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A Systemic Approach Integrating Driving Cycles for
the Design of Hybrid Locomotives

Amine Jaafar, Bruno Sareni, and Xavier Roboam

Abstract—Driving cycles are essential in hybrid locomotive
design by conditioning their size and performance. This paper
introduces a new systemic approach to hybrid locomotive design,
taking real-world driving cycles into account. The proposed ap-
proach first exploits clustering analysis with the aim of identifying
classes corresponding to particular sets of driving cycles. Then,
a synthesis process of a reduced and representative profile from
each class of driving cycles is presented. Both approaches are
applied to the integrated optimal design of an autonomous hybrid
(Diesel–electric) locomotive devoted to shunting and switching
operations in nonelectrified areas.

Index Terms—Clustering analysis, driving cycles, evolutionary
algorithms, hybrid electrical vehicles (HEVs), hybrid locomotives,
integrated design, optimization.

I. INTRODUCTION

THE integration of driving cycles constitutes a key step
in hybrid electrical vehicle (HEV) analysis and design.

HEV efficiency in terms of fuel consumption, energy range,
and battery health strongly depends on the way HEVs are
used. Therefore, the study of driving cycles and their impact on
HEV performance are fundamental. The most commonly used
design approach to integrate driving missions and assess HEV
efficiency consists in using standard cycles. These cycles can
be found either for automotive [1]–[4] or for locomotive [5]
applications. However, the use of these cycles in HEV design
has been criticized since they are not truly representative of
real driving conditions, specifically depending on the effect of
the environment (i.e., road traffic, signalization, and driver’s
driving style [6], [7]). The main difficulty in finding representa-
tive profiles for driving cycles is related to their heterogeneity.
To overcome this problem and facilitate the identification of
more realistic profiles in compliance with driving conditions,
statistical studies have been performed from real-world driving
cycles issued from data collected on vehicles (see [7]–[12] for
example). In this context, the clustering analysis of real-world
cycles has been investigated, leading to the construction of new
reference cycles obtained from the concatenation of typical
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driving patterns belonging to different classes (urban, suburb,
rural, or motorway cycles). Other approaches consist in the
generation of driving cycles with stochastic models aiming at
reproducing real-world data [13]–[20]. In particular, synthesis
methods using Markov chains based on transition probability
matrices (TPMs) extracted from data sets of driving cycles have
been developed in [15]–[20]. In these methods, representative
profiles are constructed from TPMs fulfilling driving distances
and multiple statistical criteria such as mean velocity, standard
deviation of velocity, minimum, maximum, and average accel-
eration, etc.

Even if the problem of driving cycle integration has been
addressed in the frame of automotive HEV design, it can be
generalized to any kind of embedded systems. In this paper,
we exclusively consider the case of an autonomous hybrid
(Diesel–electric) locomotive devoted to shunting and switching
operations. Contrary to HEVs, for which driving cycles are gen-
erally defined by the vehicle speed versus time, the locomotive
missions will be described as the total load power needed versus
time in this paper (i.e., including all load requirements for
traction and auxiliaries). Nevertheless, the methods investigated
in this paper can be extended to other systems and other
representations of driving cycles with ease.

The main contribution of this paper resides in the joint
exploitation of clustering analysis and of a new driving cycle
synthesis process for HEV design through a systemic approach.
Clustering analysis aims at investigating the interest of design-
ing an HEV propulsion system per classes of driving cycles
in comparison with one unique system devoted to all classes.
A driving cycle synthesis process is then used to determine
representative profiles of each class. This process differs from
those presented in the literature and constitutes the second
contribution of this paper. It consists in finding a fictitious
profile that fulfills specific indicators related to driving cycle
properties, conditioning HEV sizing and efficiency. The profile
is constructed by aggregating elementary segments parameter-
ized in amplitude and duration. The number of segments and
their parameters are determined by a niching genetic algorithm
(GA) so that the generated profile fulfills all indicators. This
process can be applied to the determination of representative
profiles of sets of driving cycles or to the simplification of
driving cycles of large duration.

This paper is organized as follows. Section II briefly presents
the context of HEV design and the indicators related to driv-
ing cycle properties, affecting HEV sizing and performance.
Section III deals with the clustering analysis of driving cycles in
relation to the defined indicators. Section IV tackles the synthe-
sis process of representative driving cycles based on a niching



Fig. 1. Energy management strategy.

