natural Chilean zeolite (53% clinoptilolite, 40% mordenite and 7%

quartz). Natural and modified zeolite samples were characterised by nitrogen adsorption at 77 K,

elemental analyses and X-ray fluorescence (XRF). Chemical modifications of natural zeolite showed

the important role of Brønsted acid sites on the abatement of VOCs. The presence of humidity has a

negative effect on zeolite adsorption capacity. Natural zeolites could be an interesting option for

benzene, toluene and xylene vapour emission abatement.
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INTRODUCTION
Waste air treatment at wastewater treatment facilities is
usually planned for odour nuisance reduction, but waste

air also contains a variety of volatile organic compounds
(VOCs), usually at low concentrations (Iranpour et al.
). In recent years, toxic organic contaminants in
industrial emissions have been recognised as an issue of

growing importance (Luo & Lindsey ). In Chile, the
Ministry of Health adopted internationally recommended
standards for occupational exposure limits for about 200

airborne chemicals (MINSAL DS 594 ), including
VOCs. In Europe, more and more drastic regulations
have been set new standards for 20 years. Conventional

techniques for controlling odours and VOCs include
incineration, scrubbing, chemical oxidation and conden-
sation (Mudliar et al. ). Sorption processes have

been widely used as feasible methods for VOC removal.
Among adsorbents, activated carbon is normally pre-
ferred. However, activated carbons are not stable at high
temperatures and could be flammable. Great effort has

been dedicated to testing efficiencies of aluminosilicate
materials (Monneyron et al. ; Ghiaci et al. ).
Recently, researchers have focused their attention on

natural zeolites. Natural zeolites have been applied for
sulfur dioxide and VOC removal (Kuleyin ;
Allen et al. ). In this work, the influence of chemical

surface characteristics of natural zeolite on VOCs abate-
ment was studied. The effect of air humidity on VOCs
removal efficiency was also assessed.
METHODS

Materials

Chilean natural zeolite (53% clinoptilolite, 40% mordenite
and 7% quartz) was provided by Minera FormasTM.
A zeolite sample was ground and sieved to 0.3–0.425 mm;

then was rinsed with ultrapure water, oven-dried at
398 K for 24 h, and stored in a desiccator until further
use. Benzene (B), toluene (T ), and xylene (X ) were
selected here as model aromatic VOCs, as these

pose serious occupational health and environmental
risks, particularly in cases of chronic exposure. B, T
and X were provided by Merck with 99.8% purity. Ultra-

pure water was obtained from an EASY pure® RF II
system.
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Chemical modification of natural zeolite

Three zeolite samples with different chemical surface prop-
erties were prepared from natural zeolite (NZ). Two kinds of

treatment were applied: de-alumination and ion-exchange
according to the procedure described elsewhere (Alejandro
et al. ). De-alumination treatment was carried out
using HCl (2.4 mol dm�3) and ion exchange was conducted

using an ammonium sulfate solution (0.1 mol dm�3).
Modified zeolites with HCl and ammonium sulfate were
named ZH2.4 and NH4Z1, respectively. Another

ammonium-exchanged zeolite sample (2NH4Z1) was pre-
pared by conducting an ion exchange procedure, as
described in previous work (Alejandro et al. ).

Physical–chemical characterisation of zeolite samples

Natural and modified zeolite samples were characterised by
different techniques. X-ray powder diffraction (XRD) was
applied to natural and modified zeolite samples in order to

evaluate mineralogical and structural changes. XRD was
performed with a Bruker AXS Model D4 ENDEAVOR dif-
fractometer, equipped with a cupper X-ray tube and Ni

filter. Nitrogen adsorption isotherms at 77 K were obtained
on a Micromeritics Gemini 3175 and elemental analyses in
a LECO CHN 2000 apparatus as described elsewhere (Ale-
jandro et al. ). X-ray fluorescence (XRF) allowed

determination of bulk chemical composition of natural
and modified zeolites by using a RIGAKU Model 3072 spec-
trometer (Valdés et al. ). Zeolite samples were also

characterised by NH3-TPD using a temperature-
Figure 1 | Experimental set-up.
programmed desorption/reaction (TPD/TPR) 2900 Micro-

meritics system, coupled with a thermal conductivity
detector (TCD). More details are given in a previous com-
munication (Alejandro et al. ). Infrared spectra of VOC

saturated-zeolite samples were recorded using a Nicolet
NEXUS spectrometer. Spectra were collected at an average
of 64 scans and a resolution of 4 cm�1 using a pressed disc
containing 1 mg of zeolite sample and 100 mg of KBr.