GA. Then, the interest of a systemic approach combining clus-
tering analysis and synthesis of representative driving cycles is
shown in Section V, which investigates the design of hybrid
locomotives for shunting and switching operations in nonelec-
trified areas. Finally, conclusions are drawn in Section VI.

II. DESIGN INDICATORS RELATED TO DRIVING CYCLES

IN HYBRID ARCHITECTURES

Here, we introduce different design indicators correlated
with the sizing or efficiency of hybrid architectures, which
are directly related to the driving cycles. In the following,
these indicators will be used to classify and simplify driving
cycles in the context of integrated design approaches aiming at
optimizing architectures, sizing, and energy management [21].

A. First Set of Indicators Related to the System Sizing

The first three indicators (Pmax, Pav, and Eu) are relative
to the energy issue and are linked to the propulsion system
sizing. Indeed, the design of power sources in hybrid archi-
tectures strongly depends on the way that sources cooperate to
fulfill the driving cycles. In these systems, a possible energy
management consists in providing the average part of the load
power by a primary energy source [22], [23] (see Fig. 1). The
remaining power (i.e., the fluctuant part) is devoted to a storage
system (i.e., the auxiliary source). With this particular power
dispatching, the sizing of the main supply essentially depends
on the average load power Pav defined as

Pav =
1

∆T

∆T
∫

0

Pload(t) dt (1)

where ∆T denotes the driving cycle duration, and Pload repre-
sents the load power required by the driving cycle. Furthermore,
the sizing of the storage device can be characterized in terms
of power, according to the maximal power imposed to this
auxiliary supply, i.e., Pmax − Pav, where Pmax represents the
maximal load power related to the driving cycle. It also depends
on the maximum energy quantity Eu transferred to the storage
device. This energy can be computed as

Eu = max
t∈[0,∆T ]

(Es(t))− min
t∈[0,∆T ]

(Es(t)) (2)

Fig. 2. Illustration of the storage cyclability estimation. (a) Cycle-to-failure
characteristic. (b) Number of cycle calculation versus DOD levels.

where storage energy level Es is defined as follows:

Es(t) = −

t
∫

0

(Pload(τ)− Pav) dτ. (3)

It should be noted that Es(t) is a saturated integral with zero
as the upper limit so that the storage is only sized in discharge
mode to avoid its oversizing during wide charge phases.

B. Second Set of Indicators Related to the System Performance

The first indicator of this second set is the cumulative distri-
bution function (cdf), which is associated with the load power
required by the driving profile. This function is defined on the
space of the load power distribution and represents the system
probability to operate at a power level less than or equal to a
load power value.

Finally, the last indicator considered in this paper is related to
the cyclability of the storage system. This indicator is essential
in HEV design since it provides information on the storage
lifetime. Therefore, we consider in this paper the total number
of cycles Nc_tot imposed to the storage during the driving
cycle. This indicator is related to the storage state of charge
(SOC) evolution and to the number of cycles to failure cF [24],
[25] defined as a function of the depth of discharge (DOD),
which is specified in percentage [see Fig. 2(a)]. Considering the
number of cycles to failure for DOD = 100% as a reference, we
can express a “cycle weight” ωcycle for lower DODs as [26]

ωcycle(DOD) =
cF (100%)

cF (DOD)
. (4)

This weight evaluates the effect of a cycle at a given DOD
with regard to a cycle at full DOD. Since the storage SOC
evolution during a driving cycle consists in various cycles with
different DODs, the total number of cycles Nc_tot is computed
as follows:

Nc_tot =
∑

DOD
ωcycle(DOD)×Ncycle(DOD) (5)

where Ncycle(DOD) denotes the number of cycles at a particu-
lar DOD. In practice, the DOD range is divided into equidistant
intervals (typically, ten intervals), and the number of cycles in
each interval is determined with the rainflow counting method
[27], leading to a discretization of (3). This process is shown
in Fig. 2(b). We point out that the Nc_tot indicator depends on
the storage nature through the cycle-to-failure characteristics.



This highlights a coupling between the system features (i.e., the
type of storage) and the system environment (here, the driving
cycle).

In the following, we will consider as storage device the
Hoppecke FNC1502HRNiCd battery cells [28] used in nominal
conditions (i.e., temperature between 30 ◦C–40 ◦C, which are
charged at C5 and discharged at 2C5). In that case, the cycle-
to-failure curve plotted in Fig. 2(a) can be approximated as

cF (DOD) = 966× DOD−2.37 (6)

III. CLUSTERING ANALYSIS OF DRIVING CYCLES

From the system point of view, the classification of driving
cycles according to pertinent indicators with regard to design
criteria and constraints is a part of a set of decision-making
tools and constitutes a ridge phase, which is essential to the
design process. Indeed, it must enable designers to evaluate the
interest in a device that is specifically optimized for a given
class, relative to the driving cycles, and this is compared with
a device capable of simultaneously satisfying a set of classes.
In other words, taking the well-known example of the car,
“what do we gain by classifying and segmenting a vehicle range
(urban, road, off-road, etc.) from the point of view of the cost/
performance ratio and with regard to usage and its occur-
rences?” Classifying or segmenting may thus enable a notable
improvement in certain criteria, such as the energy efficiency
of the system. This is, for example, the case when, regarding
a classification according to energy indicators, the segments or
classes obtained are different from the commercial segmenta-
tion or usage of the system.
In [29], a niching GA has been developed for the classifi-

cation of driving cycles. This algorithm is based on the use of
restricted tournament selection (RTS) [30] and a self-adaptive
recombination technique [31], with the objective of maximizing
the silhouette index [32] of the driving cycle data sets. In the
following, we present an application of this algorithm to bench-
mark railway profile (railway driving cycle) classifications.

This benchmark, consisting of a set of 105 railway power
profiles, is used to show the interest of clustering analysis in
the context of hybrid system design. This set is composed
of three subsets of profiles devoted to three different French
railway systems: the BB 63000 old freight locomotive, the BB
460000 fret service locomotive, and the auxiliary supply for
TGV (i.e., the French high-speed train). These systems have
been considered to put forward the interest of the classification
approach based on purely energy indicators. All profiles, which
are represented by the load power demand as a function of time,
are characterized according to the triplet of energy-based design
indicators (Pav, Pmax, and Eu) aforementioned. The energy
management strategy is described in Fig. 1. All profiles are rep-
resented versus the design indicators in Fig. 3(a). The centroid
of each subset is also indicated with a black mark. In Fig. 3(b),
the classification of the profiles obtained from the RTS runs
after 500 generations is plotted. It is shown that the niching
GA is capable of finding the correct partitioning of data by
identifying three distinct clusters. The difference between both
partitioning is only of 12% (i.e., 13 profiles over 105). Note that

Fig. 3. Profile classification of three railway systems. (a) Initial distribution
of profiles. (b) Classification result.

the set of 105 profiles based on three different subsets of appli-
cation (BB 63000, BB 460000, and TGV Aux) may present
some similarities in terms of power/energy design indicators
so that clustering profiles issued from different subsets may
be energetically coherent. Thus, obtaining some differences
between reference and RTS-based clustering is not necessary
due to the niching GA convergence. All data are globally
well classified, except elements located in the region covered
by the three subsets. In this particular region of low power
and energy, all profiles can be performed by the three hybrid
supplies. Therefore, the assignment by the RTS of elements to
the closest and most densely populated cluster (i.e., the cluster
corresponding to TGV Aux driving profiles) is not surprising.
This also explains the greater deviation of the cluster centroid
relative to BB63 000 data. This cluster is more sensitive to par-
titioning errors because of its small size. Moreover, both other
cluster centroid positions are relatively unchanged by the RTS
partitioning due to their larger size. These results also show
the relevance of the proposed triplet for clustering analysis
in the context of hybrid supply design.

IV. SYNTHESIS PROCESS OF REDUCED AND

REPRESENTATIVE REAL-WORLD DRIVING CYCLES

A. Principle

Beyond the classification methodology of the driving cycles
presented in Section III, the next issue is to know how to best
integrate the set of profiles from one class into a systemic
design approach. In other words, we are looking to represent
the information content of one set of profiles using a single



Fig. 4. Principle of the profile generation. (a) Profile generated by segment.
(b) Pattern parameters.