Experimental system

Experiments were carried out in a quartz U-shaped fixed-bed
flow contactor (4 mm ID) at 293 K and 101 kPa (see Figure 1).

Zeolite samples were out-gassed in Ar flow (0.1 dm3 min�1)
for 2 h at 623 K or 823 K (heating rate 10 K min�1) before
the adsorption experiments. Inlet VOC concentration
(CVint) was fixed by bubbling argon in a temperature con-

trolled saturator with the selected VOC (B, T or X) and was
diluted by mixing with another fresh argon stream. Mass
flow controllers (Aalborg) were used and the volumetric

flow rate was measured at the experimental system exit,
using a calibrated soap bubble flow meter. Once the inlet
concentration of the selected VOC was stabilised, the VOC

stream was redirected to the zeolite contactor containing
0.15 g of the selected zeolite sample. VOC concentration in
the outlet stream (CVout) was monitored on-line as a function
of time by gas chromatography (GC), using a Perkin Elmer

Clarus 500 Gas Chromatograph equipped with a FID
detector; until the zeolite sample reached the VOC
saturation. Data were recorded every 6 min and processed

with TotalChrom Navigator Clarus 500 software.



Adsorption capacities of zeolite samples toward the

selected VOC (B, T, or X) were determined by calculating
the areas from breakthrough curves using Equation (1). All
experiments reported here were conducted in triplicate.

q ¼
Ð ts
0 ( _n0 � _nt) dt

W � S (1)

where q is the amount of the adsorbed VOC (B, T, or X) on
the zeolite sample at equilibrium [mmol m�2], _no is the VOC
(B, T, or X) inlet molar flow [mmol s�1], _nt is the VOC (B, T,
or X) molar flow [mmol s�1] obtained for each point of the
breakthrough curves, ts is the time needed to reach the sat-
uration, W is the zeolite mass [g], and S is the zeolite

surface area [m2 g�1].
The effect of humidity on VOC adsorption was investi-

gated by bubbling argon (0.02 dm3min�1) in a water

saturator at 293 K, and mixing this humid stream with the
VOC stream at the adsorber inlet.
RESULTS AND DISCUSSION

Characterisation of zeolite samples

XRD patterns (results not shown) indicated that zeolite
samples are highly crystalline. Chemical modification treat-
ments of natural zeolite do not show any significant changes

in the zeolite crystalline structure. Table 1 summarises the
physical–chemical characterisation results of natural and
modified zeolite samples. It can be seen that acid treatment

increased the surface area and Si/Al ratio, as a result of a
decationisation and de-alumination mechanism (Barrer
). The highest value of ZH2.4 surface area could be
related to the amorphous material dissolution that could

block zeolite structure channels, generating new pores
(Allen et al. ).

Temperature programmed desorption-mass spectrometry

(TPD-MS) profiles were obtained in a previous work
Table 1 | Physical–chemical characterisation of zeolite samples

Sample S [m2 g�1] Vmicro[cm3 g�1] Si/Al ratioa N2
b

NZ 205 47.08 5.34 0.13

ZH2.4 434 99.67 7.1 0.14

NH4Z1 181 41.51 5.32 1.78

2NH4Z1 171 36.92 5.34 2.16

aBy XRF (% w/w).
bBy elemental analyses (% w/w).
(Alejandro et al. ), for natural and modified samples pre-

viously oven dried at 398 K for 24 h. The results showed the
transformation of adsorbed NH4

þ into Hþ when temperature
was raised, releasing ammonia and contributing to ‘bridging

hydroxyl groups’ formation (Alejandro et al. ). These
‘bridging hydroxyl groups’ are also known as Brønsted
acid sites. At around 823 K water signal intensity was
increased, evidencing Brønsted acid sites transformation into

new Lewis acid sites on the zeolite surface (Valdés et al. ).

Effect of zeolite chemical surface properties on the
adsorption of VOCs

Figure 2 shows the adsorption isotherms of the selected

VOCs at 293 K on natural and modified zeolite samples
after the outgassing step at 623 and 823 K. Adsorption equi-
librium data are represented as the amount of adsorbed

VOC (B, T, or X) per zeolite surface [mmoladsorbedVOC ·
m�2

zeolite].
Experimental results were fitted to the Langmuir adsorp-

tion model (Langmuir ) as indicated by Equation (2):

qL ¼ qmbCVOC

1þ bCVOC
(2)

where qL is the amount of adsorbed VOC (B, T, or X) on the
zeolite surface at equilibrium [mmol m�2], CVOC is the equi-

librium concentration [μmol dm�3], qm is the maximum
adsorption capacity [mmol m�2], and b is the adsorption
intensity or Langmuir coefficient [dm3 μmol�1]. The Lang-
muir sorption model has been applied to VOC adsorption

on synthetic zeolites (Brosillon et al. ; Monneyron
et al. ). The values of different parameters of the
Langmuir adsorption model at 293 K for the selected VOC

on natural and modified zeolite samples are summarised
in Table 2.