and more compact, but representatively fictitious profile, to
minimize computation costs within a system design process,
particularly in the context of integrated design by optimization
[21]. The fictitious profile is obtained by aggregating elemen-
tary segments, as shown in Fig. 4. Each segment is character-
ized by its amplitude ∆Sn (∆Smin ≤ ∆Sn ≤ ∆Smax) and its
duration ∆tn (0 ≤ ∆tn ≤ ∆tcompact). Finding a compact fic-
titious profile consists in finding all segment parameters so that
the generated profile fulfills all target indicators on the reduced
duration ∆tcompact. This results in solving an inverse problem
with 2N parameters, whereN denotes the number of segments
in the compact profile. This can be done using evolutionary al-
gorithms and, particularly, with the clearing method [33], which
is well suited to treat this kind of problem with high dimen-
sionality and high multimodality. It should be also noted that
the numberN of segments is optimized through a self-adaptive
procedure [34]. The profile synthesis by an optimization pro-
cess is given in Fig. 5. The first stage consists of building pro-
file S(t) from the chromosome generated by the evolutionary
algorithm, using the concatenation of N elementary segments.
A time-scaling step is performed after the profile genera-
tion to fulfill the constraint related to the time duration, i.e.,
Σ∆tn = ∆tcompact. The duration ∆tcompact of the obtained
cycle is considered to be a problem input. Although we are
taking care to ensure that the synthesized profile is as com-
pact as possible, the choice of its duration must check cer-
tain constraints relative to the design indicators, as defined in
Section II. In the following stage, we compute the profile indi-
cators Ij (obtained from the synthesized profile), which are then
compared with the reference indicators Ijref (obtained from
the reference set of profiles). It enables error function ε (the
function to be minimized using the evolutionary algorithm),
which is expressed as

ε =
∑

j

(

Ij − Ijref
Ijref

)2

(7)

to be evaluated. This function is defined as the sum of quadratic
scaled errors between reference and synthesized profile
indicators.

B. Application on Railway Driving Cycles

Here, we study an example of ten railway driving cycles
(see the Appendix) with the same duration (i.e., 4 h) used
for the hybridization of the Diesel locomotive BB 63000.
The architecture and the energy management strategy are in

Fig. 5. Synthesis process of representative profiles.

compliance with Fig. 1. The main supply is a Diesel engine,
and the auxiliary supply is composed of Ni–Cd accumulator
batteries (see Section V). The different driving cycles presented
in the Appendix were assumed to be applied to the locomotive
with the same occurrence. Moreover, batteries are supposed to
be recharged after each 4-h driving cycle. Consequently, the
reference indicators are chosen as follows.

– The average reference power Pav ref is set at the average
concatenation value for all cycles. We remind the reader
that this power value corresponds to the Diesel engine
sizing, which is a device for which consumption and
“pollution” are optimum when this latter operates at its
nominal power [23], [26].

– Pmaxref and Eu ref indicators are set at the more
constraining values for all of the ten driving cycles,
i.e., Pmaxref = maxPmax(i) and Eu ref = maxEu(i),
where i denotes the driving cycle index (i = 1, . . . , 10).
This enables us to guarantee that the system being de-
signed will satisfy all driving cycles.

– The performance and lifetime indicators are considered
to be average. The choice of useful reference energy
Eu ref enables the storage size to be determined, and as
a consequence, we are able to estimate the number of
cycles consumed for each driving cycles. The number
of reference cycles Nc_tot ref is thus determined by the
average value of the cycle number per hour across all
profiles. For statistical reference indicator Istat ref , we
consider the cdf associated with the concatenation of all
cycles.

Note that the nature of the design indicators imposes sub-
stantial minimum times. This refers most particularly to the
useful energy indicator or the number of cycles that are closely
coupled with the profile duration. The representative railway
driving profile is obtained through the concatenation of 148
segments (see Fig. 6). We give in Table I the values of sizing
and performance indicators of this profile in comparison with
the reference values. Note that the statistic error εstat is defined
as the mean square error, which is computed over 100 equally
spaced points, between both cdfs relative to the power of the
driving cycles, i.e.,

εstat =
1

100
×

100
∑

i=1

(

cdf(i)− cdfref(i)
cdf(i)

)2

. (8)



Fig. 6. Result of the compact profile synthesis process on ten driving cycles.
(a) Representative driving profile. (b) Distribution functions.

TABLE I
CHARACTERIZATION INDICATORS OF THE REPRESENTATIVE PROFILE

The results show that our signal synthesis approach performs
well and is capable of finding a profile shape representing
the whole set of driving cycles. It should be noted that the
“fictitious” profile duration is about 14.5 h. In comparison with
the global duration of the ten profiles (i.e., 40 h), the profile
duration has been reduced by 2.8. Consequently, in a design
optimization process such as in [35], the simulation of any
hybrid electric system will also be reduced.

V. INTEGRATED OPTIMAL DESIGN OF A HYBRID

LOCOMOTIVE FROM REAL-WORLD DRIVING CYCLES

Here, we are proposing to show the complete process for a
systemic design approach. Starting with the classification of
real profiles (see Section III), the profile synthesis process (see
Section IV) based on a set of railway driving cycles is used to
complete the integrated design by optimization of the railway
hybrid system. The idea is to design a hybrid locomotive
optimized for each profile class and to compare the cost of
annual ownership of the devices obtained, with the design of
a single locomotive capable of satisfying all profile classes at
once. This general approach to system design is founded on
a reference database corresponding to an example using ten
railway driving cycles with iso-times (4 h per profile). We
assume that the storage SOC of Ni–Cd batteries is reset to 100%
after each 4-h cycle sequence. In Fig. 7, we show the various
stages of the proposed comparative study.

A. Hybrid Locomotive Model

1) Power Flow Model: The power flow model determines
the energetic characteristics of the locomotive power sources
i.e., power P , energy E, and the SOC for the storage elements.
Considering a given power profile PM , an energy management
controller provides power reference values for the Diesel en-
gine (PDEref) and the batteries (PBTref). These references are

Fig. 7. General system approach, from classification to optimal design.

Fig. 8. Power flow model of the Diesel engine.

obtained according to the management strategy of Fig. 1. The
power flow model of the Diesel engine is given in Fig. 8. It
allows us to obtain power reference PDEref and a start/stop con-
trol, the Diesel engine power PDE, the corresponding energy
EDE, the quantity of fuel consumed Qfuel, and the correspond-
ing quantity of emitted carbon dioxide QCO2

. The parameters
of this model are the converter efficiency associated with the
Diesel engine (typically, ηDE = 96%), the Diesel power limit
PDEmax, and the specific fuel consumption (SFC) character-
istic. This characteristic has been extrapolated with a fifth-
order polynomial as a function of the Diesel engine power as
follows [26]:

SFC(PDE) = SFCN

5
∑

i=1

bi

(

PDE

PDEN

)

(9)

where the polynomial coefficients are b0 = 1.94, b1 = −6.44,
b2 = 18.57, b3 = −27.22, b4 = 19.72, and b5 = 1.94. PDEN

denotes the nominal power of the Diesel engine, and SFCN

represents the SFC at this power estimated at 202.45 g/kW.
The previous relation has been validated for three Diesel en-
gines of the Fiat Powertrain Technologies Group [36], i.e.,
the N67 TM2A with 125 kW, the C78 TE2ES with 236 kW,
and the C13 TE2S with 335 kW. It should be noted that the
SFC is at the minimum when the Diesel engine operates at
its nominal power PDEN. Therefore, the energy management
controller tends to maintain the Diesel engine power reference



Fig. 9. Battery power flow model.

Fig. 10. Battery cell electric model.

close to this power. Note also that the maximal Diesel engine
power is considered 10% higher than the nominal power. The
quantity of CO2 emitted (in kilograms per liter) is directly
proportional to the fuel quantity consumed and is estimated as
follows [37]:

QCO2
= 2.66×Qfuel. (10)

The battery power flow model is given in Fig. 9. In this model,
the storage power PBT, the corresponding energy EBT, and the
associated SOC SOCBT are computed from the initial energetic
capacity EBT0, the reference power resulting from the energy
management controller PBT0, the maximum discharge power
Pdchmax and the maximum charge power Pchmax of the battery
pack, and the efficiency ηBT. Note that the total energetic
capacity of a pack depends on the total number of cells and
on the capacity of each cell.

2) Electric Model: Beyond the power flow model, which
only specifies power and energy transfers, one further step is
achieved at the electric model level, which provides voltages
and currents. AnRC electric model is used to obtain the electri-
cal variables (current and voltage) in a battery cell (see Fig. 10).
Technological data values corresponding to Hoppecke

FNC1502HR battery cells of 135-Ah capacity (C5 = 135 Ah)
are considered in these models [28]. The battery resistance
rBT and its electromotive force eBT are interpolated from the
manufacturer data as a function of the cell SOC q, i.e.,
{

rBT = 2.83− 12.88q + 24.88q2 − 20.83q3 + 6.28q4

eBT = 0.99+ 1.06q − 1.82q2 + 1.11q3.
(11)

As shown in Fig. 10, the current and voltage in the cell are
computed from the cell power pBT. This power can be obtained
from the global power of the pack PBT. resulting from the
power flow model, i.e.,

pBT = PBT/(NPBT × NSBT) (12)

where NSBT and NPBT denote the number of battery cells
in series and the associated number of branches in parallel,
respectively.