Results obtained for out-gassed natural and modified

zeolite samples at 623 K indicate that the lowest VOC elim-
ination is obtained when natural zeolite (NZ) is used. The
adsorption capacity of NZ toward B, T, and X is lower

than modified zeolite samples out-gassed at 623 K. In the
case of benzene adsorption on out-gassed zeolite samples
at 623 K, a better result is reached when 2NH4Z1 is used.
Under such out-gassing conditions, a high content of

Brønsted acid sites are generated on this sample as a conse-
quence of ammonium-exchange followed by thermal
treatment. Thus, Brønsted acid sites might be responsible

for the highest observed benzene removal. However, for
toluene and xylene adsorption on out-gassed samples at



Figure 2 | Effect of zeolite chemical surface properties on the adsorption of VOCs (B, T, or X ). (▪) NZ, (▴) ZH2.4, (♦) NH4Z1, (•) 2NH4Z1, (___) represents the fit to Langmuir adsorption model.

Experimental conditions: 0.15 g of zeolite, 0.05 dm3min�1, 101 kPa, 293 K.
623 K, the highest adsorption capacity is achieved by the
ZH2.4 sample. VOC adsorption experiments on out-gassed

natural and modified zeolite samples at 823 K show that
ZH2.4 adsorption capacity is higher than other samples
used here. This behaviour is probably due to the presence

of new pores in the ZH2.4 sample, as a result of the applied
acid treatment. The adsorption of the selected VOC could
also increase because more than a monolayer might be
formed on the ZH2.4 surface.

The acidity of natural and modified zeolite samples was
previously investigated by (NH3-TPD) (Alejandro et al. ).
The higher amount of desorbed ammonia (13.6%) in the

mid-temperature range (373–463 K) was obtained by the
out-gassed NZ at 623 K. However, the ZH2.4 demonstrated



Table 2 | Adsorption model parameters

Langmuir

VOCs Sample Outgassing temperature qm [mmol m�2] b [dm3 μmol�1] R2

Benzene (B) NZ 623 K 1.48 3.29 0.98
ZH2.4 5.93 0.13 0.99
NH4Z1 5.71 0.48 0.94
2NH4Z1 6.54 0.30 0.97
NZ 823 K 2.32 0.85 0.98
ZH2.4 32.96 0.11 0.97
NH4Z1 1.79 0.32 0.95
2NH4Z1 1.71 0.37 0.99

Toluene (T ) NZ 623 K 0.79 3.07 0.98
ZH2.4 4.29 0.27 0.97
NH4Z1 1.95 3.15 0.96
2NH4Z1 3.57 0.82 0.95
NZ 823 K 0.83 3.55 0.99
ZH2.4 22.21 0.63 0.97
NH4Z1 0.75 2.65 0.99
2NH4Z1 0.90 4.27 0.99

Xylene (X ) NZ 623 K 0.97 1.67 0.99
ZH2.4 4.21 0.27 0.95
NH4Z1 1.53 1.20 0.99
2NH4Z1 1.66 3.53 0.98
NZ 823 K 0.62 3.18 0.99
ZH2.4 33.68 0.10 0.97
NH4Z1 1.02 0.49 0.99
2NH4Z1 0.82 1.56 0.95

2012
the highest acid strength as the amount of desorbed ammo-
nia in the high temperature region was larger than the other
out-gassed samples at 623 K. NH3-TPD showed two charac-
teristic peaks, the first one in the range of 400–500 K, which

was related to Lewis acid sites and the second (550–
900 K) to Brønsted acid sites. It was observed that as the
out-gassing temperature was increased, Brønsted acid sur-

face site concentration decreased as a consequence of its
transformation into Lewis acid sites at around 823 K. The
presence of Brønsted acid sites could be the main cause of

the observed removal enhancements for the out-gassed
samples at 623 K. As can be seen in Figure 2, the results
of B, T, and X abatements using out-gassed samples at