3) Geometric Model: From the data provided by manufac-
turers, the volume in square meters of the Diesel engine can be
expressed in terms of its nominal power PDEN in Watts using
the following relation:

ΩDE = 3× 10−5PDEN + 0.09. (13)

The battery volume, taking into account the cooling systems
and associated electronic modules (such as charge state balanc-
ing and thermal control), is given by the following:

ΩBT = λBT × NPBT × NSBT × ΩBT0 (14)

where ΩBT0 = 4.33× 10−3 m3, and λBT = 1.8 represents the
assembly coefficient, which considers intercellular spaces, elec-
tronic modules, and cooling systems.

4) Battery Lifetime Model: The battery lifetime LFTBT is
directly related to the number of battery cycles consumed
during the railway profile. It is expressed by the product of the
cycle number consumed by each cellNc_tot and the number of
cells in series NSBT and in parallel NPBT, i.e.,

LFTBT = NPBT × NSBT ×Nc_tot. (15)

5) Cost Model: Similar to the geometric model, the cost
model uses empiric relations derived from manufacturer data
to evaluate the cost of each energetic source embedded in
the locomotive. The global cost in euros of the Diesel engine
CDE, including its installation, can be interpolated by a linear
function versus the nominal power, i.e.,

CDE[kC] = 0.28× PDEN + 14.5. (16)

To take account of the Diesel engine costs during the loco-
motive exploitation (including repairs and maintenance), the
previous relation has been modified. It has been estimated by
the French National Railways Company (SNCF) that the Diesel
engine cost over ten years is in, average, three times higher than
the purchase cost [35]. Therefore, the previous relation can be
modified as follows:

CDE[kC/yr] =
3
10

(0.28× PDEN + 14.5). (17)

The cost of the battery cells is calculated from the cycle
cost, which allows taking account of purchase costs (including
installation costs) and maintenance costs (directly related to the
battery lifetime). A battery deep cycle (100% of DOD) cost
has been estimated to 0.122 C. By considering the LFTBT

stress estimator that evaluates the total number of cycles for
the battery pack on a particular railway profile, the battery cost
per year CBT can be expressed as

CBT[kC/yr] = 0.122× 10−3 × LFTBT ×
∆τyr
∆τ

(18)

where ∆τyr represents the locomotive exploitation in one year
(typically 8 h/day), and ∆τ denotes the total railway profile



TABLE II
HYBRID LOCOMOTIVE DESIGN VARIABLES

duration. Finally, with a Diesel fuel cost of about 1.35 C/l, the
global cost per year can be estimated as

Cfuel[kC/yr] = 1.35× 10−3 ×Qfuel ×
∆τyr
∆τ

. (19)

B. Optimization Process

1) Optimization Parameters: The design variables and their
associated bound are shown in Table II.

2) Optimization Constraints: Four inequality constraints
that are classically formulated in terms of minimization (i.e.,
gi ≤ 0) have to be fulfilled to ensure the locomotive feasibility.
These constraints can be separated into two groups. The first
three constraints (g1, g2, and g3) do not require the locomotive
simulation on its driving cycle and are qualified as presimu-

lating constraint. On the contrary, the last constraint (g4) is a
postsimulating constraint, which can be only evaluated from the
driving cycle simulation. With the aim of improving the CPU
time related to the optimization step, this constraint is computed
only if all presimulating constraints are fulfilled. Otherwise, it
receives the maximum penalty (i.e., g4 → ∞).
– The first constraint g1 verifies that the volume available

for energy sources is lower than 32 m3, i.e.,

g1 = ΩBT +ΩDE − 32 ≤ 0 (20)

without considering at this stage the static converter
volume associated with battery blocks.

– The second constraint g2 is related to the minimum num-
ber of battery cellsNBTmin required to fulfill the driving
cycle. This number can be determined from a battery
sizing procedure based on the power flow model accord-
ing to [23]. Finally, the constraint g2 is expressed as

g2 = NBTmin − NPBT × NSBT ≤ 0. (21)

– Taking into account the elevated structure of choppers
(from batteries toward bus) and of the maximum cyclic
ratio αmax, the maximum voltage of a battery block
VBTmax must be then less than αmax × Vbus. If the
maximum voltage of a battery element is known, the
constraint g3 is written as follows:

g3 = NSBTVBTmax − αmax × Vbus ≤ 0. (22)

– If all previous constraints are satisfied, the locomotive
sizing can be refined by evaluating the static converter
volume ΩCBT associated with battery blocks. This vol-
ume can be computed from the driving cycle simulation
by determining the maximum current in each battery
block and, consequently, the filtering inductance required

Fig. 11. Classification of railway profiles according to sizing indicators.

to limit the current ripples (see [35]). Finally, constraint
g4 can be expressed as

g4 = ΩBT +ΩDE +ΩCBT − 32 ≤ 0. (23)

3) Optimization Criteria: The hybridization approach aims
at minimizing the investment and usage costs and the environ-
mental cost (tonnes of CO2). This systemic evaluation has been
done with respect to a full Diesel locomotive of the same power.
As the quantity of CO2 released is proportional to the quantity
of fuel burn [see (10)], the environmental cost optimization can
be therefore reflected in the optimization of the quantity of fuel
burn. This enables us to reduce the multiobjective optimization
problem into a single optimization problem consisting in the
minimization of the annual total cost of ownership (TCO),
integrating at the same time the costs of investment and usage
(maintenance, lifetime, and fuel burn) as follows:

TCO = CDE + CBT + Cfuel. (24)

C. Railway Profile Classification

We move now to the classification of the railway driving
cycles given in the Appendix according to the design indicators
{Pmax, Pav, Eu}. The result obtained by applying the RTS-
based classification algorithm presented in Section III is shown
in Fig. 11. It is shown that two different classes are obtained,
each containing five elements.

D. Synthesis of Representative Railway Profiles

In this second study phase, we have applied the represen-
tative and compact profile synthesis process for each class
C1 and C2, and for CΣ = (C1 ∪ C2), which is composed of
the global set of profile. The reference indicators that enable
the characterization of the representative profile are chosen as
indicated in Section IV-B.

1) Class C1 Representative Profile: M1rep: We set the dura-
tion of the representative profile for classC1 at 4 h, which corre-
sponds to save a 1/5 ratio over the total duration of concatenated
profiles (20 h). The result of the synthesis process is given in
Fig. 12(a). This representative profileM1rep is obtained through
the concatenation of 125 segments and perfectly fulfills the
reference indicators [see Table III and Fig. 12(b)].

2) Class C2 Representative Profile: M2rep: The duration
of the representative profile for class C2 is set at 6 h, which



Fig. 12. Result of the compact profile synthesis process for class C1.
(a) Representative profileM1rep. (b) Distribution functions.

TABLE III
CHARACTERIZATION INDICATORS OF THE

REPRESENTATIVE PROFILE M1rep

Fig. 13. Result of the compact profile synthesis process for class C2.
(a) Representative profileM2rep. (b) Distribution functions.

TABLE IV
CHARACTERIZATION INDICATORS OF THE

REPRESENTATIVE PROFILE M2rep

corresponds to save a ratio of 1/3.3 over the total duration of
concatenated profiles (20 h). The result of synthesis is given in
Fig. 13(a). This representative profileM2rep is obtained through
the concatenation of 126 segments and perfectly fulfills the
reference indicators [see Table IV and Fig. 13(b)].

3) Class CΣ Representative Profile: MΣrep: The represen-
tative and compact profile related to the set of ten driving cycles
corresponds with the results presented in Section IV (see Fig. 6
and Table I).

E. Integrated Design by Optimization

Having determined the representative profiles, we proceed
here to the integrated design of three hybrid locomotives that

TABLE V
RESULTS OF DESIGN BY OPTIMIZATION IN HYBRID LOCOMOTIVES

are optimized per profile class. Let L1rep, L2rep, and LΣrep

denote the hybrid locomotives, which are sized for classes C1,
C2, and CΣ, respectively, from representative railway profiles
M1rep, M2rep, and MΣrep. To validate the consistency of the
design results and to emphasize the synthesis process efficiency
in terms of computation time, we have also sized three hybrid
locomotives, which are optimized from a real profile class.
In these cases, locomotives are designed in a “classical way”
by considering the concatenation of all of the five driving
cycles (instead of the corresponding compact and representative
profile) under the hypothesis that the battery SOC is set to its
initial value after each 4-h cycle. Thus, we also denote the
hybrid locomotives sized for each class C1, C2, and CΣ from
real complete cycles M1real, M2real, and MΣreal, by L1real,
L2real, and LΣreal, respectively. Under the hypothesis that all
initial profiles are realized with the same occurrence over a
year with 8 h of use per day (two successive cycles per day)
for each locomotive, the design results are given in Table V.
The optimization algorithm used at the heart of the integrated
design process is based on a GA and is coupled to the different
hybrid locomotive models presented earlier.
The design results obtained for each profile class proves