823 K are lower than those obtained when out-gassed
samples at 623 K are applied. It appears that Lewis acid
sites are not as active as Brønsted acid sites toward B, T,
and X adsorption. Adsorbate molecules within the zeolite

framework are subjected to acid–base interactions with zeo-
lite Brønsted acid sites (Roque-Malherbe ).
Furthermore, the relative basicities for benzene, toluene and

xylene are 0.61, 0.92 and 1.26, respectively (Barthomeuf &
De Mallmann ). Consequently, the three VOCs assessed
here (B, T, and X ) exhibit different levels of interactions
toward the Brønsted acid sites of natural and modified zeo-
lite samples. However, xylene with the highest relative
basicity shows the lowest abatement. These results could
be associated with an adsorption reduction within the zeo-

lite smaller micropores. Xylene molecule cross-sectional
area (0.54 nm2) is higher than toluene (0.47 nm2) and ben-
zene (0.43 nm2) (McClellan & Harnsberger ). On the

other hand, benzene with the lowest basicity and cross-sec-
tional area could be easily accommodated inside natural
and modified zeolite zeolite frameworks, resulting in a

higher abatement.

Influence of humidity on the adsorption of VOCs on
natural zeolite

Breakthrough curves of the adsorption of VOCs (B, T, and
X ) on natural zeolite (out-gassed at 623 K) in the presence
and absence of humidity are shown in Figure 3.

The results show that the presence of humidity (40%),
strongly affects the adsorptive capacity of out-gassed natural
zeolite at 623 K. The zeolite adsorption capacity toward B, T
and X is reduced by 12, 68, 48%, respectively. The observed
effect might be due to a competition between B, T, or X and



Figure 3 | Influence of humidity on the adsorption of VOCs (B, T or X ) over out-gassed

natural zeolite at 623 K. Filled markers represent the presence of humidity;

open markers mean the absence of humidity. (□/▪) Benzene, (Δ/▴) toluene,
(◊/♦) xylene. Experimental conditions: 0.15 g of zeolite, 0.05 dm3min�1,

101 kPa, 293 K. VOC inlet concentrations (CV in): benzene (8.8 μmol dm�3),

toluene (2.2 μmol dm�3) and xylene (1.2 μmol dm�3).
water for zeolite active sites. Water reduces the number of

available Brønsted acid sites (Kulkarni & Muggli ),
reducing zeolite adsorption capacity toward the selected
VOC molecules (B, T, or X ).

FTIR study of adsorbed VOC on natural zeolite

Figure 4 shows the Fourier transform infrared spectroscopy

(FTIR) spectrum obtained after the subtraction of the col-
lected spectrum for the out-gassed natural zeolite samples
at 623 and 823 K, with and without adsorbed VOC. The

results show peaks at 1,443; 1,473; and 1,527 cm�1 for
Figure 4 | FTIR spectra of adsorbed VOC over natural zeolites (out-gassed at 623 and 823 K).
adsorbed benzene on the out-gassed sample at 623 K and

at 1,489 and 1,540 cm�1 for adsorbed benzene on the out-
gassed sample at 823 K. For adsorbed toluene on the out-
gassed sample at 623 K, a peak at 1,473 cm�1 is registered;

while peaks at 1,473 cm�1 and at 1,536 cm�1 are registered
for the out-gassed sample at 823 K. Malherbe & Wendelbo
() associate the region around 1,450–1,540 cm�1, with
a maximum at 1,487 cm�1, with benzene adsorbed on zeo-

lites, as well as a band around 1,477 cm�1 with toluene
adsorption. In xylene spectra, a peak at 1,520 cm�1 could
be evidence of xylene adsorption on the out-gassed sample

at 623 K (Marie et al. ). This peak is shifted to
1,530 cm�1 on the out-gassed sample at 823 K.
CONCLUSIONS

The adsorptive capacity of natural and modified zeolite

samples was investigated in this study. Experimental results
were analysed by using the Langmuir adsorption model.
Results indicated that the adsorptive capacity is enhanced
when out-gassed zeolite samples at 623 K were used.

Brønsted acid sites are claimed in this study as responsible
for benzene, toluene and xylene abatement using natural
and modified zeolite samples. The FTIR study showed that

benzene, toluene and xylene molecules form bonds with
acid sites on natural zeolite surface. The presence of humid-
ity has a negative effect on natural zeolite adsorption

capacity toward benzene, toluene and xylene vapours. Chi-
lean natural zeolite chemicals, and thermally pre-treated,
could be used as an alternative adsorbent for VOCs abate-

ment in wastewater treatment facilities.
The spectrum of the out-gassed zeolite sample without adsorbed VOC was subtracted.
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