the effectiveness of the representative profile synthesis process
in the system design approach. Indeed, we obtain practically
nearly the same sizing from the hybrid locomotive by consider-
ing, on one hand, the fictitious representative profile, and, on the
other hand, the concatenation of real profiles in the envisaged
class. It should also be noted that the annual performance
criteria (TCO and CO2 emissions) estimated on the set of real
profiles are equivalent. Finally, we mention in Table V the
computational time Tc required for the locomotive optimization
in all investigated cases. It should be noted that all results
were obtained from a GA run after 1000 generations using a
population size of 100 individuals. Thus, Tc is relative to the
CPU time needed for those runs according to the driving profile
used in the optimization process (i.e., the set of real driving
cycles or the compact representative profile). We observe in
Table V a significant saving in terms of CPU time between the
two approaches. The synthesized representative profiles enable
a computation saving, which is increased to 4.5 days for class
C1, 4.1 days for class C2, and 6.6 days for class CΣ.



F. Design Result Comparison

Based on 8 h/day of use for each locomotive, the ten initial
class CΣ profiles, with a total length of 40 h, are repeated 73
times over the course of one year, whereas the five profiles in
class C1 of the same length are each repeated 146 times each
year. To evaluate the interest in the classification (or segmenta-
tion), we compare the average annual costs of the two locomo-
tives L1 and L2 with that of locomotive LΣ by considering the
designs obtained with the representative and compact driving
profiles. The average annual TCO of L1 and L2 is estimated at
TCO(L1 & L2) = 0.5× (TCO(L1(C1) + TCO(L2(C2)) ≈
300 kC/yr compared with TCO(LΣ) ≈ 320 kC/yr, repre-
senting the annual TCO of a single locomotive LΣ perform-
ing all driving cycles. We observe that, for this ten-profile
example, the design of two locomotives optimized per profile
class enables a saving of 20 kC/yr (∼6%) compared with a
single locomotive capable of satisfying all profiles on the list of
specifications. Conversely, although it is less profitable finan-
cially, the single locomotive is better in terms of environment.
Indeed, the annual use of this locomotive generates around
460 tonnes of CO2 versus 504 T of CO2 (∼ +9%) emitted
during an average annual exploitation of both locomotives L1

and L2. The choice of whether to design a single locomotive
or two different locomotives L1 and L2 is governed by a
compromise between financial and ecological aspects. Beyond
the result of this particular application, the interest of the
complete approach (classification–profile synthesis–integrated
optimal design) proposed in this paper is to facilitate the choice
of design users, i.e., SNCF, in terms of segmentation of the
product range and then sizing. These choices can be directly
put forward into perspective with regard to the essential design
criteria (i.e., ownership and climate costs).

VI. CONCLUSION

In this paper, a systemic approach integrating driving cycles
has been proposed for the design of hybrid autonomous loco-
motives. Efforts spent to achieve this process emphasize the
prime importance of mission profile issues in HEVs and, more
generally, of environmental variables for any class of systems.
This approach particularly exploits clustering analysis with

the aim of identifying driving cycle classes that is relevant for
market segmentation. Those classes are found using specific
design indicators related to the driving cycle features and
the propulsion hybrid system performance. Then, a synthesis
procedure is applied to determine compact and representative
profiles related to a given class or to a set of classes. Using
the resulting profiles in the design process instead of the set of
real driving cycles allows significant savings in computational
time. It has been clearly shown through the application of
the proposed design approach on the optimization of a hybrid
autonomous locomotive devoted to shunting and switching
operations. In addition, our approach also forms, for designer
users, an “aid to market segmentation associated with an aid
to system design.” It can be extended to other kinds of systems
without much difficulty, including standalone renewable energy
systems and similar stochastic environmental variables (e.g.,
wind speed profiles).

APPENDIX

SET OF TEN DRIVING CYCLES OF A HYBRID

AUTONOMOUS LOCOMOTIVE DEVOTED TO SHUNTING

AND SWITCHING OPERATIONS
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